1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 /* kernfs_node_depth - compute depth from @from to @to */ 48 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 49 { 50 size_t depth = 0; 51 52 while (to->parent && to != from) { 53 depth++; 54 to = to->parent; 55 } 56 return depth; 57 } 58 59 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 60 struct kernfs_node *b) 61 { 62 size_t da, db; 63 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 64 65 if (ra != rb) 66 return NULL; 67 68 da = kernfs_depth(ra->kn, a); 69 db = kernfs_depth(rb->kn, b); 70 71 while (da > db) { 72 a = a->parent; 73 da--; 74 } 75 while (db > da) { 76 b = b->parent; 77 db--; 78 } 79 80 /* worst case b and a will be the same at root */ 81 while (b != a) { 82 b = b->parent; 83 a = a->parent; 84 } 85 86 return a; 87 } 88 89 /** 90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 91 * where kn_from is treated as root of the path. 92 * @kn_from: kernfs node which should be treated as root for the path 93 * @kn_to: kernfs node to which path is needed 94 * @buf: buffer to copy the path into 95 * @buflen: size of @buf 96 * 97 * We need to handle couple of scenarios here: 98 * [1] when @kn_from is an ancestor of @kn_to at some level 99 * kn_from: /n1/n2/n3 100 * kn_to: /n1/n2/n3/n4/n5 101 * result: /n4/n5 102 * 103 * [2] when @kn_from is on a different hierarchy and we need to find common 104 * ancestor between @kn_from and @kn_to. 105 * kn_from: /n1/n2/n3/n4 106 * kn_to: /n1/n2/n5 107 * result: /../../n5 108 * OR 109 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 110 * kn_to: /n1/n2/n3 [depth=3] 111 * result: /../.. 112 * 113 * Returns the length of the full path. If the full length is equal to or 114 * greater than @buflen, @buf contains the truncated path with the trailing 115 * '\0'. On error, -errno is returned. 116 */ 117 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 118 struct kernfs_node *kn_from, 119 char *buf, size_t buflen) 120 { 121 struct kernfs_node *kn, *common; 122 const char parent_str[] = "/.."; 123 size_t depth_from, depth_to, len = 0; 124 int i, j; 125 126 if (!kn_from) 127 kn_from = kernfs_root(kn_to)->kn; 128 129 if (kn_from == kn_to) 130 return strlcpy(buf, "/", buflen); 131 132 common = kernfs_common_ancestor(kn_from, kn_to); 133 if (WARN_ON(!common)) 134 return -EINVAL; 135 136 depth_to = kernfs_depth(common, kn_to); 137 depth_from = kernfs_depth(common, kn_from); 138 139 if (buf) 140 buf[0] = '\0'; 141 142 for (i = 0; i < depth_from; i++) 143 len += strlcpy(buf + len, parent_str, 144 len < buflen ? buflen - len : 0); 145 146 /* Calculate how many bytes we need for the rest */ 147 for (i = depth_to - 1; i >= 0; i--) { 148 for (kn = kn_to, j = 0; j < i; j++) 149 kn = kn->parent; 150 len += strlcpy(buf + len, "/", 151 len < buflen ? buflen - len : 0); 152 len += strlcpy(buf + len, kn->name, 153 len < buflen ? buflen - len : 0); 154 } 155 156 return len; 157 } 158 159 /** 160 * kernfs_name - obtain the name of a given node 161 * @kn: kernfs_node of interest 162 * @buf: buffer to copy @kn's name into 163 * @buflen: size of @buf 164 * 165 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 166 * similar to strlcpy(). It returns the length of @kn's name and if @buf 167 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 168 * 169 * This function can be called from any context. 170 */ 171 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 172 { 173 unsigned long flags; 174 int ret; 175 176 spin_lock_irqsave(&kernfs_rename_lock, flags); 177 ret = kernfs_name_locked(kn, buf, buflen); 178 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 179 return ret; 180 } 181 182 /** 183 * kernfs_path_from_node - build path of node @to relative to @from. 184 * @from: parent kernfs_node relative to which we need to build the path 185 * @to: kernfs_node of interest 186 * @buf: buffer to copy @to's path into 187 * @buflen: size of @buf 188 * 189 * Builds @to's path relative to @from in @buf. @from and @to must 190 * be on the same kernfs-root. If @from is not parent of @to, then a relative 191 * path (which includes '..'s) as needed to reach from @from to @to is 192 * returned. 193 * 194 * Returns the length of the full path. If the full length is equal to or 195 * greater than @buflen, @buf contains the truncated path with the trailing 196 * '\0'. On error, -errno is returned. 197 */ 198 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 199 char *buf, size_t buflen) 200 { 201 unsigned long flags; 202 int ret; 203 204 spin_lock_irqsave(&kernfs_rename_lock, flags); 205 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 206 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 207 return ret; 208 } 209 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 210 211 /** 212 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 213 * @kn: kernfs_node of interest 214 * 215 * This function can be called from any context. 216 */ 217 void pr_cont_kernfs_name(struct kernfs_node *kn) 218 { 219 unsigned long flags; 220 221 spin_lock_irqsave(&kernfs_rename_lock, flags); 222 223 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 224 pr_cont("%s", kernfs_pr_cont_buf); 225 226 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 227 } 228 229 /** 230 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 231 * @kn: kernfs_node of interest 232 * 233 * This function can be called from any context. 