xref: /linux/fs/kernfs/file.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		event;
37 	wait_queue_head_t	poll;
38 	struct list_head	files; /* goes through kernfs_open_file.list */
39 };
40 
41 /*
42  * kernfs_notify() may be called from any context and bounces notifications
43  * through a work item.  To minimize space overhead in kernfs_node, the
44  * pending queue is implemented as a singly linked list of kernfs_nodes.
45  * The list is terminated with the self pointer so that whether a
46  * kernfs_node is on the list or not can be determined by testing the next
47  * pointer for NULL.
48  */
49 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
50 
51 static DEFINE_SPINLOCK(kernfs_notify_lock);
52 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
53 
54 static struct kernfs_open_file *kernfs_of(struct file *file)
55 {
56 	return ((struct seq_file *)file->private_data)->private;
57 }
58 
59 /*
60  * Determine the kernfs_ops for the given kernfs_node.  This function must
61  * be called while holding an active reference.
62  */
63 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
64 {
65 	if (kn->flags & KERNFS_LOCKDEP)
66 		lockdep_assert_held(kn);
67 	return kn->attr.ops;
68 }
69 
70 /*
71  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
72  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
73  * a seq_file iteration which is fully initialized with an active reference
74  * or an aborted kernfs_seq_start() due to get_active failure.  The
75  * position pointer is the only context for each seq_file iteration and
76  * thus the stop condition should be encoded in it.  As the return value is
77  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
78  * choice to indicate get_active failure.
79  *
80  * Unfortunately, this is complicated due to the optional custom seq_file
81  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
82  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
83  * custom seq_file operations and thus can't decide whether put_active
84  * should be performed or not only on ERR_PTR(-ENODEV).
85  *
86  * This is worked around by factoring out the custom seq_stop() and
87  * put_active part into kernfs_seq_stop_active(), skipping it from
88  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
89  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
90  * that kernfs_seq_stop_active() is skipped only after get_active failure.
91  */
92 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
93 {
94 	struct kernfs_open_file *of = sf->private;
95 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
96 
97 	if (ops->seq_stop)
98 		ops->seq_stop(sf, v);
99 	kernfs_put_active(of->kn);
100 }
101 
102 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
103 {
104 	struct kernfs_open_file *of = sf->private;
105 	const struct kernfs_ops *ops;
106 
107 	/*
108 	 * @of->mutex nests outside active ref and is primarily to ensure that
109 	 * the ops aren't called concurrently for the same open file.
110 	 */
111 	mutex_lock(&of->mutex);
112 	if (!kernfs_get_active(of->kn))
113 		return ERR_PTR(-ENODEV);
114 
115 	ops = kernfs_ops(of->kn);
116 	if (ops->seq_start) {
117 		void *next = ops->seq_start(sf, ppos);
118 		/* see the comment above kernfs_seq_stop_active() */
119 		if (next == ERR_PTR(-ENODEV))
120 			kernfs_seq_stop_active(sf, next);
121 		return next;
122 	}
123 	return single_start(sf, ppos);
124 }
125 
126 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
127 {
128 	struct kernfs_open_file *of = sf->private;
129 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
130 
131 	if (ops->seq_next) {
132 		void *next = ops->seq_next(sf, v, ppos);
133 		/* see the comment above kernfs_seq_stop_active() */
134 		if (next == ERR_PTR(-ENODEV))
135 			kernfs_seq_stop_active(sf, next);
136 		return next;
137 	} else {
138 		/*
139 		 * The same behavior and code as single_open(), always
140 		 * terminate after the initial read.
