xref: /linux/fs/kernfs/dir.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path_len - determine the length of the full path of a given node
96  * @kn: kernfs_node of interest
97  *
98  * The returned length doesn't include the space for the terminating '\0'.
99  */
100 size_t kernfs_path_len(struct kernfs_node *kn)
101 {
102 	size_t len = 0;
103 	unsigned long flags;
104 
105 	spin_lock_irqsave(&kernfs_rename_lock, flags);
106 
107 	do {
108 		len += strlen(kn->name) + 1;
109 		kn = kn->parent;
110 	} while (kn && kn->parent);
111 
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 
114 	return len;
115 }
116 
117 /**
118  * kernfs_path - build full path of a given node
119  * @kn: kernfs_node of interest
120  * @buf: buffer to copy @kn's name into
121  * @buflen: size of @buf
122  *
123  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
124  * path is built from the end of @buf so the returned pointer usually
125  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
126  * and %NULL is returned.
127  */
128 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129 {
130 	unsigned long flags;
131 	char *p;
132 
133 	spin_lock_irqsave(&kernfs_rename_lock, flags);
134 	p = kernfs_path_locked(kn, buf, buflen);
135 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 	return p;
137 }
138 EXPORT_SYMBOL_GPL(kernfs_path);
139 
140 /**
141  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142  * @kn: kernfs_node of interest
143  *
144  * This function can be called from any context.
145  */
146 void pr_cont_kernfs_name(struct kernfs_node *kn)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&kernfs_rename_lock, flags);
151 
152 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 	pr_cont("%s", kernfs_pr_cont_buf);
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160  * @kn: kernfs_node of interest
161  *
162  * This function can be called from any context.
163  */
164 void pr_cont_kernfs_path(struct kernfs_node *kn)
165 {
166 	unsigned long flags;
167 	char *p;
168 
169 	spin_lock_irqsave(&kernfs_rename_lock, flags);
170 
171 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 			       sizeof(kernfs_pr_cont_buf));
173 	if (p)
174 		pr_cont("%s", p);
175 	else
176 		pr_cont("<name too long>");
177 
178 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 }
180 
181 /**
182  * kernfs_get_parent - determine the parent node and pin it
183  * @kn: kernfs_node of interest
184  *
185  * Determines @kn's parent, pins and returns it.  This function can be
186  * called from any context.
187  */
188 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189 {
190 	struct kernfs_node *parent;
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&kernfs_rename_lock, flags);
194 	parent = kn->parent;
195 	kernfs_get(parent);
196 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197 
198 	return parent;
199 }
200 
201 /**
202  *	kernfs_name_hash
203  *	@name: Null terminated string to hash
204  *	@ns:   Namespace tag to hash
205  *
206  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
207  */
208 static unsigned int kernfs_name_hash(const char *name, const void *ns)
209 {
210 	unsigned long hash = init_name_hash();
211 	unsigned int len = strlen(name);
212 	while (len--)
213 		hash = partial_name_hash(*name++, hash);
214 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 	hash &= 0x7fffffffU;
216 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 	if (hash < 2)
218 		hash += 2;
219 	if (hash >= INT_MAX)
220 		hash = INT_MAX - 1;
221 	return hash;
222 }
223 
224 static int kernfs_name_compare(unsigned int hash, const char *name,
225 			       const void *ns, const struct kernfs_node *kn)
226 {
227 	if (hash < kn->hash)
228 		return -1;
229 	if (hash > kn->hash)
230 		return 1;
231 	if (ns < kn->ns)
232 		return -1;
233 	if (ns > kn->ns)
234 		return 1;
235 	return strcmp(name, kn->name);
236 }
237 
238 static int kernfs_sd_compare(const struct kernfs_node *left,
239 			     const struct kernfs_node *right)
240 {
241 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
242 }
243 
244 /**
245  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
246  *	@kn: kernfs_node of interest
247  *
248  *	Link @kn into its sibling rbtree which starts from
249  *	@kn->parent->dir.children.
250  *
251  *	Locking:
252  *	mutex_lock(kernfs_mutex)
253  *
254  *	RETURNS:
255  *	0 on susccess -EEXIST on failure.
256  */
257 static int kernfs_link_sibling(struct kernfs_node *kn)
258 {
259 	struct rb_node **node = &kn->parent->dir.children.rb_node;
260 	struct rb_node *parent = NULL;
261 
262 	while (*node) {
263 		struct kernfs_node *pos;
264 		int result;
265 
266 		pos = rb_to_kn(*node);
267 		parent = *node;
268 		result = kernfs_sd_compare(kn, pos);
269 		if (result < 0)
270 			node = &pos->rb.rb_left;
271 		else if (result > 0)
272 			node = &pos->rb.rb_right;
273 		else
274 			return -EEXIST;
275 	}
276 
277 	/* add new node and rebalance the tree */
278 	rb_link_node(&kn->rb, parent, node);
279 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
280 
281 	/* successfully added, account subdir number */
282 	if (kernfs_type(kn) == KERNFS_DIR)
283 		kn->parent->dir.subdirs++;
284 
285 	return 0;
286 }
287 
288 /**
289  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290  *	@kn: kernfs_node of interest
291  *
292  *	Try to unlink @kn from its sibling rbtree which starts from
293  *	kn->parent->dir.children.  Returns %true if @kn was actually
294  *	removed, %false if @kn wasn't on the rbtree.