234 */ 235 void pr_cont_kernfs_path(struct kernfs_node *kn) 236 { 237 unsigned long flags; 238 int sz; 239 240 spin_lock_irqsave(&kernfs_rename_lock, flags); 241 242 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 243 sizeof(kernfs_pr_cont_buf)); 244 if (sz < 0) { 245 pr_cont("(error)"); 246 goto out; 247 } 248 249 if (sz >= sizeof(kernfs_pr_cont_buf)) { 250 pr_cont("(name too long)"); 251 goto out; 252 } 253 254 pr_cont("%s", kernfs_pr_cont_buf); 255 256 out: 257 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 258 } 259 260 /** 261 * kernfs_get_parent - determine the parent node and pin it 262 * @kn: kernfs_node of interest 263 * 264 * Determines @kn's parent, pins and returns it. This function can be 265 * called from any context. 266 */ 267 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 268 { 269 struct kernfs_node *parent; 270 unsigned long flags; 271 272 spin_lock_irqsave(&kernfs_rename_lock, flags); 273 parent = kn->parent; 274 kernfs_get(parent); 275 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 276 277 return parent; 278 } 279 280 /** 281 * kernfs_name_hash 282 * @name: Null terminated string to hash 283 * @ns: Namespace tag to hash 284 * 285 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 286 */ 287 static unsigned int kernfs_name_hash(const char *name, const void *ns) 288 { 289 unsigned long hash = init_name_hash(ns); 290 unsigned int len = strlen(name); 291 while (len--) 292 hash = partial_name_hash(*name++, hash); 293 hash = end_name_hash(hash); 294 hash &= 0x7fffffffU; 295 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 296 if (hash < 2) 297 hash += 2; 298 if (hash >= INT_MAX) 299 hash = INT_MAX - 1; 300 return hash; 301 } 302 303 static int kernfs_name_compare(unsigned int hash, const char *name, 304 const void *ns, const struct kernfs_node *kn) 305 { 306 if (hash < kn->hash) 307 return -1; 308 if (hash > kn->hash) 309 return 1; 310 if (ns < kn->ns) 311 return -1; 312 if (ns > kn->ns) 313 return 1; 314 return strcmp(name, kn->name); 315 } 316 317 static int kernfs_sd_compare(const struct kernfs_node *left, 318 const struct kernfs_node *right) 319 { 320 return kernfs_name_compare(left->hash, left->name, left->ns, right); 321 } 322 323 /** 324 * kernfs_link_sibling - link kernfs_node into sibling rbtree 325 * @kn: kernfs_node of interest 326 * 327 * Link @kn into its sibling rbtree which starts from 328 * @kn->parent->dir.children. 329 * 330 * Locking: 331 * mutex_lock(kernfs_mutex) 332 * 333 * RETURNS: 334 * 0 on susccess -EEXIST on failure. 335 */ 336 static int kernfs_link_sibling(struct kernfs_node *kn) 337 { 338 struct rb_node **node = &kn->parent->dir.children.rb_node; 339 struct rb_node *parent = NULL; 340 341 while (*node) { 342 struct kernfs_node *pos; 343 int result; 344 345 pos = rb_to_kn(*node); 346 parent = *node; 347 result = kernfs_sd_compare(kn, pos); 348 if (result < 0) 349 node = &pos->rb.rb_left; 350 else if (result > 0) 351 node = &pos->rb.rb_right; 352 else 353 return -EEXIST; 354 } 355 356 /* add new node and rebalance the tree */ 357 rb_link_node(&kn->rb, parent, node); 358 rb_insert_color(&kn->rb, &kn->parent->dir.children); 359 360 /* successfully added, account subdir number */ 361 if (kernfs_type(kn) == KERNFS_DIR) 362 kn->parent->dir.subdirs++; 363 364 return 0; 365 } 366 367 /** 368 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 369 * @kn: kernfs_node of interest 370 * 371 * Try to unlink @kn from its sibling rbtree which starts from 372 * kn->parent->dir.children. Returns %true if @kn was actually 373 * removed, %false if @kn wasn't on the rbtree. 374 * 375 * Locking: 376 * mutex_lock(kernfs_mutex) 377 */ 378 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 379 { 380 if (RB_EMPTY_NODE(&kn->rb)) 381 return false; 382 383 if (kernfs_type(kn) == KERNFS_DIR) 384 kn->parent->dir.subdirs--; 385 386 rb_erase(&kn->rb, &kn->parent->dir.children); 387 RB_CLEAR_NODE(&kn->rb); 388 return true; 389 } 390 391 /** 392 * kernfs_get_active - get an active reference to kernfs_node 393 * @kn: kernfs_node to get an active reference to 394 * 395 * Get an active reference of @kn. This function is noop if @kn 396 * is NULL. 397 * 398 * RETURNS: 399 * Pointer to @kn on success, NULL on failure. 400 */ 401 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 402 { 403 if (unlikely(!kn)) 404 return NULL; 405 406 if (!atomic_inc_unless_negative(&kn->active)) 407 return NULL; 408 409 if (kernfs_lockdep(kn)) 410 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 411 return kn; 412 } 413 414 /** 415 * kernfs_put_active - put an active reference to kernfs_node 416 * @kn: kernfs_node to put an active reference to 417 * 418 * Put an active reference to @kn. This function is noop if @kn 419 * is NULL. 420 */ 421 void kernfs_put_active(struct kernfs_node *kn) 422 { 423 struct kernfs_root *root = kernfs_root(kn); 424 int v; 425 426 if (unlikely(!kn)) 427 return; 428 429 if (kernfs_lockdep(kn)) 430 rwsem_release(&kn->dep_map, 1, _RET_IP_); 431 v = atomic_dec_return(&kn->active); 432 if (likely(v != KN_DEACTIVATED_BIAS)) 433 return; 434 435 wake_up_all(&root->deactivate_waitq); 436 } 437 438 /** 439 * kernfs_drain - drain kernfs_node 440 * @kn: kernfs_node to drain 441 * 442 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 443 * removers may invoke this function concurrently on @kn and all will 444 * return after draining is complete. 