xref: /linux/fs/kernfs/file.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		refcnt;
37 	atomic_t		event;
38 	wait_queue_head_t	poll;
39 	struct list_head	files; /* goes through kernfs_open_file.list */
40 };
41 
42 /*
43  * kernfs_notify() may be called from any context and bounces notifications
44  * through a work item.  To minimize space overhead in kernfs_node, the
45  * pending queue is implemented as a singly linked list of kernfs_nodes.
46  * The list is terminated with the self pointer so that whether a
47  * kernfs_node is on the list or not can be determined by testing the next
48  * pointer for NULL.
49  */
50 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
51 
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 	return ((struct seq_file *)file->private_data)->private;
58 }
59 
60 /*
61  * Determine the kernfs_ops for the given kernfs_node.  This function must
62  * be called while holding an active reference.
63  */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 	if (kn->flags & KERNFS_LOCKDEP)
67 		lockdep_assert_held(kn);
68 	return kn->attr.ops;
69 }
70 
71 /*
72  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74  * a seq_file iteration which is fully initialized with an active reference
75  * or an aborted kernfs_seq_start() due to get_active failure.  The
76  * position pointer is the only context for each seq_file iteration and
77  * thus the stop condition should be encoded in it.  As the return value is
78  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79  * choice to indicate get_active failure.
80  *
81  * Unfortunately, this is complicated due to the optional custom seq_file
82  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
83  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84  * custom seq_file operations and thus can't decide whether put_active
85  * should be performed or not only on ERR_PTR(-ENODEV).
86  *
87  * This is worked around by factoring out the custom seq_stop() and
88  * put_active part into kernfs_seq_stop_active(), skipping it from
89  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91  * that kernfs_seq_stop_active() is skipped only after get_active failure.
92  */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 	struct kernfs_open_file *of = sf->private;
96 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 
98 	if (ops->seq_stop)
99 		ops->seq_stop(sf, v);
100 	kernfs_put_active(of->kn);
101 }
102 
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 	struct kernfs_open_file *of = sf->private;
106 	const struct kernfs_ops *ops;
107 
108 	/*
109 	 * @of->mutex nests outside active ref and is primarily to ensure that
110 	 * the ops aren't called concurrently for the same open file.
111 	 */
112 	mutex_lock(&of->mutex);
113 	if (!kernfs_get_active(of->kn))
114 		return ERR_PTR(-ENODEV);
115 
116 	ops = kernfs_ops(of->kn);
117 	if (ops->seq_start) {
118 		void *next = ops->seq_start(sf, ppos);
119 		/* see the comment above kernfs_seq_stop_active() */
120 		if (next == ERR_PTR(-ENODEV))
121 			kernfs_seq_stop_active(sf, next);
122 		return next;
123 	}
124 	return single_start(sf, ppos);
125 }
126 
127 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
128 {
129 	struct kernfs_open_file *of = sf->private;
130 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
131 
132 	if (ops->seq_next) {
133 		void *next = ops->seq_next(sf, v, ppos);
134 		/* see the comment above kernfs_seq_stop_active() */
135 		if (next == ERR_PTR(-ENODEV))
136 			kernfs_seq_stop_active(sf, next);
137 		return next;
138 	} else {
139 		/*
140 		 * The same behavior and code as single_open(), always
141 		 * terminate after the initial read.