141 		 */
142 		++*ppos;
143 		return NULL;
144 	}
145 }
146 
147 static void kernfs_seq_stop(struct seq_file *sf, void *v)
148 {
149 	struct kernfs_open_file *of = sf->private;
150 
151 	if (v != ERR_PTR(-ENODEV))
152 		kernfs_seq_stop_active(sf, v);
153 	mutex_unlock(&of->mutex);
154 }
155 
156 static int kernfs_seq_show(struct seq_file *sf, void *v)
157 {
158 	struct kernfs_open_file *of = sf->private;
159 
160 	of->event = atomic_read(&of->kn->attr.open->event);
161 
162 	return of->kn->attr.ops->seq_show(sf, v);
163 }
164 
165 static const struct seq_operations kernfs_seq_ops = {
166 	.start = kernfs_seq_start,
167 	.next = kernfs_seq_next,
168 	.stop = kernfs_seq_stop,
169 	.show = kernfs_seq_show,
170 };
171 
172 /*
173  * As reading a bin file can have side-effects, the exact offset and bytes
174  * specified in read(2) call should be passed to the read callback making
175  * it difficult to use seq_file.  Implement simplistic custom buffering for
176  * bin files.
177  */
178 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
179 {
180 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
181 	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
182 	const struct kernfs_ops *ops;
183 	char *buf;
184 
185 	buf = of->prealloc_buf;
186 	if (buf)
187 		mutex_lock(&of->prealloc_mutex);
188 	else
189 		buf = kmalloc(len, GFP_KERNEL);
190 	if (!buf)
191 		return -ENOMEM;
192 
193 	/*
194 	 * @of->mutex nests outside active ref and is used both to ensure that
195 	 * the ops aren't called concurrently for the same open file.
196 	 */
197 	mutex_lock(&of->mutex);
198 	if (!kernfs_get_active(of->kn)) {
199 		len = -ENODEV;
200 		mutex_unlock(&of->mutex);
201 		goto out_free;
202 	}
203 
204 	of->event = atomic_read(&of->kn->attr.open->event);
205 	ops = kernfs_ops(of->kn);
206 	if (ops->read)
207 		len = ops->read(of, buf, len, iocb->ki_pos);
208 	else
209 		len = -EINVAL;
210 
211 	kernfs_put_active(of->kn);
212 	mutex_unlock(&of->mutex);
213 
214 	if (len < 0)
215 		goto out_free;
216 
217 	if (copy_to_iter(buf, len, iter) != len) {
218 		len = -EFAULT;
219 		goto out_free;
220 	}
221 
222 	iocb->ki_pos += len;
223 
224  out_free:
225 	if (buf == of->prealloc_buf)
226 		mutex_unlock(&of->prealloc_mutex);
227 	else
228 		kfree(buf);
229 	return len;
230 }
231 
232 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
233 {
234 	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
235 		return seq_read_iter(iocb, iter);
236 	return kernfs_file_read_iter(iocb, iter);
237 }
238 
239 /*
240  * Copy data in from userland and pass it to the matching kernfs write
241  * operation.
242  *
243  * There is no easy way for us to know if userspace is only doing a partial
244  * write, so we don't support them. We expect the entire buffer to come on
245  * the first write.  Hint: if you're writing a value, first read the file,
246  * modify only the the value you're changing, then write entire buffer
247  * back.
248  */
249 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
250 {
251 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
252 	ssize_t len = iov_iter_count(iter);
253 	const struct kernfs_ops *ops;
254 	char *buf;
255 
256 	if (of->atomic_write_len) {
257 		if (len > of->atomic_write_len)
258 			return -E2BIG;
259 	} else {
260 		len = min_t(size_t, len, PAGE_SIZE);
261 	}
262 
263 	buf = of->prealloc_buf;
264 	if (buf)
265 		mutex_lock(&of->prealloc_mutex);
266 	else
267 		buf = kmalloc(len + 1, GFP_KERNEL);
268 	if (!buf)
269 		return -ENOMEM;
270 
271 	if (copy_from_iter(buf, len, iter) != len) {
272 		len = -EFAULT;
273 		goto out_free;
274 	}
275 	buf[len] = '\0';	/* guarantee string termination */
276 
277 	/*
278 	 * @of->mutex nests outside active ref and is used both to ensure that
279 	 * the ops aren't called concurrently for the same open file.