445 */ 446 static void kernfs_drain(struct kernfs_node *kn) 447 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 448 { 449 struct kernfs_root *root = kernfs_root(kn); 450 451 lockdep_assert_held(&kernfs_mutex); 452 WARN_ON_ONCE(kernfs_active(kn)); 453 454 mutex_unlock(&kernfs_mutex); 455 456 if (kernfs_lockdep(kn)) { 457 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 458 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 459 lock_contended(&kn->dep_map, _RET_IP_); 460 } 461 462 /* but everyone should wait for draining */ 463 wait_event(root->deactivate_waitq, 464 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 465 466 if (kernfs_lockdep(kn)) { 467 lock_acquired(&kn->dep_map, _RET_IP_); 468 rwsem_release(&kn->dep_map, 1, _RET_IP_); 469 } 470 471 kernfs_unmap_bin_file(kn); 472 473 mutex_lock(&kernfs_mutex); 474 } 475 476 /** 477 * kernfs_get - get a reference count on a kernfs_node 478 * @kn: the target kernfs_node 479 */ 480 void kernfs_get(struct kernfs_node *kn) 481 { 482 if (kn) { 483 WARN_ON(!atomic_read(&kn->count)); 484 atomic_inc(&kn->count); 485 } 486 } 487 EXPORT_SYMBOL_GPL(kernfs_get); 488 489 /** 490 * kernfs_put - put a reference count on a kernfs_node 491 * @kn: the target kernfs_node 492 * 493 * Put a reference count of @kn and destroy it if it reached zero. 494 */ 495 void kernfs_put(struct kernfs_node *kn) 496 { 497 struct kernfs_node *parent; 498 struct kernfs_root *root; 499 500 if (!kn || !atomic_dec_and_test(&kn->count)) 501 return; 502 root = kernfs_root(kn); 503 repeat: 504 /* 505 * Moving/renaming is always done while holding reference. 506 * kn->parent won't change beneath us. 507 */ 508 parent = kn->parent; 509 510 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 511 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 512 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 513 514 if (kernfs_type(kn) == KERNFS_LINK) 515 kernfs_put(kn->symlink.target_kn); 516 517 kfree_const(kn->name); 518 519 if (kn->iattr) { 520 if (kn->iattr->ia_secdata) 521 security_release_secctx(kn->iattr->ia_secdata, 522 kn->iattr->ia_secdata_len); 523 simple_xattrs_free(&kn->iattr->xattrs); 524 } 525 kfree(kn->iattr); 526 ida_simple_remove(&root->ino_ida, kn->ino); 527 kmem_cache_free(kernfs_node_cache, kn); 528 529 kn = parent; 530 if (kn) { 531 if (atomic_dec_and_test(&kn->count)) 532 goto repeat; 533 } else { 534 /* just released the root kn, free @root too */ 535 ida_destroy(&root->ino_ida); 536 kfree(root); 537 } 538 } 539 EXPORT_SYMBOL_GPL(kernfs_put); 540 541 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 542 { 543 struct kernfs_node *kn; 544 545 if (flags & LOOKUP_RCU) 546 return -ECHILD; 547 548 /* Always perform fresh lookup for negatives */ 549 if (d_really_is_negative(dentry)) 550 goto out_bad_unlocked; 551 552 kn = dentry->d_fsdata; 553 mutex_lock(&kernfs_mutex); 554 555 /* The kernfs node has been deactivated */ 556 if (!kernfs_active(kn)) 557 goto out_bad; 558 559 /* The kernfs node has been moved? */ 560 if (dentry->d_parent->d_fsdata != kn->parent) 561 goto out_bad; 562 563 /* The kernfs node has been renamed */ 564 if (strcmp(dentry->d_name.name, kn->name) != 0) 565 goto out_bad; 566 567 /* The kernfs node has been moved to a different namespace */ 568 if (kn->parent && kernfs_ns_enabled(kn->parent) && 569 kernfs_info(dentry->d_sb)->ns != kn->ns) 570 goto out_bad; 571 572 mutex_unlock(&kernfs_mutex); 573 return 1; 574 out_bad: 575 mutex_unlock(&kernfs_mutex); 576 out_bad_unlocked: 577 return 0; 578 } 579 580 static void kernfs_dop_release(struct dentry *dentry) 581 { 582 kernfs_put(dentry->d_fsdata); 583 } 584 585 const struct dentry_operations kernfs_dops = { 586 .d_revalidate = kernfs_dop_revalidate, 587 .d_release = kernfs_dop_release, 588 }; 589 590 /** 591 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 592 * @dentry: the dentry in question 593 * 594 * Return the kernfs_node associated with @dentry. If @dentry is not a 595 * kernfs one, %NULL is returned. 596 * 597 * While the returned kernfs_node will stay accessible as long as @dentry 598 * is accessible, the returned node can be in any state and the caller is 599 * fully responsible for determining what's accessible. 600 */ 601 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 602 { 603 if (dentry->d_sb->s_op == &kernfs_sops) 604 return dentry->d_fsdata; 605 return NULL; 606 } 607 608 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 609 const char *name, umode_t mode, 610 unsigned flags) 611 { 612 struct kernfs_node *kn; 613 int ret; 614 615 name = kstrdup_const(name, GFP_KERNEL); 616 if (!name) 617 return NULL; 618 619 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 620 if (!kn) 621 goto err_out1; 622 623 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 624 if (ret < 0) 625 goto err_out2; 626 kn->ino = ret; 627 628 atomic_set(&kn->count, 1); 629 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 630 RB_CLEAR_NODE(&kn->rb); 631 632 kn->name = name; 633 kn->mode = mode; 634 kn->flags = flags; 635 636 return kn; 637 638 err_out2: 639 kmem_cache_free(kernfs_node_cache, kn); 640 err_out1: 641 kfree_const(name); 642 return NULL; 643 } 644 645 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 646 const char *name, umode_t mode, 647 unsigned flags) 648 { 649 struct kernfs_node *kn; 650 651 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 652 if (kn) { 653 kernfs_get(parent); 654 kn->parent = parent; 655 } 656 return kn; 657 } 658 659 /** 660 * kernfs_add_one - add kernfs_node to parent without warning 661 * @kn: kernfs_node to be added 662 * 663 * The caller must already have initialized @kn->parent. This 664 * function increments nlink of the parent's inode if @kn is a 665 * directory and link into the children list of the parent. 