295  *
296  *	Locking:
297  *	mutex_lock(kernfs_mutex)
298  */
299 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
300 {
301 	if (RB_EMPTY_NODE(&kn->rb))
302 		return false;
303 
304 	if (kernfs_type(kn) == KERNFS_DIR)
305 		kn->parent->dir.subdirs--;
306 
307 	rb_erase(&kn->rb, &kn->parent->dir.children);
308 	RB_CLEAR_NODE(&kn->rb);
309 	return true;
310 }
311 
312 /**
313  *	kernfs_get_active - get an active reference to kernfs_node
314  *	@kn: kernfs_node to get an active reference to
315  *
316  *	Get an active reference of @kn.  This function is noop if @kn
317  *	is NULL.
318  *
319  *	RETURNS:
320  *	Pointer to @kn on success, NULL on failure.
321  */
322 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
323 {
324 	if (unlikely(!kn))
325 		return NULL;
326 
327 	if (!atomic_inc_unless_negative(&kn->active))
328 		return NULL;
329 
330 	if (kernfs_lockdep(kn))
331 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 	return kn;
333 }
334 
335 /**
336  *	kernfs_put_active - put an active reference to kernfs_node
337  *	@kn: kernfs_node to put an active reference to
338  *
339  *	Put an active reference to @kn.  This function is noop if @kn
340  *	is NULL.
341  */
342 void kernfs_put_active(struct kernfs_node *kn)
343 {
344 	struct kernfs_root *root = kernfs_root(kn);
345 	int v;
346 
347 	if (unlikely(!kn))
348 		return;
349 
350 	if (kernfs_lockdep(kn))
351 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 	v = atomic_dec_return(&kn->active);
353 	if (likely(v != KN_DEACTIVATED_BIAS))
354 		return;
355 
356 	wake_up_all(&root->deactivate_waitq);
357 }
358 
359 /**
360  * kernfs_drain - drain kernfs_node
361  * @kn: kernfs_node to drain
362  *
363  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
364  * removers may invoke this function concurrently on @kn and all will
365  * return after draining is complete.
366  */
367 static void kernfs_drain(struct kernfs_node *kn)
368 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
369 {
370 	struct kernfs_root *root = kernfs_root(kn);
371 
372 	lockdep_assert_held(&kernfs_mutex);
373 	WARN_ON_ONCE(kernfs_active(kn));
374 
375 	mutex_unlock(&kernfs_mutex);
376 
377 	if (kernfs_lockdep(kn)) {
378 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 			lock_contended(&kn->dep_map, _RET_IP_);
381 	}
382 
383 	/* but everyone should wait for draining */
384 	wait_event(root->deactivate_waitq,
385 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
386 
387 	if (kernfs_lockdep(kn)) {
388 		lock_acquired(&kn->dep_map, _RET_IP_);
389 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 	}
391 
392 	kernfs_unmap_bin_file(kn);
393 
394 	mutex_lock(&kernfs_mutex);
395 }
396 
397 /**
398  * kernfs_get - get a reference count on a kernfs_node
399  * @kn: the target kernfs_node
400  */
401 void kernfs_get(struct kernfs_node *kn)
402 {
403 	if (kn) {
404 		WARN_ON(!atomic_read(&kn->count));
405 		atomic_inc(&kn->count);
406 	}
407 }
408 EXPORT_SYMBOL_GPL(kernfs_get);
409 
410 /**
411  * kernfs_put - put a reference count on a kernfs_node
412  * @kn: the target kernfs_node
413  *
414  * Put a reference count of @kn and destroy it if it reached zero.
415  */
416 void kernfs_put(struct kernfs_node *kn)
417 {
418 	struct kernfs_node *parent;
419 	struct kernfs_root *root;
420 
421 	if (!kn || !atomic_dec_and_test(&kn->count))
422 		return;
423 	root = kernfs_root(kn);
424  repeat:
425 	/*
426 	 * Moving/renaming is always done while holding reference.
427 	 * kn->parent won't change beneath us.
