1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 DEFINE_MUTEX(kernfs_mutex); 21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 if (!kn) 45 return strlcpy(buf, "(null)", buflen); 46 47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 48 } 49 50 /* kernfs_node_depth - compute depth from @from to @to */ 51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 52 { 53 size_t depth = 0; 54 55 while (to->parent && to != from) { 56 depth++; 57 to = to->parent; 58 } 59 return depth; 60 } 61 62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 63 struct kernfs_node *b) 64 { 65 size_t da, db; 66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 67 68 if (ra != rb) 69 return NULL; 70 71 da = kernfs_depth(ra->kn, a); 72 db = kernfs_depth(rb->kn, b); 73 74 while (da > db) { 75 a = a->parent; 76 da--; 77 } 78 while (db > da) { 79 b = b->parent; 80 db--; 81 } 82 83 /* worst case b and a will be the same at root */ 84 while (b != a) { 85 b = b->parent; 86 a = a->parent; 87 } 88 89 return a; 90 } 91 92 /** 93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 94 * where kn_from is treated as root of the path. 95 * @kn_from: kernfs node which should be treated as root for the path 96 * @kn_to: kernfs node to which path is needed 97 * @buf: buffer to copy the path into 98 * @buflen: size of @buf 99 * 100 * We need to handle couple of scenarios here: 101 * [1] when @kn_from is an ancestor of @kn_to at some level 102 * kn_from: /n1/n2/n3 103 * kn_to: /n1/n2/n3/n4/n5 104 * result: /n4/n5 105 * 106 * [2] when @kn_from is on a different hierarchy and we need to find common 107 * ancestor between @kn_from and @kn_to. 108 * kn_from: /n1/n2/n3/n4 109 * kn_to: /n1/n2/n5 110 * result: /../../n5 111 * OR 112 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 113 * kn_to: /n1/n2/n3 [depth=3] 114 * result: /../.. 115 * 116 * [3] when @kn_to is NULL result will be "(null)" 117 * 118 * Returns the length of the full path. If the full length is equal to or 119 * greater than @buflen, @buf contains the truncated path with the trailing 120 * '\0'. On error, -errno is returned. 121 */ 122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 123 struct kernfs_node *kn_from, 124 char *buf, size_t buflen) 125 { 126 struct kernfs_node *kn, *common; 127 const char parent_str[] = "/.."; 128 size_t depth_from, depth_to, len = 0; 129 int i, j; 130 131 if (!kn_to) 132 return strlcpy(buf, "(null)", buflen); 133 134 if (!kn_from) 135 kn_from = kernfs_root(kn_to)->kn; 136 137 if (kn_from == kn_to) 138 return strlcpy(buf, "/", buflen); 139 140 if (!buf) 141 return -EINVAL; 142 143 common = kernfs_common_ancestor(kn_from, kn_to); 144 if (WARN_ON(!common)) 145 return -EINVAL; 146 147 depth_to = kernfs_depth(common, kn_to); 148 depth_from = kernfs_depth(common, kn_from); 149 150 buf[0] = '\0'; 151 152 for (i = 0; i < depth_from; i++) 153 len += strlcpy(buf + len, parent_str, 154 len < buflen ? buflen - len : 0); 155 156 /* Calculate how many bytes we need for the rest */ 157 for (i = depth_to - 1; i >= 0; i--) { 158 for (kn = kn_to, j = 0; j < i; j++) 159 kn = kn->parent; 160 len += strlcpy(buf + len, "/", 161 len < buflen ? buflen - len : 0); 162 len += strlcpy(buf + len, kn->name, 163 len < buflen ? buflen - len : 0); 164 } 165 166 return len; 167 } 168 169 /** 170 * kernfs_name - obtain the name of a given node 171 * @kn: kernfs_node of interest 172 * @buf: buffer to copy @kn's name into 173 * @buflen: size of @buf 174 * 175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 176 * similar to strlcpy(). It returns the length of @kn's name and if @buf 177 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 178 * 179 * Fills buffer with "(null)" if @kn is NULL. 180 * 181 * This function can be called from any context. 182 */ 183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 184 { 185 unsigned long flags; 186 int ret; 187 188 spin_lock_irqsave(&kernfs_rename_lock, flags); 189 ret = kernfs_name_locked(kn, buf, buflen); 190 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 191 return ret; 192 } 193 194 /** 195 * kernfs_path_from_node - build path of node @to relative to @from. 196 * @from: parent kernfs_node relative to which we need to build the path 197 * @to: kernfs_node of interest 198 * @buf: buffer to copy @to's path into 199 * @buflen: size of @buf 200 * 201 * Builds @to's path relative to @from in @buf. @from and @to must 202 * be on the same kernfs-root. If @from is not parent of @to, then a relative 203 * path (which includes '..'s) as needed to reach from @from to @to is 204 * returned. 205 * 206 * Returns the length of the full path. If the full length is equal to or 207 * greater than @buflen, @buf contains the truncated path with the trailing 208 * '\0'. On error, -errno is returned. 209 */ 210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 211 char *buf, size_t buflen) 212 { 213 unsigned long flags; 214 int ret; 215 216 spin_lock_irqsave(&kernfs_rename_lock, flags); 217 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 218 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 222 223 /** 224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 225 * @kn: kernfs_node of interest 226 * 227 * This function can be called from any context. 228 */ 229 void pr_cont_kernfs_name(struct kernfs_node *kn) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(&kernfs_rename_lock, flags); 234 235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 236 pr_cont("%s", kernfs_pr_cont_buf); 237 238 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 239 } 240 241 /** 242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 243 * @kn: kernfs_node of interest 244 * 245 * This function can be called from any context. 