666 * 667 * RETURNS: 668 * 0 on success, -EEXIST if entry with the given name already 669 * exists. 670 */ 671 int kernfs_add_one(struct kernfs_node *kn) 672 { 673 struct kernfs_node *parent = kn->parent; 674 struct kernfs_iattrs *ps_iattr; 675 bool has_ns; 676 int ret; 677 678 mutex_lock(&kernfs_mutex); 679 680 ret = -EINVAL; 681 has_ns = kernfs_ns_enabled(parent); 682 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 683 has_ns ? "required" : "invalid", parent->name, kn->name)) 684 goto out_unlock; 685 686 if (kernfs_type(parent) != KERNFS_DIR) 687 goto out_unlock; 688 689 ret = -ENOENT; 690 if (parent->flags & KERNFS_EMPTY_DIR) 691 goto out_unlock; 692 693 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 694 goto out_unlock; 695 696 kn->hash = kernfs_name_hash(kn->name, kn->ns); 697 698 ret = kernfs_link_sibling(kn); 699 if (ret) 700 goto out_unlock; 701 702 /* Update timestamps on the parent */ 703 ps_iattr = parent->iattr; 704 if (ps_iattr) { 705 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 706 ktime_get_real_ts(&ps_iattrs->ia_ctime); 707 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime; 708 } 709 710 mutex_unlock(&kernfs_mutex); 711 712 /* 713 * Activate the new node unless CREATE_DEACTIVATED is requested. 714 * If not activated here, the kernfs user is responsible for 715 * activating the node with kernfs_activate(). A node which hasn't 716 * been activated is not visible to userland and its removal won't 717 * trigger deactivation. 718 */ 719 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 720 kernfs_activate(kn); 721 return 0; 722 723 out_unlock: 724 mutex_unlock(&kernfs_mutex); 725 return ret; 726 } 727 728 /** 729 * kernfs_find_ns - find kernfs_node with the given name 730 * @parent: kernfs_node to search under 731 * @name: name to look for 732 * @ns: the namespace tag to use 733 * 734 * Look for kernfs_node with name @name under @parent. Returns pointer to 735 * the found kernfs_node on success, %NULL on failure. 736 */ 737 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 738 const unsigned char *name, 739 const void *ns) 740 { 741 struct rb_node *node = parent->dir.children.rb_node; 742 bool has_ns = kernfs_ns_enabled(parent); 743 unsigned int hash; 744 745 lockdep_assert_held(&kernfs_mutex); 746 747 if (has_ns != (bool)ns) { 748 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 749 has_ns ? "required" : "invalid", parent->name, name); 750 return NULL; 751 } 752 753 hash = kernfs_name_hash(name, ns); 754 while (node) { 755 struct kernfs_node *kn; 756 int result; 757 758 kn = rb_to_kn(node); 759 result = kernfs_name_compare(hash, name, ns, kn); 760 if (result < 0) 761 node = node->rb_left; 762 else if (result > 0) 763 node = node->rb_right; 764 else 765 return kn; 766 } 767 return NULL; 768 } 769 770 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 771 const unsigned char *path, 772 const void *ns) 773 { 774 size_t len; 775 char *p, *name; 776 777 lockdep_assert_held(&kernfs_mutex); 778 779 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 780 spin_lock_irq(&kernfs_rename_lock); 781 782 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 783 784 if (len >= sizeof(kernfs_pr_cont_buf)) { 785 spin_unlock_irq(&kernfs_rename_lock); 786 return NULL; 787 } 788 789 p = kernfs_pr_cont_buf; 790 791 while ((name = strsep(&p, "/")) && parent) { 792 if (*name == '\0') 793 continue; 794 parent = kernfs_find_ns(parent, name, ns); 795 } 796 797 spin_unlock_irq(&kernfs_rename_lock); 798 799 return parent; 800 } 801 802 /** 803 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 804 * @parent: kernfs_node to search under 805 * @name: name to look for 806 * @ns: the namespace tag to use 807 * 808 * Look for kernfs_node with name @name under @parent and get a reference 809 * if found. This function may sleep and returns pointer to the found 810 * kernfs_node on success, %NULL on failure. 811 */ 812 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 813 const char *name, const void *ns) 814 { 815 struct kernfs_node *kn; 816 817 mutex_lock(&kernfs_mutex); 818 kn = kernfs_find_ns(parent, name, ns); 819 kernfs_get(kn); 820 mutex_unlock(&kernfs_mutex); 821 822 return kn; 823 } 824 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 825 826 /** 827 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 828 * @parent: kernfs_node to search under 829 * @path: path to look for 830 * @ns: the namespace tag to use 831 * 832 * Look for kernfs_node with path @path under @parent and get a reference 833 * if found. This function may sleep and returns pointer to the found 834 * kernfs_node on success, %NULL on failure. 835 */ 836 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 837 const char *path, const void *ns) 838 { 839 struct kernfs_node *kn; 840 841 mutex_lock(&kernfs_mutex); 842 kn = kernfs_walk_ns(parent, path, ns); 843 kernfs_get(kn); 844 mutex_unlock(&kernfs_mutex); 845 846 return kn; 847 } 848 849 /** 850 * kernfs_create_root - create a new kernfs hierarchy 851 * @scops: optional syscall operations for the hierarchy 852 * @flags: KERNFS_ROOT_* flags 853 * @priv: opaque data associated with the new directory 854 * 855 * Returns the root of the new hierarchy on success, ERR_PTR() value on 856 * failure. 