428 	 */
429 	parent = kn->parent;
430 
431 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
434 
435 	if (kernfs_type(kn) == KERNFS_LINK)
436 		kernfs_put(kn->symlink.target_kn);
437 
438 	kfree_const(kn->name);
439 
440 	if (kn->iattr) {
441 		if (kn->iattr->ia_secdata)
442 			security_release_secctx(kn->iattr->ia_secdata,
443 						kn->iattr->ia_secdata_len);
444 		simple_xattrs_free(&kn->iattr->xattrs);
445 	}
446 	kfree(kn->iattr);
447 	ida_simple_remove(&root->ino_ida, kn->ino);
448 	kmem_cache_free(kernfs_node_cache, kn);
449 
450 	kn = parent;
451 	if (kn) {
452 		if (atomic_dec_and_test(&kn->count))
453 			goto repeat;
454 	} else {
455 		/* just released the root kn, free @root too */
456 		ida_destroy(&root->ino_ida);
457 		kfree(root);
458 	}
459 }
460 EXPORT_SYMBOL_GPL(kernfs_put);
461 
462 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
463 {
464 	struct kernfs_node *kn;
465 
466 	if (flags & LOOKUP_RCU)
467 		return -ECHILD;
468 
469 	/* Always perform fresh lookup for negatives */
470 	if (d_really_is_negative(dentry))
471 		goto out_bad_unlocked;
472 
473 	kn = dentry->d_fsdata;
474 	mutex_lock(&kernfs_mutex);
475 
476 	/* The kernfs node has been deactivated */
477 	if (!kernfs_active(kn))
478 		goto out_bad;
479 
480 	/* The kernfs node has been moved? */
481 	if (dentry->d_parent->d_fsdata != kn->parent)
482 		goto out_bad;
483 
484 	/* The kernfs node has been renamed */
485 	if (strcmp(dentry->d_name.name, kn->name) != 0)
486 		goto out_bad;
487 
488 	/* The kernfs node has been moved to a different namespace */
489 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
491 		goto out_bad;
492 
493 	mutex_unlock(&kernfs_mutex);
494 	return 1;
495 out_bad:
496 	mutex_unlock(&kernfs_mutex);
497 out_bad_unlocked:
498 	return 0;
499 }
500 
501 static void kernfs_dop_release(struct dentry *dentry)
502 {
503 	kernfs_put(dentry->d_fsdata);
504 }
505 
506 const struct dentry_operations kernfs_dops = {
507 	.d_revalidate	= kernfs_dop_revalidate,
508 	.d_release	= kernfs_dop_release,
509 };
510 
511 /**
512  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513  * @dentry: the dentry in question
514  *
515  * Return the kernfs_node associated with @dentry.  If @dentry is not a
516  * kernfs one, %NULL is returned.
517  *
518  * While the returned kernfs_node will stay accessible as long as @dentry
519  * is accessible, the returned node can be in any state and the caller is
520  * fully responsible for determining what's accessible.
521  */
522 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523 {
524 	if (dentry->d_sb->s_op == &kernfs_sops)
525 		return dentry->d_fsdata;
526 	return NULL;
527 }
528 
529 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 					     const char *name, umode_t mode,
531 					     unsigned flags)
532 {
533 	struct kernfs_node *kn;
534 	int ret;
535 
536 	name = kstrdup_const(name, GFP_KERNEL);
537 	if (!name)
538 		return NULL;
539 
540 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 	if (!kn)
542 		goto err_out1;
543 
544 	/*
545 	 * If the ino of the sysfs entry created for a kmem cache gets
546 	 * allocated from an ida layer, which is accounted to the memcg that
547 	 * owns the cache, the memcg will get pinned forever. So do not account
548 	 * ino ida allocations.
549 	 */
550 	ret = ida_simple_get(&root->ino_ida, 1, 0,
551 			     GFP_KERNEL | __GFP_NOACCOUNT);
552 	if (ret < 0)
553 		goto err_out2;
554 	kn->ino = ret;
555 
556 	atomic_set(&kn->count, 1);
557 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
558 	RB_CLEAR_NODE(&kn->rb);
559 
560 	kn->name = name;
561 	kn->mode = mode;
562 	kn->flags = flags;
563 
564 	return kn;
565 
566  err_out2:
567 	kmem_cache_free(kernfs_node_cache, kn);
568  err_out1:
569 	kfree_const(name);
570 	return NULL;
571 }
572 
573 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
574 				    const char *name, umode_t mode,
575 				    unsigned flags)
576 {
577 	struct kernfs_node *kn;
578 
579 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
580 	if (kn) {
581 		kernfs_get(parent);
582 		kn->parent = parent;
583 	}
584 	return kn;
585 }
586 
587 /**
588  *	kernfs_add_one - add kernfs_node to parent without warning
589  *	@kn: kernfs_node to be added
590  *
591  *	The caller must already have initialized @kn->parent.  This
592  *	function increments nlink of the parent's inode if @kn is a
593  *	directory and link into the children list of the parent.
594  *
595  *	RETURNS:
596  *	0 on success, -EEXIST if entry with the given name already
597  *	exists.
598  */
599 int kernfs_add_one(struct kernfs_node *kn)
600 {
601 	struct kernfs_node *parent = kn->parent;
602 	struct kernfs_iattrs *ps_iattr;
603 	bool has_ns;
604 	int ret;
605 
606 	mutex_lock(&kernfs_mutex);
607 
608 	ret = -EINVAL;
609 	has_ns = kernfs_ns_enabled(parent);
610 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
611 		 has_ns ? "required" : "invalid", parent->name, kn->name))
612 		goto out_unlock;
613 
614 	if (kernfs_type(parent) != KERNFS_DIR)
615 		goto out_unlock;
616 
617 	ret = -ENOENT;
618 	if (parent->flags & KERNFS_EMPTY_DIR)
619 		goto out_unlock;
620 
621 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
622 		goto out_unlock;
623 
624 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
625 
626 	ret = kernfs_link_sibling(kn);
627 	if (ret)
628 		goto out_unlock;
629 
630 	/* Update timestamps on the parent */
631 	ps_iattr = parent->iattr;
632 	if (ps_iattr) {
633 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
634 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
635 	}
636 
637 	mutex_unlock(&kernfs_mutex);
638 
639 	/*
640 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
641 	 * If not activated here, the kernfs user is responsible for
642 	 * activating the node with kernfs_activate().  A node which hasn't
643 	 * been activated is not visible to userland and its removal won't
644 	 * trigger deactivation.
