xref: /linux/fs/kernfs/dir.c (revision e8d235d4d8fb8957bae5f6ed4521115203a00d8b)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path - build full path of a given node
96  * @kn: kernfs_node of interest
97  * @buf: buffer to copy @kn's name into
98  * @buflen: size of @buf
99  *
100  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
101  * path is built from the end of @buf so the returned pointer usually
102  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
103  * and %NULL is returned.
104  */
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106 {
107 	unsigned long flags;
108 	char *p;
109 
110 	spin_lock_irqsave(&kernfs_rename_lock, flags);
111 	p = kernfs_path_locked(kn, buf, buflen);
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 	return p;
114 }
115 EXPORT_SYMBOL_GPL(kernfs_path);
116 
117 /**
118  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119  * @kn: kernfs_node of interest
120  *
121  * This function can be called from any context.
122  */
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&kernfs_rename_lock, flags);
128 
129 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 	pr_cont("%s", kernfs_pr_cont_buf);
131 
132 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133 }
134 
135 /**
136  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137  * @kn: kernfs_node of interest
138  *
139  * This function can be called from any context.
140  */
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
142 {
143 	unsigned long flags;
144 	char *p;
145 
146 	spin_lock_irqsave(&kernfs_rename_lock, flags);
147 
148 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 			       sizeof(kernfs_pr_cont_buf));
150 	if (p)
151 		pr_cont("%s", p);
152 	else
153 		pr_cont("<name too long>");
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * kernfs_get_parent - determine the parent node and pin it
160  * @kn: kernfs_node of interest
161  *
162  * Determines @kn's parent, pins and returns it.  This function can be
163  * called from any context.
164  */
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166 {
167 	struct kernfs_node *parent;
168 	unsigned long flags;
169 
170 	spin_lock_irqsave(&kernfs_rename_lock, flags);
171 	parent = kn->parent;
172 	kernfs_get(parent);
173 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174 
175 	return parent;
176 }
177 
178 /**
179  *	kernfs_name_hash
180  *	@name: Null terminated string to hash
181  *	@ns:   Namespace tag to hash
182  *
183  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
184  */
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
186 {
187 	unsigned long hash = init_name_hash();
188 	unsigned int len = strlen(name);
189 	while (len--)
190 		hash = partial_name_hash(*name++, hash);
191 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 	hash &= 0x7fffffffU;
193 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 	if (hash < 2)
195 		hash += 2;
196 	if (hash >= INT_MAX)
197 		hash = INT_MAX - 1;
198 	return hash;
199 }
200 
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 			       const void *ns, const struct kernfs_node *kn)
203 {
204 	if (hash < kn->hash)
205 		return -1;
206 	if (hash > kn->hash)
207 		return 1;
208 	if (ns < kn->ns)
209 		return -1;
210 	if (ns > kn->ns)
211 		return 1;
212 	return strcmp(name, kn->name);
213 }
214 
215 static int kernfs_sd_compare(const struct kernfs_node *left,
216 			     const struct kernfs_node *right)
217 {
218 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
219 }
220 
221 /**
222  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
223  *	@kn: kernfs_node of interest
224  *
225  *	Link @kn into its sibling rbtree which starts from
226  *	@kn->parent->dir.children.
227  *
228  *	Locking:
229  *	mutex_lock(kernfs_mutex)
230  *
231  *	RETURNS:
232  *	0 on susccess -EEXIST on failure.
233  */
234 static int kernfs_link_sibling(struct kernfs_node *kn)
235 {
236 	struct rb_node **node = &kn->parent->dir.children.rb_node;
237 	struct rb_node *parent = NULL;
238 
239 	while (*node) {
240 		struct kernfs_node *pos;
241 		int result;
242 
243 		pos = rb_to_kn(*node);
244 		parent = *node;
245 		result = kernfs_sd_compare(kn, pos);
246 		if (result < 0)
247 			node = &pos->rb.rb_left;
248 		else if (result > 0)
249 			node = &pos->rb.rb_right;
250 		else
251 			return -EEXIST;
252 	}
253 
254 	/* add new node and rebalance the tree */
255 	rb_link_node(&kn->rb, parent, node);
256 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
257 
258 	/* successfully added, account subdir number */
259 	if (kernfs_type(kn) == KERNFS_DIR)
260 		kn->parent->dir.subdirs++;
261 
262 	return 0;
263 }
264 
265 /**
266  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
267  *	@kn: kernfs_node of interest
268  *
269  *	Try to unlink @kn from its sibling rbtree which starts from
270  *	kn->parent->dir.children.  Returns %true if @kn was actually
271  *	removed, %false if @kn wasn't on the rbtree.