857 */ 858 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 859 unsigned int flags, void *priv) 860 { 861 struct kernfs_root *root; 862 struct kernfs_node *kn; 863 864 root = kzalloc(sizeof(*root), GFP_KERNEL); 865 if (!root) 866 return ERR_PTR(-ENOMEM); 867 868 ida_init(&root->ino_ida); 869 INIT_LIST_HEAD(&root->supers); 870 871 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 872 KERNFS_DIR); 873 if (!kn) { 874 ida_destroy(&root->ino_ida); 875 kfree(root); 876 return ERR_PTR(-ENOMEM); 877 } 878 879 kn->priv = priv; 880 kn->dir.root = root; 881 882 root->syscall_ops = scops; 883 root->flags = flags; 884 root->kn = kn; 885 init_waitqueue_head(&root->deactivate_waitq); 886 887 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 888 kernfs_activate(kn); 889 890 return root; 891 } 892 893 /** 894 * kernfs_destroy_root - destroy a kernfs hierarchy 895 * @root: root of the hierarchy to destroy 896 * 897 * Destroy the hierarchy anchored at @root by removing all existing 898 * directories and destroying @root. 899 */ 900 void kernfs_destroy_root(struct kernfs_root *root) 901 { 902 kernfs_remove(root->kn); /* will also free @root */ 903 } 904 905 /** 906 * kernfs_create_dir_ns - create a directory 907 * @parent: parent in which to create a new directory 908 * @name: name of the new directory 909 * @mode: mode of the new directory 910 * @priv: opaque data associated with the new directory 911 * @ns: optional namespace tag of the directory 912 * 913 * Returns the created node on success, ERR_PTR() value on failure. 914 */ 915 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 916 const char *name, umode_t mode, 917 void *priv, const void *ns) 918 { 919 struct kernfs_node *kn; 920 int rc; 921 922 /* allocate */ 923 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 924 if (!kn) 925 return ERR_PTR(-ENOMEM); 926 927 kn->dir.root = parent->dir.root; 928 kn->ns = ns; 929 kn->priv = priv; 930 931 /* link in */ 932 rc = kernfs_add_one(kn); 933 if (!rc) 934 return kn; 935 936 kernfs_put(kn); 937 return ERR_PTR(rc); 938 } 939 940 /** 941 * kernfs_create_empty_dir - create an always empty directory 942 * @parent: parent in which to create a new directory 943 * @name: name of the new directory 944 * 945 * Returns the created node on success, ERR_PTR() value on failure. 946 */ 947 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 948 const char *name) 949 { 950 struct kernfs_node *kn; 951 int rc; 952 953 /* allocate */ 954 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR); 955 if (!kn) 956 return ERR_PTR(-ENOMEM); 957 958 kn->flags |= KERNFS_EMPTY_DIR; 959 kn->dir.root = parent->dir.root; 960 kn->ns = NULL; 961 kn->priv = NULL; 962 963 /* link in */ 964 rc = kernfs_add_one(kn); 965 if (!rc) 966 return kn; 967 968 kernfs_put(kn); 969 return ERR_PTR(rc); 970 } 971 972 static struct dentry *kernfs_iop_lookup(struct inode *dir, 973 struct dentry *dentry, 974 unsigned int flags) 975 { 976 struct dentry *ret; 977 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 978 struct kernfs_node *kn; 979 struct inode *inode; 980 const void *ns = NULL; 981 982 mutex_lock(&kernfs_mutex); 983 984 if (kernfs_ns_enabled(parent)) 985 ns = kernfs_info(dir->i_sb)->ns; 986 987 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 988 989 /* no such entry */ 990 if (!kn || !kernfs_active(kn)) { 991 ret = NULL; 992 goto out_unlock; 993 } 994 kernfs_get(kn); 995 dentry->d_fsdata = kn; 996 997 /* attach dentry and inode */ 998 inode = kernfs_get_inode(dir->i_sb, kn); 999 if (!inode) { 1000 ret = ERR_PTR(-ENOMEM); 1001 goto out_unlock; 1002 } 1003 1004 /* instantiate and hash dentry */ 1005 ret = d_splice_alias(inode, dentry); 1006 out_unlock: 1007 mutex_unlock(&kernfs_mutex); 1008 return ret; 1009 } 1010 1011 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1012 umode_t mode) 1013 { 1014 struct kernfs_node *parent = dir->i_private; 1015 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1016 int ret; 1017 1018 if (!scops || !scops->mkdir) 1019 return -EPERM; 1020 1021 if (!kernfs_get_active(parent)) 1022 return -ENODEV; 1023 1024 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1025 1026 kernfs_put_active(parent); 1027 return ret; 1028 } 1029 1030 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1031 { 1032 struct kernfs_node *kn = dentry->d_fsdata; 1033 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1034 int ret; 1035 1036 if (!scops || !scops->rmdir) 1037 return -EPERM; 1038 1039 if (!kernfs_get_active(kn)) 1040 return -ENODEV; 1041 1042 ret = scops->rmdir(kn); 1043 1044 kernfs_put_active(kn); 1045 return ret; 1046 } 1047 1048 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1049 struct inode *new_dir, struct dentry *new_dentry, 1050 unsigned int flags) 1051 { 1052 struct kernfs_node *kn = old_dentry->d_fsdata; 1053 struct kernfs_node *new_parent = new_dir->i_private; 1054 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1055 int ret; 1056 1057 if (flags) 1058 return -EINVAL; 1059 1060 if (!scops || !scops->rename) 1061 return -EPERM; 1062 1063 if (!kernfs_get_active(kn)) 1064 return -ENODEV; 1065 1066 if (!kernfs_get_active(new_parent)) { 1067 kernfs_put_active(kn); 1068 return -ENODEV; 1069 } 1070 1071 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1072 1073 kernfs_put_active(new_parent); 1074 kernfs_put_active(kn); 1075 return ret; 1076 } 1077 1078 const struct