1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 25 26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 27 28 static bool kernfs_active(struct kernfs_node *kn) 29 { 30 lockdep_assert_held(&kernfs_mutex); 31 return atomic_read(&kn->active) >= 0; 32 } 33 34 static bool kernfs_lockdep(struct kernfs_node *kn) 35 { 36 #ifdef CONFIG_DEBUG_LOCK_ALLOC 37 return kn->flags & KERNFS_LOCKDEP; 38 #else 39 return false; 40 #endif 41 } 42 43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 44 { 45 if (!kn) 46 return strlcpy(buf, "(null)", buflen); 47 48 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 49 } 50 51 /* kernfs_node_depth - compute depth from @from to @to */ 52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 53 { 54 size_t depth = 0; 55 56 while (to->parent && to != from) { 57 depth++; 58 to = to->parent; 59 } 60 return depth; 61 } 62 63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 64 struct kernfs_node *b) 65 { 66 size_t da, db; 67 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 68 69 if (ra != rb) 70 return NULL; 71 72 da = kernfs_depth(ra->kn, a); 73 db = kernfs_depth(rb->kn, b); 74 75 while (da > db) { 76 a = a->parent; 77 da--; 78 } 79 while (db > da) { 80 b = b->parent; 81 db--; 82 } 83 84 /* worst case b and a will be the same at root */ 85 while (b != a) { 86 b = b->parent; 87 a = a->parent; 88 } 89 90 return a; 91 } 92 93 /** 94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 95 * where kn_from is treated as root of the path. 96 * @kn_from: kernfs node which should be treated as root for the path 97 * @kn_to: kernfs node to which path is needed 98 * @buf: buffer to copy the path into 99 * @buflen: size of @buf 100 * 101 * We need to handle couple of scenarios here: 102 * [1] when @kn_from is an ancestor of @kn_to at some level 103 * kn_from: /n1/n2/n3 104 * kn_to: /n1/n2/n3/n4/n5 105 * result: /n4/n5 106 * 107 * [2] when @kn_from is on a different hierarchy and we need to find common 108 * ancestor between @kn_from and @kn_to. 109 * kn_from: /n1/n2/n3/n4 110 * kn_to: /n1/n2/n5 111 * result: /../../n5 112 * OR 113 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 114 * kn_to: /n1/n2/n3 [depth=3] 115 * result: /../.. 116 * 117 * [3] when @kn_to is NULL result will be "(null)" 118 * 119 * Returns the length of the full path. If the full length is equal to or 120 * greater than @buflen, @buf contains the truncated path with the trailing 121 * '\0'. On error, -errno is returned. 122 */ 123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 124 struct kernfs_node *kn_from, 125 char *buf, size_t buflen) 126 { 127 struct kernfs_node *kn, *common; 128 const char parent_str[] = "/.."; 129 size_t depth_from, depth_to, len = 0; 130 int i, j; 131 132 if (!kn_to) 133 return strlcpy(buf, "(null)", buflen); 134 135 if (!kn_from) 136 kn_from = kernfs_root(kn_to)->kn; 137 138 if (kn_from == kn_to) 139 return strlcpy(buf, "/", buflen); 140 141 common = kernfs_common_ancestor(kn_from, kn_to); 142 if (WARN_ON(!common)) 143 return -EINVAL; 144 145 depth_to = kernfs_depth(common, kn_to); 146 depth_from = kernfs_depth(common, kn_from); 147 148 if (buf) 149 buf[0] = '\0'; 150 151 for (i = 0; i < depth_from; i++) 152 len += strlcpy(buf + len, parent_str, 153 len < buflen ? buflen - len : 0); 154 155 /* Calculate how many bytes we need for the rest */ 156 for (i = depth_to - 1; i >= 0; i--) { 157 for (kn = kn_to, j = 0; j < i; j++) 158 kn = kn->parent; 159 len += strlcpy(buf + len, "/", 160 len < buflen ? buflen - len : 0); 161 len += strlcpy(buf + len, kn->name, 162 len < buflen ? buflen - len : 0); 163 } 164 165 return len; 166 } 167 168 /** 169 * kernfs_name - obtain the name of a given node 170 * @kn: kernfs_node of interest 171 * @buf: buffer to copy @kn's name into 172 * @buflen: size of @buf 173 * 174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 175 * similar to strlcpy(). It returns the length of @kn's name and if @buf 176 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 177 * 178 * Fills buffer with "(null)" if @kn is NULL. 179 * 180 * This function can be called from any context. 181 */ 182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 183 { 184 unsigned long flags; 185 int ret; 186 187 spin_lock_irqsave(&kernfs_rename_lock, flags); 188 ret = kernfs_name_locked(kn, buf, buflen); 189 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 190 return ret; 191 } 192 193 /** 194 * kernfs_path_from_node - build path of node @to relative to @from. 195 * @from: parent kernfs_node relative to which we need to build the path 196 * @to: kernfs_node of interest 197 * @buf: buffer to copy @to's path into 198 * @buflen: size of @buf 199 * 200 * Builds @to's path relative to @from in @buf. @from and @to must 201 * be on the same kernfs-root. If @from is not parent of @to, then a relative 202 * path (which includes '..'s) as needed to reach from @from to @to is 203 * returned. 204 * 205 * Returns the length of the full path. If the full length is equal to or 206 * greater than @buflen, @buf contains the truncated path with the trailing 207 * '\0'. On error, -errno is returned. 208 */ 209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 210 char *buf, size_t buflen) 211 { 212 unsigned long flags; 213 int ret; 214 215 spin_lock_irqsave(&kernfs_rename_lock, flags); 216 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 217 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 218 return ret; 219 } 220 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 221 222 /** 223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 224 * @kn: kernfs_node of interest 225 * 226 * This function can be called from any context. 