272  *
273  *	Locking:
274  *	mutex_lock(kernfs_mutex)
275  */
276 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
277 {
278 	if (RB_EMPTY_NODE(&kn->rb))
279 		return false;
280 
281 	if (kernfs_type(kn) == KERNFS_DIR)
282 		kn->parent->dir.subdirs--;
283 
284 	rb_erase(&kn->rb, &kn->parent->dir.children);
285 	RB_CLEAR_NODE(&kn->rb);
286 	return true;
287 }
288 
289 /**
290  *	kernfs_get_active - get an active reference to kernfs_node
291  *	@kn: kernfs_node to get an active reference to
292  *
293  *	Get an active reference of @kn.  This function is noop if @kn
294  *	is NULL.
295  *
296  *	RETURNS:
297  *	Pointer to @kn on success, NULL on failure.
298  */
299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
300 {
301 	if (unlikely(!kn))
302 		return NULL;
303 
304 	if (!atomic_inc_unless_negative(&kn->active))
305 		return NULL;
306 
307 	if (kernfs_lockdep(kn))
308 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
309 	return kn;
310 }
311 
312 /**
313  *	kernfs_put_active - put an active reference to kernfs_node
314  *	@kn: kernfs_node to put an active reference to
315  *
316  *	Put an active reference to @kn.  This function is noop if @kn
317  *	is NULL.
318  */
319 void kernfs_put_active(struct kernfs_node *kn)
320 {
321 	struct kernfs_root *root = kernfs_root(kn);
322 	int v;
323 
324 	if (unlikely(!kn))
325 		return;
326 
327 	if (kernfs_lockdep(kn))
328 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
329 	v = atomic_dec_return(&kn->active);
330 	if (likely(v != KN_DEACTIVATED_BIAS))
331 		return;
332 
333 	wake_up_all(&root->deactivate_waitq);
334 }
335 
336 /**
337  * kernfs_drain - drain kernfs_node
338  * @kn: kernfs_node to drain
339  *
340  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
341  * removers may invoke this function concurrently on @kn and all will
342  * return after draining is complete.
343  */
344 static void kernfs_drain(struct kernfs_node *kn)
345 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
346 {
347 	struct kernfs_root *root = kernfs_root(kn);
348 
349 	lockdep_assert_held(&kernfs_mutex);
350 	WARN_ON_ONCE(kernfs_active(kn));
351 
352 	mutex_unlock(&kernfs_mutex);
353 
354 	if (kernfs_lockdep(kn)) {
355 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
356 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
357 			lock_contended(&kn->dep_map, _RET_IP_);
358 	}
359 
360 	/* but everyone should wait for draining */
361 	wait_event(root->deactivate_waitq,
362 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
363 
364 	if (kernfs_lockdep(kn)) {
365 		lock_acquired(&kn->dep_map, _RET_IP_);
366 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
367 	}
368 
369 	kernfs_unmap_bin_file(kn);
370 
371 	mutex_lock(&kernfs_mutex);
372 }
373 
374 /**
375  * kernfs_get - get a reference count on a kernfs_node
376  * @kn: the target kernfs_node
377  */
378 void kernfs_get(struct kernfs_node *kn)
379 {
380 	if (kn) {
381 		WARN_ON(!atomic_read(&kn->count));
382 		atomic_inc(&kn->count);
383 	}
384 }
385 EXPORT_SYMBOL_GPL(kernfs_get);
386 
387 /**
388  * kernfs_put - put a reference count on a kernfs_node
389  * @kn: the target kernfs_node
390  *
391  * Put a reference count of @kn and destroy it if it reached zero.
392  */
393 void kernfs_put(struct kernfs_node *kn)
394 {
395 	struct kernfs_node *parent;
396 	struct kernfs_root *root;
397 
398 	if (!kn || !atomic_dec_and_test(&kn->count))
399 		return;
400 	root = kernfs_root(kn);
401  repeat:
402 	/*
403 	 * Moving/renaming is always done while holding reference.
404 	 * kn->parent won't change beneath us.