inode_operations kernfs_dir_iops = { 1079 .lookup = kernfs_iop_lookup, 1080 .permission = kernfs_iop_permission, 1081 .setattr = kernfs_iop_setattr, 1082 .getattr = kernfs_iop_getattr, 1083 .listxattr = kernfs_iop_listxattr, 1084 1085 .mkdir = kernfs_iop_mkdir, 1086 .rmdir = kernfs_iop_rmdir, 1087 .rename = kernfs_iop_rename, 1088 }; 1089 1090 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1091 { 1092 struct kernfs_node *last; 1093 1094 while (true) { 1095 struct rb_node *rbn; 1096 1097 last = pos; 1098 1099 if (kernfs_type(pos) != KERNFS_DIR) 1100 break; 1101 1102 rbn = rb_first(&pos->dir.children); 1103 if (!rbn) 1104 break; 1105 1106 pos = rb_to_kn(rbn); 1107 } 1108 1109 return last; 1110 } 1111 1112 /** 1113 * kernfs_next_descendant_post - find the next descendant for post-order walk 1114 * @pos: the current position (%NULL to initiate traversal) 1115 * @root: kernfs_node whose descendants to walk 1116 * 1117 * Find the next descendant to visit for post-order traversal of @root's 1118 * descendants. @root is included in the iteration and the last node to be 1119 * visited. 1120 */ 1121 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1122 struct kernfs_node *root) 1123 { 1124 struct rb_node *rbn; 1125 1126 lockdep_assert_held(&kernfs_mutex); 1127 1128 /* if first iteration, visit leftmost descendant which may be root */ 1129 if (!pos) 1130 return kernfs_leftmost_descendant(root); 1131 1132 /* if we visited @root, we're done */ 1133 if (pos == root) 1134 return NULL; 1135 1136 /* if there's an unvisited sibling, visit its leftmost descendant */ 1137 rbn = rb_next(&pos->rb); 1138 if (rbn) 1139 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1140 1141 /* no sibling left, visit parent */ 1142 return pos->parent; 1143 } 1144 1145 /** 1146 * kernfs_activate - activate a node which started deactivated 1147 * @kn: kernfs_node whose subtree is to be activated 1148 * 1149 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1150 * needs to be explicitly activated. A node which hasn't been activated 1151 * isn't visible to userland and deactivation is skipped during its 1152 * removal. This is useful to construct atomic init sequences where 1153 * creation of multiple nodes should either succeed or fail atomically. 1154 * 1155 * The caller is responsible for ensuring that this function is not called 1156 * after kernfs_remove*() is invoked on @kn. 1157 */ 1158 void kernfs_activate(struct kernfs_node *kn) 1159 { 1160 struct kernfs_node *pos; 1161 1162 mutex_lock(&kernfs_mutex); 1163 1164 pos = NULL; 1165 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1166 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1167 continue; 1168 1169 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1170 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1171 1172 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1173 pos->flags |= KERNFS_ACTIVATED; 1174 } 1175 1176 mutex_unlock(&kernfs_mutex); 1177 } 1178 1179 static void __kernfs_remove(struct kernfs_node *kn) 1180 { 1181 struct kernfs_node *pos; 1182 1183 lockdep_assert_held(&kernfs_mutex); 1184 1185 /* 1186 * Short-circuit if non-root @kn has already finished removal. 1187 * This is for kernfs_remove_self() which plays with active ref 1188 * after removal. 1189 */ 1190 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1191 return; 1192 1193 pr_debug("kernfs %s: removing\n", kn->name); 1194 1195 /* prevent any new usage under @kn by deactivating all nodes */ 1196 pos = NULL; 1197 while ((pos = kernfs_next_descendant_post(pos, kn))) 1198 if (kernfs_active(pos)) 1199 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1200 1201 /* deactivate and unlink the subtree node-by-node */ 1202 do { 1203 pos = kernfs_leftmost_descendant(kn); 1204 1205 /* 1206 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1207 * base ref could have been put by someone else by the time 1208 * the function returns. Make sure it doesn't go away 1209 * underneath us. 1210 */ 1211 kernfs_get(pos); 1212 1213 /* 1214 * Drain iff @kn was activated. This avoids draining and 1215 * its lockdep annotations for nodes which have never been 1216 * activated and allows embedding kernfs_remove() in create 1217 * error paths without worrying about draining. 1218 */ 1219 if (kn->flags & KERNFS_ACTIVATED) 1220 kernfs_drain(pos); 1221 else 1222 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1223 1224 /* 1225 * kernfs_unlink_sibling() succeeds once per node. Use it 1226 * to decide who's responsible for cleanups. 1227 */ 1228 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1229 struct kernfs_iattrs *ps_iattr = 1230 pos->parent ? pos->parent->iattr : NULL; 1231 1232 /* update timestamps on the parent */ 1233 if (ps_iattr) { 1234 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime); 1235 ps_iattr->ia_iattr.ia_mtime = 1236 ps_iattr->ia_iattr.ia_ctime; 1237 } 1238 1239 kernfs_put(pos); 1240 } 1241 1242 kernfs_put(pos); 1243 } while (pos != kn); 1244 } 1245 1246 /** 1247 * kernfs_remove - remove a kernfs_node recursively 1248 * @kn: the kernfs_node to remove 1249 * 1250 * Remove @kn along with all its subdirectories and files. 1251 */ 1252 void kernfs_remove(struct kernfs_node *kn) 1253 { 1254 mutex_lock(&kernfs_mutex); 1255 __kernfs_remove(kn); 1256 mutex_unlock(&kernfs_mutex); 1257 } 1258 1259 /** 1260 * kernfs_break_active_protection - break out of active protection 1261 * @kn: the self kernfs_node 1262 * 1263 * The caller must be running off of a kernfs operation which is invoked 1264 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1265 * this function must also be matched with an invocation of 1266 * kernfs_unbreak_active_protection(). 