142 		 */
143 		++*ppos;
144 		return NULL;
145 	}
146 }
147 
148 static void kernfs_seq_stop(struct seq_file *sf, void *v)
149 {
150 	struct kernfs_open_file *of = sf->private;
151 
152 	if (v != ERR_PTR(-ENODEV))
153 		kernfs_seq_stop_active(sf, v);
154 	mutex_unlock(&of->mutex);
155 }
156 
157 static int kernfs_seq_show(struct seq_file *sf, void *v)
158 {
159 	struct kernfs_open_file *of = sf->private;
160 
161 	of->event = atomic_read(&of->kn->attr.open->event);
162 
163 	return of->kn->attr.ops->seq_show(sf, v);
164 }
165 
166 static const struct seq_operations kernfs_seq_ops = {
167 	.start = kernfs_seq_start,
168 	.next = kernfs_seq_next,
169 	.stop = kernfs_seq_stop,
170 	.show = kernfs_seq_show,
171 };
172 
173 /*
174  * As reading a bin file can have side-effects, the exact offset and bytes
175  * specified in read(2) call should be passed to the read callback making
176  * it difficult to use seq_file.  Implement simplistic custom buffering for
177  * bin files.
178  */
179 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
180 {
181 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
182 	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
183 	const struct kernfs_ops *ops;
184 	char *buf;
185 
186 	buf = of->prealloc_buf;
187 	if (buf)
188 		mutex_lock(&of->prealloc_mutex);
189 	else
190 		buf = kmalloc(len, GFP_KERNEL);
191 	if (!buf)
192 		return -ENOMEM;
193 
194 	/*
195 	 * @of->mutex nests outside active ref and is used both to ensure that
196 	 * the ops aren't called concurrently for the same open file.
197 	 */
198 	mutex_lock(&of->mutex);
199 	if (!kernfs_get_active(of->kn)) {
200 		len = -ENODEV;
201 		mutex_unlock(&of->mutex);
202 		goto out_free;
203 	}
204 
205 	of->event = atomic_read(&of->kn->attr.open->event);
206 	ops = kernfs_ops(of->kn);
207 	if (ops->read)
208 		len = ops->read(of, buf, len, iocb->ki_pos);
209 	else
210 		len = -EINVAL;
211 
212 	kernfs_put_active(of->kn);
213 	mutex_unlock(&of->mutex);
214 
215 	if (len < 0)
216 		goto out_free;
217 
218 	if (copy_to_iter(buf, len, iter) != len) {
219 		len = -EFAULT;
220 		goto out_free;
221 	}
222 
223 	iocb->ki_pos += len;
224 
225  out_free:
226 	if (buf == of->prealloc_buf)
227 		mutex_unlock(&of->prealloc_mutex);
228 	else
229 		kfree(buf);
230 	return len;
231 }
232 
233 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
234 {
235 	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
236 		return seq_read_iter(iocb, iter);
237 	return kernfs_file_read_iter(iocb, iter);
238 }
239 
240 /*
241  * Copy data in from userland and pass it to the matching kernfs write
242  * operation.
243  *
244  * There is no easy way for us to know if userspace is only doing a partial
245  * write, so we don't support them. We expect the entire buffer to come on
246  * the first write.  Hint: if you're writing a value, first read the file,
247  * modify only the the value you're changing, then write entire buffer
248  * back.
249  */
250 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
251 {
252 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
253 	ssize_t len = iov_iter_count(iter);
254 	const struct kernfs_ops *ops;
255 	char *buf;
256 
257 	if (of->atomic_write_len) {
258 		if (len > of->atomic_write_len)
259 			return -E2BIG;
260 	} else {
261 		len = min_t(size_t, len, PAGE_SIZE);
262 	}
263 
264 	buf = of->prealloc_buf;
265 	if (buf)
266 		mutex_lock(&of->prealloc_mutex);
267 	else
268 		buf = kmalloc(len + 1, GFP_KERNEL);
269 	if (!buf)
270 		return -ENOMEM;
271 
272 	if (copy_from_iter(buf, len, iter) != len) {
273 		len = -EFAULT;
274 		goto out_free;
275 	}
276 	buf[len] = '\0';	/* guarantee string termination */
277 
278 	/*
279 	 * @of->mutex nests outside active ref and is used both to ensure that
280 	 * the ops aren't called concurrently for the same open file.
