1 /* 2 * fs/kernfs/file.c - kernfs file implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/poll.h> 15 #include <linux/pagemap.h> 16 #include <linux/sched.h> 17 18 #include "kernfs-internal.h" 19 20 /* 21 * There's one kernfs_open_file for each open file and one kernfs_open_node 22 * for each kernfs_node with one or more open files. 23 * 24 * kernfs_node->attr.open points to kernfs_open_node. attr.open is 25 * protected by kernfs_open_node_lock. 26 * 27 * filp->private_data points to seq_file whose ->private points to 28 * kernfs_open_file. kernfs_open_files are chained at 29 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex. 30 */ 31 static DEFINE_SPINLOCK(kernfs_open_node_lock); 32 static DEFINE_MUTEX(kernfs_open_file_mutex); 33 34 struct kernfs_open_node { 35 atomic_t refcnt; 36 atomic_t event; 37 wait_queue_head_t poll; 38 struct list_head files; /* goes through kernfs_open_file.list */ 39 }; 40 41 static struct kernfs_open_file *kernfs_of(struct file *file) 42 { 43 return ((struct seq_file *)file->private_data)->private; 44 } 45 46 /* 47 * Determine the kernfs_ops for the given kernfs_node. This function must 48 * be called while holding an active reference. 49 */ 50 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) 51 { 52 if (kn->flags & KERNFS_LOCKDEP) 53 lockdep_assert_held(kn); 54 return kn->attr.ops; 55 } 56 57 /* 58 * As kernfs_seq_stop() is also called after kernfs_seq_start() or 59 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping 60 * a seq_file iteration which is fully initialized with an active reference 61 * or an aborted kernfs_seq_start() due to get_active failure. The 62 * position pointer is the only context for each seq_file iteration and 63 * thus the stop condition should be encoded in it. As the return value is 64 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable 65 * choice to indicate get_active failure. 66 * 67 * Unfortunately, this is complicated due to the optional custom seq_file 68 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() 69 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or 70 * custom seq_file operations and thus can't decide whether put_active 71 * should be performed or not only on ERR_PTR(-ENODEV). 72 * 73 * This is worked around by factoring out the custom seq_stop() and 74 * put_active part into kernfs_seq_stop_active(), skipping it from 75 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after 76 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures 77 * that kernfs_seq_stop_active() is skipped only after get_active failure. 78 */ 79 static void kernfs_seq_stop_active(struct seq_file *sf, void *v) 80 { 81 struct kernfs_open_file *of = sf->private; 82 const struct kernfs_ops *ops = kernfs_ops(of->kn); 83 84 if (ops->seq_stop) 85 ops->seq_stop(sf, v); 86 kernfs_put_active(of->kn); 87 } 88 89 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) 90 { 91 struct kernfs_open_file *of = sf->private; 92 const struct kernfs_ops *ops; 93 94 /* 95 * @of->mutex nests outside active ref and is just to ensure that 96 * the ops aren't called concurrently for the same open file. 97 */ 98 mutex_lock(&of->mutex); 99 if (!kernfs_get_active(of->kn)) 100 return ERR_PTR(-ENODEV); 101 102 ops = kernfs_ops(of->kn); 103 if (ops->seq_start) { 104 void *next = ops->seq_start(sf, ppos); 105 /* see the comment above kernfs_seq_stop_active() */ 106 if (next == ERR_PTR(-ENODEV)) 107 kernfs_seq_stop_active(sf, next); 108 return next; 109 } else { 110 /* 111 * The same behavior and code as single_open(). Returns 112 * !NULL if pos is at the beginning; otherwise, NULL. 113 */ 114 return NULL + !