1267 * 1268 * This function releases the active reference of @kn the caller is 1269 * holding. Once this function is called, @kn may be removed at any point 1270 * and the caller is solely responsible for ensuring that the objects it 1271 * dereferences are accessible. 1272 */ 1273 void kernfs_break_active_protection(struct kernfs_node *kn) 1274 { 1275 /* 1276 * Take out ourself out of the active ref dependency chain. If 1277 * we're called without an active ref, lockdep will complain. 1278 */ 1279 kernfs_put_active(kn); 1280 } 1281 1282 /** 1283 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1284 * @kn: the self kernfs_node 1285 * 1286 * If kernfs_break_active_protection() was called, this function must be 1287 * invoked before finishing the kernfs operation. Note that while this 1288 * function restores the active reference, it doesn't and can't actually 1289 * restore the active protection - @kn may already or be in the process of 1290 * being removed. Once kernfs_break_active_protection() is invoked, that 1291 * protection is irreversibly gone for the kernfs operation instance. 1292 * 1293 * While this function may be called at any point after 1294 * kernfs_break_active_protection() is invoked, its most useful location 1295 * would be right before the enclosing kernfs operation returns. 1296 */ 1297 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1298 { 1299 /* 1300 * @kn->active could be in any state; however, the increment we do 1301 * here will be undone as soon as the enclosing kernfs operation 1302 * finishes and this temporary bump can't break anything. If @kn 1303 * is alive, nothing changes. If @kn is being deactivated, the 1304 * soon-to-follow put will either finish deactivation or restore 1305 * deactivated state. If @kn is already removed, the temporary 1306 * bump is guaranteed to be gone before @kn is released. 1307 */ 1308 atomic_inc(&kn->active); 1309 if (kernfs_lockdep(kn)) 1310 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1311 } 1312 1313 /** 1314 * kernfs_remove_self - remove a kernfs_node from its own method 1315 * @kn: the self kernfs_node to remove 1316 * 1317 * The caller must be running off of a kernfs operation which is invoked 1318 * with an active reference - e.g. one of kernfs_ops. This can be used to 1319 * implement a file operation which deletes itself. 1320 * 1321 * For example, the "delete" file for a sysfs device directory can be 1322 * implemented by invoking kernfs_remove_self() on the "delete" file 1323 * itself. This function breaks the circular dependency of trying to 1324 * deactivate self while holding an active ref itself. It isn't necessary 1325 * to modify the usual removal path to use kernfs_remove_self(). The 1326 * "delete" implementation can simply invoke kernfs_remove_self() on self 1327 * before proceeding with the usual removal path. kernfs will ignore later 1328 * kernfs_remove() on self. 1329 * 1330 * kernfs_remove_self() can be called multiple times concurrently on the 1331 * same kernfs_node. Only the first one actually performs removal and 1332 * returns %true. All others will wait until the kernfs operation which 1333 * won self-removal finishes and return %false. Note that the losers wait 1334 * for the completion of not only the winning kernfs_remove_self() but also 1335 * the whole kernfs_ops which won the arbitration. This can be used to 1336 * guarantee, for example, all concurrent writes to a "delete" file to 1337 * finish only after the whole operation is complete. 1338 */ 1339 bool kernfs_remove_self(struct kernfs_node *kn) 1340 { 1341 bool ret; 1342 1343 mutex_lock(&kernfs_mutex); 1344 kernfs_break_active_protection(kn); 1345 1346 /* 1347 * SUICIDAL is used to arbitrate among competing invocations. Only 1348 * the first one will actually perform removal. When the removal 1349 * is complete, SUICIDED is set and the active ref is restored 1350 * while holding kernfs_mutex. The ones which lost arbitration 1351 * waits for SUICDED && drained which can happen only after the 1352 * enclosing kernfs operation which executed the winning instance 1353 * of kernfs_remove_self() finished. 1354 */ 1355 if (!(kn->flags & KERNFS_SUICIDAL)) { 1356 kn->flags |= KERNFS_SUICIDAL; 1357 __kernfs_remove(kn); 1358 kn->flags |= KERNFS_SUICIDED; 1359 ret = true; 1360 } else { 1361 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1362 DEFINE_WAIT(wait); 1363 1364 while (true) { 1365 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1366 1367 if ((kn->flags & KERNFS_SUICIDED) && 1368 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1369 break; 1370 1371 mutex_unlock(&kernfs_mutex); 1372 schedule(); 1373 mutex_lock(&kernfs_mutex); 1374 } 1375 finish_wait(waitq, &wait); 1376 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1377 ret = false; 1378 } 1379 1380 /* 1381 * This must be done while holding kernfs_mutex; otherwise, waiting 1382 * for SUICIDED && deactivated could finish prematurely. 