645 	 */
646 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
647 		kernfs_activate(kn);
648 	return 0;
649 
650 out_unlock:
651 	mutex_unlock(&kernfs_mutex);
652 	return ret;
653 }
654 
655 /**
656  * kernfs_find_ns - find kernfs_node with the given name
657  * @parent: kernfs_node to search under
658  * @name: name to look for
659  * @ns: the namespace tag to use
660  *
661  * Look for kernfs_node with name @name under @parent.  Returns pointer to
662  * the found kernfs_node on success, %NULL on failure.
663  */
664 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
665 					  const unsigned char *name,
666 					  const void *ns)
667 {
668 	struct rb_node *node = parent->dir.children.rb_node;
669 	bool has_ns = kernfs_ns_enabled(parent);
670 	unsigned int hash;
671 
672 	lockdep_assert_held(&kernfs_mutex);
673 
674 	if (has_ns != (bool)ns) {
675 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
676 		     has_ns ? "required" : "invalid", parent->name, name);
677 		return NULL;
678 	}
679 
680 	hash = kernfs_name_hash(name, ns);
681 	while (node) {
682 		struct kernfs_node *kn;
683 		int result;
684 
685 		kn = rb_to_kn(node);
686 		result = kernfs_name_compare(hash, name, ns, kn);
687 		if (result < 0)
688 			node = node->rb_left;
689 		else if (result > 0)
690 			node = node->rb_right;
691 		else
692 			return kn;
693 	}
694 	return NULL;
695 }
696 
697 /**
698  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
699  * @parent: kernfs_node to search under
700  * @name: name to look for
701  * @ns: the namespace tag to use
702  *
703  * Look for kernfs_node with name @name under @parent and get a reference
704  * if found.  This function may sleep and returns pointer to the found
705  * kernfs_node on success, %NULL on failure.
706  */
707 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
708 					   const char *name, const void *ns)
709 {
710 	struct kernfs_node *kn;
711 
712 	mutex_lock(&kernfs_mutex);
713 	kn = kernfs_find_ns(parent, name, ns);
714 	kernfs_get(kn);
715 	mutex_unlock(&kernfs_mutex);
716 
717 	return kn;
718 }
719 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
720 
721 /**
722  * kernfs_create_root - create a new kernfs hierarchy
723  * @scops: optional syscall operations for the hierarchy
724  * @flags: KERNFS_ROOT_* flags
725  * @priv: opaque data associated with the new directory
726  *
727  * Returns the root of the new hierarchy on success, ERR_PTR() value on
728  * failure.
729  */
730 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
731 				       unsigned int flags, void *priv)
732 {
733 	struct kernfs_root *root;
734 	struct kernfs_node *kn;
735 
736 	root = kzalloc(sizeof(*root), GFP_KERNEL);
737 	if (!root)
738 		return ERR_PTR(-ENOMEM);
739 
740 	ida_init(&root->ino_ida);
741 	INIT_LIST_HEAD(&root->supers);
742 
743 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
744 			       KERNFS_DIR);
745 	if (!kn) {
746 		ida_destroy(&root->ino_ida);
747 		kfree(root);
748 		return ERR_PTR(-ENOMEM);
749 	}
750 
751 	kn->priv = priv;
752 	kn->dir.root = root;
753 
754 	root->syscall_ops = scops;
755 	root->flags = flags;
756 	root->kn = kn;
757 	init_waitqueue_head(&root->deactivate_waitq);
758 
759 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
760 		kernfs_activate(kn);
761 
762 	return root;
763 }
764 
765 /**
766  * kernfs_destroy_root - destroy a kernfs hierarchy
767  * @root: root of the hierarchy to destroy
768  *
769  * Destroy the hierarchy anchored at @root by removing all existing
770  * directories and destroying @root.
771  */
772 void kernfs_destroy_root(struct kernfs_root *root)
773 {
774 	kernfs_remove(root->kn);	/* will also free @root */
775 }
776 
777 /**
778  * kernfs_create_dir_ns - create a directory
779  * @parent: parent in which to create a new directory
780  * @name: name of the new directory
781  * @mode: mode of the new directory
782  * @priv: opaque data associated with the new directory
783  * @ns: optional namespace tag of the directory
784  *
785  * Returns the created node on success, ERR_PTR() value on failure.
786  */
787 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
788 					 const char *name, umode_t mode,
789 					 void *priv, const void *ns)
790 {
791 	struct kernfs_node *kn;
792 	int rc;
793 
794 	/* allocate */
795 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
796 	if (!kn)
797 		return ERR_PTR(-ENOMEM);
798 
799 	kn->dir.root = parent->dir.root;
800 	kn->ns = ns;
801 	kn->priv = priv;
802 
803 	/* link in */
804 	rc = kernfs_add_one(kn);
805 	if (!rc)
806 		return kn;
807 
808 	kernfs_put(kn);
809 	return ERR_PTR(rc);
810 }
811 
812 /**
813  * kernfs_create_empty_dir - create an always empty directory
814  * @parent: parent in which to create a new directory
815  * @name: name of the new directory
816  *
817  * Returns the created node on success, ERR_PTR() value on failure.