405 	 */
406 	parent = kn->parent;
407 
408 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
409 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
410 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
411 
412 	if (kernfs_type(kn) == KERNFS_LINK)
413 		kernfs_put(kn->symlink.target_kn);
414 
415 	kfree_const(kn->name);
416 
417 	if (kn->iattr) {
418 		if (kn->iattr->ia_secdata)
419 			security_release_secctx(kn->iattr->ia_secdata,
420 						kn->iattr->ia_secdata_len);
421 		simple_xattrs_free(&kn->iattr->xattrs);
422 	}
423 	kfree(kn->iattr);
424 	ida_simple_remove(&root->ino_ida, kn->ino);
425 	kmem_cache_free(kernfs_node_cache, kn);
426 
427 	kn = parent;
428 	if (kn) {
429 		if (atomic_dec_and_test(&kn->count))
430 			goto repeat;
431 	} else {
432 		/* just released the root kn, free @root too */
433 		ida_destroy(&root->ino_ida);
434 		kfree(root);
435 	}
436 }
437 EXPORT_SYMBOL_GPL(kernfs_put);
438 
439 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
440 {
441 	struct kernfs_node *kn;
442 
443 	if (flags & LOOKUP_RCU)
444 		return -ECHILD;
445 
446 	/* Always perform fresh lookup for negatives */
447 	if (d_really_is_negative(dentry))
448 		goto out_bad_unlocked;
449 
450 	kn = dentry->d_fsdata;
451 	mutex_lock(&kernfs_mutex);
452 
453 	/* The kernfs node has been deactivated */
454 	if (!kernfs_active(kn))
455 		goto out_bad;
456 
457 	/* The kernfs node has been moved? */
458 	if (dentry->d_parent->d_fsdata != kn->parent)
459 		goto out_bad;
460 
461 	/* The kernfs node has been renamed */
462 	if (strcmp(dentry->d_name.name, kn->name) != 0)
463 		goto out_bad;
464 
465 	/* The kernfs node has been moved to a different namespace */
466 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
467 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
468 		goto out_bad;
469 
470 	mutex_unlock(&kernfs_mutex);
471 	return 1;
472 out_bad:
473 	mutex_unlock(&kernfs_mutex);
474 out_bad_unlocked:
475 	return 0;
476 }
477 
478 static void kernfs_dop_release(struct dentry *dentry)
479 {
480 	kernfs_put(dentry->d_fsdata);
481 }
482 
483 const struct dentry_operations kernfs_dops = {
484 	.d_revalidate	= kernfs_dop_revalidate,
485 	.d_release	= kernfs_dop_release,
486 };
487 
488 /**
489  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
490  * @dentry: the dentry in question
491  *
492  * Return the kernfs_node associated with @dentry.  If @dentry is not a
493  * kernfs one, %NULL is returned.
494  *
495  * While the returned kernfs_node will stay accessible as long as @dentry
496  * is accessible, the returned node can be in any state and the caller is
497  * fully responsible for determining what's accessible.
498  */
499 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
500 {
501 	if (dentry->d_sb->s_op == &kernfs_sops)
502 		return dentry->d_fsdata;
503 	return NULL;
504 }
505 
506 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
507 					     const char *name, umode_t mode,
508 					     unsigned flags)
509 {
510 	struct kernfs_node *kn;
511 	int ret;
512 
513 	name = kstrdup_const(name, GFP_KERNEL);
514 	if (!name)
515 		return NULL;
516 
517 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
518 	if (!kn)
519 		goto err_out1;
520 
521 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
522 	if (ret < 0)
523 		goto err_out2;
524 	kn->ino = ret;
525 
526 	atomic_set(&kn->count, 1);
527 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
528 	RB_CLEAR_NODE(&kn->rb);
529 
530 	kn->name = name;
531 	kn->mode = mode;
532 	kn->flags = flags;
533 
534 	return kn;
535 
536  err_out2:
537 	kmem_cache_free(kernfs_node_cache, kn);
538  err_out1:
539 	kfree_const(name);
540 	return NULL;
541 }
542 
543 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
544 				    const char *name, umode_t mode,
545 				    unsigned flags)
546 {
547 	struct kernfs_node *kn;
548 
549 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
550 	if (kn) {
551 		kernfs_get(parent);
552 		kn->parent = parent;
553 	}
554 	return kn;
555 }
556 
557 /**
558  *	kernfs_add_one - add kernfs_node to parent without warning
559  *	@kn: kernfs_node to be added
560  *
561  *	The caller must already have initialized @kn->parent.  This
562  *	function increments nlink of the parent's inode if @kn is a
563  *	directory and link into the children list of the parent.
564  *
565  *	RETURNS:
566  *	0 on success, -EEXIST if entry with the given name already
567  *	exists.
568  */
569 int kernfs_add_one(struct kernfs_node *kn)
570 {
571 	struct kernfs_node *parent = kn->parent;
572 	struct kernfs_iattrs *ps_iattr;
573 	bool has_ns;
574 	int ret;
575 
576 	mutex_lock(&kernfs_mutex);
577 
578 	ret = -EINVAL;
579 	has_ns = kernfs_ns_enabled(parent);
580 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
581 		 has_ns ? "required" : "invalid", parent->name, kn->name))
582 		goto out_unlock;
583 
584 	if (kernfs_type(parent) != KERNFS_DIR)
585 		goto out_unlock;
586 
587 	ret = -ENOENT;
588 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
589 		goto out_unlock;
590 
591 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
592 
593 	ret = kernfs_link_sibling(kn);
594 	if (ret)
595 		goto out_unlock;
596 
597 	/* Update timestamps on the parent */
598 	ps_iattr = parent->iattr;
599 	if (ps_iattr) {
600 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
601 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
602 	}
603 
604 	mutex_unlock(&kernfs_mutex);
605 
606 	/*
607 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
608 	 * If not activated here, the kernfs user is responsible for
609 	 * activating the node with kernfs_activate().  A node which hasn't
610 	 * been activated is not visible to userland and its removal won't
611 	 * trigger deactivation.