*ppos; 115 } 116 } 117 118 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) 119 { 120 struct kernfs_open_file *of = sf->private; 121 const struct kernfs_ops *ops = kernfs_ops(of->kn); 122 123 if (ops->seq_next) { 124 void *next = ops->seq_next(sf, v, ppos); 125 /* see the comment above kernfs_seq_stop_active() */ 126 if (next == ERR_PTR(-ENODEV)) 127 kernfs_seq_stop_active(sf, next); 128 return next; 129 } else { 130 /* 131 * The same behavior and code as single_open(), always 132 * terminate after the initial read. 133 */ 134 ++*ppos; 135 return NULL; 136 } 137 } 138 139 static void kernfs_seq_stop(struct seq_file *sf, void *v) 140 { 141 struct kernfs_open_file *of = sf->private; 142 143 if (v != ERR_PTR(-ENODEV)) 144 kernfs_seq_stop_active(sf, v); 145 mutex_unlock(&of->mutex); 146 } 147 148 static int kernfs_seq_show(struct seq_file *sf, void *v) 149 { 150 struct kernfs_open_file *of = sf->private; 151 152 of->event = atomic_read(&of->kn->attr.open->event); 153 154 return of->kn->attr.ops->seq_show(sf, v); 155 } 156 157 static const struct seq_operations kernfs_seq_ops = { 158 .start = kernfs_seq_start, 159 .next = kernfs_seq_next, 160 .stop = kernfs_seq_stop, 161 .show = kernfs_seq_show, 162 }; 163 164 /* 165 * As reading a bin file can have side-effects, the exact offset and bytes 166 * specified in read(2) call should be passed to the read callback making 167 * it difficult to use seq_file. Implement simplistic custom buffering for 168 * bin files. 169 */ 170 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of, 171 char __user *user_buf, size_t count, 172 loff_t *ppos) 173 { 174 ssize_t len = min_t(size_t, count, PAGE_SIZE); 175 const struct kernfs_ops *ops; 176 char *buf; 177 178 buf = kmalloc(len, GFP_KERNEL); 179 if (!buf) 180 return -ENOMEM; 181 182 /* 183 * @of->mutex nests outside active ref and is just to ensure that 184 * the ops aren't called concurrently for the same open file. 185 */ 186 mutex_lock(&of->mutex); 187 if (!kernfs_get_active(of->kn)) { 188 len = -ENODEV; 189 mutex_unlock(&of->mutex); 190 goto out_free; 191 } 192 193 ops = kernfs_ops(of->kn); 194 if (ops->read) 195 len = ops->read(of, buf, len, *ppos); 196 else 197 len = -EINVAL; 198 199 kernfs_put_active(of->kn); 200 mutex_unlock(&of->mutex); 201 202 if (len < 0) 203 goto out_free; 204 205 if (copy_to_user(user_buf, buf, len)) { 206 len = -EFAULT; 207 goto out_free; 208 } 209 210 *ppos += len; 211 212 out_free: 213 kfree(buf); 214 return len; 215 } 216 217 /** 218 * kernfs_fop_read - kernfs vfs read callback 219 * @file: file pointer 220 * @user_buf: data to write 221 * @count: number of bytes 222 * @ppos: starting offset 223 */ 224 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf, 225 size_t count, loff_t *ppos) 226 { 227 struct kernfs_open_file *of = kernfs_of(file); 228 229 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW) 230 return seq_read(file, user_buf, count, ppos); 231 else 232 return kernfs_file_direct_read(of, user_buf, count, ppos); 233 } 234 235 /** 236 * kernfs_fop_write - kernfs vfs write callback 237 * @file: file pointer 238 * @user_buf: data to write 239 * @count: number of bytes 240 * @ppos: starting offset 241 * 242 * Copy data in from userland and pass it to the matching kernfs write 243 * operation. 