281 	 */
282 	mutex_lock(&of->mutex);
283 	if (!kernfs_get_active(of->kn)) {
284 		mutex_unlock(&of->mutex);
285 		len = -ENODEV;
286 		goto out_free;
287 	}
288 
289 	ops = kernfs_ops(of->kn);
290 	if (ops->write)
291 		len = ops->write(of, buf, len, iocb->ki_pos);
292 	else
293 		len = -EINVAL;
294 
295 	kernfs_put_active(of->kn);
296 	mutex_unlock(&of->mutex);
297 
298 	if (len > 0)
299 		iocb->ki_pos += len;
300 
301 out_free:
302 	if (buf == of->prealloc_buf)
303 		mutex_unlock(&of->prealloc_mutex);
304 	else
305 		kfree(buf);
306 	return len;
307 }
308 
309 static void kernfs_vma_open(struct vm_area_struct *vma)
310 {
311 	struct file *file = vma->vm_file;
312 	struct kernfs_open_file *of = kernfs_of(file);
313 
314 	if (!of->vm_ops)
315 		return;
316 
317 	if (!kernfs_get_active(of->kn))
318 		return;
319 
320 	if (of->vm_ops->open)
321 		of->vm_ops->open(vma);
322 
323 	kernfs_put_active(of->kn);
324 }
325 
326 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
327 {
328 	struct file *file = vmf->vma->vm_file;
329 	struct kernfs_open_file *of = kernfs_of(file);
330 	vm_fault_t ret;
331 
332 	if (!of->vm_ops)
333 		return VM_FAULT_SIGBUS;
334 
335 	if (!kernfs_get_active(of->kn))
336 		return VM_FAULT_SIGBUS;
337 
338 	ret = VM_FAULT_SIGBUS;
339 	if (of->vm_ops->fault)
340 		ret = of->vm_ops->fault(vmf);
341 
342 	kernfs_put_active(of->kn);
343 	return ret;
344 }
345 
346 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
347 {
348 	struct file *file = vmf->vma->vm_file;
349 	struct kernfs_open_file *of = kernfs_of(file);
350 	vm_fault_t ret;
351 
352 	if (!of->vm_ops)
353 		return VM_FAULT_SIGBUS;
354 
355 	if (!kernfs_get_active(of->kn))
356 		return VM_FAULT_SIGBUS;
357 
358 	ret = 0;
359 	if (of->vm_ops->page_mkwrite)
360 		ret = of->vm_ops->page_mkwrite(vmf);
361 	else
362 		file_update_time(file);
363 
364 	kernfs_put_active(of->kn);
365 	return ret;
366 }
367 
368 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
369 			     void *buf, int len, int write)
370 {
371 	struct file *file = vma->vm_file;
372 	struct kernfs_open_file *of = kernfs_of(file);
373 	int ret;
374 
375 	if (!of->vm_ops)
376 		return -EINVAL;
377 
378 	if (!kernfs_get_active(of->kn))
379 		return -EINVAL;
380 
381 	ret = -EINVAL;
382 	if (of->vm_ops->access)
383 		ret = of->vm_ops->access(vma, addr, buf, len, write);
384 
385 	kernfs_put_active(of->kn);
386 	return ret;
387 }
388 
389 #ifdef CONFIG_NUMA
390 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
391 				 struct mempolicy *new)
392 {
393 	struct file *file = vma->vm_file;
394 	struct kernfs_open_file *of = kernfs_of(file);
395 	int ret;
396 
397 	if (!of->vm_ops)
398 		return 0;
399 
400 	if (!kernfs_get_active(of->kn))
401 		return -EINVAL;
402 
403 	ret = 0;
404 	if (of->vm_ops->set_policy)
405 		ret = of->vm_ops->set_policy(vma, new);
406 
407 	kernfs_put_active(of->kn);
408 	return ret;
409 }