227 */ 228 void pr_cont_kernfs_name(struct kernfs_node *kn) 229 { 230 unsigned long flags; 231 232 spin_lock_irqsave(&kernfs_rename_lock, flags); 233 234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 235 pr_cont("%s", kernfs_pr_cont_buf); 236 237 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 238 } 239 240 /** 241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 242 * @kn: kernfs_node of interest 243 * 244 * This function can be called from any context. 245 */ 246 void pr_cont_kernfs_path(struct kernfs_node *kn) 247 { 248 unsigned long flags; 249 int sz; 250 251 spin_lock_irqsave(&kernfs_rename_lock, flags); 252 253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 254 sizeof(kernfs_pr_cont_buf)); 255 if (sz < 0) { 256 pr_cont("(error)"); 257 goto out; 258 } 259 260 if (sz >= sizeof(kernfs_pr_cont_buf)) { 261 pr_cont("(name too long)"); 262 goto out; 263 } 264 265 pr_cont("%s", kernfs_pr_cont_buf); 266 267 out: 268 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 269 } 270 271 /** 272 * kernfs_get_parent - determine the parent node and pin it 273 * @kn: kernfs_node of interest 274 * 275 * Determines @kn's parent, pins and returns it. This function can be 276 * called from any context. 277 */ 278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 279 { 280 struct kernfs_node *parent; 281 unsigned long flags; 282 283 spin_lock_irqsave(&kernfs_rename_lock, flags); 284 parent = kn->parent; 285 kernfs_get(parent); 286 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 287 288 return parent; 289 } 290 291 /** 292 * kernfs_name_hash 293 * @name: Null terminated string to hash 294 * @ns: Namespace tag to hash 295 * 296 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 297 */ 298 static unsigned int kernfs_name_hash(const char *name, const void *ns) 299 { 300 unsigned long hash = init_name_hash(ns); 301 unsigned int len = strlen(name); 302 while (len--) 303 hash = partial_name_hash(*name++, hash); 304 hash = end_name_hash(hash); 305 hash &= 0x7fffffffU; 306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 307 if (hash < 2) 308 hash += 2; 309 if (hash >= INT_MAX) 310 hash = INT_MAX - 1; 311 return hash; 312 } 313 314 static int kernfs_name_compare(unsigned int hash, const char *name, 315 const void *ns, const struct kernfs_node *kn) 316 { 317 if (hash < kn->hash) 318 return -1; 319 if (hash > kn->hash) 320 return 1; 321 if (ns < kn->ns) 322 return -1; 323 if (ns > kn->ns) 324 return 1; 325 return strcmp(name, kn->name); 326 } 327 328 static int kernfs_sd_compare(const struct kernfs_node *left, 329 const struct kernfs_node *right) 330 { 331 return kernfs_name_compare(left->hash, left->name, left->ns, right); 332 } 333 334 /** 335 * kernfs_link_sibling - link kernfs_node into sibling rbtree 336 * @kn: kernfs_node of interest 337 * 338 * Link @kn into its sibling rbtree which starts from 339 * @kn->parent->dir.children. 340 * 341 * Locking: 342 * mutex_lock(kernfs_mutex) 343 * 344 * RETURNS: 345 * 0 on susccess -EEXIST on failure. 346 */ 347 static int kernfs_link_sibling(struct kernfs_node *kn) 348 { 349 struct rb_node **node = &kn->parent->dir.children.rb_node; 350 struct rb_node *parent = NULL; 351 352 while (*node) { 353 struct kernfs_node *pos; 354 int result; 355 356 pos = rb_to_kn(*node); 357 parent = *node; 358 result = kernfs_sd_compare(kn, pos); 359 if (result < 0) 360 node = &pos->rb.rb_left; 361 else if (result > 0) 362 node = &pos->rb.rb_right; 363 else 364 return -EEXIST; 365 } 366 367 /* add new node and rebalance the tree */ 368 rb_link_node(&kn->rb, parent, node); 369 rb_insert_color(&kn->rb, &kn->parent->dir.children); 370 371 /* successfully added, account subdir number */ 372 if (kernfs_type(kn) == KERNFS_DIR) 373 kn->parent->dir.subdirs++; 374 375 return 0; 376 } 377 378 /** 379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 380 * @kn: kernfs_node of interest 381 * 382 * Try to unlink @kn from its sibling rbtree which starts from 383 * kn->parent->dir.children. Returns %true if @kn was actually 384 * removed, %false if @kn wasn't on the rbtree. 385 * 386 * Locking: 387 * mutex_lock(kernfs_mutex) 388 */ 389 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 390 { 391 if (RB_EMPTY_NODE(&kn->rb)) 392 return false; 393 394 if (kernfs_type(kn) == KERNFS_DIR) 395 kn->parent->dir.subdirs--; 396 397 rb_erase(&kn->rb, &kn->parent->dir.children); 398 RB_CLEAR_NODE(&kn->rb); 399 return true; 400 } 401 402 /** 403 * kernfs_get_active - get an active reference to kernfs_node 404 * @kn: kernfs_node to get an active reference to 405 * 406 * Get an active reference of @kn. This function is noop if @kn 407 * is NULL. 408 * 409 * RETURNS: 410 * Pointer to @kn on success, NULL on failure. 411 */ 412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 413 { 414 if (unlikely(!kn)) 415 return NULL; 416 417 if (!atomic_inc_unless_negative(&kn->active)) 418 return NULL; 419 420 if (kernfs_lockdep(kn)) 421 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 422 return kn; 423 } 424 425 /** 426 * kernfs_put_active - put an active reference to kernfs_node 427 * @kn: kernfs_node to put an active reference to 428 * 429 * Put an active reference to @kn. This function is noop if @kn 430 * is NULL. 431 */ 432 void kernfs_put_active(struct kernfs_node *kn) 433 { 434 struct kernfs_root *root = kernfs_root(kn); 435 int v; 436 437 if (unlikely(!kn)) 438 return; 439 440 if (kernfs_lockdep(kn)) 441 rwsem_release(&kn->dep_map, 1, _RET_IP_); 442 v = atomic_dec_return(&kn->active); 443 if (likely(v != KN_DEACTIVATED_BIAS)) 444 return; 445 446 wake_up_all(&root->deactivate_waitq); 447 } 448 449 /** 450 * kernfs_drain - drain kernfs_node 451 * @kn: kernfs_node to drain 452 * 453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 454 * removers may invoke this function concurrently on @kn and all will 455 * return after draining is complete. 