244 * 245 * There is no easy way for us to know if userspace is only doing a partial 246 * write, so we don't support them. We expect the entire buffer to come on 247 * the first write. Hint: if you're writing a value, first read the file, 248 * modify only the the value you're changing, then write entire buffer 249 * back. 250 */ 251 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf, 252 size_t count, loff_t *ppos) 253 { 254 struct kernfs_open_file *of = kernfs_of(file); 255 const struct kernfs_ops *ops; 256 size_t len; 257 char *buf; 258 259 if (of->atomic_write_len) { 260 len = count; 261 if (len > of->atomic_write_len) 262 return -E2BIG; 263 } else { 264 len = min_t(size_t, count, PAGE_SIZE); 265 } 266 267 buf = kmalloc(len + 1, GFP_KERNEL); 268 if (!buf) 269 return -ENOMEM; 270 271 if (copy_from_user(buf, user_buf, len)) { 272 len = -EFAULT; 273 goto out_free; 274 } 275 buf[len] = '\0'; /* guarantee string termination */ 276 277 /* 278 * @of->mutex nests outside active ref and is just to ensure that 279 * the ops aren't called concurrently for the same open file. 280 */ 281 mutex_lock(&of->mutex); 282 if (!kernfs_get_active(of->kn)) { 283 mutex_unlock(&of->mutex); 284 len = -ENODEV; 285 goto out_free; 286 } 287 288 ops = kernfs_ops(of->kn); 289 if (ops->write) 290 len = ops->write(of, buf, len, *ppos); 291 else 292 len = -EINVAL; 293 294 kernfs_put_active(of->kn); 295 mutex_unlock(&of->mutex); 296 297 if (len > 0) 298 *ppos += len; 299 out_free: 300 kfree(buf); 301 return len; 302 } 303 304 static void kernfs_vma_open(struct vm_area_struct *vma) 305 { 306 struct file *file = vma->vm_file; 307 struct kernfs_open_file *of = kernfs_of(file); 308 309 if (!of->vm_ops) 310 return; 311 312 if (!kernfs_get_active(of->kn)) 313 return; 314 315 if (of->vm_ops->open) 316 of->vm_ops->open(vma); 317 318 kernfs_put_active(of->kn); 319 } 320 321 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 322 { 323 struct file *file = vma->vm_file; 324 struct kernfs_open_file *of = kernfs_of(file); 325 int ret; 326 327 if (!of->vm_ops) 328 return VM_FAULT_SIGBUS; 329 330 if (!kernfs_get_active(of->kn)) 331 return VM_FAULT_SIGBUS; 332 333 ret = VM_FAULT_SIGBUS; 334 if (of->vm_ops->fault) 335 ret = of->vm_ops->fault(vma, vmf); 336 337 kernfs_put_active(of->kn); 338 return ret; 339 } 340 341 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma, 342 struct vm_fault *vmf) 343 { 344 struct file *file = vma->vm_file; 345 struct kernfs_open_file *of = kernfs_of(file); 346 int ret; 347 348 if (!of->vm_ops) 349 return VM_FAULT_SIGBUS; 350 351 if (!kernfs_get_active(of->kn)) 352 return VM_FAULT_SIGBUS; 353 354 ret = 0; 355 if (of->vm_ops->page_mkwrite) 356 ret = of->vm_ops->page_mkwrite(vma, vmf); 357 else 358 file_update_time(file); 359 360 kernfs_put_active(of->kn); 361 return ret; 362 } 363 364 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, 365 void *buf, int len, int write) 366 { 367 struct file *file = vma->vm_file; 368 struct kernfs_open_file *of = kernfs_of(file); 369 int ret; 370 371 if (!of->vm_ops) 372 return -EINVAL; 373 374 if (!kernfs_get_active(of->kn)) 375 return -EINVAL; 376 377 ret = -EINVAL; 378 if (of->vm_ops->access) 379 ret = of->vm_ops->access(vma, addr, buf, len, write); 380 