246 */ 247 void pr_cont_kernfs_path(struct kernfs_node *kn) 248 { 249 unsigned long flags; 250 int sz; 251 252 spin_lock_irqsave(&kernfs_rename_lock, flags); 253 254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 255 sizeof(kernfs_pr_cont_buf)); 256 if (sz < 0) { 257 pr_cont("(error)"); 258 goto out; 259 } 260 261 if (sz >= sizeof(kernfs_pr_cont_buf)) { 262 pr_cont("(name too long)"); 263 goto out; 264 } 265 266 pr_cont("%s", kernfs_pr_cont_buf); 267 268 out: 269 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 270 } 271 272 /** 273 * kernfs_get_parent - determine the parent node and pin it 274 * @kn: kernfs_node of interest 275 * 276 * Determines @kn's parent, pins and returns it. This function can be 277 * called from any context. 278 */ 279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 280 { 281 struct kernfs_node *parent; 282 unsigned long flags; 283 284 spin_lock_irqsave(&kernfs_rename_lock, flags); 285 parent = kn->parent; 286 kernfs_get(parent); 287 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 288 289 return parent; 290 } 291 292 /** 293 * kernfs_name_hash 294 * @name: Null terminated string to hash 295 * @ns: Namespace tag to hash 296 * 297 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 298 */ 299 static unsigned int kernfs_name_hash(const char *name, const void *ns) 300 { 301 unsigned long hash = init_name_hash(ns); 302 unsigned int len = strlen(name); 303 while (len--) 304 hash = partial_name_hash(*name++, hash); 305 hash = end_name_hash(hash); 306 hash &= 0x7fffffffU; 307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 308 if (hash < 2) 309 hash += 2; 310 if (hash >= INT_MAX) 311 hash = INT_MAX - 1; 312 return hash; 313 } 314 315 static int kernfs_name_compare(unsigned int hash, const char *name, 316 const void *ns, const struct kernfs_node *kn) 317 { 318 if (hash < kn->hash) 319 return -1; 320 if (hash > kn->hash) 321 return 1; 322 if (ns < kn->ns) 323 return -1; 324 if (ns > kn->ns) 325 return 1; 326 return strcmp(name, kn->name); 327 } 328 329 static int kernfs_sd_compare(const struct kernfs_node *left, 330 const struct kernfs_node *right) 331 { 332 return kernfs_name_compare(left->hash, left->name, left->ns, right); 333 } 334 335 /** 336 * kernfs_link_sibling - link kernfs_node into sibling rbtree 337 * @kn: kernfs_node of interest 338 * 339 * Link @kn into its sibling rbtree which starts from 340 * @kn->parent->dir.children. 341 * 342 * Locking: 343 * mutex_lock(kernfs_mutex) 344 * 345 * RETURNS: 346 * 0 on susccess -EEXIST on failure. 347 */ 348 static int kernfs_link_sibling(struct kernfs_node *kn) 349 { 350 struct rb_node **node = &kn->parent->dir.children.rb_node; 351 struct rb_node *parent = NULL; 352 353 while (*node) { 354 struct kernfs_node *pos; 355 int result; 356 357 pos = rb_to_kn(*node); 358 parent = *node; 359 result = kernfs_sd_compare(kn, pos); 360 if (result < 0) 361 node = &pos->rb.rb_left; 362 else if (result > 0) 363 node = &pos->rb.rb_right; 364 else 365 return -EEXIST; 366 } 367 368 /* add new node and rebalance the tree */ 369 rb_link_node(&kn->rb, parent, node); 370 rb_insert_color(&kn->rb, &kn->parent->dir.children); 371 372 /* successfully added, account subdir number */ 373 if (kernfs_type(kn) == KERNFS_DIR) 374 kn->parent->dir.subdirs++; 375 376 return 0; 377 } 378 379 /** 380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 381 * @kn: kernfs_node of interest 382 * 383 * Try to unlink @kn from its sibling rbtree which starts from 384 * kn->parent->dir.children. Returns %true if @kn was actually 385 * removed, %false if @kn wasn't on the rbtree. 386 * 387 * Locking: 388 * mutex_lock(kernfs_mutex) 389 */ 390 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 391 { 392 if (RB_EMPTY_NODE(&kn->rb)) 393 return false; 394 395 if (kernfs_type(kn) == KERNFS_DIR) 396 kn->parent->dir.subdirs--; 397 398 rb_erase(&kn->rb, &kn->parent->dir.children); 399 RB_CLEAR_NODE(&kn->rb); 400 return true; 401 } 402 403 /** 404 * kernfs_get_active - get an active reference to kernfs_node 405 * @kn: kernfs_node to get an active reference to 406 * 407 * Get an active reference of @kn. This function is noop if @kn 408 * is NULL. 409 * 410 * RETURNS: 411 * Pointer to @kn on success, NULL on failure. 412 */ 413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 414 { 415 if (unlikely(!kn)) 416 return NULL; 417 418 if (!atomic_inc_unless_negative(&kn->active)) 419 return NULL; 420 421 if (kernfs_lockdep(kn)) 422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 423 return kn; 424 } 425 426 /** 427 * kernfs_put_active - put an active reference to kernfs_node 428 * @kn: kernfs_node to put an active reference to 429 * 430 * Put an active reference to @kn. This function is noop if @kn 431 * is NULL. 432 */ 433 void kernfs_put_active(struct kernfs_node *kn) 434 { 435 int v; 436 437 if (unlikely(!kn)) 438 return; 439 440 if (kernfs_lockdep(kn)) 441 rwsem_release(&kn->dep_map, _RET_IP_); 442 v = atomic_dec_return(&kn->active); 443 if (likely(v != KN_DEACTIVATED_BIAS)) 444 return; 445 446 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 447 } 448 449 /** 450 * kernfs_drain - drain kernfs_node 451 * @kn: kernfs_node to drain 452 * 453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 454 * removers may invoke this function concurrently on @kn and all will 455 * return after draining is complete. 