612 	 */
613 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
614 		kernfs_activate(kn);
615 	return 0;
616 
617 out_unlock:
618 	mutex_unlock(&kernfs_mutex);
619 	return ret;
620 }
621 
622 /**
623  * kernfs_find_ns - find kernfs_node with the given name
624  * @parent: kernfs_node to search under
625  * @name: name to look for
626  * @ns: the namespace tag to use
627  *
628  * Look for kernfs_node with name @name under @parent.  Returns pointer to
629  * the found kernfs_node on success, %NULL on failure.
630  */
631 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
632 					  const unsigned char *name,
633 					  const void *ns)
634 {
635 	struct rb_node *node = parent->dir.children.rb_node;
636 	bool has_ns = kernfs_ns_enabled(parent);
637 	unsigned int hash;
638 
639 	lockdep_assert_held(&kernfs_mutex);
640 
641 	if (has_ns != (bool)ns) {
642 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
643 		     has_ns ? "required" : "invalid", parent->name, name);
644 		return NULL;
645 	}
646 
647 	hash = kernfs_name_hash(name, ns);
648 	while (node) {
649 		struct kernfs_node *kn;
650 		int result;
651 
652 		kn = rb_to_kn(node);
653 		result = kernfs_name_compare(hash, name, ns, kn);
654 		if (result < 0)
655 			node = node->rb_left;
656 		else if (result > 0)
657 			node = node->rb_right;
658 		else
659 			return kn;
660 	}
661 	return NULL;
662 }
663 
664 /**
665  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
666  * @parent: kernfs_node to search under
667  * @name: name to look for
668  * @ns: the namespace tag to use
669  *
670  * Look for kernfs_node with name @name under @parent and get a reference
671  * if found.  This function may sleep and returns pointer to the found
672  * kernfs_node on success, %NULL on failure.
673  */
674 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
675 					   const char *name, const void *ns)
676 {
677 	struct kernfs_node *kn;
678 
679 	mutex_lock(&kernfs_mutex);
680 	kn = kernfs_find_ns(parent, name, ns);
681 	kernfs_get(kn);
682 	mutex_unlock(&kernfs_mutex);
683 
684 	return kn;
685 }
686 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
687 
688 /**
689  * kernfs_create_root - create a new kernfs hierarchy
690  * @scops: optional syscall operations for the hierarchy
691  * @flags: KERNFS_ROOT_* flags
692  * @priv: opaque data associated with the new directory
693  *
694  * Returns the root of the new hierarchy on success, ERR_PTR() value on
695  * failure.
696  */
697 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
698 				       unsigned int flags, void *priv)
699 {
700 	struct kernfs_root *root;
701 	struct kernfs_node *kn;
702 
703 	root = kzalloc(sizeof(*root), GFP_KERNEL);
704 	if (!root)
705 		return ERR_PTR(-ENOMEM);
706 
707 	ida_init(&root->ino_ida);
708 	INIT_LIST_HEAD(&root->supers);
709 
710 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
711 			       KERNFS_DIR);
712 	if (!kn) {
713 		ida_destroy(&root->ino_ida);
714 		kfree(root);
715 		return ERR_PTR(-ENOMEM);
716 	}
717 
718 	kn->priv = priv;
719 	kn->dir.root = root;
720 
721 	root->syscall_ops = scops;
722 	root->flags = flags;
723 	root->kn = kn;
724 	init_waitqueue_head(&root->deactivate_waitq);
725 
726 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
727 		kernfs_activate(kn);
728 
729 	return root;
730 }
731 
732 /**
733  * kernfs_destroy_root - destroy a kernfs hierarchy
734  * @root: root of the hierarchy to destroy
735  *
736  * Destroy the hierarchy anchored at @root by removing all existing
737  * directories and destroying @root.
738  */
739 void kernfs_destroy_root(struct kernfs_root *root)
740 {
741 	kernfs_remove(root->kn);	/* will also free @root */
742 }
743 
744 /**
745  * kernfs_create_dir_ns - create a directory
746  * @parent: parent in which to create a new directory
747  * @name: name of the new directory
748  * @mode: mode of the new directory
749  * @priv: opaque data associated with the new directory
750  * @ns: optional namespace tag of the directory
751  *
752  * Returns the created node on success, ERR_PTR() value on failure.