381 kernfs_put_active(of->kn); 382 return ret; 383 } 384 385 #ifdef CONFIG_NUMA 386 static int kernfs_vma_set_policy(struct vm_area_struct *vma, 387 struct mempolicy *new) 388 { 389 struct file *file = vma->vm_file; 390 struct kernfs_open_file *of = kernfs_of(file); 391 int ret; 392 393 if (!of->vm_ops) 394 return 0; 395 396 if (!kernfs_get_active(of->kn)) 397 return -EINVAL; 398 399 ret = 0; 400 if (of->vm_ops->set_policy) 401 ret = of->vm_ops->set_policy(vma, new); 402 403 kernfs_put_active(of->kn); 404 return ret; 405 } 406 407 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma, 408 unsigned long addr) 409 { 410 struct file *file = vma->vm_file; 411 struct kernfs_open_file *of = kernfs_of(file); 412 struct mempolicy *pol; 413 414 if (!of->vm_ops) 415 return vma->vm_policy; 416 417 if (!kernfs_get_active(of->kn)) 418 return vma->vm_policy; 419 420 pol = vma->vm_policy; 421 if (of->vm_ops->get_policy) 422 pol = of->vm_ops->get_policy(vma, addr); 423 424 kernfs_put_active(of->kn); 425 return pol; 426 } 427 428 static int kernfs_vma_migrate(struct vm_area_struct *vma, 429 const nodemask_t *from, const nodemask_t *to, 430 unsigned long flags) 431 { 432 struct file *file = vma->vm_file; 433 struct kernfs_open_file *of = kernfs_of(file); 434 int ret; 435 436 if (!of->vm_ops) 437 return 0; 438 439 if (!kernfs_get_active(of->kn)) 440 return 0; 441 442 ret = 0; 443 if (of->vm_ops->migrate) 444 ret = of->vm_ops->migrate(vma, from, to, flags); 445 446 kernfs_put_active(of->kn); 447 return ret; 448 } 449 #endif 450 451 static const struct vm_operations_struct kernfs_vm_ops = { 452 .open = kernfs_vma_open, 453 .fault = kernfs_vma_fault, 454 .page_mkwrite = kernfs_vma_page_mkwrite, 455 .access = kernfs_vma_access, 456 #ifdef CONFIG_NUMA 457 .set_policy = kernfs_vma_set_policy, 458 .get_policy = kernfs_vma_get_policy, 459 .migrate = kernfs_vma_migrate, 460 #endif 461 }; 462 463 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) 464 { 465 struct kernfs_open_file *of = kernfs_of(file); 466 const struct kernfs_ops *ops; 467 int rc; 468 469 /* 470 * mmap path and of->mutex are prone to triggering spurious lockdep 471 * warnings and we don't want to add spurious locking dependency 472 * between the two. Check whether mmap is actually implemented 473 * without grabbing @of->mutex by testing HAS_MMAP flag. See the 474 * comment in kernfs_file_open() for more details. 475 */ 476 if (!(of->kn->flags & KERNFS_HAS_MMAP)) 477 return -ENODEV; 478 479 mutex_lock(&of->mutex); 480 481 rc = -ENODEV; 482 if (!kernfs_get_active(of->kn)) 483 goto out_unlock; 484 485 ops = kernfs_ops(of->kn); 486 rc = ops->mmap(of, vma); 487 if (rc) 488 goto out_put; 489 490 /* 491 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() 492 * to satisfy versions of X which crash if the mmap fails: that 493 * substitutes a new vm_file, and we don't then want bin_vm_ops. 494 */ 495 if (vma->vm_file != file) 496 goto out_put; 497 498 rc = -EINVAL; 499 if (of->mmapped && of->vm_ops != vma->vm_ops) 500 goto out_put; 501 502 /* 503 * It is not possible to successfully wrap close. 504 * So error if someone is trying to use close. 