410 
411 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
412 					       unsigned long addr)
413 {
414 	struct file *file = vma->vm_file;
415 	struct kernfs_open_file *of = kernfs_of(file);
416 	struct mempolicy *pol;
417 
418 	if (!of->vm_ops)
419 		return vma->vm_policy;
420 
421 	if (!kernfs_get_active(of->kn))
422 		return vma->vm_policy;
423 
424 	pol = vma->vm_policy;
425 	if (of->vm_ops->get_policy)
426 		pol = of->vm_ops->get_policy(vma, addr);
427 
428 	kernfs_put_active(of->kn);
429 	return pol;
430 }
431 
432 #endif
433 
434 static const struct vm_operations_struct kernfs_vm_ops = {
435 	.open		= kernfs_vma_open,
436 	.fault		= kernfs_vma_fault,
437 	.page_mkwrite	= kernfs_vma_page_mkwrite,
438 	.access		= kernfs_vma_access,
439 #ifdef CONFIG_NUMA
440 	.set_policy	= kernfs_vma_set_policy,
441 	.get_policy	= kernfs_vma_get_policy,
442 #endif
443 };
444 
445 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
446 {
447 	struct kernfs_open_file *of = kernfs_of(file);
448 	const struct kernfs_ops *ops;
449 	int rc;
450 
451 	/*
452 	 * mmap path and of->mutex are prone to triggering spurious lockdep
453 	 * warnings and we don't want to add spurious locking dependency
454 	 * between the two.  Check whether mmap is actually implemented
455 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
456 	 * comment in kernfs_file_open() for more details.
457 	 */
458 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
459 		return -ENODEV;
460 
461 	mutex_lock(&of->mutex);
462 
463 	rc = -ENODEV;
464 	if (!kernfs_get_active(of->kn))
465 		goto out_unlock;
466 
467 	ops = kernfs_ops(of->kn);
468 	rc = ops->mmap(of, vma);
469 	if (rc)
470 		goto out_put;
471 
472 	/*
473 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
474 	 * to satisfy versions of X which crash if the mmap fails: that
475 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
476 	 */
477 	if (vma->vm_file != file)
478 		goto out_put;
479 
480 	rc = -EINVAL;
481 	if (of->mmapped && of->vm_ops != vma->vm_ops)
482 		goto out_put;
483 
484 	/*
485 	 * It is not possible to successfully wrap close.
486 	 * So error if someone is trying to use close.
487 	 */
488 	rc = -EINVAL;
489 	if (vma->vm_ops && vma->vm_ops->close)
490 		goto out_put;
491 
492 	rc = 0;
493 	of->mmapped = true;
494 	of->vm_ops = vma->vm_ops;
495 	vma->vm_ops = &kernfs_vm_ops;
496 out_put:
497 	kernfs_put_active(of->kn);
498 out_unlock:
499 	mutex_unlock(&of->mutex);
500 
501 	return rc;
502 }
503 
504 /**
505  *	kernfs_get_open_node - get or create kernfs_open_node
506  *	@kn: target kernfs_node
507  *	@of: kernfs_open_file for this instance of open
508  *
509  *	If @kn->attr.open exists, increment its reference count; otherwise,
510  *	create one.  @of is chained to the files list.
511  *
512  *	LOCKING:
513  *	Kernel thread context (may sleep).
514  *
515  *	RETURNS:
516  *	0 on success, -errno on failure.