280 	 */
281 	mutex_lock(&of->mutex);
282 	if (!kernfs_get_active(of->kn)) {
283 		mutex_unlock(&of->mutex);
284 		len = -ENODEV;
285 		goto out_free;
286 	}
287 
288 	ops = kernfs_ops(of->kn);
289 	if (ops->write)
290 		len = ops->write(of, buf, len, iocb->ki_pos);
291 	else
292 		len = -EINVAL;
293 
294 	kernfs_put_active(of->kn);
295 	mutex_unlock(&of->mutex);
296 
297 	if (len > 0)
298 		iocb->ki_pos += len;
299 
300 out_free:
301 	if (buf == of->prealloc_buf)
302 		mutex_unlock(&of->prealloc_mutex);
303 	else
304 		kfree(buf);
305 	return len;
306 }
307 
308 static void kernfs_vma_open(struct vm_area_struct *vma)
309 {
310 	struct file *file = vma->vm_file;
311 	struct kernfs_open_file *of = kernfs_of(file);
312 
313 	if (!of->vm_ops)
314 		return;
315 
316 	if (!kernfs_get_active(of->kn))
317 		return;
318 
319 	if (of->vm_ops->open)
320 		of->vm_ops->open(vma);
321 
322 	kernfs_put_active(of->kn);
323 }
324 
325 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
326 {
327 	struct file *file = vmf->vma->vm_file;
328 	struct kernfs_open_file *of = kernfs_of(file);
329 	vm_fault_t ret;
330 
331 	if (!of->vm_ops)
332 		return VM_FAULT_SIGBUS;
333 
334 	if (!kernfs_get_active(of->kn))
335 		return VM_FAULT_SIGBUS;
336 
337 	ret = VM_FAULT_SIGBUS;
338 	if (of->vm_ops->fault)
339 		ret = of->vm_ops->fault(vmf);
340 
341 	kernfs_put_active(of->kn);
342 	return ret;
343 }
344 
345 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
346 {
347 	struct file *file = vmf->vma->vm_file;
348 	struct kernfs_open_file *of = kernfs_of(file);
349 	vm_fault_t ret;
350 
351 	if (!of->vm_ops)
352 		return VM_FAULT_SIGBUS;
353 
354 	if (!kernfs_get_active(of->kn))
355 		return VM_FAULT_SIGBUS;
356 
357 	ret = 0;
358 	if (of->vm_ops->page_mkwrite)
359 		ret = of->vm_ops->page_mkwrite(vmf);
360 	else
361 		file_update_time(file);
362 
363 	kernfs_put_active(of->kn);
364 	return ret;
365 }
366 
367 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
368 			     void *buf, int len, int write)
369 {
370 	struct file *file = vma->vm_file;
371 	struct kernfs_open_file *of = kernfs_of(file);
372 	int ret;
373 
374 	if (!of->vm_ops)
375 		return -EINVAL;
376 
377 	if (!kernfs_get_active(of->kn))
378 		return -EINVAL;
379 
380 	ret = -EINVAL;
381 	if (of->vm_ops->access)
382 		ret = of->vm_ops->access(vma, addr, buf, len, write);
383 
384 	kernfs_put_active(of->kn);
385 	return ret;
386 }
387 
388 #ifdef CONFIG_NUMA
389 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
390 				 struct mempolicy *new)
391 {
392 	struct file *file = vma->vm_file;
393 	struct kernfs_open_file *of = kernfs_of(file);
394 	int ret;
395 
396 	if (!of->vm_ops)
397 		return 0;
398 
399 	if (!kernfs_get_active(of->kn))
400 		return -EINVAL;
401 
402 	ret = 0;
403 	if (of->vm_ops->set_policy)
404 		ret = of->vm_ops->set_policy(vma, new);
405 
406 	kernfs_put_active(of->kn);
407 	return ret;
408 }
409 
410 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
411 					       unsigned long addr)
412 {
413 	struct file *file = vma->vm_file;
414 	struct kernfs_open_file *of = kernfs_of(file);
415 	struct mempolicy *pol;
416 
417 	if (!of->vm_ops)
418 		return vma->vm_policy;
419 
420 	if (!kernfs_get_active(of->kn))
421 		return vma->vm_policy;
422 
423 	pol = vma->vm_policy;
424 	if (of->vm_ops->get_policy)
425 		pol = of->vm_ops->get_policy(vma, addr);
426 
427 	kernfs_put_active(of->kn);