818  */
819 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
820 					    const char *name)
821 {
822 	struct kernfs_node *kn;
823 	int rc;
824 
825 	/* allocate */
826 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
827 	if (!kn)
828 		return ERR_PTR(-ENOMEM);
829 
830 	kn->flags |= KERNFS_EMPTY_DIR;
831 	kn->dir.root = parent->dir.root;
832 	kn->ns = NULL;
833 	kn->priv = NULL;
834 
835 	/* link in */
836 	rc = kernfs_add_one(kn);
837 	if (!rc)
838 		return kn;
839 
840 	kernfs_put(kn);
841 	return ERR_PTR(rc);
842 }
843 
844 static struct dentry *kernfs_iop_lookup(struct inode *dir,
845 					struct dentry *dentry,
846 					unsigned int flags)
847 {
848 	struct dentry *ret;
849 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
850 	struct kernfs_node *kn;
851 	struct inode *inode;
852 	const void *ns = NULL;
853 
854 	mutex_lock(&kernfs_mutex);
855 
856 	if (kernfs_ns_enabled(parent))
857 		ns = kernfs_info(dir->i_sb)->ns;
858 
859 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
860 
861 	/* no such entry */
862 	if (!kn || !kernfs_active(kn)) {
863 		ret = NULL;
864 		goto out_unlock;
865 	}
866 	kernfs_get(kn);
867 	dentry->d_fsdata = kn;
868 
869 	/* attach dentry and inode */
870 	inode = kernfs_get_inode(dir->i_sb, kn);
871 	if (!inode) {
872 		ret = ERR_PTR(-ENOMEM);
873 		goto out_unlock;
874 	}
875 
876 	/* instantiate and hash dentry */
877 	ret = d_splice_alias(inode, dentry);
878  out_unlock:
879 	mutex_unlock(&kernfs_mutex);
880 	return ret;
881 }
882 
883 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
884 			    umode_t mode)
885 {
886 	struct kernfs_node *parent = dir->i_private;
887 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
888 	int ret;
889 
890 	if (!scops || !scops->mkdir)
891 		return -EPERM;
892 
893 	if (!kernfs_get_active(parent))
894 		return -ENODEV;
895 
896 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
897 
898 	kernfs_put_active(parent);
899 	return ret;
900 }
901 
902 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
903 {
904 	struct kernfs_node *kn  = dentry->d_fsdata;
905 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
906 	int ret;
907 
908 	if (!scops || !scops->rmdir)
909 		return -EPERM;
910 
911 	if (!kernfs_get_active(kn))
912 		return -ENODEV;
913 
914 	ret = scops->rmdir(kn);
915 
916 	kernfs_put_active(kn);
917 	return ret;
918 }
919 
920 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
921 			     struct inode *new_dir, struct dentry *new_dentry)
922 {
923 	struct kernfs_node *kn  = old_dentry->d_fsdata;
924 	struct kernfs_node *new_parent = new_dir->i_private;
925 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
926 	int ret;
927 
928 	if (!scops || !scops->rename)
929 		return -EPERM;
930 
931 	if (!kernfs_get_active(kn))
932 		return -ENODEV;
933 
934 	if (!kernfs_get_active(new_parent)) {
935 		kernfs_put_active(kn);
936 		return -ENODEV;
937 	}
938 
939 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
940 
941 	kernfs_put_active(new_parent);
942 	kernfs_put_active(kn);
943 	return ret;
944 }
945 
946 const struct inode_operations kernfs_dir_iops = {
947 	.lookup		= kernfs_iop_lookup,
948 	.permission	= kernfs_iop_permission,
949 	.setattr	= kernfs_iop_setattr,
950 	.getattr	= kernfs_iop_getattr,
951 	.setxattr	= kernfs_iop_setxattr,
952 	.removexattr	= kernfs_iop_removexattr,
953 	.getxattr	= kernfs_iop_getxattr,
954 	.listxattr	= kernfs_iop_listxattr,
955 
956 	.mkdir		= kernfs_iop_mkdir,
957 	.rmdir		= kernfs_iop_rmdir,
958 	.rename		= kernfs_iop_rename,
959 };
960 
961 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
962 {
963 	struct kernfs_node *last;
964 
965 	while (true) {
966 		struct rb_node *rbn;
967 
968 		last = pos;
969 
970 		if (kernfs_type(pos) != KERNFS_DIR)
971 			break;
972 
973 		rbn = rb_first(&pos->dir.children);
974 		if (!rbn)
975 			break;
976 
977 		pos = rb_to_kn(rbn);
978 	}
979 
980 	return last;
981 }
982 
983 /**
984  * kernfs_next_descendant_post - find the next descendant for post-order walk
985  * @pos: the current position (%NULL to initiate traversal)
986  * @root: kernfs_node whose descendants to walk
987  *
988  * Find the next descendant to visit for post-order traversal of @root's
989  * descendants.  @root is included in the iteration and the last node to be
990  * visited.