517  */
518 static int kernfs_get_open_node(struct kernfs_node *kn,
519 				struct kernfs_open_file *of)
520 {
521 	struct kernfs_open_node *on, *new_on = NULL;
522 
523  retry:
524 	mutex_lock(&kernfs_open_file_mutex);
525 	spin_lock_irq(&kernfs_open_node_lock);
526 
527 	if (!kn->attr.open && new_on) {
528 		kn->attr.open = new_on;
529 		new_on = NULL;
530 	}
531 
532 	on = kn->attr.open;
533 	if (on) {
534 		atomic_inc(&on->refcnt);
535 		list_add_tail(&of->list, &on->files);
536 	}
537 
538 	spin_unlock_irq(&kernfs_open_node_lock);
539 	mutex_unlock(&kernfs_open_file_mutex);
540 
541 	if (on) {
542 		kfree(new_on);
543 		return 0;
544 	}
545 
546 	/* not there, initialize a new one and retry */
547 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
548 	if (!new_on)
549 		return -ENOMEM;
550 
551 	atomic_set(&new_on->refcnt, 0);
552 	atomic_set(&new_on->event, 1);
553 	init_waitqueue_head(&new_on->poll);
554 	INIT_LIST_HEAD(&new_on->files);
555 	goto retry;
556 }
557 
558 /**
559  *	kernfs_put_open_node - put kernfs_open_node
560  *	@kn: target kernfs_nodet
561  *	@of: associated kernfs_open_file
562  *
563  *	Put @kn->attr.open and unlink @of from the files list.  If
564  *	reference count reaches zero, disassociate and free it.
565  *
566  *	LOCKING:
567  *	None.
568  */
569 static void kernfs_put_open_node(struct kernfs_node *kn,
570 				 struct kernfs_open_file *of)
571 {
572 	struct kernfs_open_node *on = kn->attr.open;
573 	unsigned long flags;
574 
575 	mutex_lock(&kernfs_open_file_mutex);
576 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
577 
578 	if (of)
579 		list_del(&of->list);
580 
581 	if (atomic_dec_and_test(&on->refcnt))
582 		kn->attr.open = NULL;
583 	else
584 		on = NULL;
585 
586 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
587 	mutex_unlock(&kernfs_open_file_mutex);
588 
589 	kfree(on);
590 }
591 
592 static int kernfs_fop_open(struct inode *inode, struct file *file)
593 {
594 	struct kernfs_node *kn = inode->i_private;
595 	struct kernfs_root *root = kernfs_root(kn);
596 	const struct kernfs_ops *ops;
597 	struct kernfs_open_file *of;
598 	bool has_read, has_write, has_mmap;
599 	int error = -EACCES;
600 
601 	if (!kernfs_get_active(kn))
602 		return -ENODEV;
603 
604 	ops = kernfs_ops(kn);
605 
606 	has_read = ops->seq_show || ops->read || ops->mmap;
607 	has_write = ops->write || ops->mmap;
608 	has_mmap = ops->mmap;
609 
610 	/* see the flag definition for details */
611 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
612 		if ((file->f_mode & FMODE_WRITE) &&
613 		    (!(inode->i_mode & S_IWUGO) || !has_write))
614 			goto err_out;
615 
616 		if ((file->f_mode & FMODE_READ) &&
617 		    (!(inode->i_mode & S_IRUGO) || !has_read))
618 			goto err_out;
619 	}
620 
621 	/* allocate a kernfs_open_file for the file */
622 	error = -ENOMEM;
623 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
624 	if (!of)
625 		goto err_out;
626 
627 	/*
628 	 * The following is done to give a different lockdep key to
629 	 * @of->mutex for files which implement mmap.  This is a rather
630 	 * crude way to avoid false positive lockdep warning around
631 	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
632 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
633 	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
634 	 * open file has a separate mutex, it's okay as long as those don't
635 	 * happen on the same file.  At this point, we can't easily give
636 	 * each file a separate locking class.  Let's differentiate on
637 	 * whether the file has mmap or not for now.
638 	 *
639 	 * Both paths of the branch look the same.  They're supposed to
640 	 * look that way and give @of->mutex different static lockdep keys.
641 	 */
642 	if (has_mmap)
643 		mutex_init(&of->mutex);
644 	else
645 		mutex_init(&of->mutex);
646 
647 	of->kn = kn;
648 	of->file = file;
649 
650 	/*
651 	 * Write path needs to atomic_write_len outside active reference.
652 	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
653 	 */
654 	of->atomic_write_len = ops->atomic_write_len;
655 
656 	error = -EINVAL;
657 	/*
658 	 * ->seq_show is incompatible with ->prealloc,
659 	 * as seq_read does its own allocation.
