xref: /linux/fs/kernfs/dir.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 static DEFINE_RWLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
21 /*
22  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24  * will perform wakeups when releasing console_sem. Holding rename_lock
25  * will introduce deadlock if the scheduler reads the kernfs_name in the
26  * wakeup path.
27  */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
31 
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33 
34 static bool __kernfs_active(struct kernfs_node *kn)
35 {
36 	return atomic_read(&kn->active) >= 0;
37 }
38 
39 static bool kernfs_active(struct kernfs_node *kn)
40 {
41 	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 	return __kernfs_active(kn);
43 }
44 
45 static bool kernfs_lockdep(struct kernfs_node *kn)
46 {
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 	return kn->flags & KERNFS_LOCKDEP;
49 #else
50 	return false;
51 #endif
52 }
53 
54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55 {
56 	if (!kn)
57 		return strlcpy(buf, "(null)", buflen);
58 
59 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60 }
61 
62 /* kernfs_node_depth - compute depth from @from to @to */
63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64 {
65 	size_t depth = 0;
66 
67 	while (to->parent && to != from) {
68 		depth++;
69 		to = to->parent;
70 	}
71 	return depth;
72 }
73 
74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 						  struct kernfs_node *b)
76 {
77 	size_t da, db;
78 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79 
80 	if (ra != rb)
81 		return NULL;
82 
83 	da = kernfs_depth(ra->kn, a);
84 	db = kernfs_depth(rb->kn, b);
85 
86 	while (da > db) {
87 		a = a->parent;
88 		da--;
89 	}
90 	while (db > da) {
91 		b = b->parent;
92 		db--;
93 	}
94 
95 	/* worst case b and a will be the same at root */
96 	while (b != a) {
97 		b = b->parent;
98 		a = a->parent;
99 	}
100 
101 	return a;
102 }
103 
104 /**
105  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106  * where kn_from is treated as root of the path.
107  * @kn_from: kernfs node which should be treated as root for the path
108  * @kn_to: kernfs node to which path is needed
109  * @buf: buffer to copy the path into
110  * @buflen: size of @buf
111  *
112  * We need to handle couple of scenarios here:
113  * [1] when @kn_from is an ancestor of @kn_to at some level
114  * kn_from: /n1/n2/n3
115  * kn_to:   /n1/n2/n3/n4/n5
116  * result:  /n4/n5
117  *
118  * [2] when @kn_from is on a different hierarchy and we need to find common
119  * ancestor between @kn_from and @kn_to.
120  * kn_from: /n1/n2/n3/n4
121  * kn_to:   /n1/n2/n5
122  * result:  /../../n5
123  * OR
124  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
125  * kn_to:   /n1/n2/n3         [depth=3]
126  * result:  /../..
127  *
128  * [3] when @kn_to is %NULL result will be "(null)"
129  *
130  * Return: the length of the full path.  If the full length is equal to or
131  * greater than @buflen, @buf contains the truncated path with the trailing
132  * '\0'.  On error, -errno is returned.
133  */
134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 					struct kernfs_node *kn_from,
136 					char *buf, size_t buflen)
137 {
138 	struct kernfs_node *kn, *common;
139 	const char parent_str[] = "/..";
140 	size_t depth_from, depth_to, len = 0;
141 	int i, j;
142 
143 	if (!kn_to)
144 		return strlcpy(buf, "(null)", buflen);
145 
146 	if (!kn_from)
147 		kn_from = kernfs_root(kn_to)->kn;
148 
149 	if (kn_from == kn_to)
150 		return strlcpy(buf, "/", buflen);
151 
152 	common = kernfs_common_ancestor(kn_from, kn_to);
153 	if (WARN_ON(!common))
154 		return -EINVAL;
155 
156 	depth_to = kernfs_depth(common, kn_to);
157 	depth_from = kernfs_depth(common, kn_from);
158 
159 	buf[0] = '\0';
160 
161 	for (i = 0; i < depth_from; i++)
162 		len += strlcpy(buf + len, parent_str,
163 			       len < buflen ? buflen - len : 0);
164 
165 	/* Calculate how many bytes we need for the rest */
166 	for (i = depth_to - 1; i >= 0; i--) {
167 		for (kn = kn_to, j = 0; j < i; j++)
168 			kn = kn->parent;
169 		len += strlcpy(buf + len, "/",
170 			       len < buflen ? buflen - len : 0);
171 		len += strlcpy(buf + len, kn->name,
172 			       len < buflen ? buflen - len : 0);
173 	}
174 
175 	return len;
176 }
177 
178 /**
179  * kernfs_name - obtain the name of a given node
180  * @kn: kernfs_node of interest
181  * @buf: buffer to copy @kn's name into
182  * @buflen: size of @buf
183  *
184  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
185  * similar to strlcpy().
186  *
187  * Fills buffer with "(null)" if @kn is %NULL.
188  *
189  * Return: the length of @kn's name and if @buf isn't long enough,
190  * it's filled up to @buflen-1 and nul terminated.
191  *
192  * This function can be called from any context.
193  */
194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
195 {
196 	unsigned long flags;
197 	int ret;
198 
199 	read_lock_irqsave(&kernfs_rename_lock, flags);
200 	ret = kernfs_name_locked(kn, buf, buflen);
201 	read_unlock_irqrestore(&kernfs_rename_lock, flags);
202 	return ret;
203 }
204 
205 /**
206  * kernfs_path_from_node - build path of node @to relative to @from.
207  * @from: parent kernfs_node relative to which we need to build the path
208  * @to: kernfs_node of interest
209  * @buf: buffer to copy @to's path into
210  * @buflen: size of @buf
211  *
212  * Builds @to's path relative to @from in @buf. @from and @to must
213  * be on the same kernfs-root. If @from is not parent of @to, then a relative
214  * path (which includes '..'s) as needed to reach from @from to @to is
215  * returned.
216  *
217  * Return: the length of the full path.  If the full length is equal to or
218  * greater than @buflen, @buf contains the truncated path with the trailing
219  * '\0'.  On error, -errno is returned.
220  */
221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
222 			  char *buf, size_t buflen)
223 {
224 	unsigned long flags;
225 	int ret;
226 
227 	read_lock_irqsave(&kernfs_rename_lock, flags);
228 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
229 	read_unlock_irqrestore(&kernfs_rename_lock, flags);
230 	return ret;
231 }
232 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
233 
234 /**
235  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
236  * @kn: kernfs_node of interest
237  *
238  * This function can be called from any context.
239  */
240 void pr_cont_kernfs_name(struct kernfs_node *kn)
241 {
242 	unsigned long flags;
243 
244 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
245 
246 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
247 	pr_cont("%s", kernfs_pr_cont_buf);
248 
249 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
250 }
251 
252 /**
253  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
254  * @kn: kernfs_node of interest
255  *
256  * This function can be called from any context.