456 */ 457 static void kernfs_drain(struct kernfs_node *kn) 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 459 { 460 struct kernfs_root *root = kernfs_root(kn); 461 462 lockdep_assert_held(&kernfs_mutex); 463 WARN_ON_ONCE(kernfs_active(kn)); 464 465 mutex_unlock(&kernfs_mutex); 466 467 if (kernfs_lockdep(kn)) { 468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 470 lock_contended(&kn->dep_map, _RET_IP_); 471 } 472 473 /* but everyone should wait for draining */ 474 wait_event(root->deactivate_waitq, 475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 476 477 if (kernfs_lockdep(kn)) { 478 lock_acquired(&kn->dep_map, _RET_IP_); 479 rwsem_release(&kn->dep_map, _RET_IP_); 480 } 481 482 kernfs_drain_open_files(kn); 483 484 mutex_lock(&kernfs_mutex); 485 } 486 487 /** 488 * kernfs_get - get a reference count on a kernfs_node 489 * @kn: the target kernfs_node 490 */ 491 void kernfs_get(struct kernfs_node *kn) 492 { 493 if (kn) { 494 WARN_ON(!atomic_read(&kn->count)); 495 atomic_inc(&kn->count); 496 } 497 } 498 EXPORT_SYMBOL_GPL(kernfs_get); 499 500 /** 501 * kernfs_put - put a reference count on a kernfs_node 502 * @kn: the target kernfs_node 503 * 504 * Put a reference count of @kn and destroy it if it reached zero. 505 */ 506 void kernfs_put(struct kernfs_node *kn) 507 { 508 struct kernfs_node *parent; 509 struct kernfs_root *root; 510 511 if (!kn || !atomic_dec_and_test(&kn->count)) 512 return; 513 root = kernfs_root(kn); 514 repeat: 515 /* 516 * Moving/renaming is always done while holding reference. 517 * kn->parent won't change beneath us. 518 */ 519 parent = kn->parent; 520 521 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 523 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 524 525 if (kernfs_type(kn) == KERNFS_LINK) 526 kernfs_put(kn->symlink.target_kn); 527 528 kfree_const(kn->name); 529 530 if (kn->iattr) { 531 simple_xattrs_free(&kn->iattr->xattrs); 532 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 533 } 534 spin_lock(&kernfs_idr_lock); 535 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 536 spin_unlock(&kernfs_idr_lock); 537 kmem_cache_free(kernfs_node_cache, kn); 538 539 kn = parent; 540 if (kn) { 541 if (atomic_dec_and_test(&kn->count)) 542 goto repeat; 543 } else { 544 /* just released the root kn, free @root too */ 545 idr_destroy(&root->ino_idr); 546 kfree(root); 547 } 548 } 549 EXPORT_SYMBOL_GPL(kernfs_put); 550 551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 552 { 553 struct kernfs_node *kn; 554 555 if (flags & LOOKUP_RCU) 556 return -ECHILD; 557 558 /* Always perform fresh lookup for negatives */ 559 if (d_really_is_negative(dentry)) 560 goto out_bad_unlocked; 561 562 kn = kernfs_dentry_node(dentry); 563 mutex_lock(&kernfs_mutex); 564 565 /* The kernfs node has been deactivated */ 566 if (!kernfs_active(kn)) 567 goto out_bad; 568 569 /* The kernfs node has been moved? */ 570 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 571 goto out_bad; 572 573 /* The kernfs node has been renamed */ 574 if (strcmp(dentry->d_name.name, kn->name) != 0) 575 goto out_bad; 576 577 /* The kernfs node has been moved to a different namespace */ 578 if (kn->parent && kernfs_ns_enabled(kn->parent) && 579 kernfs_info(dentry->d_sb)->ns != kn->ns) 580 goto out_bad; 581 582 mutex_unlock(&kernfs_mutex); 583 return 1; 584 out_bad: 585 mutex_unlock(&kernfs_mutex); 586 out_bad_unlocked: 587 return 0; 588 } 589 590 const struct dentry_operations kernfs_dops = { 591 .d_revalidate = kernfs_dop_revalidate, 592 }; 593 594 /** 595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 596 * @dentry: the dentry in question 597 * 598 * Return the kernfs_node associated with @dentry. If @dentry is not a 599 * kernfs one, %NULL is returned. 600 * 601 * While the returned kernfs_node will stay accessible as long as @dentry 602 * is accessible, the returned node can be in any state and the caller is 603 * fully responsible for determining what's accessible. 604 */ 605 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 606 { 607 if (dentry->d_sb->s_op == &kernfs_sops) 608 return kernfs_dentry_node(dentry); 609 return NULL; 610 } 611 612 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 613 struct kernfs_node *parent, 614 const char *name, umode_t mode, 615 kuid_t uid, kgid_t gid, 616 unsigned flags) 617 { 618 struct kernfs_node *kn; 619 u32 id_highbits; 620 int ret; 621 622 name = kstrdup_const(name, GFP_KERNEL); 623 if (!name) 624 return NULL; 625 626 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 627 if (!kn) 628 goto err_out1; 629 630 idr_preload(GFP_KERNEL); 631 spin_lock(&kernfs_idr_lock); 632 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 633 if (ret >= 0 && ret < root->last_id_lowbits) 634 root->id_highbits++; 635 id_highbits = root->id_highbits; 636 root->last_id_lowbits = ret; 637 spin_unlock(&kernfs_idr_lock); 638 idr_preload_end(); 639 if (ret < 0) 640 goto err_out2; 641 642 kn->id = (u64)id_highbits << 32 | ret; 643 644 atomic_set(&kn->count, 1); 645 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 646 RB_CLEAR_NODE(&kn->rb); 647 648 kn->name = name; 649 kn->mode = mode; 650 kn->flags = flags; 651 652 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 653 struct iattr iattr = { 654 .ia_valid = ATTR_UID | ATTR_GID, 655 .ia_uid = uid, 656 .ia_gid = gid, 657 }; 658 659 ret = __kernfs_setattr(kn, &iattr); 660 if (ret < 0) 661 goto err_out3; 662 } 663 664 if (parent) { 665 ret = security_kernfs_init_security(parent, kn); 666 if (ret) 667 goto err_out3; 668 } 669 670 return kn; 671 672 err_out3: 673 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 674 err_out2: 675 kmem_cache_free(kernfs_node_cache, kn); 676 err_out1: 677 kfree_const(name); 678 return NULL; 679 } 680 681 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 682 const char *name, umode_t mode, 683 kuid_t uid, kgid_t gid, 684 unsigned flags) 685 { 686 struct kernfs_node *kn; 687 688 kn = __kernfs_new_node(kernfs_root(parent), parent, 689 name, mode, uid, gid, flags); 690 if (kn) { 691 kernfs_get(parent); 692 kn->parent = parent; 693 } 694 return kn; 695 } 696 697 /* 698 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 699 * @root: the kernfs root 700 * @id: the target node id 701 * 702 * @id's lower 32bits encode ino and upper gen. If the gen portion is 703 * zero, all generations are matched. 