753  */
754 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
755 					 const char *name, umode_t mode,
756 					 void *priv, const void *ns)
757 {
758 	struct kernfs_node *kn;
759 	int rc;
760 
761 	/* allocate */
762 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
763 	if (!kn)
764 		return ERR_PTR(-ENOMEM);
765 
766 	kn->dir.root = parent->dir.root;
767 	kn->ns = ns;
768 	kn->priv = priv;
769 
770 	/* link in */
771 	rc = kernfs_add_one(kn);
772 	if (!rc)
773 		return kn;
774 
775 	kernfs_put(kn);
776 	return ERR_PTR(rc);
777 }
778 
779 static struct dentry *kernfs_iop_lookup(struct inode *dir,
780 					struct dentry *dentry,
781 					unsigned int flags)
782 {
783 	struct dentry *ret;
784 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
785 	struct kernfs_node *kn;
786 	struct inode *inode;
787 	const void *ns = NULL;
788 
789 	mutex_lock(&kernfs_mutex);
790 
791 	if (kernfs_ns_enabled(parent))
792 		ns = kernfs_info(dir->i_sb)->ns;
793 
794 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
795 
796 	/* no such entry */
797 	if (!kn || !kernfs_active(kn)) {
798 		ret = NULL;
799 		goto out_unlock;
800 	}
801 	kernfs_get(kn);
802 	dentry->d_fsdata = kn;
803 
804 	/* attach dentry and inode */
805 	inode = kernfs_get_inode(dir->i_sb, kn);
806 	if (!inode) {
807 		ret = ERR_PTR(-ENOMEM);
808 		goto out_unlock;
809 	}
810 
811 	/* instantiate and hash dentry */
812 	ret = d_splice_alias(inode, dentry);
813  out_unlock:
814 	mutex_unlock(&kernfs_mutex);
815 	return ret;
816 }
817 
818 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
819 			    umode_t mode)
820 {
821 	struct kernfs_node *parent = dir->i_private;
822 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
823 	int ret;
824 
825 	if (!scops || !scops->mkdir)
826 		return -EPERM;
827 
828 	if (!kernfs_get_active(parent))
829 		return -ENODEV;
830 
831 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
832 
833 	kernfs_put_active(parent);
834 	return ret;
835 }
836 
837 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
838 {
839 	struct kernfs_node *kn  = dentry->d_fsdata;
840 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
841 	int ret;
842 
843 	if (!scops || !scops->rmdir)
844 		return -EPERM;
845 
846 	if (!kernfs_get_active(kn))
847 		return -ENODEV;
848 
849 	ret = scops->rmdir(kn);
850 
851 	kernfs_put_active(kn);
852 	return ret;
853 }
854 
855 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
856 			     struct inode *new_dir, struct dentry *new_dentry)
857 {
858 	struct kernfs_node *kn  = old_dentry->d_fsdata;
859 	struct kernfs_node *new_parent = new_dir->i_private;
860 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
861 	int ret;
862 
863 	if (!scops || !scops->rename)
864 		return -EPERM;
865 
866 	if (!kernfs_get_active(kn))
867 		return -ENODEV;
868 
869 	if (!kernfs_get_active(new_parent)) {
870 		kernfs_put_active(kn);
871 		return -ENODEV;
872 	}
873 
874 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
875 
876 	kernfs_put_active(new_parent);
877 	kernfs_put_active(kn);
878 	return ret;
879 }
880 
881 const struct inode_operations kernfs_dir_iops = {
882 	.lookup		= kernfs_iop_lookup,
883 	.permission	= kernfs_iop_permission,
884 	.setattr	= kernfs_iop_setattr,
885 	.getattr	= kernfs_iop_getattr,
886 	.setxattr	= kernfs_iop_setxattr,
887 	.removexattr	= kernfs_iop_removexattr,
888 	.getxattr	= kernfs_iop_getxattr,
889 	.listxattr	= kernfs_iop_listxattr,
890 
891 	.mkdir		= kernfs_iop_mkdir,
892 	.rmdir		= kernfs_iop_rmdir,
893 	.rename		= kernfs_iop_rename,
894 };
895 
896 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
897 {
898 	struct kernfs_node *last;
899 
900 	while (true) {
901 		struct rb_node *rbn;
902 
903 		last = pos;
904 
905 		if (kernfs_type(pos) != KERNFS_DIR)
906 			break;
907 
908 		rbn = rb_first(&pos->dir.children);
909 		if (!rbn)
910 			break;
911 
912 		pos = rb_to_kn(rbn);
913 	}
914 
915 	return last;
916 }
917 
918 /**
919  * kernfs_next_descendant_post - find the next descendant for post-order walk
920  * @pos: the current position (%NULL to initiate traversal)
921  * @root: kernfs_node whose descendants to walk
922  *
923  * Find the next descendant to visit for post-order traversal of @root's
924  * descendants.  @root is included in the iteration and the last node to be
925  * visited.
926  */
927 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
928 						       struct kernfs_node *root)
929 {
930 	struct rb_node *rbn;
931 
932 	lockdep_assert_held(&kernfs_mutex);
933 
934 	/* if first iteration, visit leftmost descendant which may be root */
935 	if (!pos)
936 		return kernfs_leftmost_descendant(root);
937 
938 	/* if we visited @root, we're done */
939 	if (pos == root)
940 		return NULL;
941 
942 	/* if there's an unvisited sibling, visit its leftmost descendant */
943 	rbn = rb_next(&pos->rb);
944 	if (rbn)
945 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
946 
947 	/* no sibling left, visit parent */
948 	return pos->parent;
949 }
950 
951 /**
952  * kernfs_activate - activate a node which started deactivated
953  * @kn: kernfs_node whose subtree is to be activated
954  *
955  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
956  * needs to be explicitly activated.  A node which hasn't been activated
957  * isn't visible to userland and deactivation is skipped during its
958  * removal.  This is useful to construct atomic init sequences where
959  * creation of multiple nodes should either succeed or fail atomically.