257  */
258 void pr_cont_kernfs_path(struct kernfs_node *kn)
259 {
260 	unsigned long flags;
261 	int sz;
262 
263 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
264 
265 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
266 				   sizeof(kernfs_pr_cont_buf));
267 	if (sz < 0) {
268 		pr_cont("(error)");
269 		goto out;
270 	}
271 
272 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
273 		pr_cont("(name too long)");
274 		goto out;
275 	}
276 
277 	pr_cont("%s", kernfs_pr_cont_buf);
278 
279 out:
280 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
281 }
282 
283 /**
284  * kernfs_get_parent - determine the parent node and pin it
285  * @kn: kernfs_node of interest
286  *
287  * Determines @kn's parent, pins and returns it.  This function can be
288  * called from any context.
289  *
290  * Return: parent node of @kn
291  */
292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
293 {
294 	struct kernfs_node *parent;
295 	unsigned long flags;
296 
297 	read_lock_irqsave(&kernfs_rename_lock, flags);
298 	parent = kn->parent;
299 	kernfs_get(parent);
300 	read_unlock_irqrestore(&kernfs_rename_lock, flags);
301 
302 	return parent;
303 }
304 
305 /**
306  *	kernfs_name_hash - calculate hash of @ns + @name
307  *	@name: Null terminated string to hash
308  *	@ns:   Namespace tag to hash
309  *
310  *	Return: 31-bit hash of ns + name (so it fits in an off_t)
311  */
312 static unsigned int kernfs_name_hash(const char *name, const void *ns)
313 {
314 	unsigned long hash = init_name_hash(ns);
315 	unsigned int len = strlen(name);
316 	while (len--)
317 		hash = partial_name_hash(*name++, hash);
318 	hash = end_name_hash(hash);
319 	hash &= 0x7fffffffU;
320 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
321 	if (hash < 2)
322 		hash += 2;
323 	if (hash >= INT_MAX)
324 		hash = INT_MAX - 1;
325 	return hash;
326 }
327 
328 static int kernfs_name_compare(unsigned int hash, const char *name,
329 			       const void *ns, const struct kernfs_node *kn)
330 {
331 	if (hash < kn->hash)
332 		return -1;
333 	if (hash > kn->hash)
334 		return 1;
335 	if (ns < kn->ns)
336 		return -1;
337 	if (ns > kn->ns)
338 		return 1;
339 	return strcmp(name, kn->name);
340 }
341 
342 static int kernfs_sd_compare(const struct kernfs_node *left,
343 			     const struct kernfs_node *right)
344 {
345 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
346 }
347 
348 /**
349  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
350  *	@kn: kernfs_node of interest
351  *
352  *	Link @kn into its sibling rbtree which starts from
353  *	@kn->parent->dir.children.
354  *
355  *	Locking:
356  *	kernfs_rwsem held exclusive
357  *
358  *	Return:
359  *	%0 on success, -EEXIST on failure.
360  */
361 static int kernfs_link_sibling(struct kernfs_node *kn)
362 {
363 	struct rb_node **node = &kn->parent->dir.children.rb_node;
364 	struct rb_node *parent = NULL;
365 
366 	while (*node) {
367 		struct kernfs_node *pos;
368 		int result;
369 
370 		pos = rb_to_kn(*node);
371 		parent = *node;
372 		result = kernfs_sd_compare(kn, pos);
373 		if (result < 0)
374 			node = &pos->rb.rb_left;
375 		else if (result > 0)
376 			node = &pos->rb.rb_right;
377 		else
378 			return -EEXIST;
379 	}
380 
381 	/* add new node and rebalance the tree */
382 	rb_link_node(&kn->rb, parent, node);
383 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
384 
385 	/* successfully added, account subdir number */
386 	if (kernfs_type(kn) == KERNFS_DIR)
387 		kn->parent->dir.subdirs++;
388 	kernfs_inc_rev(kn->parent);
389 
390 	return 0;
391 }
392 
393 /**
394  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
395  *	@kn: kernfs_node of interest
396  *
397  *	Try to unlink @kn from its sibling rbtree which starts from
398  *	kn->parent->dir.children.
399  *
400  *	Return: %true if @kn was actually removed,
401  *	%false if @kn wasn't on the rbtree.
402  *
403  *	Locking:
404  *	kernfs_rwsem held exclusive
405  */
406 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
407 {
408 	if (RB_EMPTY_NODE(&kn->rb))
409 		return false;
410 
411 	if (kernfs_type(kn) == KERNFS_DIR)
412 		kn->parent->dir.subdirs--;
413 	kernfs_inc_rev(kn->parent);
414 
415 	rb_erase(&kn->rb, &kn->parent->dir.children);
416 	RB_CLEAR_NODE(&kn->rb);
417 	return true;
418 }
419 
420 /**
421  *	kernfs_get_active - get an active reference to kernfs_node
422  *	@kn: kernfs_node to get an active reference to
423  *
424  *	Get an active reference of @kn.  This function is noop if @kn
425  *	is %NULL.
426  *
427  *	Return:
428  *	Pointer to @kn on success, %NULL on failure.
429  */
430 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
431 {
432 	if (unlikely(!kn))
433 		return NULL;
434 
435 	if (!atomic_inc_unless_negative(&kn->active))
436 		return NULL;
437 
438 	if (kernfs_lockdep(kn))
439 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
440 	return kn;
441 }
442 
443 /**
444  *	kernfs_put_active - put an active reference to kernfs_node
445  *	@kn: kernfs_node to put an active reference to
446  *
447  *	Put an active reference to @kn.  This function is noop if @kn
448  *	is %NULL.
449  */
450 void kernfs_put_active(struct kernfs_node *kn)
451 {
452 	int v;
453 
454 	if (unlikely(!kn))
455 		return;
456 
457 	if (kernfs_lockdep(kn))
458 		rwsem_release(&kn->dep_map, _RET_IP_);
459 	v = atomic_dec_return(&kn->active);
460 	if (likely(v != KN_DEACTIVATED_BIAS))
461 		return;
462 
463 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
464 }
465 
466 /**
467  * kernfs_drain - drain kernfs_node
468  * @kn: kernfs_node to drain
469  *
470  * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
471  * removers may invoke this function concurrently on @kn and all will
472  * return after draining is complete.
473  */
474 static void kernfs_drain(struct kernfs_node *kn)
475 	__releases(&kernfs_root(kn)->kernfs_rwsem)
476 	__acquires(&kernfs_root(kn)->kernfs_rwsem)
477 {
478 	struct kernfs_root *root = kernfs_root(kn);
479 
480 	lockdep_assert_held_write(&root->kernfs_rwsem);
481 	WARN_ON_ONCE(kernfs_active(kn));
482 
483 	/*
484 	 * Skip draining if already fully drained. This avoids draining and its
485 	 * lockdep annotations for nodes which have never been activated
486 	 * allowing embedding kernfs_remove() in create error paths without
487 	 * worrying about draining.