704 * 705 * RETURNS: 706 * NULL on failure. Return a kernfs node with reference counter incremented 707 */ 708 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 709 u64 id) 710 { 711 struct kernfs_node *kn; 712 ino_t ino = kernfs_id_ino(id); 713 u32 gen = kernfs_id_gen(id); 714 715 spin_lock(&kernfs_idr_lock); 716 717 kn = idr_find(&root->ino_idr, (u32)ino); 718 if (!kn) 719 goto err_unlock; 720 721 if (sizeof(ino_t) >= sizeof(u64)) { 722 /* we looked up with the low 32bits, compare the whole */ 723 if (kernfs_ino(kn) != ino) 724 goto err_unlock; 725 } else { 726 /* 0 matches all generations */ 727 if (unlikely(gen && kernfs_gen(kn) != gen)) 728 goto err_unlock; 729 } 730 731 /* 732 * ACTIVATED is protected with kernfs_mutex but it was clear when 733 * @kn was added to idr and we just wanna see it set. No need to 734 * grab kernfs_mutex. 735 */ 736 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) || 737 !atomic_inc_not_zero(&kn->count))) 738 goto err_unlock; 739 740 spin_unlock(&kernfs_idr_lock); 741 return kn; 742 err_unlock: 743 spin_unlock(&kernfs_idr_lock); 744 return NULL; 745 } 746 747 /** 748 * kernfs_add_one - add kernfs_node to parent without warning 749 * @kn: kernfs_node to be added 750 * 751 * The caller must already have initialized @kn->parent. This 752 * function increments nlink of the parent's inode if @kn is a 753 * directory and link into the children list of the parent. 754 * 755 * RETURNS: 756 * 0 on success, -EEXIST if entry with the given name already 757 * exists. 758 */ 759 int kernfs_add_one(struct kernfs_node *kn) 760 { 761 struct kernfs_node *parent = kn->parent; 762 struct kernfs_iattrs *ps_iattr; 763 bool has_ns; 764 int ret; 765 766 mutex_lock(&kernfs_mutex); 767 768 ret = -EINVAL; 769 has_ns = kernfs_ns_enabled(parent); 770 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 771 has_ns ? "required" : "invalid", parent->name, kn->name)) 772 goto out_unlock; 773 774 if (kernfs_type(parent) != KERNFS_DIR) 775 goto out_unlock; 776 777 ret = -ENOENT; 778 if (parent->flags & KERNFS_EMPTY_DIR) 779 goto out_unlock; 780 781 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 782 goto out_unlock; 783 784 kn->hash = kernfs_name_hash(kn->name, kn->ns); 785 786 ret = kernfs_link_sibling(kn); 787 if (ret) 788 goto out_unlock; 789 790 /* Update timestamps on the parent */ 791 ps_iattr = parent->iattr; 792 if (ps_iattr) { 793 ktime_get_real_ts64(&ps_iattr->ia_ctime); 794 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 795 } 796 797 mutex_unlock(&kernfs_mutex); 798 799 /* 800 * Activate the new node unless CREATE_DEACTIVATED is requested. 801 * If not activated here, the kernfs user is responsible for 802 * activating the node with kernfs_activate(). A node which hasn't 803 * been activated is not visible to userland and its removal won't 804 * trigger deactivation. 805 */ 806 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 807 kernfs_activate(kn); 808 return 0; 809 810 out_unlock: 811 mutex_unlock(&kernfs_mutex); 812 return ret; 813 } 814 815 /** 816 * kernfs_find_ns - find kernfs_node with the given name 817 * @parent: kernfs_node to search under 818 * @name: name to look for 819 * @ns: the namespace tag to use 820 * 821 * Look for kernfs_node with name @name under @parent. Returns pointer to 822 * the found kernfs_node on success, %NULL on failure. 823 */ 824 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 825 const unsigned char *name, 826 const void *ns) 827 { 828 struct rb_node *node = parent->dir.children.rb_node; 829 bool has_ns = kernfs_ns_enabled(parent); 830 unsigned int hash; 831 832 lockdep_assert_held(&kernfs_mutex); 833 834 if (has_ns != (bool)ns) { 835 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 836 has_ns ? "required" : "invalid", parent->name, name); 837 return NULL; 838 } 839 840 hash = kernfs_name_hash(name, ns); 841 while (node) { 842 struct kernfs_node *kn; 843 int result; 844 845 kn = rb_to_kn(node); 846 result = kernfs_name_compare(hash, name, ns, kn); 847 if (result < 0) 848 node = node->rb_left; 849 else if (result > 0) 850 node = node->rb_right; 851 else 852 return kn; 853 } 854 return NULL; 855 } 856 857 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 858 const unsigned char *path, 859 const void *ns) 860 { 861 size_t len; 862 char *p, *name; 863 864 lockdep_assert_held(&kernfs_mutex); 865 866 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 867 spin_lock_irq(&kernfs_rename_lock); 868 869 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 870 871 if (len >= sizeof(kernfs_pr_cont_buf)) { 872 spin_unlock_irq(&kernfs_rename_lock); 873 return NULL; 874 } 875 876 p = kernfs_pr_cont_buf; 877 878 while ((name = strsep(&p, "/")) && parent) { 879 if (*name == '\0') 880 continue; 881 parent = kernfs_find_ns(parent, name, ns); 882 } 883 884 spin_unlock_irq(&kernfs_rename_lock); 885 886 return parent; 887 } 888 889 /** 890 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 891 * @parent: kernfs_node to search under 892 * @name: name to look for 893 * @ns: the namespace tag to use 894 * 895 * Look for kernfs_node with name @name under @parent and get a reference 896 * if found. This function may sleep and returns pointer to the found 897 * kernfs_node on success, %NULL on failure. 898 */ 899 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 900 const char *name, const void *ns) 901 { 902 struct kernfs_node *kn; 903 904 mutex_lock(&kernfs_mutex); 905 kn = kernfs_find_ns(parent, name, ns); 906 kernfs_get(kn); 907 mutex_unlock(&kernfs_mutex); 908 909 return kn; 910 } 911 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 912 913 /** 914 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 915 * @parent: kernfs_node to search under 916 * @path: path to look for 917 * @ns: the namespace tag to use 918 * 919 * Look for kernfs_node with path @path under @parent and get a reference 920 * if found. This function may sleep and returns pointer to the found 921 * kernfs_node on success, %NULL on failure. 