456 */ 457 static void kernfs_drain(struct kernfs_node *kn) 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 459 { 460 struct kernfs_root *root = kernfs_root(kn); 461 462 lockdep_assert_held(&kernfs_mutex); 463 WARN_ON_ONCE(kernfs_active(kn)); 464 465 mutex_unlock(&kernfs_mutex); 466 467 if (kernfs_lockdep(kn)) { 468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 470 lock_contended(&kn->dep_map, _RET_IP_); 471 } 472 473 /* but everyone should wait for draining */ 474 wait_event(root->deactivate_waitq, 475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 476 477 if (kernfs_lockdep(kn)) { 478 lock_acquired(&kn->dep_map, _RET_IP_); 479 rwsem_release(&kn->dep_map, 1, _RET_IP_); 480 } 481 482 kernfs_drain_open_files(kn); 483 484 mutex_lock(&kernfs_mutex); 485 } 486 487 /** 488 * kernfs_get - get a reference count on a kernfs_node 489 * @kn: the target kernfs_node 490 */ 491 void kernfs_get(struct kernfs_node *kn) 492 { 493 if (kn) { 494 WARN_ON(!atomic_read(&kn->count)); 495 atomic_inc(&kn->count); 496 } 497 } 498 EXPORT_SYMBOL_GPL(kernfs_get); 499 500 /** 501 * kernfs_put - put a reference count on a kernfs_node 502 * @kn: the target kernfs_node 503 * 504 * Put a reference count of @kn and destroy it if it reached zero. 505 */ 506 void kernfs_put(struct kernfs_node *kn) 507 { 508 struct kernfs_node *parent; 509 struct kernfs_root *root; 510 511 /* 512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino 513 * depends on this to filter reused stale node 514 */ 515 if (!kn || !atomic_dec_and_test(&kn->count)) 516 return; 517 root = kernfs_root(kn); 518 repeat: 519 /* 520 * Moving/renaming is always done while holding reference. 521 * kn->parent won't change beneath us. 522 */ 523 parent = kn->parent; 524 525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 527 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 528 529 if (kernfs_type(kn) == KERNFS_LINK) 530 kernfs_put(kn->symlink.target_kn); 531 532 kfree_const(kn->name); 533 534 if (kn->iattr) { 535 if (kn->iattr->ia_secdata) 536 security_release_secctx(kn->iattr->ia_secdata, 537 kn->iattr->ia_secdata_len); 538 simple_xattrs_free(&kn->iattr->xattrs); 539 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 540 } 541 spin_lock(&kernfs_idr_lock); 542 idr_remove(&root->ino_idr, kn->id.ino); 543 spin_unlock(&kernfs_idr_lock); 544 kmem_cache_free(kernfs_node_cache, kn); 545 546 kn = parent; 547 if (kn) { 548 if (atomic_dec_and_test(&kn->count)) 549 goto repeat; 550 } else { 551 /* just released the root kn, free @root too */ 552 idr_destroy(&root->ino_idr); 553 kfree(root); 554 } 555 } 556 EXPORT_SYMBOL_GPL(kernfs_put); 557 558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 559 { 560 struct kernfs_node *kn; 561 562 if (flags & LOOKUP_RCU) 563 return -ECHILD; 564 565 /* Always perform fresh lookup for negatives */ 566 if (d_really_is_negative(dentry)) 567 goto out_bad_unlocked; 568 569 kn = kernfs_dentry_node(dentry); 570 mutex_lock(&kernfs_mutex); 571 572 /* The kernfs node has been deactivated */ 573 if (!kernfs_active(kn)) 574 goto out_bad; 575 576 /* The kernfs node has been moved? */ 577 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 578 goto out_bad; 579 580 /* The kernfs node has been renamed */ 581 if (strcmp(dentry->d_name.name, kn->name) != 0) 582 goto out_bad; 583 584 /* The kernfs node has been moved to a different namespace */ 585 if (kn->parent && kernfs_ns_enabled(kn->parent) && 586 kernfs_info(dentry->d_sb)->ns != kn->ns) 587 goto out_bad; 588 589 mutex_unlock(&kernfs_mutex); 590 return 1; 591 out_bad: 592 mutex_unlock(&kernfs_mutex); 593 out_bad_unlocked: 594 return 0; 595 } 596 597 const struct dentry_operations kernfs_dops = { 598 .d_revalidate = kernfs_dop_revalidate, 599 }; 600 601 /** 602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 603 * @dentry: the dentry in question 604 * 605 * Return the kernfs_node associated with @dentry. If @dentry is not a 606 * kernfs one, %NULL is returned. 607 * 608 * While the returned kernfs_node will stay accessible as long as @dentry 609 * is accessible, the returned node can be in any state and the caller is 610 * fully responsible for determining what's accessible. 611 */ 612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 613 { 614 if (dentry->d_sb->s_op == &kernfs_sops && 615 !d_really_is_negative(dentry)) 616 return kernfs_dentry_node(dentry); 617 return NULL; 618 } 619 620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 621 const char *name, umode_t mode, 622 kuid_t uid, kgid_t gid, 623 unsigned flags) 624 { 625 struct kernfs_node *kn; 626 u32 gen; 627 int cursor; 628 int ret; 629 630 name = kstrdup_const(name, GFP_KERNEL); 631 if (!name) 632 return NULL; 633 634 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 635 if (!kn) 636 goto err_out1; 637 638 idr_preload(GFP_KERNEL); 639 spin_lock(&kernfs_idr_lock); 640 cursor = idr_get_cursor(&root->ino_idr); 641 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 642 if (ret >= 0 && ret < cursor) 643 root->next_generation++; 644 gen = root->next_generation; 645 spin_unlock(&kernfs_idr_lock); 646 idr_preload_end(); 647 if (ret < 0) 648 goto err_out2; 649 kn->id.ino = ret; 650 kn->id.generation = gen; 651 652 /* 653 * set ino first. This RELEASE is paired with atomic_inc_not_zero in 654 * kernfs_find_and_get_node_by_ino 655 */ 656 atomic_set_release(&kn->count, 1); 657 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 658 RB_CLEAR_NODE(&kn->rb); 659 660 kn->name = name; 661 kn->mode = mode; 662 kn->flags = flags; 663 664 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 665 struct iattr iattr = { 666 .ia_valid = ATTR_UID | ATTR_GID, 667 .ia_uid = uid, 668 .ia_gid = gid, 669 }; 670 671 ret = __kernfs_setattr(kn, &iattr); 672 if (ret < 0) 673 goto err_out3; 674 } 675 676 return kn; 677 678 err_out3: 679 idr_remove(&root->ino_idr, kn->id.ino); 680 err_out2: 681 kmem_cache_free(kernfs_node_cache, kn); 682 err_out1: 683 kfree_const(name); 684 return NULL; 685 } 686 687 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 