991  */
992 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
993 						       struct kernfs_node *root)
994 {
995 	struct rb_node *rbn;
996 
997 	lockdep_assert_held(&kernfs_mutex);
998 
999 	/* if first iteration, visit leftmost descendant which may be root */
1000 	if (!pos)
1001 		return kernfs_leftmost_descendant(root);
1002 
1003 	/* if we visited @root, we're done */
1004 	if (pos == root)
1005 		return NULL;
1006 
1007 	/* if there's an unvisited sibling, visit its leftmost descendant */
1008 	rbn = rb_next(&pos->rb);
1009 	if (rbn)
1010 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1011 
1012 	/* no sibling left, visit parent */
1013 	return pos->parent;
1014 }
1015 
1016 /**
1017  * kernfs_activate - activate a node which started deactivated
1018  * @kn: kernfs_node whose subtree is to be activated
1019  *
1020  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1021  * needs to be explicitly activated.  A node which hasn't been activated
1022  * isn't visible to userland and deactivation is skipped during its
1023  * removal.  This is useful to construct atomic init sequences where
1024  * creation of multiple nodes should either succeed or fail atomically.
1025  *
1026  * The caller is responsible for ensuring that this function is not called
1027  * after kernfs_remove*() is invoked on @kn.
1028  */
1029 void kernfs_activate(struct kernfs_node *kn)
1030 {
1031 	struct kernfs_node *pos;
1032 
1033 	mutex_lock(&kernfs_mutex);
1034 
1035 	pos = NULL;
1036 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1037 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1038 			continue;
1039 
1040 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1041 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1042 
1043 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1044 		pos->flags |= KERNFS_ACTIVATED;
1045 	}
1046 
1047 	mutex_unlock(&kernfs_mutex);
1048 }
1049 
1050 static void __kernfs_remove(struct kernfs_node *kn)
1051 {
1052 	struct kernfs_node *pos;
1053 
1054 	lockdep_assert_held(&kernfs_mutex);
1055 
1056 	/*
1057 	 * Short-circuit if non-root @kn has already finished removal.
1058 	 * This is for kernfs_remove_self() which plays with active ref
1059 	 * after removal.
1060 	 */
1061 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1062 		return;
1063 
1064 	pr_debug("kernfs %s: removing\n", kn->name);
1065 
1066 	/* prevent any new usage under @kn by deactivating all nodes */
1067 	pos = NULL;
1068 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1069 		if (kernfs_active(pos))
1070 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1071 
1072 	/* deactivate and unlink the subtree node-by-node */
1073 	do {
1074 		pos = kernfs_leftmost_descendant(kn);
1075 
1076 		/*
1077 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1078 		 * base ref could have been put by someone else by the time
1079 		 * the function returns.  Make sure it doesn't go away
1080 		 * underneath us.
1081 		 */
1082 		kernfs_get(pos);
1083 
1084 		/*
1085 		 * Drain iff @kn was activated.  This avoids draining and
1086 		 * its lockdep annotations for nodes which have never been
1087 		 * activated and allows embedding kernfs_remove() in create
1088 		 * error paths without worrying about draining.
1089 		 */
1090 		if (kn->flags & KERNFS_ACTIVATED)
1091 			kernfs_drain(pos);
1092 		else
1093 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1094 
1095 		/*
1096 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1097 		 * to decide who's responsible for cleanups.
1098 		 */
1099 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1100 			struct kernfs_iattrs *ps_iattr =
1101 				pos->parent ? pos->parent->iattr : NULL;
1102 
1103 			/* update timestamps on the parent */
1104 			if (ps_iattr) {
1105 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1106 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1107 			}
1108 
1109 			kernfs_put(pos);
1110 		}
1111 
1112 		kernfs_put(pos);
1113 	} while (pos != kn);
1114 }
1115 
1116 /**
1117  * kernfs_remove - remove a kernfs_node recursively
1118  * @kn: the kernfs_node to remove
1119  *
1120  * Remove @kn along with all its subdirectories and files.
1121  */
1122 void kernfs_remove(struct kernfs_node *kn)
1123 {
1124 	mutex_lock(&kernfs_mutex);
1125 	__kernfs_remove(kn);
1126 	mutex_unlock(&kernfs_mutex);
1127 }
1128 
1129 /**
1130  * kernfs_break_active_protection - break out of active protection
1131  * @kn: the self kernfs_node
1132  *
1133  * The caller must be running off of a kernfs operation which is invoked
1134  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1135  * this function must also be matched with an invocation of
1136  * kernfs_unbreak_active_protection().
1137  *
1138  * This function releases the active reference of @kn the caller is
1139  * holding.  Once this function is called, @kn may be removed at any point
1140  * and the caller is solely responsible for ensuring that the objects it
1141  * dereferences are accessible.
1142  */
1143 void kernfs_break_active_protection(struct kernfs_node *kn)
1144 {
1145 	/*
1146 	 * Take out ourself out of the active ref dependency chain.  If
1147 	 * we're called without an active ref, lockdep will complain.
1148 	 */
1149 	kernfs_put_active(kn);
1150 }
1151 
1152 /**
1153  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1154  * @kn: the self kernfs_node
1155  *
1156  * If kernfs_break_active_protection() was called, this function must be
1157  * invoked before finishing the kernfs operation.  Note that while this
1158  * function restores the active reference, it doesn't and can't actually
1159  * restore the active protection - @kn may already or be in the process of
1160  * being removed.  Once kernfs_break_active_protection() is invoked, that
1161  * protection is irreversibly gone for the kernfs operation instance.