488 	 */
489 	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
490 	    !kernfs_should_drain_open_files(kn))
491 		return;
492 
493 	up_write(&root->kernfs_rwsem);
494 
495 	if (kernfs_lockdep(kn)) {
496 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
497 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
498 			lock_contended(&kn->dep_map, _RET_IP_);
499 	}
500 
501 	wait_event(root->deactivate_waitq,
502 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
503 
504 	if (kernfs_lockdep(kn)) {
505 		lock_acquired(&kn->dep_map, _RET_IP_);
506 		rwsem_release(&kn->dep_map, _RET_IP_);
507 	}
508 
509 	if (kernfs_should_drain_open_files(kn))
510 		kernfs_drain_open_files(kn);
511 
512 	down_write(&root->kernfs_rwsem);
513 }
514 
515 /**
516  * kernfs_get - get a reference count on a kernfs_node
517  * @kn: the target kernfs_node
518  */
519 void kernfs_get(struct kernfs_node *kn)
520 {
521 	if (kn) {
522 		WARN_ON(!atomic_read(&kn->count));
523 		atomic_inc(&kn->count);
524 	}
525 }
526 EXPORT_SYMBOL_GPL(kernfs_get);
527 
528 /**
529  * kernfs_put - put a reference count on a kernfs_node
530  * @kn: the target kernfs_node
531  *
532  * Put a reference count of @kn and destroy it if it reached zero.
533  */
534 void kernfs_put(struct kernfs_node *kn)
535 {
536 	struct kernfs_node *parent;
537 	struct kernfs_root *root;
538 
539 	if (!kn || !atomic_dec_and_test(&kn->count))
540 		return;
541 	root = kernfs_root(kn);
542  repeat:
543 	/*
544 	 * Moving/renaming is always done while holding reference.
545 	 * kn->parent won't change beneath us.
546 	 */
547 	parent = kn->parent;
548 
549 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
550 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
551 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
552 
553 	if (kernfs_type(kn) == KERNFS_LINK)
554 		kernfs_put(kn->symlink.target_kn);
555 
556 	kfree_const(kn->name);
557 
558 	if (kn->iattr) {
559 		simple_xattrs_free(&kn->iattr->xattrs);
560 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
561 	}
562 	spin_lock(&kernfs_idr_lock);
563 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
564 	spin_unlock(&kernfs_idr_lock);
565 	kmem_cache_free(kernfs_node_cache, kn);
566 
567 	kn = parent;
568 	if (kn) {
569 		if (atomic_dec_and_test(&kn->count))
570 			goto repeat;
571 	} else {
572 		/* just released the root kn, free @root too */
573 		idr_destroy(&root->ino_idr);
574 		kfree(root);
575 	}
576 }
577 EXPORT_SYMBOL_GPL(kernfs_put);
578 
579 /**
580  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
581  * @dentry: the dentry in question
582  *
583  * Return: the kernfs_node associated with @dentry.  If @dentry is not a
584  * kernfs one, %NULL is returned.
585  *
586  * While the returned kernfs_node will stay accessible as long as @dentry
587  * is accessible, the returned node can be in any state and the caller is
588  * fully responsible for determining what's accessible.
589  */
590 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
591 {
592 	if (dentry->d_sb->s_op == &kernfs_sops)
593 		return kernfs_dentry_node(dentry);
594 	return NULL;
595 }
596 
597 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
598 					     struct kernfs_node *parent,
599 					     const char *name, umode_t mode,
600 					     kuid_t uid, kgid_t gid,
601 					     unsigned flags)
602 {
603 	struct kernfs_node *kn;
604 	u32 id_highbits;
605 	int ret;
606 
607 	name = kstrdup_const(name, GFP_KERNEL);
608 	if (!name)
609 		return NULL;
610 
611 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
612 	if (!kn)
613 		goto err_out1;
614 
615 	idr_preload(GFP_KERNEL);
616 	spin_lock(&kernfs_idr_lock);
617 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
618 	if (ret >= 0 && ret < root->last_id_lowbits)
619 		root->id_highbits++;
620 	id_highbits = root->id_highbits;
621 	root->last_id_lowbits = ret;
622 	spin_unlock(&kernfs_idr_lock);
623 	idr_preload_end();
624 	if (ret < 0)
625 		goto err_out2;
626 
627 	kn->id = (u64)id_highbits << 32 | ret;
628 
629 	atomic_set(&kn->count, 1);
630 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
631 	RB_CLEAR_NODE(&kn->rb);
632 
633 	kn->name = name;
634 	kn->mode = mode;
635 	kn->flags = flags;
636 
637 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
638 		struct iattr iattr = {
639 			.ia_valid = ATTR_UID | ATTR_GID,
640 			.ia_uid = uid,
641 			.ia_gid = gid,
642 		};
643 
644 		ret = __kernfs_setattr(kn, &iattr);
645 		if (ret < 0)
646 			goto err_out3;
647 	}
648 
649 	if (parent) {
650 		ret = security_kernfs_init_security(parent, kn);
651 		if (ret)
652 			goto err_out3;
653 	}
654 
655 	return kn;
656 
657  err_out3:
658 	spin_lock(&kernfs_idr_lock);
659 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
660 	spin_unlock(&kernfs_idr_lock);
661  err_out2:
662 	kmem_cache_free(kernfs_node_cache, kn);
663  err_out1:
664 	kfree_const(name);
665 	return NULL;
666 }
667 
668 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
669 				    const char *name, umode_t mode,
670 				    kuid_t uid, kgid_t gid,
671 				    unsigned flags)
672 {
673 	struct kernfs_node *kn;
674 
675 	kn = __kernfs_new_node(kernfs_root(parent), parent,
676 			       name, mode, uid, gid, flags);
677 	if (kn) {
678 		kernfs_get(parent);
679 		kn->parent = parent;
680 	}
681 	return kn;
682 }
683 
684 /*
685  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
686  * @root: the kernfs root
687  * @id: the target node id
688  *
689  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
690  * zero, all generations are matched.
691  *
692  * Return: %NULL on failure,
693  * otherwise a kernfs node with reference counter incremented.
694  */
695 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
696 						   u64 id)
697 {
698 	struct kernfs_node *kn;
699 	ino_t ino = kernfs_id_ino(id);
700 	u32 gen = kernfs_id_gen(id);
701 
702 	spin_lock(&kernfs_idr_lock);
703 
704 	kn = idr_find(&root->ino_idr, (u32)ino);
705 	if (!kn)
706 		goto err_unlock;
707 
708 	if (sizeof(ino_t) >= sizeof(u64)) {
709 		/* we looked up with the low 32bits, compare the whole */
710 		if (kernfs_ino(kn) != ino)
711 			goto err_unlock;
712 	} else {
713 		/* 0 matches all generations */
714 		if (unlikely(gen && kernfs_gen(kn) != gen))
715 			goto err_unlock;
716 	}
717 
718 	/*
719 	 * We should fail if @kn has never been activated and guarantee success
720 	 * if the caller knows that @kn is active. Both can be achieved by
721 	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
722 	 */
723 	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
724 		goto err_unlock;
725 
726 	spin_unlock(&kernfs_idr_lock);
727 	return kn;
728 err_unlock:
729 	spin_unlock(&kernfs_idr_lock);
730 	return NULL;
731 }
732 
733 /**
734  *	kernfs_add_one - add kernfs_node to parent without warning
735  *	@kn: kernfs_node to be added
736  *
737  *	The caller must already have initialized @kn->parent.  This
738  *	function increments nlink of the parent's inode if @kn is a
739  *	directory and link into the children list of the parent.