428 	return pol;
429 }
430 
431 #endif
432 
433 static const struct vm_operations_struct kernfs_vm_ops = {
434 	.open		= kernfs_vma_open,
435 	.fault		= kernfs_vma_fault,
436 	.page_mkwrite	= kernfs_vma_page_mkwrite,
437 	.access		= kernfs_vma_access,
438 #ifdef CONFIG_NUMA
439 	.set_policy	= kernfs_vma_set_policy,
440 	.get_policy	= kernfs_vma_get_policy,
441 #endif
442 };
443 
444 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
445 {
446 	struct kernfs_open_file *of = kernfs_of(file);
447 	const struct kernfs_ops *ops;
448 	int rc;
449 
450 	/*
451 	 * mmap path and of->mutex are prone to triggering spurious lockdep
452 	 * warnings and we don't want to add spurious locking dependency
453 	 * between the two.  Check whether mmap is actually implemented
454 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
455 	 * comment in kernfs_file_open() for more details.
456 	 */
457 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
458 		return -ENODEV;
459 
460 	mutex_lock(&of->mutex);
461 
462 	rc = -ENODEV;
463 	if (!kernfs_get_active(of->kn))
464 		goto out_unlock;
465 
466 	ops = kernfs_ops(of->kn);
467 	rc = ops->mmap(of, vma);
468 	if (rc)
469 		goto out_put;
470 
471 	/*
472 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
473 	 * to satisfy versions of X which crash if the mmap fails: that
474 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
475 	 */
476 	if (vma->vm_file != file)
477 		goto out_put;
478 
479 	rc = -EINVAL;
480 	if (of->mmapped && of->vm_ops != vma->vm_ops)
481 		goto out_put;
482 
483 	/*
484 	 * It is not possible to successfully wrap close.
485 	 * So error if someone is trying to use close.
486 	 */
487 	rc = -EINVAL;
488 	if (vma->vm_ops && vma->vm_ops->close)
489 		goto out_put;
490 
491 	rc = 0;
492 	of->mmapped = true;
493 	of->vm_ops = vma->vm_ops;
494 	vma->vm_ops = &kernfs_vm_ops;
495 out_put:
496 	kernfs_put_active(of->kn);
497 out_unlock:
498 	mutex_unlock(&of->mutex);
499 
500 	return rc;
501 }
502 
503 /**
504  *	kernfs_get_open_node - get or create kernfs_open_node
505  *	@kn: target kernfs_node
506  *	@of: kernfs_open_file for this instance of open
507  *
508  *	If @kn->attr.open exists, increment its reference count; otherwise,
509  *	create one.  @of is chained to the files list.
510  *
511  *	LOCKING:
512  *	Kernel thread context (may sleep).
513  *
514  *	RETURNS:
515  *	0 on success, -errno on failure.
516  */
517 static int kernfs_get_open_node(struct kernfs_node *kn,
518 				struct kernfs_open_file *of)
519 {
520 	struct kernfs_open_node *on, *new_on = NULL;
521 
522  retry:
523 	mutex_lock(&kernfs_open_file_mutex);
524 	spin_lock_irq(&kernfs_open_node_lock);
525 
526 	if (!kn->attr.open && new_on) {
527 		kn->attr.open = new_on;
528 		new_on = NULL;
529 	}
530 
531 	on = kn->attr.open;
532 	if (on)
533 		list_add_tail(&of->list, &on->files);
534 
535 	spin_unlock_irq(&kernfs_open_node_lock);
536 	mutex_unlock(&kernfs_open_file_mutex);
537 
538 	if (on) {
539 		kfree(new_on);
540 		return 0;
541 	}
542 
543 	/* not there, initialize a new one and retry */
544 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
545 	if (!new_on)
546 		return -ENOMEM;
547 
548 	atomic_set(&new_on->event, 1);
549 	init_waitqueue_head(&new_on->poll);
550 	INIT_LIST_HEAD(&new_on->files);
551 	goto retry;
552 }
553 
554 /**
555  *	kernfs_unlink_open_file - Unlink @of from @kn.