688 const char *name, umode_t mode, 689 kuid_t uid, kgid_t gid, 690 unsigned flags) 691 { 692 struct kernfs_node *kn; 693 694 kn = __kernfs_new_node(kernfs_root(parent), 695 name, mode, uid, gid, flags); 696 if (kn) { 697 kernfs_get(parent); 698 kn->parent = parent; 699 } 700 return kn; 701 } 702 703 /* 704 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number 705 * @root: the kernfs root 706 * @ino: inode number 707 * 708 * RETURNS: 709 * NULL on failure. Return a kernfs node with reference counter incremented 710 */ 711 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root, 712 unsigned int ino) 713 { 714 struct kernfs_node *kn; 715 716 rcu_read_lock(); 717 kn = idr_find(&root->ino_idr, ino); 718 if (!kn) 719 goto out; 720 721 /* 722 * Since kernfs_node is freed in RCU, it's possible an old node for ino 723 * is freed, but reused before RCU grace period. But a freed node (see 724 * kernfs_put) or an incompletedly initialized node (see 725 * __kernfs_new_node) should have 'count' 0. We can use this fact to 726 * filter out such node. 727 */ 728 if (!atomic_inc_not_zero(&kn->count)) { 729 kn = NULL; 730 goto out; 731 } 732 733 /* 734 * The node could be a new node or a reused node. If it's a new node, 735 * we are ok. If it's reused because of RCU (because of 736 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino' 737 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate, 738 * hence we can use 'ino' to filter stale node. 739 */ 740 if (kn->id.ino != ino) 741 goto out; 742 rcu_read_unlock(); 743 744 return kn; 745 out: 746 rcu_read_unlock(); 747 kernfs_put(kn); 748 return NULL; 749 } 750 751 /** 752 * kernfs_add_one - add kernfs_node to parent without warning 753 * @kn: kernfs_node to be added 754 * 755 * The caller must already have initialized @kn->parent. This 756 * function increments nlink of the parent's inode if @kn is a 757 * directory and link into the children list of the parent. 758 * 759 * RETURNS: 760 * 0 on success, -EEXIST if entry with the given name already 761 * exists. 762 */ 763 int kernfs_add_one(struct kernfs_node *kn) 764 { 765 struct kernfs_node *parent = kn->parent; 766 struct kernfs_iattrs *ps_iattr; 767 bool has_ns; 768 int ret; 769 770 mutex_lock(&kernfs_mutex); 771 772 ret = -EINVAL; 773 has_ns = kernfs_ns_enabled(parent); 774 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 775 has_ns ? "required" : "invalid", parent->name, kn->name)) 776 goto out_unlock; 777 778 if (kernfs_type(parent) != KERNFS_DIR) 779 goto out_unlock; 780 781 ret = -ENOENT; 782 if (parent->flags & KERNFS_EMPTY_DIR) 783 goto out_unlock; 784 785 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 786 goto out_unlock; 787 788 kn->hash = kernfs_name_hash(kn->name, kn->ns); 789 790 ret = kernfs_link_sibling(kn); 791 if (ret) 792 goto out_unlock; 793 794 /* Update timestamps on the parent */ 795 ps_iattr = parent->iattr; 796 if (ps_iattr) { 797 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 798 ktime_get_real_ts64(&ps_iattrs->ia_ctime); 799 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime; 800 } 801 802 mutex_unlock(&kernfs_mutex); 803 804 /* 805 * Activate the new node unless CREATE_DEACTIVATED is requested. 806 * If not activated here, the kernfs user is responsible for 807 * activating the node with kernfs_activate(). A node which hasn't 808 * been activated is not visible to userland and its removal won't 809 * trigger deactivation. 810 */ 811 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 812 kernfs_activate(kn); 813 return 0; 814 815 out_unlock: 816 mutex_unlock(&kernfs_mutex); 817 return ret; 818 } 819 820 /** 821 * kernfs_find_ns - find kernfs_node with the given name 822 * @parent: kernfs_node to search under 823 * @name: name to look for 824 * @ns: the namespace tag to use 825 * 826 * Look for kernfs_node with name @name under @parent. Returns pointer to 827 * the found kernfs_node on success, %NULL on failure. 828 */ 829 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 830 const unsigned char *name, 831 const void *ns) 832 { 833 struct rb_node *node = parent->dir.children.rb_node; 834 bool has_ns = kernfs_ns_enabled(parent); 835 unsigned int hash; 836 837 lockdep_assert_held(&kernfs_mutex); 838 839 if (has_ns != (bool)ns) { 840 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 841 has_ns ? "required" : "invalid", parent->name, name); 842 return NULL; 843 } 844 845 hash = kernfs_name_hash(name, ns); 846 while (node) { 847 struct kernfs_node *kn; 848 int result; 849 850 kn = rb_to_kn(node); 851 result = kernfs_name_compare(hash, name, ns, kn); 852 if (result < 0) 853 node = node->rb_left; 854 else if (result > 0) 855 node = node->rb_right; 856 else 857 return kn; 858 } 859 return NULL; 860 } 861 862 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 863 const unsigned char *path, 864 const void *ns) 865 { 866 size_t len; 867 char *p, *name; 868 869 lockdep_assert_held(&kernfs_mutex); 870 871 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 872 spin_lock_irq(&kernfs_rename_lock); 873 874 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 875 876 if (len >= sizeof(kernfs_pr_cont_buf)) { 877 spin_unlock_irq(&kernfs_rename_lock); 878 return NULL; 879 } 880 881 p = kernfs_pr_cont_buf; 882 883 while ((name = strsep(&p, "/")) && parent) { 884 if (*name == '\0') 885 continue; 886 parent = kernfs_find_ns(parent, name, ns); 887 } 888 889 spin_unlock_irq(&kernfs_rename_lock); 890 891 return parent; 892 } 893 894 /** 895 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 896 * @parent: kernfs_node to search under 897 * @name: name to look for 898 * @ns: the namespace tag to use 899 * 900 * Look for kernfs_node with name @name under @parent and get a reference 901 * if found. This function may sleep and returns pointer to the found 902 * kernfs_node on success, %NULL on failure. 