740  *
741  *	Return:
742  *	%0 on success, -EEXIST if entry with the given name already
743  *	exists.
744  */
745 int kernfs_add_one(struct kernfs_node *kn)
746 {
747 	struct kernfs_node *parent = kn->parent;
748 	struct kernfs_root *root = kernfs_root(parent);
749 	struct kernfs_iattrs *ps_iattr;
750 	bool has_ns;
751 	int ret;
752 
753 	down_write(&root->kernfs_rwsem);
754 
755 	ret = -EINVAL;
756 	has_ns = kernfs_ns_enabled(parent);
757 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
758 		 has_ns ? "required" : "invalid", parent->name, kn->name))
759 		goto out_unlock;
760 
761 	if (kernfs_type(parent) != KERNFS_DIR)
762 		goto out_unlock;
763 
764 	ret = -ENOENT;
765 	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
766 		goto out_unlock;
767 
768 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
769 
770 	ret = kernfs_link_sibling(kn);
771 	if (ret)
772 		goto out_unlock;
773 
774 	/* Update timestamps on the parent */
775 	down_write(&root->kernfs_iattr_rwsem);
776 
777 	ps_iattr = parent->iattr;
778 	if (ps_iattr) {
779 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
780 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
781 	}
782 
783 	up_write(&root->kernfs_iattr_rwsem);
784 	up_write(&root->kernfs_rwsem);
785 
786 	/*
787 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
788 	 * If not activated here, the kernfs user is responsible for
789 	 * activating the node with kernfs_activate().  A node which hasn't
790 	 * been activated is not visible to userland and its removal won't
791 	 * trigger deactivation.
792 	 */
793 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
794 		kernfs_activate(kn);
795 	return 0;
796 
797 out_unlock:
798 	up_write(&root->kernfs_rwsem);
799 	return ret;
800 }
801 
802 /**
803  * kernfs_find_ns - find kernfs_node with the given name
804  * @parent: kernfs_node to search under
805  * @name: name to look for
806  * @ns: the namespace tag to use
807  *
808  * Look for kernfs_node with name @name under @parent.
809  *
810  * Return: pointer to the found kernfs_node on success, %NULL on failure.
811  */
812 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
813 					  const unsigned char *name,
814 					  const void *ns)
815 {
816 	struct rb_node *node = parent->dir.children.rb_node;
817 	bool has_ns = kernfs_ns_enabled(parent);
818 	unsigned int hash;
819 
820 	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
821 
822 	if (has_ns != (bool)ns) {
823 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
824 		     has_ns ? "required" : "invalid", parent->name, name);
825 		return NULL;
826 	}
827 
828 	hash = kernfs_name_hash(name, ns);
829 	while (node) {
830 		struct kernfs_node *kn;
831 		int result;
832 
833 		kn = rb_to_kn(node);
834 		result = kernfs_name_compare(hash, name, ns, kn);
835 		if (result < 0)
836 			node = node->rb_left;
837 		else if (result > 0)
838 			node = node->rb_right;
839 		else
840 			return kn;
841 	}
842 	return NULL;
843 }
844 
845 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
846 					  const unsigned char *path,
847 					  const void *ns)
848 {
849 	size_t len;
850 	char *p, *name;
851 
852 	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
853 
854 	spin_lock_irq(&kernfs_pr_cont_lock);
855 
856 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
857 
858 	if (len >= sizeof(kernfs_pr_cont_buf)) {
859 		spin_unlock_irq(&kernfs_pr_cont_lock);
860 		return NULL;
861 	}
862 
863 	p = kernfs_pr_cont_buf;
864 
865 	while ((name = strsep(&p, "/")) && parent) {
866 		if (*name == '\0')
867 			continue;
868 		parent = kernfs_find_ns(parent, name, ns);
869 	}
870 
871 	spin_unlock_irq(&kernfs_pr_cont_lock);
872 
873 	return parent;
874 }
875 
876 /**
877  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
878  * @parent: kernfs_node to search under
879  * @name: name to look for
880  * @ns: the namespace tag to use
881  *
882  * Look for kernfs_node with name @name under @parent and get a reference
883  * if found.  This function may sleep.
884  *
885  * Return: pointer to the found kernfs_node on success, %NULL on failure.
886  */
887 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
888 					   const char *name, const void *ns)
889 {
890 	struct kernfs_node *kn;
891 	struct kernfs_root *root = kernfs_root(parent);
892 
893 	down_read(&root->kernfs_rwsem);
894 	kn = kernfs_find_ns(parent, name, ns);
895 	kernfs_get(kn);
896 	up_read(&root->kernfs_rwsem);
897 
898 	return kn;
899 }
900 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
901 
902 /**
903  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
904  * @parent: kernfs_node to search under
905  * @path: path to look for
906  * @ns: the namespace tag to use
907  *
908  * Look for kernfs_node with path @path under @parent and get a reference
909  * if found.  This function may sleep.
910  *
911  * Return: pointer to the found kernfs_node on success, %NULL on failure.
912  */
913 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
914 					   const char *path, const void *ns)
915 {
916 	struct kernfs_node *kn;
917 	struct kernfs_root *root = kernfs_root(parent);
918 
919 	down_read(&root->kernfs_rwsem);
920 	kn = kernfs_walk_ns(parent, path, ns);
921 	kernfs_get(kn);
922 	up_read(&root->kernfs_rwsem);
923 
924 	return kn;
925 }
926 
927 /**
928  * kernfs_create_root - create a new kernfs hierarchy
929  * @scops: optional syscall operations for the hierarchy
930  * @flags: KERNFS_ROOT_* flags
931  * @priv: opaque data associated with the new directory
932  *
933  * Return: the root of the new hierarchy on success, ERR_PTR() value on
934  * failure.
935  */
936 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
937 				       unsigned int flags, void *priv)
938 {
939 	struct kernfs_root *root;
940 	struct kernfs_node *kn;
941 
942 	root = kzalloc(sizeof(*root), GFP_KERNEL);
943 	if (!root)
944 		return ERR_PTR(-ENOMEM);
945 
946 	idr_init(&root->ino_idr);
947 	init_rwsem(&root->kernfs_rwsem);
948 	init_rwsem(&root->kernfs_iattr_rwsem);
949 	init_rwsem(&root->kernfs_supers_rwsem);
950 	INIT_LIST_HEAD(&root->supers);
951 
952 	/*
953 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
954 	 * High bits generation.  The starting value for both ino and
955 	 * genenration is 1.  Initialize upper 32bit allocation
956 	 * accordingly.