556  *
557  *	@kn: target kernfs_node
558  *	@of: associated kernfs_open_file
559  *
560  *	Unlink @of from list of @kn's associated open files. If list of
561  *	associated open files becomes empty, disassociate and free
562  *	kernfs_open_node.
563  *
564  *	LOCKING:
565  *	None.
566  */
567 static void kernfs_unlink_open_file(struct kernfs_node *kn,
568 				 struct kernfs_open_file *of)
569 {
570 	struct kernfs_open_node *on = kn->attr.open;
571 	unsigned long flags;
572 
573 	mutex_lock(&kernfs_open_file_mutex);
574 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
575 
576 	if (of)
577 		list_del(&of->list);
578 
579 	if (list_empty(&on->files))
580 		kn->attr.open = NULL;
581 	else
582 		on = NULL;
583 
584 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
585 	mutex_unlock(&kernfs_open_file_mutex);
586 
587 	kfree(on);
588 }
589 
590 static int kernfs_fop_open(struct inode *inode, struct file *file)
591 {
592 	struct kernfs_node *kn = inode->i_private;
593 	struct kernfs_root *root = kernfs_root(kn);
594 	const struct kernfs_ops *ops;
595 	struct kernfs_open_file *of;
596 	bool has_read, has_write, has_mmap;
597 	int error = -EACCES;
598 
599 	if (!kernfs_get_active(kn))
600 		return -ENODEV;
601 
602 	ops = kernfs_ops(kn);
603 
604 	has_read = ops->seq_show || ops->read || ops->mmap;
605 	has_write = ops->write || ops->mmap;
606 	has_mmap = ops->mmap;
607 
608 	/* see the flag definition for details */
609 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
610 		if ((file->f_mode & FMODE_WRITE) &&
611 		    (!(inode->i_mode & S_IWUGO) || !has_write))
612 			goto err_out;
613 
614 		if ((file->f_mode & FMODE_READ) &&
615 		    (!(inode->i_mode & S_IRUGO) || !has_read))
616 			goto err_out;
617 	}
618 
619 	/* allocate a kernfs_open_file for the file */
620 	error = -ENOMEM;
621 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
622 	if (!of)
623 		goto err_out;
624 
625 	/*
626 	 * The following is done to give a different lockdep key to
627 	 * @of->mutex for files which implement mmap.  This is a rather
628 	 * crude way to avoid false positive lockdep warning around
629 	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
630 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
631 	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
632 	 * open file has a separate mutex, it's okay as long as those don't
633 	 * happen on the same file.  At this point, we can't easily give
634 	 * each file a separate locking class.  Let's differentiate on
635 	 * whether the file has mmap or not for now.
636 	 *
637 	 * Both paths of the branch look the same.  They're supposed to
638 	 * look that way and give @of->mutex different static lockdep keys.
639 	 */
640 	if (has_mmap)
641 		mutex_init(&of->mutex);
642 	else
643 		mutex_init(&of->mutex);
644 
645 	of->kn = kn;
646 	of->file = file;
647 
648 	/*
649 	 * Write path needs to atomic_write_len outside active reference.
650 	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
651 	 */
652 	of->atomic_write_len = ops->atomic_write_len;
653 
654 	error = -EINVAL;
655 	/*
656 	 * ->seq_show is incompatible with ->prealloc,
657 	 * as seq_read does its own allocation.
658 	 * ->read must be used instead.