903 */ 904 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 905 const char *name, const void *ns) 906 { 907 struct kernfs_node *kn; 908 909 mutex_lock(&kernfs_mutex); 910 kn = kernfs_find_ns(parent, name, ns); 911 kernfs_get(kn); 912 mutex_unlock(&kernfs_mutex); 913 914 return kn; 915 } 916 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 917 918 /** 919 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 920 * @parent: kernfs_node to search under 921 * @path: path to look for 922 * @ns: the namespace tag to use 923 * 924 * Look for kernfs_node with path @path under @parent and get a reference 925 * if found. This function may sleep and returns pointer to the found 926 * kernfs_node on success, %NULL on failure. 927 */ 928 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 929 const char *path, const void *ns) 930 { 931 struct kernfs_node *kn; 932 933 mutex_lock(&kernfs_mutex); 934 kn = kernfs_walk_ns(parent, path, ns); 935 kernfs_get(kn); 936 mutex_unlock(&kernfs_mutex); 937 938 return kn; 939 } 940 941 /** 942 * kernfs_create_root - create a new kernfs hierarchy 943 * @scops: optional syscall operations for the hierarchy 944 * @flags: KERNFS_ROOT_* flags 945 * @priv: opaque data associated with the new directory 946 * 947 * Returns the root of the new hierarchy on success, ERR_PTR() value on 948 * failure. 949 */ 950 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 951 unsigned int flags, void *priv) 952 { 953 struct kernfs_root *root; 954 struct kernfs_node *kn; 955 956 root = kzalloc(sizeof(*root), GFP_KERNEL); 957 if (!root) 958 return ERR_PTR(-ENOMEM); 959 960 idr_init(&root->ino_idr); 961 INIT_LIST_HEAD(&root->supers); 962 root->next_generation = 1; 963 964 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 965 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 966 KERNFS_DIR); 967 if (!kn) { 968 idr_destroy(&root->ino_idr); 969 kfree(root); 970 return ERR_PTR(-ENOMEM); 971 } 972 973 kn->priv = priv; 974 kn->dir.root = root; 975 976 root->syscall_ops = scops; 977 root->flags = flags; 978 root->kn = kn; 979 init_waitqueue_head(&root->deactivate_waitq); 980 981 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 982 kernfs_activate(kn); 983 984 return root; 985 } 986 987 /** 988 * kernfs_destroy_root - destroy a kernfs hierarchy 989 * @root: root of the hierarchy to destroy 990 * 991 * Destroy the hierarchy anchored at @root by removing all existing 992 * directories and destroying @root. 993 */ 994 void kernfs_destroy_root(struct kernfs_root *root) 995 { 996 kernfs_remove(root->kn); /* will also free @root */ 997 } 998 999 /** 1000 * kernfs_create_dir_ns - create a directory 1001 * @parent: parent in which to create a new directory 1002 * @name: name of the new directory 1003 * @mode: mode of the new directory 1004 * @uid: uid of the new directory 1005 * @gid: gid of the new directory 1006 * @priv: opaque data associated with the new directory 1007 * @ns: optional namespace tag of the directory 1008 * 1009 * Returns the created node on success, ERR_PTR() value on failure. 1010 */ 1011 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1012 const char *name, umode_t mode, 1013 kuid_t uid, kgid_t gid, 1014 void *priv, const void *ns) 1015 { 1016 struct kernfs_node *kn; 1017 int rc; 1018 1019 /* allocate */ 1020 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1021 uid, gid, KERNFS_DIR); 1022 if (!kn) 1023 return ERR_PTR(-ENOMEM); 1024 1025 kn->dir.root = parent->dir.root; 1026 kn->ns = ns; 1027 kn->priv = priv; 1028 1029 /* link in */ 1030 rc = kernfs_add_one(kn); 1031 if (!rc) 1032 return kn; 1033 1034 kernfs_put(kn); 1035 return ERR_PTR(rc); 1036 } 1037 1038 /** 1039 * kernfs_create_empty_dir - create an always empty directory 1040 * @parent: parent in which to create a new directory 1041 * @name: name of the new directory 1042 * 1043 * Returns the created node on success, ERR_PTR() value on failure. 1044 */ 1045 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1046 const char *name) 1047 { 1048 struct kernfs_node *kn; 1049 int rc; 1050 1051 /* allocate */ 1052 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1053 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1054 if (!kn) 1055 return ERR_PTR(-ENOMEM); 1056 1057 kn->flags |= KERNFS_EMPTY_DIR; 1058 kn->dir.root = parent->dir.root; 1059 kn->ns = NULL; 1060 kn->priv = NULL; 1061 1062 /* link in */ 1063 rc = kernfs_add_one(kn); 1064 if (!rc) 1065 return kn; 1066 1067 kernfs_put(kn); 1068 return ERR_PTR(rc); 1069 } 1070 1071 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1072 struct dentry *dentry, 1073 unsigned int flags) 1074 { 1075 struct dentry *ret; 1076 struct kernfs_node *parent = dir->i_private; 1077 struct kernfs_node *kn; 1078 struct inode *inode; 1079 const void *ns = NULL; 1080 1081 mutex_lock(&kernfs_mutex); 1082 1083 if (kernfs_ns_enabled(parent)) 1084 ns = kernfs_info(dir->i_sb)->ns; 1085 1086 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1087 1088 /* no such entry */ 1089 if (!kn || !kernfs_active(kn)) { 1090 ret = NULL; 1091 goto out_unlock; 1092 } 1093 1094 /* attach dentry and inode */ 1095 inode = kernfs_get_inode(dir->i_sb, kn); 1096 if (!inode) { 1097 ret = ERR_PTR(-ENOMEM); 1098 goto out_unlock; 1099 } 1100 1101 /* instantiate and hash dentry */ 1102 ret = d_splice_alias(inode, dentry); 1103 out_unlock: 1104 mutex_unlock(&kernfs_mutex); 1105 return ret; 1106 } 1107 1108 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1109 umode_t mode) 1110 { 1111 struct kernfs_node *parent = dir->i_private; 1112 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1113 int ret; 1114 1115 if (!scops || !scops->mkdir) 1116 return -EPERM; 1117 1118 if (!kernfs_get_active(parent)) 1119 return -ENODEV; 1120 1121 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1122 1123 kernfs_put_active(parent); 