957 	 */
958 	if (sizeof(ino_t) >= sizeof(u64))
959 		root->id_highbits = 0;
960 	else
961 		root->id_highbits = 1;
962 
963 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
964 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
965 			       KERNFS_DIR);
966 	if (!kn) {
967 		idr_destroy(&root->ino_idr);
968 		kfree(root);
969 		return ERR_PTR(-ENOMEM);
970 	}
971 
972 	kn->priv = priv;
973 	kn->dir.root = root;
974 
975 	root->syscall_ops = scops;
976 	root->flags = flags;
977 	root->kn = kn;
978 	init_waitqueue_head(&root->deactivate_waitq);
979 
980 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
981 		kernfs_activate(kn);
982 
983 	return root;
984 }
985 
986 /**
987  * kernfs_destroy_root - destroy a kernfs hierarchy
988  * @root: root of the hierarchy to destroy
989  *
990  * Destroy the hierarchy anchored at @root by removing all existing
991  * directories and destroying @root.
992  */
993 void kernfs_destroy_root(struct kernfs_root *root)
994 {
995 	/*
996 	 *  kernfs_remove holds kernfs_rwsem from the root so the root
997 	 *  shouldn't be freed during the operation.
998 	 */
999 	kernfs_get(root->kn);
1000 	kernfs_remove(root->kn);
1001 	kernfs_put(root->kn); /* will also free @root */
1002 }
1003 
1004 /**
1005  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1006  * @root: root to use to lookup
1007  *
1008  * Return: @root's kernfs_node
1009  */
1010 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1011 {
1012 	return root->kn;
1013 }
1014 
1015 /**
1016  * kernfs_create_dir_ns - create a directory
1017  * @parent: parent in which to create a new directory
1018  * @name: name of the new directory
1019  * @mode: mode of the new directory
1020  * @uid: uid of the new directory
1021  * @gid: gid of the new directory
1022  * @priv: opaque data associated with the new directory
1023  * @ns: optional namespace tag of the directory
1024  *
1025  * Return: the created node on success, ERR_PTR() value on failure.
1026  */
1027 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1028 					 const char *name, umode_t mode,
1029 					 kuid_t uid, kgid_t gid,
1030 					 void *priv, const void *ns)
1031 {
1032 	struct kernfs_node *kn;
1033 	int rc;
1034 
1035 	/* allocate */
1036 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1037 			     uid, gid, KERNFS_DIR);
1038 	if (!kn)
1039 		return ERR_PTR(-ENOMEM);
1040 
1041 	kn->dir.root = parent->dir.root;
1042 	kn->ns = ns;
1043 	kn->priv = priv;
1044 
1045 	/* link in */
1046 	rc = kernfs_add_one(kn);
1047 	if (!rc)
1048 		return kn;
1049 
1050 	kernfs_put(kn);
1051 	return ERR_PTR(rc);
1052 }
1053 
1054 /**
1055  * kernfs_create_empty_dir - create an always empty directory
1056  * @parent: parent in which to create a new directory
1057  * @name: name of the new directory
1058  *
1059  * Return: the created node on success, ERR_PTR() value on failure.
1060  */
1061 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1062 					    const char *name)
1063 {
1064 	struct kernfs_node *kn;
1065 	int rc;
1066 
1067 	/* allocate */
1068 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1069 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1070 	if (!kn)
1071 		return ERR_PTR(-ENOMEM);
1072 
1073 	kn->flags |= KERNFS_EMPTY_DIR;
1074 	kn->dir.root = parent->dir.root;
1075 	kn->ns = NULL;
1076 	kn->priv = NULL;
1077 
1078 	/* link in */
1079 	rc = kernfs_add_one(kn);
1080 	if (!rc)
1081 		return kn;
1082 
1083 	kernfs_put(kn);
1084 	return ERR_PTR(rc);
1085 }
1086 
1087 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1088 {
1089 	struct kernfs_node *kn;
1090 	struct kernfs_root *root;
1091 
1092 	if (flags & LOOKUP_RCU)
1093 		return -ECHILD;
1094 
1095 	/* Negative hashed dentry? */
1096 	if (d_really_is_negative(dentry)) {
1097 		struct kernfs_node *parent;
1098 
1099 		/* If the kernfs parent node has changed discard and
1100 		 * proceed to ->lookup.
1101 		 *
1102 		 * There's nothing special needed here when getting the
1103 		 * dentry parent, even if a concurrent rename is in
1104 		 * progress. That's because the dentry is negative so
1105 		 * it can only be the target of the rename and it will
1106 		 * be doing a d_move() not a replace. Consequently the
1107 		 * dentry d_parent won't change over the d_move().
1108 		 *
1109 		 * Also kernfs negative dentries transitioning from
1110 		 * negative to positive during revalidate won't happen
1111 		 * because they are invalidated on containing directory
1112 		 * changes and the lookup re-done so that a new positive
1113 		 * dentry can be properly created.
1114 		 */
1115 		root = kernfs_root_from_sb(dentry->d_sb);
1116 		down_read(&root->kernfs_rwsem);
1117 		parent = kernfs_dentry_node(dentry->d_parent);
1118 		if (parent) {
1119 			if (kernfs_dir_changed(parent, dentry)) {
1120 				up_read(&root->kernfs_rwsem);
1121 				return 0;
1122 			}
1123 		}
1124 		up_read(&root->kernfs_rwsem);
1125 
1126 		/* The kernfs parent node hasn't changed, leave the
1127 		 * dentry negative and return success.
1128 		 */
1129 		return 1;
1130 	}
1131 
1132 	kn = kernfs_dentry_node(dentry);
1133 	root = kernfs_root(kn);
1134 	down_read(&root->kernfs_rwsem);
1135 
1136 	/* The kernfs node has been deactivated */
1137 	if (!kernfs_active(kn))
1138 		goto out_bad;
1139 
1140 	/* The kernfs node has been moved? */
1141 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1142 		goto out_bad;
1143 
1144 	/* The kernfs node has been renamed */
1145 	if (strcmp(dentry->d_name.name, kn->name) != 0)
1146 		goto out_bad;
1147 
1148 	/* The kernfs node has been moved to a different namespace */
1149 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1150 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1151 		goto out_bad;
1152 
1153 	up_read(&root->kernfs_rwsem);
1154 	return 1;
1155 out_bad:
1156 	up_read(&root->kernfs_rwsem);
1157 	return 0;
1158 }
1159 
1160 const struct dentry_operations kernfs_dops = {
1161 	.d_revalidate	= kernfs_dop_revalidate,
1162 };
1163 
1164 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1165 					struct dentry *dentry,
1166 					unsigned int flags)
1167 {
1168 	struct kernfs_node *parent = dir->i_private;
1169 	struct kernfs_node *kn;
1170 	struct kernfs_root *root;
1171 	struct inode *inode = NULL;
1172 	const void *ns = NULL;
1173 
1174 	root = kernfs_root(parent);
1175 	down_read(&root->kernfs_rwsem);
1176 	if (kernfs_ns_enabled(parent))
1177 		ns = kernfs_info(dir->i_sb)->ns;
1178 
1179 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1180 	/* attach dentry and inode */
1181 	if (kn) {
1182 		/* Inactive nodes are invisible to the VFS so don't
1183 		 * create a negative.
1184 		 */
1185 		if (!kernfs_active(kn)) {
1186 			up_read(&root->kernfs_rwsem);
1187 			return NULL;
1188 		}
1189 		inode = kernfs_get_inode(dir->i_sb, kn);
1190 		if (!inode)
1191 			inode = ERR_PTR(-ENOMEM);
1192 	}
1193 	/*
1194 	 * Needed for negative dentry validation.