659 	 */
660 	if (ops->prealloc && ops->seq_show)
661 		goto err_free;
662 	if (ops->prealloc) {
663 		int len = of->atomic_write_len ?: PAGE_SIZE;
664 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
665 		error = -ENOMEM;
666 		if (!of->prealloc_buf)
667 			goto err_free;
668 		mutex_init(&of->prealloc_mutex);
669 	}
670 
671 	/*
672 	 * Always instantiate seq_file even if read access doesn't use
673 	 * seq_file or is not requested.  This unifies private data access
674 	 * and readable regular files are the vast majority anyway.
675 	 */
676 	if (ops->seq_show)
677 		error = seq_open(file, &kernfs_seq_ops);
678 	else
679 		error = seq_open(file, NULL);
680 	if (error)
681 		goto err_free;
682 
683 	of->seq_file = file->private_data;
684 	of->seq_file->private = of;
685 
686 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
687 	if (file->f_mode & FMODE_WRITE)
688 		file->f_mode |= FMODE_PWRITE;
689 
690 	/* make sure we have open node struct */
691 	error = kernfs_get_open_node(kn, of);
692 	if (error)
693 		goto err_seq_release;
694 
695 	if (ops->open) {
696 		/* nobody has access to @of yet, skip @of->mutex */
697 		error = ops->open(of);
698 		if (error)
699 			goto err_put_node;
700 	}
701 
702 	/* open succeeded, put active references */
703 	kernfs_put_active(kn);
704 	return 0;
705 
706 err_put_node:
707 	kernfs_unlink_open_file(kn, of);
708 err_seq_release:
709 	seq_release(inode, file);
710 err_free:
711 	kfree(of->prealloc_buf);
712 	kfree(of);
713 err_out:
714 	kernfs_put_active(kn);
715 	return error;
716 }
717 
718 /* used from release/drain to ensure that ->release() is called exactly once */
719 static void kernfs_release_file(struct kernfs_node *kn,
720 				struct kernfs_open_file *of)
721 {
722 	/*
723 	 * @of is guaranteed to have no other file operations in flight and
724 	 * we just want to synchronize release and drain paths.
725 	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
726 	 * here because drain path may be called from places which can
727 	 * cause circular dependency.
728 	 */
729 	lockdep_assert_held(&kernfs_open_file_mutex);
730 
731 	if (!of->released) {
732 		/*
733 		 * A file is never detached without being released and we
734 		 * need to be able to release files which are deactivated
735 		 * and being drained.  Don't use kernfs_ops().
736 		 */
737 		kn->attr.ops->release(of);
738 		of->released = true;
739 	}
740 }
741 
742 static int kernfs_fop_release(struct inode *inode, struct file *filp)
743 {
744 	struct kernfs_node *kn = inode->i_private;
745 	struct kernfs_open_file *of = kernfs_of(filp);
746 
747 	if (kn->flags & KERNFS_HAS_RELEASE) {
748 		mutex_lock(&kernfs_open_file_mutex);
749 		kernfs_release_file(kn, of);
750 		mutex_unlock(&kernfs_open_file_mutex);
751 	}
752 
753 	kernfs_unlink_open_file(kn, of);
754 	seq_release(inode, filp);
755 	kfree(of->prealloc_buf);
756 	kfree(of);
757 
758 	return 0;
759 }
760 
761 void kernfs_drain_open_files(struct kernfs_node *kn)
762 {
763 	struct kernfs_open_node *on;
764 	struct kernfs_open_file *of;
765 
766 	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
767 		return;
768 
769 	/*
770 	 * lockless opportunistic check is safe below because no one is adding to
771 	 * ->attr.open at this point of time. This check allows early bail out
772 	 * if ->attr.open is already NULL. kernfs_unlink_open_file makes
773 	 * ->attr.open NULL only while holding kernfs_open_file_mutex so below
774 	 * check under kernfs_open_file_mutex will ensure bailing out if
775 	 * ->attr.open became NULL while waiting for the mutex.