1383 */ 1384 kernfs_unbreak_active_protection(kn); 1385 1386 mutex_unlock(&kernfs_mutex); 1387 return ret; 1388 } 1389 1390 /** 1391 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1392 * @parent: parent of the target 1393 * @name: name of the kernfs_node to remove 1394 * @ns: namespace tag of the kernfs_node to remove 1395 * 1396 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1397 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1398 */ 1399 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1400 const void *ns) 1401 { 1402 struct kernfs_node *kn; 1403 1404 if (!parent) { 1405 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1406 name); 1407 return -ENOENT; 1408 } 1409 1410 mutex_lock(&kernfs_mutex); 1411 1412 kn = kernfs_find_ns(parent, name, ns); 1413 if (kn) 1414 __kernfs_remove(kn); 1415 1416 mutex_unlock(&kernfs_mutex); 1417 1418 if (kn) 1419 return 0; 1420 else 1421 return -ENOENT; 1422 } 1423 1424 /** 1425 * kernfs_rename_ns - move and rename a kernfs_node 1426 * @kn: target node 1427 * @new_parent: new parent to put @sd under 1428 * @new_name: new name 1429 * @new_ns: new namespace tag 1430 */ 1431 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1432 const char *new_name, const void *new_ns) 1433 { 1434 struct kernfs_node *old_parent; 1435 const char *old_name = NULL; 1436 int error; 1437 1438 /* can't move or rename root */ 1439 if (!kn->parent) 1440 return -EINVAL; 1441 1442 mutex_lock(&kernfs_mutex); 1443 1444 error = -ENOENT; 1445 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1446 (new_parent->flags & KERNFS_EMPTY_DIR)) 1447 goto out; 1448 1449 error = 0; 1450 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1451 (strcmp(kn->name, new_name) == 0)) 1452 goto out; /* nothing to rename */ 1453 1454 error = -EEXIST; 1455 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1456 goto out; 1457 1458 /* rename kernfs_node */ 1459 if (strcmp(kn->name, new_name) != 0) { 1460 error = -ENOMEM; 1461 new_name = kstrdup_const(new_name, GFP_KERNEL); 1462 if (!new_name) 1463 goto out; 1464 } else { 1465 new_name = NULL; 1466 } 1467 1468 /* 1469 * Move to the appropriate place in the appropriate directories rbtree. 1470 */ 1471 kernfs_unlink_sibling(kn); 1472 kernfs_get(new_parent); 1473 1474 /* rename_lock protects ->parent and ->name accessors */ 1475 spin_lock_irq(&kernfs_rename_lock); 1476 1477 old_parent = kn->parent; 1478 kn->parent = new_parent; 1479 1480 kn->ns = new_ns; 1481 if (new_name) { 1482 old_name = kn->name; 1483 kn->name = new_name; 1484 } 1485 1486 spin_unlock_irq(&kernfs_rename_lock); 1487 1488 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1489 kernfs_link_sibling(kn); 1490 1491 kernfs_put(old_parent); 1492 kfree_const(old_name); 1493 1494 error = 0; 1495 out: 1496 mutex_unlock(&kernfs_mutex); 1497 return error; 1498 } 1499 1500 /* Relationship between s_mode and the DT_xxx types */ 1501 static inline unsigned char dt_type(struct kernfs_node *kn) 1502 { 1503 return (kn->mode >> 12) & 15; 1504 } 1505 1506 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1507 { 1508 kernfs_put(filp->private_data); 1509 return 0; 1510 } 1511 1512 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1513 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1514 { 1515 if (pos) { 1516 int valid = kernfs_active(pos) && 1517 pos->parent == parent && hash == pos->hash; 1518 kernfs_put(pos); 1519 if (!valid) 1520 pos = NULL; 1521 } 1522 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1523 struct rb_node *node = parent->dir.children.rb_node; 1524 while (node) { 1525 pos = rb_to_kn(node); 1526 1527 if (hash < pos->hash) 1528 node = node->rb_left; 1529 else if (hash > pos->hash) 1530 node = node->rb_right; 1531 else 1532 break; 1533 } 1534 } 1535 /* Skip over entries which are dying/dead or in the wrong namespace */ 1536 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1537 struct rb_node *node = rb_next(&pos->rb); 1538 if (!node) 1539 pos = NULL; 1540 else 1541 pos = rb_to_kn(node); 1542 } 1543 return pos; 1544 } 1545 1546 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1547 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1548 { 1549 pos = kernfs_dir_pos(ns, parent, ino, pos); 1550 if (pos) { 1551 do { 1552 struct rb_node *node = rb_next(&pos->rb); 1553 if (!node) 1554 pos = NULL; 1555 else 1556 pos = rb_to_kn(node); 1557 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1558 } 1559 return pos; 1560 } 1561 1562 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1563 { 1564 struct dentry *dentry = file->f_path.dentry; 1565 struct kernfs_node *parent = dentry->d_fsdata; 1566 struct kernfs_node *pos = file->private_data; 1567 const void *ns = NULL; 1568 1569 if (!dir_emit_dots(file, ctx)) 1570 return 0; 1571 mutex_lock(&kernfs_mutex); 1572 1573 if (kernfs_ns_enabled(parent)) 1574 ns = kernfs_info(dentry->d_sb)->ns; 1575 1576 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1577 pos; 1578 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1579 const char *name = pos->name; 1580 unsigned int type = dt_type(pos); 1581 int len = strlen(name); 1582 ino_t ino = pos->ino; 1583 1584 ctx->pos = pos->hash; 1585 file->private_data = pos; 1586 kernfs_get(pos); 1587 1588 mutex_unlock(&kernfs_mutex); 1589 if (!dir_emit(ctx, name, len, ino, type)) 1590 return 0; 1591 mutex_lock(&kernfs_mutex); 1592 } 1593 mutex_unlock(&kernfs_mutex); 1594 file->private_data = NULL; 1595 ctx->pos = INT_MAX; 1596 return 0; 1597 } 1598 1599 const struct file_operations kernfs_dir_fops = { 1600 .read = generic_read_dir, 1601 .iterate_shared = kernfs_fop_readdir, 1602 .release = kernfs_dir_fop_release, 1603 .llseek = generic_file_llseek, 1604 }; 1605