1195 	 * The negative dentry can be created in kernfs_iop_lookup()
1196 	 * or transforms from positive dentry in dentry_unlink_inode()
1197 	 * called from vfs_rmdir().
1198 	 */
1199 	if (!IS_ERR(inode))
1200 		kernfs_set_rev(parent, dentry);
1201 	up_read(&root->kernfs_rwsem);
1202 
1203 	/* instantiate and hash (possibly negative) dentry */
1204 	return d_splice_alias(inode, dentry);
1205 }
1206 
1207 static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
1208 			    struct inode *dir, struct dentry *dentry,
1209 			    umode_t mode)
1210 {
1211 	struct kernfs_node *parent = dir->i_private;
1212 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1213 	int ret;
1214 
1215 	if (!scops || !scops->mkdir)
1216 		return -EPERM;
1217 
1218 	if (!kernfs_get_active(parent))
1219 		return -ENODEV;
1220 
1221 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1222 
1223 	kernfs_put_active(parent);
1224 	return ret;
1225 }
1226 
1227 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1228 {
1229 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1230 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1231 	int ret;
1232 
1233 	if (!scops || !scops->rmdir)
1234 		return -EPERM;
1235 
1236 	if (!kernfs_get_active(kn))
1237 		return -ENODEV;
1238 
1239 	ret = scops->rmdir(kn);
1240 
1241 	kernfs_put_active(kn);
1242 	return ret;
1243 }
1244 
1245 static int kernfs_iop_rename(struct mnt_idmap *idmap,
1246 			     struct inode *old_dir, struct dentry *old_dentry,
1247 			     struct inode *new_dir, struct dentry *new_dentry,
1248 			     unsigned int flags)
1249 {
1250 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1251 	struct kernfs_node *new_parent = new_dir->i_private;
1252 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1253 	int ret;
1254 
1255 	if (flags)
1256 		return -EINVAL;
1257 
1258 	if (!scops || !scops->rename)
1259 		return -EPERM;
1260 
1261 	if (!kernfs_get_active(kn))
1262 		return -ENODEV;
1263 
1264 	if (!kernfs_get_active(new_parent)) {
1265 		kernfs_put_active(kn);
1266 		return -ENODEV;
1267 	}
1268 
1269 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1270 
1271 	kernfs_put_active(new_parent);
1272 	kernfs_put_active(kn);
1273 	return ret;
1274 }
1275 
1276 const struct inode_operations kernfs_dir_iops = {
1277 	.lookup		= kernfs_iop_lookup,
1278 	.permission	= kernfs_iop_permission,
1279 	.setattr	= kernfs_iop_setattr,
1280 	.getattr	= kernfs_iop_getattr,
1281 	.listxattr	= kernfs_iop_listxattr,
1282 
1283 	.mkdir		= kernfs_iop_mkdir,
1284 	.rmdir		= kernfs_iop_rmdir,
1285 	.rename		= kernfs_iop_rename,
1286 };
1287 
1288 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1289 {
1290 	struct kernfs_node *last;
1291 
1292 	while (true) {
1293 		struct rb_node *rbn;
1294 
1295 		last = pos;
1296 
1297 		if (kernfs_type(pos) != KERNFS_DIR)
1298 			break;
1299 
1300 		rbn = rb_first(&pos->dir.children);
1301 		if (!rbn)
1302 			break;
1303 
1304 		pos = rb_to_kn(rbn);
1305 	}
1306 
1307 	return last;
1308 }
1309 
1310 /**
1311  * kernfs_next_descendant_post - find the next descendant for post-order walk
1312  * @pos: the current position (%NULL to initiate traversal)
1313  * @root: kernfs_node whose descendants to walk
1314  *
1315  * Find the next descendant to visit for post-order traversal of @root's
1316  * descendants.  @root is included in the iteration and the last node to be
1317  * visited.
1318  *
1319  * Return: the next descendant to visit or %NULL when done.
1320  */
1321 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1322 						       struct kernfs_node *root)
1323 {
1324 	struct rb_node *rbn;
1325 
1326 	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1327 
1328 	/* if first iteration, visit leftmost descendant which may be root */
1329 	if (!pos)
1330 		return kernfs_leftmost_descendant(root);
1331 
1332 	/* if we visited @root, we're done */
1333 	if (pos == root)
1334 		return NULL;
1335 
1336 	/* if there's an unvisited sibling, visit its leftmost descendant */
1337 	rbn = rb_next(&pos->rb);
1338 	if (rbn)
1339 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1340 
1341 	/* no sibling left, visit parent */
1342 	return pos->parent;
1343 }
1344 
1345 static void kernfs_activate_one(struct kernfs_node *kn)
1346 {
1347 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1348 
1349 	kn->flags |= KERNFS_ACTIVATED;
1350 
1351 	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1352 		return;
1353 
1354 	WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1355 	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1356 
1357 	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1358 }
1359 
1360 /**
1361  * kernfs_activate - activate a node which started deactivated
1362  * @kn: kernfs_node whose subtree is to be activated
1363  *
1364  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1365  * needs to be explicitly activated.  A node which hasn't been activated
1366  * isn't visible to userland and deactivation is skipped during its
1367  * removal.  This is useful to construct atomic init sequences where
1368  * creation of multiple nodes should either succeed or fail atomically.
1369  *
1370  * The caller is responsible for ensuring that this function is not called
1371  * after kernfs_remove*() is invoked on @kn.
1372  */
1373 void kernfs_activate(struct kernfs_node *kn)
1374 {
1375 	struct kernfs_node *pos;
1376 	struct kernfs_root *root = kernfs_root(kn);
1377 
1378 	down_write(&root->kernfs_rwsem);
1379 
1380 	pos = NULL;
1381 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1382 		kernfs_activate_one(pos);
1383 
1384 	up_write(&root->kernfs_rwsem);
1385 }
1386 
1387 /**
1388  * kernfs_show - show or hide a node
1389  * @kn: kernfs_node to show or hide
1390  * @show: whether to show or hide
1391  *
1392  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1393  * ignored in future activaitons. If %true, the mark is removed and activation
1394  * state is restored. This function won't implicitly activate a new node in a
1395  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1396  *
1397  * To avoid recursion complexities, directories aren't supported for now.
1398  */
1399 void kernfs_show(struct kernfs_node *kn, bool show)
1400 {
1401 	struct kernfs_root *root = kernfs_root(kn);
1402 
1403 	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1404 		return;
1405 
1406 	down_write(&root->kernfs_rwsem);
1407 
1408 	if (show) {
1409 		kn->flags &= ~KERNFS_HIDDEN;
1410 		if (kn->flags & KERNFS_ACTIVATED)
1411 			kernfs_activate_one(kn);
1412 	} else {
1413 		kn->flags |= KERNFS_HIDDEN;
1414 		if (kernfs_active(kn))
1415 			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1416 		kernfs_drain(kn);
1417 	}
1418 
1419 	up_write(&root->kernfs_rwsem);
1420 }
1421 
1422 static void __kernfs_remove(struct kernfs_node *kn)
1423 {
1424 	struct kernfs_node *pos;
1425 
1426 	/* Short-circuit if non-root @kn has already finished removal. */
1427 	if (!kn)
1428 		return;
1429 
1430 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1431 
1432 	/*
1433 	 * This is for kernfs_remove_self() which plays with active ref
1434 	 * after removal.