776 	 */
777 	if (!kn->attr.open)
778 		return;
779 
780 	mutex_lock(&kernfs_open_file_mutex);
781 	if (!kn->attr.open) {
782 		mutex_unlock(&kernfs_open_file_mutex);
783 		return;
784 	}
785 
786 	on = kn->attr.open;
787 
788 	list_for_each_entry(of, &on->files, list) {
789 		struct inode *inode = file_inode(of->file);
790 
791 		if (kn->flags & KERNFS_HAS_MMAP)
792 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
793 
794 		if (kn->flags & KERNFS_HAS_RELEASE)
795 			kernfs_release_file(kn, of);
796 	}
797 
798 	mutex_unlock(&kernfs_open_file_mutex);
799 }
800 
801 /*
802  * Kernfs attribute files are pollable.  The idea is that you read
803  * the content and then you use 'poll' or 'select' to wait for
804  * the content to change.  When the content changes (assuming the
805  * manager for the kobject supports notification), poll will
806  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
807  * it is waiting for read, write, or exceptions.
808  * Once poll/select indicates that the value has changed, you
809  * need to close and re-open the file, or seek to 0 and read again.
810  * Reminder: this only works for attributes which actively support
811  * it, and it is not possible to test an attribute from userspace
812  * to see if it supports poll (Neither 'poll' nor 'select' return
813  * an appropriate error code).  When in doubt, set a suitable timeout value.
814  */
815 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
816 {
817 	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
818 	struct kernfs_open_node *on = kn->attr.open;
819 
820 	poll_wait(of->file, &on->poll, wait);
821 
822 	if (of->event != atomic_read(&on->event))
823 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
824 
825 	return DEFAULT_POLLMASK;
826 }
827 
828 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
829 {
830 	struct kernfs_open_file *of = kernfs_of(filp);
831 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
832 	__poll_t ret;
833 
834 	if (!kernfs_get_active(kn))
835 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
836 
837 	if (kn->attr.ops->poll)
838 		ret = kn->attr.ops->poll(of, wait);
839 	else
840 		ret = kernfs_generic_poll(of, wait);
841 
842 	kernfs_put_active(kn);
843 	return ret;
844 }
845 
846 static void kernfs_notify_workfn(struct work_struct *work)
847 {
848 	struct kernfs_node *kn;
849 	struct kernfs_super_info *info;
850 	struct kernfs_root *root;
851 repeat:
852 	/* pop one off the notify_list */
853 	spin_lock_irq(&kernfs_notify_lock);
854 	kn = kernfs_notify_list;
855 	if (kn == KERNFS_NOTIFY_EOL) {
856 		spin_unlock_irq(&kernfs_notify_lock);
857 		return;
858 	}
859 	kernfs_notify_list = kn->attr.notify_next;
860 	kn->attr.notify_next = NULL;
861 	spin_unlock_irq(&kernfs_notify_lock);
862 
863 	root = kernfs_root(kn);
864 	/* kick fsnotify */
865 	down_write(&root->kernfs_rwsem);
866 
867 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
868 		struct kernfs_node *parent;
869 		struct inode *p_inode = NULL;
870 		struct inode *inode;
871 		struct qstr name;
872 
873 		/*
874 		 * We want fsnotify_modify() on @kn but as the
875 		 * modifications aren't originating from userland don't
876 		 * have the matching @file available.  Look up the inodes
877 		 * and generate the events manually.
878 		 */
879 		inode = ilookup(info->sb, kernfs_ino(kn));
880 		if (!inode)
881 			continue;
882 
883 		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
884 		parent = kernfs_get_parent(kn);
885 		if (parent) {
886 			p_inode = ilookup(info->sb, kernfs_ino(parent));
887 			if (p_inode) {
888 				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
889 					 inode, FSNOTIFY_EVENT_INODE,
890 					 p_inode, &name, inode, 0);
891 				iput(p_inode);
892 			}
893 
894 			kernfs_put(parent);
895 		}
896 
897 		if (!p_inode)
898 			fsnotify_inode(inode, FS_MODIFY);
899 
900 		iput(inode);
901 	}
902 
903 	up_write(&root->kernfs_rwsem);
904 	kernfs_put(kn);
905 	goto repeat;
906 }
907 
908 /**
909  * kernfs_notify - notify a kernfs file
910  * @kn: file to notify
911  *
912  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
913  * context.