660 	 * ->read must be used instead.
661 	 */
662 	if (ops->prealloc && ops->seq_show)
663 		goto err_free;
664 	if (ops->prealloc) {
665 		int len = of->atomic_write_len ?: PAGE_SIZE;
666 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
667 		error = -ENOMEM;
668 		if (!of->prealloc_buf)
669 			goto err_free;
670 		mutex_init(&of->prealloc_mutex);
671 	}
672 
673 	/*
674 	 * Always instantiate seq_file even if read access doesn't use
675 	 * seq_file or is not requested.  This unifies private data access
676 	 * and readable regular files are the vast majority anyway.
677 	 */
678 	if (ops->seq_show)
679 		error = seq_open(file, &kernfs_seq_ops);
680 	else
681 		error = seq_open(file, NULL);
682 	if (error)
683 		goto err_free;
684 
685 	of->seq_file = file->private_data;
686 	of->seq_file->private = of;
687 
688 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
689 	if (file->f_mode & FMODE_WRITE)
690 		file->f_mode |= FMODE_PWRITE;
691 
692 	/* make sure we have open node struct */
693 	error = kernfs_get_open_node(kn, of);
694 	if (error)
695 		goto err_seq_release;
696 
697 	if (ops->open) {
698 		/* nobody has access to @of yet, skip @of->mutex */
699 		error = ops->open(of);
700 		if (error)
701 			goto err_put_node;
702 	}
703 
704 	/* open succeeded, put active references */
705 	kernfs_put_active(kn);
706 	return 0;
707 
708 err_put_node:
709 	kernfs_put_open_node(kn, of);
710 err_seq_release:
711 	seq_release(inode, file);
712 err_free:
713 	kfree(of->prealloc_buf);
714 	kfree(of);
715 err_out:
716 	kernfs_put_active(kn);
717 	return error;
718 }
719 
720 /* used from release/drain to ensure that ->release() is called exactly once */
721 static void kernfs_release_file(struct kernfs_node *kn,
722 				struct kernfs_open_file *of)
723 {
724 	/*
725 	 * @of is guaranteed to have no other file operations in flight and
726 	 * we just want to synchronize release and drain paths.
727 	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
728 	 * here because drain path may be called from places which can
729 	 * cause circular dependency.
730 	 */
731 	lockdep_assert_held(&kernfs_open_file_mutex);
732 
733 	if (!of->released) {
734 		/*
735 		 * A file is never detached without being released and we
736 		 * need to be able to release files which are deactivated
737 		 * and being drained.  Don't use kernfs_ops().
738 		 */
739 		kn->attr.ops->release(of);
740 		of->released = true;
741 	}
742 }
743 
744 static int kernfs_fop_release(struct inode *inode, struct file *filp)
745 {
746 	struct kernfs_node *kn = inode->i_private;
747 	struct kernfs_open_file *of = kernfs_of(filp);
748 
749 	if (kn->flags & KERNFS_HAS_RELEASE) {
750 		mutex_lock(&kernfs_open_file_mutex);
751 		kernfs_release_file(kn, of);
752 		mutex_unlock(&kernfs_open_file_mutex);
753 	}
754 
755 	kernfs_put_open_node(kn, of);
756 	seq_release(inode, filp);
757 	kfree(of->prealloc_buf);
758 	kfree(of);
759 
760 	return 0;
761 }
762 
763 void kernfs_drain_open_files(struct kernfs_node *kn)
764 {
765 	struct kernfs_open_node *on;
766 	struct kernfs_open_file *of;
767 
768 	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
769 		return;
770 
771 	spin_lock_irq(&kernfs_open_node_lock);
772 	on = kn->attr.open;
773 	if (on)
774 		atomic_inc(&on->refcnt);
775 	spin_unlock_irq(&kernfs_open_node_lock);
776 	if (!on)
777 		return;
778 
779 	mutex_lock(&kernfs_open_file_mutex);
780 
781 	list_for_each_entry(of, &on->files, list) {
782 		struct inode *inode = file_inode(of->file);
783 
784 		if (kn->flags & KERNFS_HAS_MMAP)
785 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
786 
787 		if (kn->flags & KERNFS_HAS_RELEASE)
788 			kernfs_release_file(kn, of);
789 	}
790 
791 	mutex_unlock(&kernfs_open_file_mutex);
792 
793 	kernfs_put_open_node(kn, NULL);
794 }
795 
796 /*
797  * Kernfs attribute files are pollable.  The idea is that you read
798  * the content and then you use 'poll' or 'select' to wait for
799  * the content to change.  When the content changes (assuming the
800  * manager for the kobject supports notification), poll will
801  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
802  * it is waiting for read, write, or exceptions.