960  *
961  * The caller is responsible for ensuring that this function is not called
962  * after kernfs_remove*() is invoked on @kn.
963  */
964 void kernfs_activate(struct kernfs_node *kn)
965 {
966 	struct kernfs_node *pos;
967 
968 	mutex_lock(&kernfs_mutex);
969 
970 	pos = NULL;
971 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
972 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
973 			continue;
974 
975 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
976 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
977 
978 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
979 		pos->flags |= KERNFS_ACTIVATED;
980 	}
981 
982 	mutex_unlock(&kernfs_mutex);
983 }
984 
985 static void __kernfs_remove(struct kernfs_node *kn)
986 {
987 	struct kernfs_node *pos;
988 
989 	lockdep_assert_held(&kernfs_mutex);
990 
991 	/*
992 	 * Short-circuit if non-root @kn has already finished removal.
993 	 * This is for kernfs_remove_self() which plays with active ref
994 	 * after removal.
995 	 */
996 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
997 		return;
998 
999 	pr_debug("kernfs %s: removing\n", kn->name);
1000 
1001 	/* prevent any new usage under @kn by deactivating all nodes */
1002 	pos = NULL;
1003 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1004 		if (kernfs_active(pos))
1005 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1006 
1007 	/* deactivate and unlink the subtree node-by-node */
1008 	do {
1009 		pos = kernfs_leftmost_descendant(kn);
1010 
1011 		/*
1012 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1013 		 * base ref could have been put by someone else by the time
1014 		 * the function returns.  Make sure it doesn't go away
1015 		 * underneath us.
1016 		 */
1017 		kernfs_get(pos);
1018 
1019 		/*
1020 		 * Drain iff @kn was activated.  This avoids draining and
1021 		 * its lockdep annotations for nodes which have never been
1022 		 * activated and allows embedding kernfs_remove() in create
1023 		 * error paths without worrying about draining.
1024 		 */
1025 		if (kn->flags & KERNFS_ACTIVATED)
1026 			kernfs_drain(pos);
1027 		else
1028 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1029 
1030 		/*
1031 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1032 		 * to decide who's responsible for cleanups.
1033 		 */
1034 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1035 			struct kernfs_iattrs *ps_iattr =
1036 				pos->parent ? pos->parent->iattr : NULL;
1037 
1038 			/* update timestamps on the parent */
1039 			if (ps_iattr) {
1040 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1041 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1042 			}
1043 
1044 			kernfs_put(pos);
1045 		}
1046 
1047 		kernfs_put(pos);
1048 	} while (pos != kn);
1049 }
1050 
1051 /**
1052  * kernfs_remove - remove a kernfs_node recursively
1053  * @kn: the kernfs_node to remove
1054  *
1055  * Remove @kn along with all its subdirectories and files.
1056  */
1057 void kernfs_remove(struct kernfs_node *kn)
1058 {
1059 	mutex_lock(&kernfs_mutex);
1060 	__kernfs_remove(kn);
1061 	mutex_unlock(&kernfs_mutex);
1062 }
1063 
1064 /**
1065  * kernfs_break_active_protection - break out of active protection
1066  * @kn: the self kernfs_node
1067  *
1068  * The caller must be running off of a kernfs operation which is invoked
1069  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1070  * this function must also be matched with an invocation of
1071  * kernfs_unbreak_active_protection().
1072  *
1073  * This function releases the active reference of @kn the caller is
1074  * holding.  Once this function is called, @kn may be removed at any point
1075  * and the caller is solely responsible for ensuring that the objects it
1076  * dereferences are accessible.
1077  */
1078 void kernfs_break_active_protection(struct kernfs_node *kn)
1079 {
1080 	/*
1081 	 * Take out ourself out of the active ref dependency chain.  If
1082 	 * we're called without an active ref, lockdep will complain.
1083 	 */
1084 	kernfs_put_active(kn);
1085 }
1086 
1087 /**
1088  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1089  * @kn: the self kernfs_node
1090  *
1091  * If kernfs_break_active_protection() was called, this function must be
1092  * invoked before finishing the kernfs operation.  Note that while this
1093  * function restores the active reference, it doesn't and can't actually
1094  * restore the active protection - @kn may already or be in the process of
1095  * being removed.  Once kernfs_break_active_protection() is invoked, that
1096  * protection is irreversibly gone for the kernfs operation instance.
1097  *
1098  * While this function may be called at any point after
1099  * kernfs_break_active_protection() is invoked, its most useful location
1100  * would be right before the enclosing kernfs operation returns.
1101  */
1102 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1103 {
1104 	/*
1105 	 * @kn->active could be in any state; however, the increment we do
1106 	 * here will be undone as soon as the enclosing kernfs operation
1107 	 * finishes and this temporary bump can't break anything.  If @kn
1108 	 * is alive, nothing changes.  If @kn is being deactivated, the
1109 	 * soon-to-follow put will either finish deactivation or restore
1110 	 * deactivated state.  If @kn is already removed, the temporary
1111 	 * bump is guaranteed to be gone before @kn is released.