914  */
915 void kernfs_notify(struct kernfs_node *kn)
916 {
917 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
918 	unsigned long flags;
919 	struct kernfs_open_node *on;
920 
921 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
922 		return;
923 
924 	/* kick poll immediately */
925 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
926 	on = kn->attr.open;
927 	if (on) {
928 		atomic_inc(&on->event);
929 		wake_up_interruptible(&on->poll);
930 	}
931 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
932 
933 	/* schedule work to kick fsnotify */
934 	spin_lock_irqsave(&kernfs_notify_lock, flags);
935 	if (!kn->attr.notify_next) {
936 		kernfs_get(kn);
937 		kn->attr.notify_next = kernfs_notify_list;
938 		kernfs_notify_list = kn;
939 		schedule_work(&kernfs_notify_work);
940 	}
941 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
942 }
943 EXPORT_SYMBOL_GPL(kernfs_notify);
944 
945 const struct file_operations kernfs_file_fops = {
946 	.read_iter	= kernfs_fop_read_iter,
947 	.write_iter	= kernfs_fop_write_iter,
948 	.llseek		= generic_file_llseek,
949 	.mmap		= kernfs_fop_mmap,
950 	.open		= kernfs_fop_open,
951 	.release	= kernfs_fop_release,
952 	.poll		= kernfs_fop_poll,
953 	.fsync		= noop_fsync,
954 	.splice_read	= generic_file_splice_read,
955 	.splice_write	= iter_file_splice_write,
956 };
957 
958 /**
959  * __kernfs_create_file - kernfs internal function to create a file
960  * @parent: directory to create the file in
961  * @name: name of the file
962  * @mode: mode of the file
963  * @uid: uid of the file
964  * @gid: gid of the file
965  * @size: size of the file
966  * @ops: kernfs operations for the file
967  * @priv: private data for the file
968  * @ns: optional namespace tag of the file
969  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
970  *
971  * Returns the created node on success, ERR_PTR() value on error.
972  */
973 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
974 					 const char *name,
975 					 umode_t mode, kuid_t uid, kgid_t gid,
976 					 loff_t size,
977 					 const struct kernfs_ops *ops,
978 					 void *priv, const void *ns,
979 					 struct lock_class_key *key)
980 {
981 	struct kernfs_node *kn;
982 	unsigned flags;
983 	int rc;
984 
985 	flags = KERNFS_FILE;
986 
987 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
988 			     uid, gid, flags);
989 	if (!kn)
990 		return ERR_PTR(-ENOMEM);
991 
992 	kn->attr.ops = ops;
993 	kn->attr.size = size;
994 	kn->ns = ns;
995 	kn->priv = priv;
996 
997 #ifdef CONFIG_DEBUG_LOCK_ALLOC
998 	if (key) {
999 		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1000 		kn->flags |= KERNFS_LOCKDEP;
1001 	}
1002 #endif
1003 
1004 	/*
1005 	 * kn->attr.ops is accessible only while holding active ref.  We
1006 	 * need to know whether some ops are implemented outside active
1007 	 * ref.  Cache their existence in flags.
1008 	 */
1009 	if (ops->seq_show)
1010 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1011 	if (ops->mmap)
1012 		kn->flags |= KERNFS_HAS_MMAP;
1013 	if (ops->release)
1014 		kn->flags |= KERNFS_HAS_RELEASE;
1015 
1016 	rc = kernfs_add_one(kn);
1017 	if (rc) {
1018 		kernfs_put(kn);
1019 		return ERR_PTR(rc);
1020 	}
1021 	return kn;
1022 }
1023