1162  *
1163  * While this function may be called at any point after
1164  * kernfs_break_active_protection() is invoked, its most useful location
1165  * would be right before the enclosing kernfs operation returns.
1166  */
1167 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1168 {
1169 	/*
1170 	 * @kn->active could be in any state; however, the increment we do
1171 	 * here will be undone as soon as the enclosing kernfs operation
1172 	 * finishes and this temporary bump can't break anything.  If @kn
1173 	 * is alive, nothing changes.  If @kn is being deactivated, the
1174 	 * soon-to-follow put will either finish deactivation or restore
1175 	 * deactivated state.  If @kn is already removed, the temporary
1176 	 * bump is guaranteed to be gone before @kn is released.
1177 	 */
1178 	atomic_inc(&kn->active);
1179 	if (kernfs_lockdep(kn))
1180 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1181 }
1182 
1183 /**
1184  * kernfs_remove_self - remove a kernfs_node from its own method
1185  * @kn: the self kernfs_node to remove
1186  *
1187  * The caller must be running off of a kernfs operation which is invoked
1188  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1189  * implement a file operation which deletes itself.
1190  *
1191  * For example, the "delete" file for a sysfs device directory can be
1192  * implemented by invoking kernfs_remove_self() on the "delete" file
1193  * itself.  This function breaks the circular dependency of trying to
1194  * deactivate self while holding an active ref itself.  It isn't necessary
1195  * to modify the usual removal path to use kernfs_remove_self().  The
1196  * "delete" implementation can simply invoke kernfs_remove_self() on self
1197  * before proceeding with the usual removal path.  kernfs will ignore later
1198  * kernfs_remove() on self.
1199  *
1200  * kernfs_remove_self() can be called multiple times concurrently on the
1201  * same kernfs_node.  Only the first one actually performs removal and
1202  * returns %true.  All others will wait until the kernfs operation which
1203  * won self-removal finishes and return %false.  Note that the losers wait
1204  * for the completion of not only the winning kernfs_remove_self() but also
1205  * the whole kernfs_ops which won the arbitration.  This can be used to
1206  * guarantee, for example, all concurrent writes to a "delete" file to
1207  * finish only after the whole operation is complete.
1208  */
1209 bool kernfs_remove_self(struct kernfs_node *kn)
1210 {
1211 	bool ret;
1212 
1213 	mutex_lock(&kernfs_mutex);
1214 	kernfs_break_active_protection(kn);
1215 
1216 	/*
1217 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1218 	 * the first one will actually perform removal.  When the removal
1219 	 * is complete, SUICIDED is set and the active ref is restored
1220 	 * while holding kernfs_mutex.  The ones which lost arbitration
1221 	 * waits for SUICDED && drained which can happen only after the
1222 	 * enclosing kernfs operation which executed the winning instance
1223 	 * of kernfs_remove_self() finished.
1224 	 */
1225 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1226 		kn->flags |= KERNFS_SUICIDAL;
1227 		__kernfs_remove(kn);
1228 		kn->flags |= KERNFS_SUICIDED;
1229 		ret = true;
1230 	} else {
1231 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1232 		DEFINE_WAIT(wait);
1233 
1234 		while (true) {
1235 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1236 
1237 			if ((kn->flags & KERNFS_SUICIDED) &&
1238 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1239 				break;
1240 
1241 			mutex_unlock(&kernfs_mutex);
1242 			schedule();
1243 			mutex_lock(&kernfs_mutex);
1244 		}
1245 		finish_wait(waitq, &wait);
1246 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1247 		ret = false;
1248 	}
1249 
1250 	/*
1251 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1252 	 * for SUICIDED && deactivated could finish prematurely.
1253 	 */
1254 	kernfs_unbreak_active_protection(kn);
1255 
1256 	mutex_unlock(&kernfs_mutex);
1257 	return ret;
1258 }
1259 
1260 /**
1261  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1262  * @parent: parent of the target
1263  * @name: name of the kernfs_node to remove
1264  * @ns: namespace tag of the kernfs_node to remove
1265  *
1266  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1267  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1268  */
1269 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1270 			     const void *ns)
1271 {
1272 	struct kernfs_node *kn;
1273 
1274 	if (!parent) {
1275 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1276 			name);
1277 		return -ENOENT;
1278 	}
1279 
1280 	mutex_lock(&kernfs_mutex);
1281 
1282 	kn = kernfs_find_ns(parent, name, ns);
1283 	if (kn)
1284 		__kernfs_remove(kn);
1285 
1286 	mutex_unlock(&kernfs_mutex);
1287 
1288 	if (kn)
1289 		return 0;
1290 	else
1291 		return -ENOENT;
1292 }
1293 
1294 /**
1295  * kernfs_rename_ns - move and rename a kernfs_node
1296  * @kn: target node
1297  * @new_parent: new parent to put @sd under
1298  * @new_name: new name
1299  * @new_ns: new namespace tag
1300  */
1301 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1302 		     const char *new_name, const void *new_ns)
1303 {
1304 	struct kernfs_node *old_parent;
1305 	const char *old_name = NULL;
1306 	int error;
1307 
1308 	/* can't move or rename root */
1309 	if (!kn->parent)
1310 		return -EINVAL;
1311 
1312 	mutex_lock(&kernfs_mutex);
1313 
1314 	error = -ENOENT;
1315 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1316 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1317 		goto out;
1318 
1319 	error = 0;
1320 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1321 	    (strcmp(kn->name, new_name) == 0))
1322 		goto out;	/* nothing to rename */
1323 
1324 	error = -EEXIST;
1325 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1326 		goto out;
1327 
1328 	/* rename kernfs_node */
1329 	if (strcmp(kn->name, new_name) != 0) {
1330 		error = -ENOMEM;
1331 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1332 		if (!new_name)
1333 			goto out;
1334 	} else {
1335 		new_name = NULL;
1336 	}
1337 
1338 	/*
1339 	 * Move to the appropriate place in the appropriate directories rbtree.