1435 	 */
1436 	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1437 		return;
1438 
1439 	pr_debug("kernfs %s: removing\n", kn->name);
1440 
1441 	/* prevent new usage by marking all nodes removing and deactivating */
1442 	pos = NULL;
1443 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1444 		pos->flags |= KERNFS_REMOVING;
1445 		if (kernfs_active(pos))
1446 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1447 	}
1448 
1449 	/* deactivate and unlink the subtree node-by-node */
1450 	do {
1451 		pos = kernfs_leftmost_descendant(kn);
1452 
1453 		/*
1454 		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1455 		 * base ref could have been put by someone else by the time
1456 		 * the function returns.  Make sure it doesn't go away
1457 		 * underneath us.
1458 		 */
1459 		kernfs_get(pos);
1460 
1461 		kernfs_drain(pos);
1462 
1463 		/*
1464 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1465 		 * to decide who's responsible for cleanups.
1466 		 */
1467 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1468 			struct kernfs_iattrs *ps_iattr =
1469 				pos->parent ? pos->parent->iattr : NULL;
1470 
1471 			/* update timestamps on the parent */
1472 			down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1473 
1474 			if (ps_iattr) {
1475 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1476 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1477 			}
1478 
1479 			up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1480 			kernfs_put(pos);
1481 		}
1482 
1483 		kernfs_put(pos);
1484 	} while (pos != kn);
1485 }
1486 
1487 /**
1488  * kernfs_remove - remove a kernfs_node recursively
1489  * @kn: the kernfs_node to remove
1490  *
1491  * Remove @kn along with all its subdirectories and files.
1492  */
1493 void kernfs_remove(struct kernfs_node *kn)
1494 {
1495 	struct kernfs_root *root;
1496 
1497 	if (!kn)
1498 		return;
1499 
1500 	root = kernfs_root(kn);
1501 
1502 	down_write(&root->kernfs_rwsem);
1503 	__kernfs_remove(kn);
1504 	up_write(&root->kernfs_rwsem);
1505 }
1506 
1507 /**
1508  * kernfs_break_active_protection - break out of active protection
1509  * @kn: the self kernfs_node
1510  *
1511  * The caller must be running off of a kernfs operation which is invoked
1512  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1513  * this function must also be matched with an invocation of
1514  * kernfs_unbreak_active_protection().
1515  *
1516  * This function releases the active reference of @kn the caller is
1517  * holding.  Once this function is called, @kn may be removed at any point
1518  * and the caller is solely responsible for ensuring that the objects it
1519  * dereferences are accessible.
1520  */
1521 void kernfs_break_active_protection(struct kernfs_node *kn)
1522 {
1523 	/*
1524 	 * Take out ourself out of the active ref dependency chain.  If
1525 	 * we're called without an active ref, lockdep will complain.
1526 	 */
1527 	kernfs_put_active(kn);
1528 }
1529 
1530 /**
1531  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1532  * @kn: the self kernfs_node
1533  *
1534  * If kernfs_break_active_protection() was called, this function must be
1535  * invoked before finishing the kernfs operation.  Note that while this
1536  * function restores the active reference, it doesn't and can't actually
1537  * restore the active protection - @kn may already or be in the process of
1538  * being removed.  Once kernfs_break_active_protection() is invoked, that
1539  * protection is irreversibly gone for the kernfs operation instance.
1540  *
1541  * While this function may be called at any point after
1542  * kernfs_break_active_protection() is invoked, its most useful location
1543  * would be right before the enclosing kernfs operation returns.
1544  */
1545 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1546 {
1547 	/*
1548 	 * @kn->active could be in any state; however, the increment we do
1549 	 * here will be undone as soon as the enclosing kernfs operation
1550 	 * finishes and this temporary bump can't break anything.  If @kn
1551 	 * is alive, nothing changes.  If @kn is being deactivated, the
1552 	 * soon-to-follow put will either finish deactivation or restore
1553 	 * deactivated state.  If @kn is already removed, the temporary
1554 	 * bump is guaranteed to be gone before @kn is released.
1555 	 */
1556 	atomic_inc(&kn->active);
1557 	if (kernfs_lockdep(kn))
1558 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1559 }
1560 
1561 /**
1562  * kernfs_remove_self - remove a kernfs_node from its own method
1563  * @kn: the self kernfs_node to remove
1564  *
1565  * The caller must be running off of a kernfs operation which is invoked
1566  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1567  * implement a file operation which deletes itself.
1568  *
1569  * For example, the "delete" file for a sysfs device directory can be
1570  * implemented by invoking kernfs_remove_self() on the "delete" file
1571  * itself.  This function breaks the circular dependency of trying to
1572  * deactivate self while holding an active ref itself.  It isn't necessary
1573  * to modify the usual removal path to use kernfs_remove_self().  The
1574  * "delete" implementation can simply invoke kernfs_remove_self() on self
1575  * before proceeding with the usual removal path.  kernfs will ignore later
1576  * kernfs_remove() on self.
1577  *
1578  * kernfs_remove_self() can be called multiple times concurrently on the
1579  * same kernfs_node.  Only the first one actually performs removal and
1580  * returns %true.  All others will wait until the kernfs operation which
1581  * won self-removal finishes and return %false.  Note that the losers wait
1582  * for the completion of not only the winning kernfs_remove_self() but also
1583  * the whole kernfs_ops which won the arbitration.  This can be used to
1584  * guarantee, for example, all concurrent writes to a "delete" file to
1585  * finish only after the whole operation is complete.
1586  *
1587  * Return: %true if @kn is removed by this call, otherwise %false.
1588  */
1589 bool kernfs_remove_self(struct kernfs_node *kn)
1590 {
1591 	bool ret;
1592 	struct kernfs_root *root = kernfs_root(kn);
1593 
1594 	down_write(&root->kernfs_rwsem);
1595 	kernfs_break_active_protection(kn);
1596 
1597 	/*
1598 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1599 	 * the first one will actually perform removal.  When the removal
1600 	 * is complete, SUICIDED is set and the active ref is restored
1601 	 * while kernfs_rwsem for held exclusive.  The ones which lost
1602 	 * arbitration waits for SUICIDED && drained which can happen only
1603 	 * after the enclosing kernfs operation which executed the winning
1604 	 * instance of kernfs_remove_self() finished.