1112 	 */
1113 	atomic_inc(&kn->active);
1114 	if (kernfs_lockdep(kn))
1115 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1116 }
1117 
1118 /**
1119  * kernfs_remove_self - remove a kernfs_node from its own method
1120  * @kn: the self kernfs_node to remove
1121  *
1122  * The caller must be running off of a kernfs operation which is invoked
1123  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1124  * implement a file operation which deletes itself.
1125  *
1126  * For example, the "delete" file for a sysfs device directory can be
1127  * implemented by invoking kernfs_remove_self() on the "delete" file
1128  * itself.  This function breaks the circular dependency of trying to
1129  * deactivate self while holding an active ref itself.  It isn't necessary
1130  * to modify the usual removal path to use kernfs_remove_self().  The
1131  * "delete" implementation can simply invoke kernfs_remove_self() on self
1132  * before proceeding with the usual removal path.  kernfs will ignore later
1133  * kernfs_remove() on self.
1134  *
1135  * kernfs_remove_self() can be called multiple times concurrently on the
1136  * same kernfs_node.  Only the first one actually performs removal and
1137  * returns %true.  All others will wait until the kernfs operation which
1138  * won self-removal finishes and return %false.  Note that the losers wait
1139  * for the completion of not only the winning kernfs_remove_self() but also
1140  * the whole kernfs_ops which won the arbitration.  This can be used to
1141  * guarantee, for example, all concurrent writes to a "delete" file to
1142  * finish only after the whole operation is complete.
1143  */
1144 bool kernfs_remove_self(struct kernfs_node *kn)
1145 {
1146 	bool ret;
1147 
1148 	mutex_lock(&kernfs_mutex);
1149 	kernfs_break_active_protection(kn);
1150 
1151 	/*
1152 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1153 	 * the first one will actually perform removal.  When the removal
1154 	 * is complete, SUICIDED is set and the active ref is restored
1155 	 * while holding kernfs_mutex.  The ones which lost arbitration
1156 	 * waits for SUICDED && drained which can happen only after the
1157 	 * enclosing kernfs operation which executed the winning instance
1158 	 * of kernfs_remove_self() finished.
1159 	 */
1160 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1161 		kn->flags |= KERNFS_SUICIDAL;
1162 		__kernfs_remove(kn);
1163 		kn->flags |= KERNFS_SUICIDED;
1164 		ret = true;
1165 	} else {
1166 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1167 		DEFINE_WAIT(wait);
1168 
1169 		while (true) {
1170 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1171 
1172 			if ((kn->flags & KERNFS_SUICIDED) &&
1173 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1174 				break;
1175 
1176 			mutex_unlock(&kernfs_mutex);
1177 			schedule();
1178 			mutex_lock(&kernfs_mutex);
1179 		}
1180 		finish_wait(waitq, &wait);
1181 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1182 		ret = false;
1183 	}
1184 
1185 	/*
1186 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1187 	 * for SUICIDED && deactivated could finish prematurely.
1188 	 */
1189 	kernfs_unbreak_active_protection(kn);
1190 
1191 	mutex_unlock(&kernfs_mutex);
1192 	return ret;
1193 }
1194 
1195 /**
1196  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1197  * @parent: parent of the target
1198  * @name: name of the kernfs_node to remove
1199  * @ns: namespace tag of the kernfs_node to remove
1200  *
1201  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1202  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1203  */
1204 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1205 			     const void *ns)
1206 {
1207 	struct kernfs_node *kn;
1208 
1209 	if (!parent) {
1210 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1211 			name);
1212 		return -ENOENT;
1213 	}
1214 
1215 	mutex_lock(&kernfs_mutex);
1216 
1217 	kn = kernfs_find_ns(parent, name, ns);
1218 	if (kn)
1219 		__kernfs_remove(kn);
1220 
1221 	mutex_unlock(&kernfs_mutex);
1222 
1223 	if (kn)
1224 		return 0;
1225 	else
1226 		return -ENOENT;
1227 }
1228 
1229 /**
1230  * kernfs_rename_ns - move and rename a kernfs_node
1231  * @kn: target node
1232  * @new_parent: new parent to put @sd under
1233  * @new_name: new name
1234  * @new_ns: new namespace tag
1235  */
1236 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1237 		     const char *new_name, const void *new_ns)
1238 {
1239 	struct kernfs_node *old_parent;
1240 	const char *old_name = NULL;
1241 	int error;
1242 
1243 	/* can't move or rename root */
1244 	if (!kn->parent)
1245 		return -EINVAL;
1246 
1247 	mutex_lock(&kernfs_mutex);
1248 
1249 	error = -ENOENT;
1250 	if (!kernfs_active(kn) || !kernfs_active(new_parent))
1251 		goto out;
1252 
1253 	error = 0;
1254 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1255 	    (strcmp(kn->name, new_name) == 0))
1256 		goto out;	/* nothing to rename */
1257 
1258 	error = -EEXIST;
1259 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1260 		goto out;
1261 
1262 	/* rename kernfs_node */
1263 	if (strcmp(kn->name, new_name) != 0) {
1264 		error = -ENOMEM;
1265 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1266 		if (!new_name)
1267 			goto out;
1268 	} else {
1269 		new_name = NULL;
1270 	}
1271 
1272 	/*
1273 	 * Move to the appropriate place in the appropriate directories rbtree.