505 */ 506 rc = -EINVAL; 507 if (vma->vm_ops && vma->vm_ops->close) 508 goto out_put; 509 510 rc = 0; 511 of->mmapped = 1; 512 of->vm_ops = vma->vm_ops; 513 vma->vm_ops = &kernfs_vm_ops; 514 out_put: 515 kernfs_put_active(of->kn); 516 out_unlock: 517 mutex_unlock(&of->mutex); 518 519 return rc; 520 } 521 522 /** 523 * kernfs_get_open_node - get or create kernfs_open_node 524 * @kn: target kernfs_node 525 * @of: kernfs_open_file for this instance of open 526 * 527 * If @kn->attr.open exists, increment its reference count; otherwise, 528 * create one. @of is chained to the files list. 529 * 530 * LOCKING: 531 * Kernel thread context (may sleep). 532 * 533 * RETURNS: 534 * 0 on success, -errno on failure. 535 */ 536 static int kernfs_get_open_node(struct kernfs_node *kn, 537 struct kernfs_open_file *of) 538 { 539 struct kernfs_open_node *on, *new_on = NULL; 540 541 retry: 542 mutex_lock(&kernfs_open_file_mutex); 543 spin_lock_irq(&kernfs_open_node_lock); 544 545 if (!kn->attr.open && new_on) { 546 kn->attr.open = new_on; 547 new_on = NULL; 548 } 549 550 on = kn->attr.open; 551 if (on) { 552 atomic_inc(&on->refcnt); 553 list_add_tail(&of->list, &on->files); 554 } 555 556 spin_unlock_irq(&kernfs_open_node_lock); 557 mutex_unlock(&kernfs_open_file_mutex); 558 559 if (on) { 560 kfree(new_on); 561 return 0; 562 } 563 564 /* not there, initialize a new one and retry */ 565 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL); 566 if (!new_on) 567 return -ENOMEM; 568 569 atomic_set(&new_on->refcnt, 0); 570 atomic_set(&new_on->event, 1); 571 init_waitqueue_head(&new_on->poll); 572 INIT_LIST_HEAD(&new_on->files); 573 goto retry; 574 } 575 576 /** 577 * kernfs_put_open_node - put kernfs_open_node 578 * @kn: target kernfs_nodet 579 * @of: associated kernfs_open_file 580 * 581 * Put @kn->attr.open and unlink @of from the files list. If 582 * reference count reaches zero, disassociate and free it. 583 * 584 * LOCKING: 585 * None. 586 */ 587 static void kernfs_put_open_node(struct kernfs_node *kn, 588 struct kernfs_open_file *of) 589 { 590 struct kernfs_open_node *on = kn->attr.open; 591 unsigned long flags; 592 593 mutex_lock(&kernfs_open_file_mutex); 594 spin_lock_irqsave(&kernfs_open_node_lock, flags); 595 596 if (of) 597 list_del(&of->list); 598 599 if (atomic_dec_and_test(&on->refcnt)) 600 kn->attr.open = NULL; 601 else 602 on = NULL; 603 604 spin_unlock_irqrestore(&kernfs_open_node_lock, flags); 605 mutex_unlock(&kernfs_open_file_mutex); 606 607 kfree(on); 608 } 609 610 static int kernfs_fop_open(struct inode *inode, struct file *file) 611 { 612 struct kernfs_node *kn = file->f_path.dentry->d_fsdata; 613 const struct kernfs_ops *ops; 614 struct kernfs_open_file *of; 615 bool has_read, has_write, has_mmap; 616 int error = -EACCES; 617 618 if (!kernfs_get_active(kn)) 619 return -ENODEV; 620 621 ops = kernfs_ops(kn); 622 623 has_read = ops->seq_show || ops->read || ops->mmap; 624 has_write = ops->write || ops->mmap; 625 has_mmap = ops->mmap; 626 627 /* check perms and supported operations */ 628 if ((file->f_mode & FMODE_WRITE) && 629 (!(inode->i_mode & S_IWUGO) || !has_write)) 630 goto err_out; 631 632 if ((file->f_mode & FMODE_READ) && 633 (!