803  * Once poll/select indicates that the value has changed, you
804  * need to close and re-open the file, or seek to 0 and read again.
805  * Reminder: this only works for attributes which actively support
806  * it, and it is not possible to test an attribute from userspace
807  * to see if it supports poll (Neither 'poll' nor 'select' return
808  * an appropriate error code).  When in doubt, set a suitable timeout value.
809  */
810 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
811 {
812 	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
813 	struct kernfs_open_node *on = kn->attr.open;
814 
815 	poll_wait(of->file, &on->poll, wait);
816 
817 	if (of->event != atomic_read(&on->event))
818 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
819 
820 	return DEFAULT_POLLMASK;
821 }
822 
823 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
824 {
825 	struct kernfs_open_file *of = kernfs_of(filp);
826 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
827 	__poll_t ret;
828 
829 	if (!kernfs_get_active(kn))
830 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
831 
832 	if (kn->attr.ops->poll)
833 		ret = kn->attr.ops->poll(of, wait);
834 	else
835 		ret = kernfs_generic_poll(of, wait);
836 
837 	kernfs_put_active(kn);
838 	return ret;
839 }
840 
841 static void kernfs_notify_workfn(struct work_struct *work)
842 {
843 	struct kernfs_node *kn;
844 	struct kernfs_super_info *info;
845 	struct kernfs_root *root;
846 repeat:
847 	/* pop one off the notify_list */
848 	spin_lock_irq(&kernfs_notify_lock);
849 	kn = kernfs_notify_list;
850 	if (kn == KERNFS_NOTIFY_EOL) {
851 		spin_unlock_irq(&kernfs_notify_lock);
852 		return;
853 	}
854 	kernfs_notify_list = kn->attr.notify_next;
855 	kn->attr.notify_next = NULL;
856 	spin_unlock_irq(&kernfs_notify_lock);
857 
858 	root = kernfs_root(kn);
859 	/* kick fsnotify */
860 	down_write(&root->kernfs_rwsem);
861 
862 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
863 		struct kernfs_node *parent;
864 		struct inode *p_inode = NULL;
865 		struct inode *inode;
866 		struct qstr name;
867 
868 		/*
869 		 * We want fsnotify_modify() on @kn but as the
870 		 * modifications aren't originating from userland don't
871 		 * have the matching @file available.  Look up the inodes
872 		 * and generate the events manually.
873 		 */
874 		inode = ilookup(info->sb, kernfs_ino(kn));
875 		if (!inode)
876 			continue;
877 
878 		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
879 		parent = kernfs_get_parent(kn);
880 		if (parent) {
881 			p_inode = ilookup(info->sb, kernfs_ino(parent));
882 			if (p_inode) {
883 				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
884 					 inode, FSNOTIFY_EVENT_INODE,
885 					 p_inode, &name, inode, 0);
886 				iput(p_inode);
887 			}
888 
889 			kernfs_put(parent);
890 		}
891 
892 		if (!p_inode)
893 			fsnotify_inode(inode, FS_MODIFY);
894 
895 		iput(inode);
896 	}
897 
898 	up_write(&root->kernfs_rwsem);
899 	kernfs_put(kn);
900 	goto repeat;
901 }
902 
903 /**
904  * kernfs_notify - notify a kernfs file
905  * @kn: file to notify
906  *
907  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
908  * context.