1124 return ret; 1125 } 1126 1127 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1128 { 1129 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1130 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1131 int ret; 1132 1133 if (!scops || !scops->rmdir) 1134 return -EPERM; 1135 1136 if (!kernfs_get_active(kn)) 1137 return -ENODEV; 1138 1139 ret = scops->rmdir(kn); 1140 1141 kernfs_put_active(kn); 1142 return ret; 1143 } 1144 1145 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1146 struct inode *new_dir, struct dentry *new_dentry, 1147 unsigned int flags) 1148 { 1149 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1150 struct kernfs_node *new_parent = new_dir->i_private; 1151 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1152 int ret; 1153 1154 if (flags) 1155 return -EINVAL; 1156 1157 if (!scops || !scops->rename) 1158 return -EPERM; 1159 1160 if (!kernfs_get_active(kn)) 1161 return -ENODEV; 1162 1163 if (!kernfs_get_active(new_parent)) { 1164 kernfs_put_active(kn); 1165 return -ENODEV; 1166 } 1167 1168 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1169 1170 kernfs_put_active(new_parent); 1171 kernfs_put_active(kn); 1172 return ret; 1173 } 1174 1175 const struct inode_operations kernfs_dir_iops = { 1176 .lookup = kernfs_iop_lookup, 1177 .permission = kernfs_iop_permission, 1178 .setattr = kernfs_iop_setattr, 1179 .getattr = kernfs_iop_getattr, 1180 .listxattr = kernfs_iop_listxattr, 1181 1182 .mkdir = kernfs_iop_mkdir, 1183 .rmdir = kernfs_iop_rmdir, 1184 .rename = kernfs_iop_rename, 1185 }; 1186 1187 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1188 { 1189 struct kernfs_node *last; 1190 1191 while (true) { 1192 struct rb_node *rbn; 1193 1194 last = pos; 1195 1196 if (kernfs_type(pos) != KERNFS_DIR) 1197 break; 1198 1199 rbn = rb_first(&pos->dir.children); 1200 if (!rbn) 1201 break; 1202 1203 pos = rb_to_kn(rbn); 1204 } 1205 1206 return last; 1207 } 1208 1209 /** 1210 * kernfs_next_descendant_post - find the next descendant for post-order walk 1211 * @pos: the current position (%NULL to initiate traversal) 1212 * @root: kernfs_node whose descendants to walk 1213 * 1214 * Find the next descendant to visit for post-order traversal of @root's 1215 * descendants. @root is included in the iteration and the last node to be 1216 * visited. 1217 */ 1218 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1219 struct kernfs_node *root) 1220 { 1221 struct rb_node *rbn; 1222 1223 lockdep_assert_held(&kernfs_mutex); 1224 1225 /* if first iteration, visit leftmost descendant which may be root */ 1226 if (!pos) 1227 return kernfs_leftmost_descendant(root); 1228 1229 /* if we visited @root, we're done */ 1230 if (pos == root) 1231 return NULL; 1232 1233 /* if there's an unvisited sibling, visit its leftmost descendant */ 1234 rbn = rb_next(&pos->rb); 1235 if (rbn) 1236 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1237 1238 /* no sibling left, visit parent */ 1239 return pos->parent; 1240 } 1241 1242 /** 1243 * kernfs_activate - activate a node which started deactivated 1244 * @kn: kernfs_node whose subtree is to be activated 1245 * 1246 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1247 * needs to be explicitly activated. A node which hasn't been activated 1248 * isn't visible to userland and deactivation is skipped during its 1249 * removal. This is useful to construct atomic init sequences where 1250 * creation of multiple nodes should either succeed or fail atomically. 1251 * 1252 * The caller is responsible for ensuring that this function is not called 1253 * after kernfs_remove*() is invoked on @kn. 1254 */ 1255 void kernfs_activate(struct kernfs_node *kn) 1256 { 1257 struct kernfs_node *pos; 1258 1259 mutex_lock(&kernfs_mutex); 1260 1261 pos = NULL; 1262 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1263 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1264 continue; 1265 1266 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1267 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1268 1269 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1270 pos->flags |= KERNFS_ACTIVATED; 1271 } 1272 1273 mutex_unlock(&kernfs_mutex); 1274 } 1275 1276 static void __kernfs_remove(struct kernfs_node *kn) 1277 { 1278 struct kernfs_node *pos; 1279 1280 lockdep_assert_held(&kernfs_mutex); 1281 1282 /* 1283 * Short-circuit if non-root @kn has already finished removal. 1284 * This is for kernfs_remove_self() which plays with active ref 1285 * after removal. 1286 */ 1287 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1288 return; 1289 1290 pr_debug("kernfs %s: removing\n", kn->name); 1291 1292 /* prevent any new usage under @kn by deactivating all nodes */ 1293 pos = NULL; 1294 while ((pos = kernfs_next_descendant_post(pos, kn))) 1295 if (kernfs_active(pos)) 1296 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1297 1298 /* deactivate and unlink the subtree node-by-node */ 1299 do { 1300 pos = kernfs_leftmost_descendant(kn); 1301 1302 /* 1303 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1304 * base ref could have been put by someone else by the time 1305 * the function returns. Make sure it doesn't go away 1306 * underneath us. 1307 */ 1308 kernfs_get(pos); 1309 1310 /* 1311 * Drain iff @kn was activated. This avoids draining and 1312 * its lockdep annotations for nodes which have never been 1313 * activated and allows embedding kernfs_remove() in create 1314 * error paths without worrying about draining. 1315 */ 1316 if (kn->flags & KERNFS_ACTIVATED) 1317 kernfs_drain(pos); 1318 else 1319 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1320 1321 /* 1322 * kernfs_unlink_sibling() succeeds once per node. Use it 1323 * to decide who's responsible for cleanups. 