922 */ 923 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 924 const char *path, const void *ns) 925 { 926 struct kernfs_node *kn; 927 928 mutex_lock(&kernfs_mutex); 929 kn = kernfs_walk_ns(parent, path, ns); 930 kernfs_get(kn); 931 mutex_unlock(&kernfs_mutex); 932 933 return kn; 934 } 935 936 /** 937 * kernfs_create_root - create a new kernfs hierarchy 938 * @scops: optional syscall operations for the hierarchy 939 * @flags: KERNFS_ROOT_* flags 940 * @priv: opaque data associated with the new directory 941 * 942 * Returns the root of the new hierarchy on success, ERR_PTR() value on 943 * failure. 944 */ 945 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 946 unsigned int flags, void *priv) 947 { 948 struct kernfs_root *root; 949 struct kernfs_node *kn; 950 951 root = kzalloc(sizeof(*root), GFP_KERNEL); 952 if (!root) 953 return ERR_PTR(-ENOMEM); 954 955 idr_init(&root->ino_idr); 956 INIT_LIST_HEAD(&root->supers); 957 958 /* 959 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 960 * High bits generation. The starting value for both ino and 961 * genenration is 1. Initialize upper 32bit allocation 962 * accordingly. 963 */ 964 if (sizeof(ino_t) >= sizeof(u64)) 965 root->id_highbits = 0; 966 else 967 root->id_highbits = 1; 968 969 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 970 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 971 KERNFS_DIR); 972 if (!kn) { 973 idr_destroy(&root->ino_idr); 974 kfree(root); 975 return ERR_PTR(-ENOMEM); 976 } 977 978 kn->priv = priv; 979 kn->dir.root = root; 980 981 root->syscall_ops = scops; 982 root->flags = flags; 983 root->kn = kn; 984 init_waitqueue_head(&root->deactivate_waitq); 985 986 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 987 kernfs_activate(kn); 988 989 return root; 990 } 991 992 /** 993 * kernfs_destroy_root - destroy a kernfs hierarchy 994 * @root: root of the hierarchy to destroy 995 * 996 * Destroy the hierarchy anchored at @root by removing all existing 997 * directories and destroying @root. 998 */ 999 void kernfs_destroy_root(struct kernfs_root *root) 1000 { 1001 kernfs_remove(root->kn); /* will also free @root */ 1002 } 1003 1004 /** 1005 * kernfs_create_dir_ns - create a directory 1006 * @parent: parent in which to create a new directory 1007 * @name: name of the new directory 1008 * @mode: mode of the new directory 1009 * @uid: uid of the new directory 1010 * @gid: gid of the new directory 1011 * @priv: opaque data associated with the new directory 1012 * @ns: optional namespace tag of the directory 1013 * 1014 * Returns the created node on success, ERR_PTR() value on failure. 1015 */ 1016 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1017 const char *name, umode_t mode, 1018 kuid_t uid, kgid_t gid, 1019 void *priv, const void *ns) 1020 { 1021 struct kernfs_node *kn; 1022 int rc; 1023 1024 /* allocate */ 1025 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1026 uid, gid, KERNFS_DIR); 1027 if (!kn) 1028 return ERR_PTR(-ENOMEM); 1029 1030 kn->dir.root = parent->dir.root; 1031 kn->ns = ns; 1032 kn->priv = priv; 1033 1034 /* link in */ 1035 rc = kernfs_add_one(kn); 1036 if (!rc) 1037 return kn; 1038 1039 kernfs_put(kn); 1040 return ERR_PTR(rc); 1041 } 1042 1043 /** 1044 * kernfs_create_empty_dir - create an always empty directory 1045 * @parent: parent in which to create a new directory 1046 * @name: name of the new directory 1047 * 1048 * Returns the created node on success, ERR_PTR() value on failure. 1049 */ 1050 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1051 const char *name) 1052 { 1053 struct kernfs_node *kn; 1054 int rc; 1055 1056 /* allocate */ 1057 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1058 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1059 if (!kn) 1060 return ERR_PTR(-ENOMEM); 1061 1062 kn->flags |= KERNFS_EMPTY_DIR; 1063 kn->dir.root = parent->dir.root; 1064 kn->ns = NULL; 1065 kn->priv = NULL; 1066 1067 /* link in */ 1068 rc = kernfs_add_one(kn); 1069 if (!rc) 1070 return kn; 1071 1072 kernfs_put(kn); 1073 return ERR_PTR(rc); 1074 } 1075 1076 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1077 struct dentry *dentry, 1078 unsigned int flags) 1079 { 1080 struct dentry *ret; 1081 struct kernfs_node *parent = dir->i_private; 1082 struct kernfs_node *kn; 1083 struct inode *inode; 1084 const void *ns = NULL; 1085 1086 mutex_lock(&kernfs_mutex); 1087 1088 if (kernfs_ns_enabled(parent)) 1089 ns = kernfs_info(dir->i_sb)->ns; 1090 1091 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1092 1093 /* no such entry */ 1094 if (!kn || !kernfs_active(kn)) { 1095 ret = NULL; 1096 goto out_unlock; 1097 } 1098 1099 /* attach dentry and inode */ 1100 inode = kernfs_get_inode(dir->i_sb, kn); 1101 if (!inode) { 1102 ret = ERR_PTR(-ENOMEM); 1103 goto out_unlock; 1104 } 1105 1106 /* instantiate and hash dentry */ 1107 ret = d_splice_alias(inode, dentry); 1108 out_unlock: 1109 mutex_unlock(&kernfs_mutex); 1110 return ret; 1111 } 1112 1113 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns, 1114 struct inode *dir, struct dentry *dentry, 1115 umode_t mode) 1116 { 1117 struct kernfs_node *parent = dir->i_private; 1118 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1119 int ret; 1120 1121 if (!scops || !scops->mkdir) 1122 return -EPERM; 1123 1124 if (!kernfs_get_active(parent)) 1125 return -ENODEV; 1126 1127 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1128 1129 kernfs_put_active(parent); 1130 return ret; 1131 } 1132 1133 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1134 { 1135 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1136 