1274 	 */
1275 	kernfs_unlink_sibling(kn);
1276 	kernfs_get(new_parent);
1277 
1278 	/* rename_lock protects ->parent and ->name accessors */
1279 	spin_lock_irq(&kernfs_rename_lock);
1280 
1281 	old_parent = kn->parent;
1282 	kn->parent = new_parent;
1283 
1284 	kn->ns = new_ns;
1285 	if (new_name) {
1286 		old_name = kn->name;
1287 		kn->name = new_name;
1288 	}
1289 
1290 	spin_unlock_irq(&kernfs_rename_lock);
1291 
1292 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1293 	kernfs_link_sibling(kn);
1294 
1295 	kernfs_put(old_parent);
1296 	kfree_const(old_name);
1297 
1298 	error = 0;
1299  out:
1300 	mutex_unlock(&kernfs_mutex);
1301 	return error;
1302 }
1303 
1304 /* Relationship between s_mode and the DT_xxx types */
1305 static inline unsigned char dt_type(struct kernfs_node *kn)
1306 {
1307 	return (kn->mode >> 12) & 15;
1308 }
1309 
1310 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1311 {
1312 	kernfs_put(filp->private_data);
1313 	return 0;
1314 }
1315 
1316 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1317 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1318 {
1319 	if (pos) {
1320 		int valid = kernfs_active(pos) &&
1321 			pos->parent == parent && hash == pos->hash;
1322 		kernfs_put(pos);
1323 		if (!valid)
1324 			pos = NULL;
1325 	}
1326 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1327 		struct rb_node *node = parent->dir.children.rb_node;
1328 		while (node) {
1329 			pos = rb_to_kn(node);
1330 
1331 			if (hash < pos->hash)
1332 				node = node->rb_left;
1333 			else if (hash > pos->hash)
1334 				node = node->rb_right;
1335 			else
1336 				break;
1337 		}
1338 	}
1339 	/* Skip over entries which are dying/dead or in the wrong namespace */
1340 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1341 		struct rb_node *node = rb_next(&pos->rb);
1342 		if (!node)
1343 			pos = NULL;
1344 		else
1345 			pos = rb_to_kn(node);
1346 	}
1347 	return pos;
1348 }
1349 
1350 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1351 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1352 {
1353 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1354 	if (pos) {
1355 		do {
1356 			struct rb_node *node = rb_next(&pos->rb);
1357 			if (!node)
1358 				pos = NULL;
1359 			else
1360 				pos = rb_to_kn(node);
1361 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1362 	}
1363 	return pos;
1364 }
1365 
1366 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1367 {
1368 	struct dentry *dentry = file->f_path.dentry;
1369 	struct kernfs_node *parent = dentry->d_fsdata;
1370 	struct kernfs_node *pos = file->private_data;
1371 	const void *ns = NULL;
1372 
1373 	if (!dir_emit_dots(file, ctx))
1374 		return 0;
1375 	mutex_lock(&kernfs_mutex);
1376 
1377 	if (kernfs_ns_enabled(parent))
1378 		ns = kernfs_info(dentry->d_sb)->ns;
1379 
1380 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1381 	     pos;
1382 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1383 		const char *name = pos->name;
1384 		unsigned int type = dt_type(pos);
1385 		int len = strlen(name);
1386 		ino_t ino = pos->ino;
1387 
1388 		ctx->pos = pos->hash;
1389 		file->private_data = pos;
1390 		kernfs_get(pos);
1391 
1392 		mutex_unlock(&kernfs_mutex);
1393 		if (!dir_emit(ctx, name, len, ino, type))
1394 			return 0;
1395 		mutex_lock(&kernfs_mutex);
1396 	}
1397 	mutex_unlock(&kernfs_mutex);
1398 	file->private_data = NULL;
1399 	ctx->pos = INT_MAX;
1400 	return 0;
1401 }
1402 
1403 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1404 				    int whence)
1405 {
1406 	struct inode *inode = file_inode(file);
1407 	loff_t ret;
1408 
1409 	mutex_lock(&inode->i_mutex);
1410 	ret = generic_file_llseek(file, offset, whence);
1411 	mutex_unlock(&inode->i_mutex);
1412 
1413 	return ret;
1414 }
1415 
1416 const struct file_operations kernfs_dir_fops = {
1417 	.read		= generic_read_dir,
1418 	.iterate	= kernfs_fop_readdir,
1419 	.release	= kernfs_dir_fop_release,
1420 	.llseek		= kernfs_dir_fop_llseek,
1421 };
1422