1605 	 */
1606 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1607 		kn->flags |= KERNFS_SUICIDAL;
1608 		__kernfs_remove(kn);
1609 		kn->flags |= KERNFS_SUICIDED;
1610 		ret = true;
1611 	} else {
1612 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1613 		DEFINE_WAIT(wait);
1614 
1615 		while (true) {
1616 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1617 
1618 			if ((kn->flags & KERNFS_SUICIDED) &&
1619 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1620 				break;
1621 
1622 			up_write(&root->kernfs_rwsem);
1623 			schedule();
1624 			down_write(&root->kernfs_rwsem);
1625 		}
1626 		finish_wait(waitq, &wait);
1627 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1628 		ret = false;
1629 	}
1630 
1631 	/*
1632 	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1633 	 * waiting for SUICIDED && deactivated could finish prematurely.
1634 	 */
1635 	kernfs_unbreak_active_protection(kn);
1636 
1637 	up_write(&root->kernfs_rwsem);
1638 	return ret;
1639 }
1640 
1641 /**
1642  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1643  * @parent: parent of the target
1644  * @name: name of the kernfs_node to remove
1645  * @ns: namespace tag of the kernfs_node to remove
1646  *
1647  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1648  *
1649  * Return: %0 on success, -ENOENT if such entry doesn't exist.
1650  */
1651 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1652 			     const void *ns)
1653 {
1654 	struct kernfs_node *kn;
1655 	struct kernfs_root *root;
1656 
1657 	if (!parent) {
1658 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1659 			name);
1660 		return -ENOENT;
1661 	}
1662 
1663 	root = kernfs_root(parent);
1664 	down_write(&root->kernfs_rwsem);
1665 
1666 	kn = kernfs_find_ns(parent, name, ns);
1667 	if (kn) {
1668 		kernfs_get(kn);
1669 		__kernfs_remove(kn);
1670 		kernfs_put(kn);
1671 	}
1672 
1673 	up_write(&root->kernfs_rwsem);
1674 
1675 	if (kn)
1676 		return 0;
1677 	else
1678 		return -ENOENT;
1679 }
1680 
1681 /**
1682  * kernfs_rename_ns - move and rename a kernfs_node
1683  * @kn: target node
1684  * @new_parent: new parent to put @sd under
1685  * @new_name: new name
1686  * @new_ns: new namespace tag
1687  *
1688  * Return: %0 on success, -errno on failure.
1689  */
1690 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1691 		     const char *new_name, const void *new_ns)
1692 {
1693 	struct kernfs_node *old_parent;
1694 	struct kernfs_root *root;
1695 	const char *old_name = NULL;
1696 	int error;
1697 
1698 	/* can't move or rename root */
1699 	if (!kn->parent)
1700 		return -EINVAL;
1701 
1702 	root = kernfs_root(kn);
1703 	down_write(&root->kernfs_rwsem);
1704 
1705 	error = -ENOENT;
1706 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1707 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1708 		goto out;
1709 
1710 	error = 0;
1711 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1712 	    (strcmp(kn->name, new_name) == 0))
1713 		goto out;	/* nothing to rename */
1714 
1715 	error = -EEXIST;
1716 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1717 		goto out;
1718 
1719 	/* rename kernfs_node */
1720 	if (strcmp(kn->name, new_name) != 0) {
1721 		error = -ENOMEM;
1722 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1723 		if (!new_name)
1724 			goto out;
1725 	} else {
1726 		new_name = NULL;
1727 	}
1728 
1729 	/*
1730 	 * Move to the appropriate place in the appropriate directories rbtree.
1731 	 */
1732 	kernfs_unlink_sibling(kn);
1733 	kernfs_get(new_parent);
1734 
1735 	/* rename_lock protects ->parent and ->name accessors */
1736 	write_lock_irq(&kernfs_rename_lock);
1737 
1738 	old_parent = kn->parent;
1739 	kn->parent = new_parent;
1740 
1741 	kn->ns = new_ns;
1742 	if (new_name) {
1743 		old_name = kn->name;
1744 		kn->name = new_name;
1745 	}
1746 
1747 	write_unlock_irq(&kernfs_rename_lock);
1748 
1749 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1750 	kernfs_link_sibling(kn);
1751 
1752 	kernfs_put(old_parent);
1753 	kfree_const(old_name);
1754 
1755 	error = 0;
1756  out:
1757 	up_write(&root->kernfs_rwsem);
1758 	return error;
1759 }
1760 
1761 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1762 {
1763 	kernfs_put(filp->private_data);
1764 	return 0;
1765 }
1766 
1767 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1768 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1769 {
1770 	if (pos) {
1771 		int valid = kernfs_active(pos) &&
1772 			pos->parent == parent && hash == pos->hash;
1773 		kernfs_put(pos);
1774 		if (!valid)
1775 			pos = NULL;
1776 	}
1777 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1778 		struct rb_node *node = parent->dir.children.rb_node;
1779 		while (node) {
1780 			pos = rb_to_kn(node);
1781 
1782 			if (hash < pos->hash)
1783 				node = node->rb_left;
1784 			else if (hash > pos->hash)
1785 				node = node->rb_right;
1786 			else
1787 				break;
1788 		}
1789 	}
1790 	/* Skip over entries which are dying/dead or in the wrong namespace */
1791 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1792 		struct rb_node *node = rb_next(&pos->rb);
1793 		if (!node)
1794 			pos = NULL;
1795 		else
1796 			pos = rb_to_kn(node);
1797 	}
1798 	return pos;
1799 }
1800 
1801 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1802 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1803 {
1804 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1805 	if (pos) {
1806 		do {
1807 			struct rb_node *node = rb_next(&pos->rb);
1808 			if (!node)
1809 				pos = NULL;
1810 			else
1811 				pos = rb_to_kn(node);
1812 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1813 	}
1814 	return pos;
1815 }
1816 
1817 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1818 {
1819 	struct dentry *dentry = file->f_path.dentry;
1820 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1821 	struct kernfs_node *pos = file->private_data;
1822 	struct kernfs_root *root;
1823 	const void *ns = NULL;
1824 
1825 	if (!dir_emit_dots(file, ctx))
1826 		return 0;
1827 
1828 	root = kernfs_root(parent);
1829 	down_read(&root->kernfs_rwsem);
1830 
1831 	if (kernfs_ns_enabled(parent))
1832 		ns = kernfs_info(dentry->d_sb)->ns;
1833 
1834 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1835 	     pos;
1836 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1837 		const char *name = pos->name;
1838 		unsigned int type = fs_umode_to_dtype(pos->mode);
1839 		int len = strlen(name);
1840 		ino_t ino = kernfs_ino(pos);
1841 
1842 		ctx->pos = pos->hash;
1843 		file->private_data = pos;
1844 		kernfs_get(pos);
1845 
1846 		up_read(&root->kernfs_rwsem);
1847 		if (!dir_emit(ctx, name, len, ino, type))
1848 			return 0;
1849 		down_read(&root->kernfs_rwsem);
1850 	}
1851 	up_read(&root->kernfs_rwsem);
1852 	file->private_data = NULL;
1853 	ctx->pos = INT_MAX;
1854 	return 0;
1855 }
1856 
1857 const struct file_operations kernfs_dir_fops = {
1858 	.read		= generic_read_dir,
1859 	.iterate_shared	= kernfs_fop_readdir,
1860 	.release	= kernfs_dir_fop_release,
1861 	.llseek		= generic_file_llseek,
1862 };
1863