909  */
910 void kernfs_notify(struct kernfs_node *kn)
911 {
912 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
913 	unsigned long flags;
914 	struct kernfs_open_node *on;
915 
916 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
917 		return;
918 
919 	/* kick poll immediately */
920 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
921 	on = kn->attr.open;
922 	if (on) {
923 		atomic_inc(&on->event);
924 		wake_up_interruptible(&on->poll);
925 	}
926 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
927 
928 	/* schedule work to kick fsnotify */
929 	spin_lock_irqsave(&kernfs_notify_lock, flags);
930 	if (!kn->attr.notify_next) {
931 		kernfs_get(kn);
932 		kn->attr.notify_next = kernfs_notify_list;
933 		kernfs_notify_list = kn;
934 		schedule_work(&kernfs_notify_work);
935 	}
936 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
937 }
938 EXPORT_SYMBOL_GPL(kernfs_notify);
939 
940 const struct file_operations kernfs_file_fops = {
941 	.read_iter	= kernfs_fop_read_iter,
942 	.write_iter	= kernfs_fop_write_iter,
943 	.llseek		= generic_file_llseek,
944 	.mmap		= kernfs_fop_mmap,
945 	.open		= kernfs_fop_open,
946 	.release	= kernfs_fop_release,
947 	.poll		= kernfs_fop_poll,
948 	.fsync		= noop_fsync,
949 	.splice_read	= generic_file_splice_read,
950 	.splice_write	= iter_file_splice_write,
951 };
952 
953 /**
954  * __kernfs_create_file - kernfs internal function to create a file
955  * @parent: directory to create the file in
956  * @name: name of the file
957  * @mode: mode of the file
958  * @uid: uid of the file
959  * @gid: gid of the file
960  * @size: size of the file
961  * @ops: kernfs operations for the file
962  * @priv: private data for the file
963  * @ns: optional namespace tag of the file
964  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
965  *
966  * Returns the created node on success, ERR_PTR() value on error.
967  */
968 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
969 					 const char *name,
970 					 umode_t mode, kuid_t uid, kgid_t gid,
971 					 loff_t size,
972 					 const struct kernfs_ops *ops,
973 					 void *priv, const void *ns,
974 					 struct lock_class_key *key)
975 {
976 	struct kernfs_node *kn;
977 	unsigned flags;
978 	int rc;
979 
980 	flags = KERNFS_FILE;
981 
982 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
983 			     uid, gid, flags);
984 	if (!kn)
985 		return ERR_PTR(-ENOMEM);
986 
987 	kn->attr.ops = ops;
988 	kn->attr.size = size;
989 	kn->ns = ns;
990 	kn->priv = priv;
991 
992 #ifdef CONFIG_DEBUG_LOCK_ALLOC
993 	if (key) {
994 		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
995 		kn->flags |= KERNFS_LOCKDEP;
996 	}
997 #endif
998 
999 	/*
1000 	 * kn->attr.ops is accessible only while holding active ref.  We
1001 	 * need to know whether some ops are implemented outside active
1002 	 * ref.  Cache their existence in flags.
1003 	 */
1004 	if (ops->seq_show)
1005 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1006 	if (ops->mmap)
1007 		kn->flags |= KERNFS_HAS_MMAP;
1008 	if (ops->release)
1009 		kn->flags |= KERNFS_HAS_RELEASE;
1010 
1011 	rc = kernfs_add_one(kn);
1012 	if (rc) {
1013 		kernfs_put(kn);
1014 		return ERR_PTR(rc);
1015 	}
1016 	return kn;
1017 }
1018