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1137 int ret; 1138 1139 if (!scops || !scops->rmdir) 1140 return -EPERM; 1141 1142 if (!kernfs_get_active(kn)) 1143 return -ENODEV; 1144 1145 ret = scops->rmdir(kn); 1146 1147 kernfs_put_active(kn); 1148 return ret; 1149 } 1150 1151 static int kernfs_iop_rename(struct user_namespace *mnt_userns, 1152 struct inode *old_dir, struct dentry *old_dentry, 1153 struct inode *new_dir, struct dentry *new_dentry, 1154 unsigned int flags) 1155 { 1156 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1157 struct kernfs_node *new_parent = new_dir->i_private; 1158 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1159 int ret; 1160 1161 if (flags) 1162 return -EINVAL; 1163 1164 if (!scops || !scops->rename) 1165 return -EPERM; 1166 1167 if (!kernfs_get_active(kn)) 1168 return -ENODEV; 1169 1170 if (!kernfs_get_active(new_parent)) { 1171 kernfs_put_active(kn); 1172 return -ENODEV; 1173 } 1174 1175 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1176 1177 kernfs_put_active(new_parent); 1178 kernfs_put_active(kn); 1179 return ret; 1180 } 1181 1182 const struct inode_operations kernfs_dir_iops = { 1183 .lookup = kernfs_iop_lookup, 1184 .permission = kernfs_iop_permission, 1185 .setattr = kernfs_iop_setattr, 1186 .getattr = kernfs_iop_getattr, 1187 .listxattr = kernfs_iop_listxattr, 1188 1189 .mkdir = kernfs_iop_mkdir, 1190 .rmdir = kernfs_iop_rmdir, 1191 .rename = kernfs_iop_rename, 1192 }; 1193 1194 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1195 { 1196 struct kernfs_node *last; 1197 1198 while (true) { 1199 struct rb_node *rbn; 1200 1201 last = pos; 1202 1203 if (kernfs_type(pos) != KERNFS_DIR) 1204 break; 1205 1206 rbn = rb_first(&pos->dir.children); 1207 if (!rbn) 1208 break; 1209 1210 pos = rb_to_kn(rbn); 1211 } 1212 1213 return last; 1214 } 1215 1216 /** 1217 * kernfs_next_descendant_post - find the next descendant for post-order walk 1218 * @pos: the current position (%NULL to initiate traversal) 1219 * @root: kernfs_node whose descendants to walk 1220 * 1221 * Find the next descendant to visit for post-order traversal of @root's 1222 * descendants. @root is included in the iteration and the last node to be 1223 * visited. 1224 */ 1225 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1226 struct kernfs_node *root) 1227 { 1228 struct rb_node *rbn; 1229 1230 lockdep_assert_held(&kernfs_mutex); 1231 1232 /* if first iteration, visit leftmost descendant which may be root */ 1233 if (!pos) 1234 return kernfs_leftmost_descendant(root); 1235 1236 /* if we visited @root, we're done */ 1237 if (pos == root) 1238 return NULL; 1239 1240 /* if there's an unvisited sibling, visit its leftmost descendant */ 1241 rbn = rb_next(&pos->rb); 1242 if (rbn) 1243 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1244 1245 /* no sibling left, visit parent */ 1246 return pos->parent; 1247 } 1248 1249 /** 1250 * kernfs_activate - activate a node which started deactivated 1251 * @kn: kernfs_node whose subtree is to be activated 1252 * 1253 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1254 * needs to be explicitly activated. A node which hasn't been activated 1255 * isn't visible to userland and deactivation is skipped during its 1256 * removal. This is useful to construct atomic init sequences where 1257 * creation of multiple nodes should either succeed or fail atomically. 1258 * 1259 * The caller is responsible for ensuring that this function is not called 1260 * after kernfs_remove*() is invoked on @kn. 1261 */ 1262 void kernfs_activate(struct kernfs_node *kn) 1263 { 1264 struct kernfs_node *pos; 1265 1266 mutex_lock(&kernfs_mutex); 1267 1268 pos = NULL; 1269 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1270 if (pos->flags & KERNFS_ACTIVATED) 1271 continue; 1272 1273 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1274 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1275 1276 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1277 pos->flags |= KERNFS_ACTIVATED; 1278 } 1279 1280 mutex_unlock(&kernfs_mutex); 1281 } 1282 1283 static void __kernfs_remove(struct kernfs_node *kn) 1284 { 1285 struct kernfs_node *pos; 1286 1287 lockdep_assert_held(&kernfs_mutex); 1288 1289 /* 1290 * Short-circuit if non-root @kn has already finished removal. 1291 * This is for kernfs_remove_self() which plays with active ref 1292 * after removal. 1293 */ 1294 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1295 return; 1296 1297 pr_debug("kernfs %s: removing\n", kn->name); 1298 1299 /* prevent any new usage under @kn by deactivating all nodes */ 1300 pos = NULL; 1301 while ((pos = kernfs_next_descendant_post(pos, kn))) 1302 if (kernfs_active(pos)) 1303 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1304 1305 /* deactivate and unlink the subtree node-by-node */ 1306 do { 1307 pos = kernfs_leftmost_descendant(kn); 1308 1309 /* 1310 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1311 * base ref could have been put by someone else by the time 1312 * the function returns. Make sure it doesn't go away 1313 * underneath us. 1314 */ 1315 kernfs_get(pos); 1316 1317 /* 1318 * Drain iff @kn was activated. This avoids draining and 1319 * its lockdep annotations for nodes which have never been 1320 * activated and allows embedding kernfs_remove() in create 1321 * error paths without worrying about draining. 1322 */ 1323 if (kn->flags & KERNFS_ACTIVATED) 1324 kernfs_drain(pos); 1325 else 1326 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1327 1328 /* 1329 * kernfs_unlink_sibling() succeeds once per node. Use it 1330 * to decide who's responsible for cleanups. 