(inode->i_mode & S_IRUGO) || !has_read)) 634 goto err_out; 635 636 /* allocate a kernfs_open_file for the file */ 637 error = -ENOMEM; 638 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); 639 if (!of) 640 goto err_out; 641 642 /* 643 * The following is done to give a different lockdep key to 644 * @of->mutex for files which implement mmap. This is a rather 645 * crude way to avoid false positive lockdep warning around 646 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and 647 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under 648 * which mm->mmap_sem nests, while holding @of->mutex. As each 649 * open file has a separate mutex, it's okay as long as those don't 650 * happen on the same file. At this point, we can't easily give 651 * each file a separate locking class. Let's differentiate on 652 * whether the file has mmap or not for now. 653 * 654 * Both paths of the branch look the same. They're supposed to 655 * look that way and give @of->mutex different static lockdep keys. 656 */ 657 if (has_mmap) 658 mutex_init(&of->mutex); 659 else 660 mutex_init(&of->mutex); 661 662 of->kn = kn; 663 of->file = file; 664 665 /* 666 * Write path needs to atomic_write_len outside active reference. 667 * Cache it in open_file. See kernfs_fop_write() for details. 668 */ 669 of->atomic_write_len = ops->atomic_write_len; 670 671 /* 672 * Always instantiate seq_file even if read access doesn't use 673 * seq_file or is not requested. This unifies private data access 674 * and readable regular files are the vast majority anyway. 675 */ 676 if (ops->seq_show) 677 error = seq_open(file, &kernfs_seq_ops); 678 else 679 error = seq_open(file, NULL); 680 if (error) 681 goto err_free; 682 683 ((struct seq_file *)file->private_data)->private = of; 684 685 /* seq_file clears PWRITE unconditionally, restore it if WRITE */ 686 if (file->f_mode & FMODE_WRITE) 687 file->f_mode |= FMODE_PWRITE; 688 689 /* make sure we have open node struct */ 690 error = kernfs_get_open_node(kn, of); 691 if (error) 692 goto err_close; 693 694 /* open succeeded, put active references */ 695 kernfs_put_active(kn); 696 return 0; 697 698 err_close: 699 seq_release(inode, file); 700 err_free: 701 kfree(of); 702 err_out: 703 kernfs_put_active(kn); 704 return error; 705 } 706 707 static int kernfs_fop_release(struct inode *inode, struct file *filp) 708 { 709 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 710 struct kernfs_open_file *of = kernfs_of(filp); 711 712 kernfs_put_open_node(kn, of); 713 seq_release(inode, filp); 714 kfree(of); 715 716 return 0; 717 } 718 719 void kernfs_unmap_bin_file(struct kernfs_node *kn) 720 { 721 struct kernfs_open_node *on; 722 struct kernfs_open_file *of; 723 724 if (!(kn->flags & KERNFS_HAS_MMAP)) 725 return; 726 727 spin_lock_irq(&kernfs_open_node_lock); 728 on = kn->attr.open; 729 if (on) 730 atomic_inc(&on->refcnt); 731 spin_unlock_irq(&kernfs_open_node_lock); 732 if (!on) 733 return; 734 735 mutex_lock(&kernfs_open_file_mutex); 736 list_for_each_entry(of, &on->files, list) { 737 struct inode *inode = file_inode(of->file); 738 unmap_mapping_range(inode->i_mapping, 0, 0, 1); 739 } 740 mutex_unlock(&kernfs_open_file_mutex); 741 742 kernfs_put_open_node(kn, NULL); 743 } 744 745 /* 746 * Kernfs attribute files are pollable. The idea is that you read 747 * the content and then you use 'poll' or 'select' to wait for 748 * the content to change. When the content changes (assuming the 749 * manager for the kobject supports notification), poll will 750 * return POLLERR|POLLPRI, and select will return the fd whether 751 * it is waiting for read, write, or exceptions. 752 * Once poll/select indicates that the value has changed, you 753 * need to close and re-open the file, or seek to 0 and read again. 