1324 */ 1325 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1326 struct kernfs_iattrs *ps_iattr = 1327 pos->parent ? pos->parent->iattr : NULL; 1328 1329 /* update timestamps on the parent */ 1330 if (ps_iattr) { 1331 ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime); 1332 ps_iattr->ia_iattr.ia_mtime = 1333 ps_iattr->ia_iattr.ia_ctime; 1334 } 1335 1336 kernfs_put(pos); 1337 } 1338 1339 kernfs_put(pos); 1340 } while (pos != kn); 1341 } 1342 1343 /** 1344 * kernfs_remove - remove a kernfs_node recursively 1345 * @kn: the kernfs_node to remove 1346 * 1347 * Remove @kn along with all its subdirectories and files. 1348 */ 1349 void kernfs_remove(struct kernfs_node *kn) 1350 { 1351 mutex_lock(&kernfs_mutex); 1352 __kernfs_remove(kn); 1353 mutex_unlock(&kernfs_mutex); 1354 } 1355 1356 /** 1357 * kernfs_break_active_protection - break out of active protection 1358 * @kn: the self kernfs_node 1359 * 1360 * The caller must be running off of a kernfs operation which is invoked 1361 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1362 * this function must also be matched with an invocation of 1363 * kernfs_unbreak_active_protection(). 1364 * 1365 * This function releases the active reference of @kn the caller is 1366 * holding. Once this function is called, @kn may be removed at any point 1367 * and the caller is solely responsible for ensuring that the objects it 1368 * dereferences are accessible. 1369 */ 1370 void kernfs_break_active_protection(struct kernfs_node *kn) 1371 { 1372 /* 1373 * Take out ourself out of the active ref dependency chain. If 1374 * we're called without an active ref, lockdep will complain. 1375 */ 1376 kernfs_put_active(kn); 1377 } 1378 1379 /** 1380 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1381 * @kn: the self kernfs_node 1382 * 1383 * If kernfs_break_active_protection() was called, this function must be 1384 * invoked before finishing the kernfs operation. Note that while this 1385 * function restores the active reference, it doesn't and can't actually 1386 * restore the active protection - @kn may already or be in the process of 1387 * being removed. Once kernfs_break_active_protection() is invoked, that 1388 * protection is irreversibly gone for the kernfs operation instance. 1389 * 1390 * While this function may be called at any point after 1391 * kernfs_break_active_protection() is invoked, its most useful location 1392 * would be right before the enclosing kernfs operation returns. 1393 */ 1394 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1395 { 1396 /* 1397 * @kn->active could be in any state; however, the increment we do 1398 * here will be undone as soon as the enclosing kernfs operation 1399 * finishes and this temporary bump can't break anything. If @kn 1400 * is alive, nothing changes. If @kn is being deactivated, the 1401 * soon-to-follow put will either finish deactivation or restore 1402 * deactivated state. If @kn is already removed, the temporary 1403 * bump is guaranteed to be gone before @kn is released. 1404 */ 1405 atomic_inc(&kn->active); 1406 if (kernfs_lockdep(kn)) 1407 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1408 } 1409 1410 /** 1411 * kernfs_remove_self - remove a kernfs_node from its own method 1412 * @kn: the self kernfs_node to remove 1413 * 1414 * The caller must be running off of a kernfs operation which is invoked 1415 * with an active reference - e.g. one of kernfs_ops. This can be used to 1416 * implement a file operation which deletes itself. 1417 * 1418 * For example, the "delete" file for a sysfs device directory can be 1419 * implemented by invoking kernfs_remove_self() on the "delete" file 1420 * itself. This function breaks the circular dependency of trying to 1421 * deactivate self while holding an active ref itself. It isn't necessary 1422 * to modify the usual removal path to use kernfs_remove_self(). The 1423 * "delete" implementation can simply invoke kernfs_remove_self() on self 1424 * before proceeding with the usual removal path. kernfs will ignore later 1425 * kernfs_remove() on self. 1426 * 1427 * kernfs_remove_self() can be called multiple times concurrently on the 1428 * same kernfs_node. Only the first one actually performs removal and 1429 * returns %true. All others will wait until the kernfs operation which 1430 * won self-removal finishes and return %false. Note that the losers wait 1431 * for the completion of not only the winning kernfs_remove_self() but also 1432 * the whole kernfs_ops which won the arbitration. This can be used to 1433 * guarantee, for example, all concurrent writes to a "delete" file to 1434 * finish only after the whole operation is complete. 1435 */ 1436 bool kernfs_remove_self(struct kernfs_node *kn) 1437 { 1438 bool ret; 1439 1440 mutex_lock(&kernfs_mutex); 1441 kernfs_break_active_protection(kn); 1442 1443 /* 1444 * SUICIDAL is used to arbitrate among competing invocations. Only 1445 * the first one will actually perform removal. When the removal 1446 * is complete, SUICIDED is set and the active ref is restored 1447 * while holding kernfs_mutex. The ones which lost arbitration 1448 * waits for SUICDED && drained which can happen only after the 1449 * enclosing kernfs operation which executed the winning instance 1450 * of kernfs_remove_self() finished. 1451 */ 1452 if (!(kn->flags & KERNFS_SUICIDAL)) { 1453 kn->flags |= KERNFS_SUICIDAL; 1454 __kernfs_remove(kn); 1455 kn->flags |= KERNFS_SUICIDED; 1456 ret = true; 1457 } else { 1458 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1459 DEFINE_WAIT(wait); 1460 1461 while (true) { 1462 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1463 1464 if ((kn->flags & KERNFS_SUICIDED) && 1465 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1466 break; 1467 1468 mutex_unlock(&kernfs_mutex); 1469 schedule(); 1470 mutex_lock(&kernfs_mutex); 1471 } 1472 finish_wait(waitq, &wait); 1473 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1474 ret = false; 1475 } 1476 1477 /* 1478 * This must be done while holding kernfs_mutex; otherwise, waiting 1479 * for SUICIDED && deactivated could finish prematurely. 