1331 */ 1332 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1333 struct kernfs_iattrs *ps_iattr = 1334 pos->parent ? pos->parent->iattr : NULL; 1335 1336 /* update timestamps on the parent */ 1337 if (ps_iattr) { 1338 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1339 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1340 } 1341 1342 kernfs_put(pos); 1343 } 1344 1345 kernfs_put(pos); 1346 } while (pos != kn); 1347 } 1348 1349 /** 1350 * kernfs_remove - remove a kernfs_node recursively 1351 * @kn: the kernfs_node to remove 1352 * 1353 * Remove @kn along with all its subdirectories and files. 1354 */ 1355 void kernfs_remove(struct kernfs_node *kn) 1356 { 1357 mutex_lock(&kernfs_mutex); 1358 __kernfs_remove(kn); 1359 mutex_unlock(&kernfs_mutex); 1360 } 1361 1362 /** 1363 * kernfs_break_active_protection - break out of active protection 1364 * @kn: the self kernfs_node 1365 * 1366 * The caller must be running off of a kernfs operation which is invoked 1367 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1368 * this function must also be matched with an invocation of 1369 * kernfs_unbreak_active_protection(). 1370 * 1371 * This function releases the active reference of @kn the caller is 1372 * holding. Once this function is called, @kn may be removed at any point 1373 * and the caller is solely responsible for ensuring that the objects it 1374 * dereferences are accessible. 1375 */ 1376 void kernfs_break_active_protection(struct kernfs_node *kn) 1377 { 1378 /* 1379 * Take out ourself out of the active ref dependency chain. If 1380 * we're called without an active ref, lockdep will complain. 1381 */ 1382 kernfs_put_active(kn); 1383 } 1384 1385 /** 1386 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1387 * @kn: the self kernfs_node 1388 * 1389 * If kernfs_break_active_protection() was called, this function must be 1390 * invoked before finishing the kernfs operation. Note that while this 1391 * function restores the active reference, it doesn't and can't actually 1392 * restore the active protection - @kn may already or be in the process of 1393 * being removed. Once kernfs_break_active_protection() is invoked, that 1394 * protection is irreversibly gone for the kernfs operation instance. 1395 * 1396 * While this function may be called at any point after 1397 * kernfs_break_active_protection() is invoked, its most useful location 1398 * would be right before the enclosing kernfs operation returns. 1399 */ 1400 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1401 { 1402 /* 1403 * @kn->active could be in any state; however, the increment we do 1404 * here will be undone as soon as the enclosing kernfs operation 1405 * finishes and this temporary bump can't break anything. If @kn 1406 * is alive, nothing changes. If @kn is being deactivated, the 1407 * soon-to-follow put will either finish deactivation or restore 1408 * deactivated state. If @kn is already removed, the temporary 1409 * bump is guaranteed to be gone before @kn is released. 1410 */ 1411 atomic_inc(&kn->active); 1412 if (kernfs_lockdep(kn)) 1413 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1414 } 1415 1416 /** 1417 * kernfs_remove_self - remove a kernfs_node from its own method 1418 * @kn: the self kernfs_node to remove 1419 * 1420 * The caller must be running off of a kernfs operation which is invoked 1421 * with an active reference - e.g. one of kernfs_ops. This can be used to 1422 * implement a file operation which deletes itself. 1423 * 1424 * For example, the "delete" file for a sysfs device directory can be 1425 * implemented by invoking kernfs_remove_self() on the "delete" file 1426 * itself. This function breaks the circular dependency of trying to 1427 * deactivate self while holding an active ref itself. It isn't necessary 1428 * to modify the usual removal path to use kernfs_remove_self(). The 1429 * "delete" implementation can simply invoke kernfs_remove_self() on self 1430 * before proceeding with the usual removal path. kernfs will ignore later 1431 * kernfs_remove() on self. 1432 * 1433 * kernfs_remove_self() can be called multiple times concurrently on the 1434 * same kernfs_node. Only the first one actually performs removal and 1435 * returns %true. All others will wait until the kernfs operation which 1436 * won self-removal finishes and return %false. Note that the losers wait 1437 * for the completion of not only the winning kernfs_remove_self() but also 1438 * the whole kernfs_ops which won the arbitration. This can be used to 1439 * guarantee, for example, all concurrent writes to a "delete" file to 1440 * finish only after the whole operation is complete. 1441 */ 1442 bool kernfs_remove_self(struct kernfs_node *kn) 1443 { 1444 bool ret; 1445 1446 mutex_lock(&kernfs_mutex); 1447 kernfs_break_active_protection(kn); 1448 1449 /* 1450 * SUICIDAL is used to arbitrate among competing invocations. Only 1451 * the first one will actually perform removal. When the removal 1452 * is complete, SUICIDED is set and the active ref is restored 1453 * while holding kernfs_mutex. The ones which lost arbitration 1454 * waits for SUICDED && drained which can happen only after the 1455 * enclosing kernfs operation which executed the winning instance 1456 * of kernfs_remove_self() finished. 1457 */ 1458 if (!(kn->flags & KERNFS_SUICIDAL)) { 1459 kn->flags |= KERNFS_SUICIDAL; 1460 __kernfs_remove(kn); 1461 kn->flags |= KERNFS_SUICIDED; 1462 ret = true; 1463 } else { 1464 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1465 DEFINE_WAIT(wait); 1466 1467 while (true) { 1468 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1469 1470 if ((kn->flags & KERNFS_SUICIDED) && 1471 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1472 break; 1473 1474 mutex_unlock(&kernfs_mutex); 1475 schedule(); 1476 mutex_lock(&kernfs_mutex); 1477 } 1478 finish_wait(waitq, &wait); 1479 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1480 ret = false; 1481 } 1482 1483 /* 1484 * This must be done while holding kernfs_mutex; otherwise, waiting 1485 * for SUICIDED && deactivated could finish prematurely. 