1340 	 */
1341 	kernfs_unlink_sibling(kn);
1342 	kernfs_get(new_parent);
1343 
1344 	/* rename_lock protects ->parent and ->name accessors */
1345 	spin_lock_irq(&kernfs_rename_lock);
1346 
1347 	old_parent = kn->parent;
1348 	kn->parent = new_parent;
1349 
1350 	kn->ns = new_ns;
1351 	if (new_name) {
1352 		old_name = kn->name;
1353 		kn->name = new_name;
1354 	}
1355 
1356 	spin_unlock_irq(&kernfs_rename_lock);
1357 
1358 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1359 	kernfs_link_sibling(kn);
1360 
1361 	kernfs_put(old_parent);
1362 	kfree_const(old_name);
1363 
1364 	error = 0;
1365  out:
1366 	mutex_unlock(&kernfs_mutex);
1367 	return error;
1368 }
1369 
1370 /* Relationship between s_mode and the DT_xxx types */
1371 static inline unsigned char dt_type(struct kernfs_node *kn)
1372 {
1373 	return (kn->mode >> 12) & 15;
1374 }
1375 
1376 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1377 {
1378 	kernfs_put(filp->private_data);
1379 	return 0;
1380 }
1381 
1382 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1383 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1384 {
1385 	if (pos) {
1386 		int valid = kernfs_active(pos) &&
1387 			pos->parent == parent && hash == pos->hash;
1388 		kernfs_put(pos);
1389 		if (!valid)
1390 			pos = NULL;
1391 	}
1392 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1393 		struct rb_node *node = parent->dir.children.rb_node;
1394 		while (node) {
1395 			pos = rb_to_kn(node);
1396 
1397 			if (hash < pos->hash)
1398 				node = node->rb_left;
1399 			else if (hash > pos->hash)
1400 				node = node->rb_right;
1401 			else
1402 				break;
1403 		}
1404 	}
1405 	/* Skip over entries which are dying/dead or in the wrong namespace */
1406 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1407 		struct rb_node *node = rb_next(&pos->rb);
1408 		if (!node)
1409 			pos = NULL;
1410 		else
1411 			pos = rb_to_kn(node);
1412 	}
1413 	return pos;
1414 }
1415 
1416 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1417 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1418 {
1419 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1420 	if (pos) {
1421 		do {
1422 			struct rb_node *node = rb_next(&pos->rb);
1423 			if (!node)
1424 				pos = NULL;
1425 			else
1426 				pos = rb_to_kn(node);
1427 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1428 	}
1429 	return pos;
1430 }
1431 
1432 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1433 {
1434 	struct dentry *dentry = file->f_path.dentry;
1435 	struct kernfs_node *parent = dentry->d_fsdata;
1436 	struct kernfs_node *pos = file->private_data;
1437 	const void *ns = NULL;
1438 
1439 	if (!dir_emit_dots(file, ctx))
1440 		return 0;
1441 	mutex_lock(&kernfs_mutex);
1442 
1443 	if (kernfs_ns_enabled(parent))
1444 		ns = kernfs_info(dentry->d_sb)->ns;
1445 
1446 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1447 	     pos;
1448 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1449 		const char *name = pos->name;
1450 		unsigned int type = dt_type(pos);
1451 		int len = strlen(name);
1452 		ino_t ino = pos->ino;
1453 
1454 		ctx->pos = pos->hash;
1455 		file->private_data = pos;
1456 		kernfs_get(pos);
1457 
1458 		mutex_unlock(&kernfs_mutex);
1459 		if (!dir_emit(ctx, name, len, ino, type))
1460 			return 0;
1461 		mutex_lock(&kernfs_mutex);
1462 	}
1463 	mutex_unlock(&kernfs_mutex);
1464 	file->private_data = NULL;
1465 	ctx->pos = INT_MAX;
1466 	return 0;
1467 }
1468 
1469 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1470 				    int whence)
1471 {
1472 	struct inode *inode = file_inode(file);
1473 	loff_t ret;
1474 
1475 	mutex_lock(&inode->i_mutex);
1476 	ret = generic_file_llseek(file, offset, whence);
1477 	mutex_unlock(&inode->i_mutex);
1478 
1479 	return ret;
1480 }
1481 
1482 const struct file_operations kernfs_dir_fops = {
1483 	.read		= generic_read_dir,
1484 	.iterate	= kernfs_fop_readdir,
1485 	.release	= kernfs_dir_fop_release,
1486 	.llseek		= kernfs_dir_fop_llseek,
1487 };
1488