754 * Reminder: this only works for attributes which actively support 755 * it, and it is not possible to test an attribute from userspace 756 * to see if it supports poll (Neither 'poll' nor 'select' return 757 * an appropriate error code). When in doubt, set a suitable timeout value. 758 */ 759 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait) 760 { 761 struct kernfs_open_file *of = kernfs_of(filp); 762 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 763 struct kernfs_open_node *on = kn->attr.open; 764 765 /* need parent for the kobj, grab both */ 766 if (!kernfs_get_active(kn)) 767 goto trigger; 768 769 poll_wait(filp, &on->poll, wait); 770 771 kernfs_put_active(kn); 772 773 if (of->event != atomic_read(&on->event)) 774 goto trigger; 775 776 return DEFAULT_POLLMASK; 777 778 trigger: 779 return DEFAULT_POLLMASK|POLLERR|POLLPRI; 780 } 781 782 /** 783 * kernfs_notify - notify a kernfs file 784 * @kn: file to notify 785 * 786 * Notify @kn such that poll(2) on @kn wakes up. 787 */ 788 void kernfs_notify(struct kernfs_node *kn) 789 { 790 struct kernfs_open_node *on; 791 unsigned long flags; 792 793 spin_lock_irqsave(&kernfs_open_node_lock, flags); 794 795 if (!WARN_ON(kernfs_type(kn) != KERNFS_FILE)) { 796 on = kn->attr.open; 797 if (on) { 798 atomic_inc(&on->event); 799 wake_up_interruptible(&on->poll); 800 } 801 } 802 803 spin_unlock_irqrestore(&kernfs_open_node_lock, flags); 804 } 805 EXPORT_SYMBOL_GPL(kernfs_notify); 806 807 const struct file_operations kernfs_file_fops = { 808 .read = kernfs_fop_read, 809 .write = kernfs_fop_write, 810 .llseek = generic_file_llseek, 811 .mmap = kernfs_fop_mmap, 812 .open = kernfs_fop_open, 813 .release = kernfs_fop_release, 814 .poll = kernfs_fop_poll, 815 }; 816 817 /** 818 * __kernfs_create_file - kernfs internal function to create a file 819 * @parent: directory to create the file in 820 * @name: name of the file 821 * @mode: mode of the file 822 * @size: size of the file 823 * @ops: kernfs operations for the file 824 * @priv: private data for the file 825 * @ns: optional namespace tag of the file 826 * @static_name: don't copy file name 827 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep 828 * 829 * Returns the created node on success, ERR_PTR() value on error. 830 */ 831 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, 832 const char *name, 833 umode_t mode, loff_t size, 834 const struct kernfs_ops *ops, 835 void *priv, const void *ns, 836 bool name_is_static, 837 struct lock_class_key *key) 838 { 839 struct kernfs_node *kn; 840 unsigned flags; 841 int rc; 842 843 flags = KERNFS_FILE; 844 if (name_is_static) 845 flags |= KERNFS_STATIC_NAME; 846 847 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags); 848 if (!kn) 849 return ERR_PTR(-ENOMEM); 850 851 kn->attr.ops = ops; 852 kn->attr.size = size; 853 kn->ns = ns; 854 kn->priv = priv; 855 856 #ifdef CONFIG_DEBUG_LOCK_ALLOC 857 if (key) { 858 lockdep_init_map(&kn->dep_map, "s_active", key, 0); 859 kn->flags |= KERNFS_LOCKDEP; 860 } 861 #endif 862 863 /* 864 * kn->attr.ops is accesible only while holding active ref. We 865 * need to know whether some ops are implemented outside active 866 * ref. Cache their existence in flags. 867 */ 868 if (ops->seq_show) 869 kn->flags |= KERNFS_HAS_SEQ_SHOW; 870 if (ops->mmap) 871 kn->flags |= KERNFS_HAS_MMAP; 872 873 rc = kernfs_add_one(kn); 874 if (rc) { 875 kernfs_put(kn); 876 return ERR_PTR(rc); 877 } 878 return kn; 879 } 880