1486 */ 1487 kernfs_unbreak_active_protection(kn); 1488 1489 mutex_unlock(&kernfs_mutex); 1490 return ret; 1491 } 1492 1493 /** 1494 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1495 * @parent: parent of the target 1496 * @name: name of the kernfs_node to remove 1497 * @ns: namespace tag of the kernfs_node to remove 1498 * 1499 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1500 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1501 */ 1502 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1503 const void *ns) 1504 { 1505 struct kernfs_node *kn; 1506 1507 if (!parent) { 1508 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1509 name); 1510 return -ENOENT; 1511 } 1512 1513 mutex_lock(&kernfs_mutex); 1514 1515 kn = kernfs_find_ns(parent, name, ns); 1516 if (kn) 1517 __kernfs_remove(kn); 1518 1519 mutex_unlock(&kernfs_mutex); 1520 1521 if (kn) 1522 return 0; 1523 else 1524 return -ENOENT; 1525 } 1526 1527 /** 1528 * kernfs_rename_ns - move and rename a kernfs_node 1529 * @kn: target node 1530 * @new_parent: new parent to put @sd under 1531 * @new_name: new name 1532 * @new_ns: new namespace tag 1533 */ 1534 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1535 const char *new_name, const void *new_ns) 1536 { 1537 struct kernfs_node *old_parent; 1538 const char *old_name = NULL; 1539 int error; 1540 1541 /* can't move or rename root */ 1542 if (!kn->parent) 1543 return -EINVAL; 1544 1545 mutex_lock(&kernfs_mutex); 1546 1547 error = -ENOENT; 1548 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1549 (new_parent->flags & KERNFS_EMPTY_DIR)) 1550 goto out; 1551 1552 error = 0; 1553 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1554 (strcmp(kn->name, new_name) == 0)) 1555 goto out; /* nothing to rename */ 1556 1557 error = -EEXIST; 1558 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1559 goto out; 1560 1561 /* rename kernfs_node */ 1562 if (strcmp(kn->name, new_name) != 0) { 1563 error = -ENOMEM; 1564 new_name = kstrdup_const(new_name, GFP_KERNEL); 1565 if (!new_name) 1566 goto out; 1567 } else { 1568 new_name = NULL; 1569 } 1570 1571 /* 1572 * Move to the appropriate place in the appropriate directories rbtree. 1573 */ 1574 kernfs_unlink_sibling(kn); 1575 kernfs_get(new_parent); 1576 1577 /* rename_lock protects ->parent and ->name accessors */ 1578 spin_lock_irq(&kernfs_rename_lock); 1579 1580 old_parent = kn->parent; 1581 kn->parent = new_parent; 1582 1583 kn->ns = new_ns; 1584 if (new_name) { 1585 old_name = kn->name; 1586 kn->name = new_name; 1587 } 1588 1589 spin_unlock_irq(&kernfs_rename_lock); 1590 1591 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1592 kernfs_link_sibling(kn); 1593 1594 kernfs_put(old_parent); 1595 kfree_const(old_name); 1596 1597 error = 0; 1598 out: 1599 mutex_unlock(&kernfs_mutex); 1600 return error; 1601 } 1602 1603 /* Relationship between mode and the DT_xxx types */ 1604 static inline unsigned char dt_type(struct kernfs_node *kn) 1605 { 1606 return (kn->mode >> 12) & 15; 1607 } 1608 1609 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1610 { 1611 kernfs_put(filp->private_data); 1612 return 0; 1613 } 1614 1615 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1616 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1617 { 1618 if (pos) { 1619 int valid = kernfs_active(pos) && 1620 pos->parent == parent && hash == pos->hash; 1621 kernfs_put(pos); 1622 if (!valid) 1623 pos = NULL; 1624 } 1625 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1626 struct rb_node *node = parent->dir.children.rb_node; 1627 while (node) { 1628 pos = rb_to_kn(node); 1629 1630 if (hash < pos->hash) 1631 node = node->rb_left; 1632 else if (hash > pos->hash) 1633 node = node->rb_right; 1634 else 1635 break; 1636 } 1637 } 1638 /* Skip over entries which are dying/dead or in the wrong namespace */ 1639 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1640 struct rb_node *node = rb_next(&pos->rb); 1641 if (!node) 1642 pos = NULL; 1643 else 1644 pos = rb_to_kn(node); 1645 } 1646 return pos; 1647 } 1648 1649 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1650 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1651 { 1652 pos = kernfs_dir_pos(ns, parent, ino, pos); 1653 if (pos) { 1654 do { 1655 struct rb_node *node = rb_next(&pos->rb); 1656 if (!node) 1657 pos = NULL; 1658 else 1659 pos = rb_to_kn(node); 1660 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1661 } 1662 return pos; 1663 } 1664 1665 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1666 { 1667 struct dentry *dentry = file->f_path.dentry; 1668 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1669 struct kernfs_node *pos = file->private_data; 1670 const void *ns = NULL; 1671 1672 if (!dir_emit_dots(file, ctx)) 1673 return 0; 1674 mutex_lock(&kernfs_mutex); 1675 1676 if (kernfs_ns_enabled(parent)) 1677 ns = kernfs_info(dentry->d_sb)->ns; 1678 1679 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1680 pos; 1681 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1682 const char *name = pos->name; 1683 unsigned int type = dt_type(pos); 1684 int len = strlen(name); 1685 ino_t ino = kernfs_ino(pos); 1686 1687 ctx->pos = pos->hash; 1688 file->private_data = pos; 1689 kernfs_get(pos); 1690 1691 mutex_unlock(&kernfs_mutex); 1692 if (!dir_emit(ctx, name, len, ino, type)) 1693 return 0; 1694 mutex_lock(&kernfs_mutex); 1695 } 1696 mutex_unlock(&kernfs_mutex); 1697 file->private_data = NULL; 1698 ctx->pos = INT_MAX; 1699 return 0; 1700 } 1701 1702 const struct file_operations kernfs_dir_fops = { 1703 .read = generic_read_dir, 1704 .iterate_shared = kernfs_fop_readdir, 1705 .release = kernfs_dir_fop_release, 1706 .llseek = generic_file_llseek, 1707 }; 1708