1480 */ 1481 kernfs_unbreak_active_protection(kn); 1482 1483 mutex_unlock(&kernfs_mutex); 1484 return ret; 1485 } 1486 1487 /** 1488 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1489 * @parent: parent of the target 1490 * @name: name of the kernfs_node to remove 1491 * @ns: namespace tag of the kernfs_node to remove 1492 * 1493 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1494 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1495 */ 1496 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1497 const void *ns) 1498 { 1499 struct kernfs_node *kn; 1500 1501 if (!parent) { 1502 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1503 name); 1504 return -ENOENT; 1505 } 1506 1507 mutex_lock(&kernfs_mutex); 1508 1509 kn = kernfs_find_ns(parent, name, ns); 1510 if (kn) 1511 __kernfs_remove(kn); 1512 1513 mutex_unlock(&kernfs_mutex); 1514 1515 if (kn) 1516 return 0; 1517 else 1518 return -ENOENT; 1519 } 1520 1521 /** 1522 * kernfs_rename_ns - move and rename a kernfs_node 1523 * @kn: target node 1524 * @new_parent: new parent to put @sd under 1525 * @new_name: new name 1526 * @new_ns: new namespace tag 1527 */ 1528 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1529 const char *new_name, const void *new_ns) 1530 { 1531 struct kernfs_node *old_parent; 1532 const char *old_name = NULL; 1533 int error; 1534 1535 /* can't move or rename root */ 1536 if (!kn->parent) 1537 return -EINVAL; 1538 1539 mutex_lock(&kernfs_mutex); 1540 1541 error = -ENOENT; 1542 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1543 (new_parent->flags & KERNFS_EMPTY_DIR)) 1544 goto out; 1545 1546 error = 0; 1547 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1548 (strcmp(kn->name, new_name) == 0)) 1549 goto out; /* nothing to rename */ 1550 1551 error = -EEXIST; 1552 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1553 goto out; 1554 1555 /* rename kernfs_node */ 1556 if (strcmp(kn->name, new_name) != 0) { 1557 error = -ENOMEM; 1558 new_name = kstrdup_const(new_name, GFP_KERNEL); 1559 if (!new_name) 1560 goto out; 1561 } else { 1562 new_name = NULL; 1563 } 1564 1565 /* 1566 * Move to the appropriate place in the appropriate directories rbtree. 1567 */ 1568 kernfs_unlink_sibling(kn); 1569 kernfs_get(new_parent); 1570 1571 /* rename_lock protects ->parent and ->name accessors */ 1572 spin_lock_irq(&kernfs_rename_lock); 1573 1574 old_parent = kn->parent; 1575 kn->parent = new_parent; 1576 1577 kn->ns = new_ns; 1578 if (new_name) { 1579 old_name = kn->name; 1580 kn->name = new_name; 1581 } 1582 1583 spin_unlock_irq(&kernfs_rename_lock); 1584 1585 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1586 kernfs_link_sibling(kn); 1587 1588 kernfs_put(old_parent); 1589 kfree_const(old_name); 1590 1591 error = 0; 1592 out: 1593 mutex_unlock(&kernfs_mutex); 1594 return error; 1595 } 1596 1597 /* Relationship between s_mode and the DT_xxx types */ 1598 static inline unsigned char dt_type(struct kernfs_node *kn) 1599 { 1600 return (kn->mode >> 12) & 15; 1601 } 1602 1603 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1604 { 1605 kernfs_put(filp->private_data); 1606 return 0; 1607 } 1608 1609 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1610 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1611 { 1612 if (pos) { 1613 int valid = kernfs_active(pos) && 1614 pos->parent == parent && hash == pos->hash; 1615 kernfs_put(pos); 1616 if (!valid) 1617 pos = NULL; 1618 } 1619 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1620 struct rb_node *node = parent->dir.children.rb_node; 1621 while (node) { 1622 pos = rb_to_kn(node); 1623 1624 if (hash < pos->hash) 1625 node = node->rb_left; 1626 else if (hash > pos->hash) 1627 node = node->rb_right; 1628 else 1629 break; 1630 } 1631 } 1632 /* Skip over entries which are dying/dead or in the wrong namespace */ 1633 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1634 struct rb_node *node = rb_next(&pos->rb); 1635 if (!node) 1636 pos = NULL; 1637 else 1638 pos = rb_to_kn(node); 1639 } 1640 return pos; 1641 } 1642 1643 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1644 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1645 { 1646 pos = kernfs_dir_pos(ns, parent, ino, pos); 1647 if (pos) { 1648 do { 1649 struct rb_node *node = rb_next(&pos->rb); 1650 if (!node) 1651 pos = NULL; 1652 else 1653 pos = rb_to_kn(node); 1654 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1655 } 1656 return pos; 1657 } 1658 1659 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1660 { 1661 struct dentry *dentry = file->f_path.dentry; 1662 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1663 struct kernfs_node *pos = file->private_data; 1664 const void *ns = NULL; 1665 1666 if (!dir_emit_dots(file, ctx)) 1667 return 0; 1668 mutex_lock(&kernfs_mutex); 1669 1670 if (kernfs_ns_enabled(parent)) 1671 ns = kernfs_info(dentry->d_sb)->ns; 1672 1673 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1674 pos; 1675 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1676 const char *name = pos->name; 1677 unsigned int type = dt_type(pos); 1678 int len = strlen(name); 1679 ino_t ino = pos->id.ino; 1680 1681 ctx->pos = pos->hash; 1682 file->private_data = pos; 1683 kernfs_get(pos); 1684 1685 mutex_unlock(&kernfs_mutex); 1686 if (!dir_emit(ctx, name, len, ino, type)) 1687 return 0; 1688 mutex_lock(&kernfs_mutex); 1689 } 1690 mutex_unlock(&kernfs_mutex); 1691 file->private_data = NULL; 1692 ctx->pos = INT_MAX; 1693 return 0; 1694 } 1695 1696 const struct file_operations kernfs_dir_fops = { 1697 .read = generic_read_dir, 1698 .iterate_shared = kernfs_fop_readdir, 1699 .release = kernfs_dir_fop_release, 1700 .llseek = generic_file_llseek, 1701 }; 1702