xref: /linux/fs/kernfs/dir.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path_len - determine the length of the full path of a given node
96  * @kn: kernfs_node of interest
97  *
98  * The returned length doesn't include the space for the terminating '\0'.
99  */
100 size_t kernfs_path_len(struct kernfs_node *kn)
101 {
102 	size_t len = 0;
103 	unsigned long flags;
104 
105 	spin_lock_irqsave(&kernfs_rename_lock, flags);
106 
107 	do {
108 		len += strlen(kn->name) + 1;
109 		kn = kn->parent;
110 	} while (kn && kn->parent);
111 
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 
114 	return len;
115 }
116 
117 /**
118  * kernfs_path - build full path of a given node
119  * @kn: kernfs_node of interest
120  * @buf: buffer to copy @kn's name into
121  * @buflen: size of @buf
122  *
123  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
124  * path is built from the end of @buf so the returned pointer usually
125  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
126  * and %NULL is returned.
127  */
128 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129 {
130 	unsigned long flags;
131 	char *p;
132 
133 	spin_lock_irqsave(&kernfs_rename_lock, flags);
134 	p = kernfs_path_locked(kn, buf, buflen);
135 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 	return p;
137 }
138 EXPORT_SYMBOL_GPL(kernfs_path);
139 
140 /**
141  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142  * @kn: kernfs_node of interest
143  *
144  * This function can be called from any context.
145  */
146 void pr_cont_kernfs_name(struct kernfs_node *kn)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&kernfs_rename_lock, flags);
151 
152 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 	pr_cont("%s", kernfs_pr_cont_buf);
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160  * @kn: kernfs_node of interest
161  *
162  * This function can be called from any context.
163  */
164 void pr_cont_kernfs_path(struct kernfs_node *kn)
165 {
166 	unsigned long flags;
167 	char *p;
168 
169 	spin_lock_irqsave(&kernfs_rename_lock, flags);
170 
171 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 			       sizeof(kernfs_pr_cont_buf));
173 	if (p)
174 		pr_cont("%s", p);
175 	else
176 		pr_cont("<name too long>");
177 
178 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 }
180 
181 /**
182  * kernfs_get_parent - determine the parent node and pin it
183  * @kn: kernfs_node of interest
184  *
185  * Determines @kn's parent, pins and returns it.  This function can be
186  * called from any context.
187  */
188 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189 {
190 	struct kernfs_node *parent;
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&kernfs_rename_lock, flags);
194 	parent = kn->parent;
195 	kernfs_get(parent);
196 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197 
198 	return parent;
199 }
200 
201 /**
202  *	kernfs_name_hash
203  *	@name: Null terminated string to hash
204  *	@ns:   Namespace tag to hash
205  *
206  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
207  */
208 static unsigned int kernfs_name_hash(const char *name, const void *ns)
209 {
210 	unsigned long hash = init_name_hash();
211 	unsigned int len = strlen(name);
212 	while (len--)
213 		hash = partial_name_hash(*name++, hash);
214 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 	hash &= 0x7fffffffU;
216 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 	if (hash < 2)
218 		hash += 2;
219 	if (hash >= INT_MAX)
220 		hash = INT_MAX - 1;
221 	return hash;
222 }
223 
224 static int kernfs_name_compare(unsigned int hash, const char *name,
225 			       const void *ns, const struct kernfs_node *kn)
226 {
227 	if (hash < kn->hash)
228 		return -1;
229 	if (hash > kn->hash)
230 		return 1;
231 	if (ns < kn->ns)
232 		return -1;
233 	if (ns > kn->ns)
234 		return 1;
235 	return strcmp(name, kn->name);
236 }
237 
238 static int kernfs_sd_compare(const struct kernfs_node *left,
239 			     const struct kernfs_node *right)
240 {
241 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
242 }
243 
244 /**
245  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
246  *	@kn: kernfs_node of interest
247  *
248  *	Link @kn into its sibling rbtree which starts from
249  *	@kn->parent->dir.children.
250  *
251  *	Locking:
252  *	mutex_lock(kernfs_mutex)
253  *
254  *	RETURNS:
255  *	0 on susccess -EEXIST on failure.
256  */
257 static int kernfs_link_sibling(struct kernfs_node *kn)
258 {
259 	struct rb_node **node = &kn->parent->dir.children.rb_node;
260 	struct rb_node *parent = NULL;
261 
262 	while (*node) {
263 		struct kernfs_node *pos;
264 		int result;
265 
266 		pos = rb_to_kn(*node);
267 		parent = *node;
268 		result = kernfs_sd_compare(kn, pos);
269 		if (result < 0)
270 			node = &pos->rb.rb_left;
271 		else if (result > 0)
272 			node = &pos->rb.rb_right;
273 		else
274 			return -EEXIST;
275 	}
276 
277 	/* add new node and rebalance the tree */
278 	rb_link_node(&kn->rb, parent, node);
279 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
280 
281 	/* successfully added, account subdir number */
282 	if (kernfs_type(kn) == KERNFS_DIR)
283 		kn->parent->dir.subdirs++;
284 
285 	return 0;
286 }
287 
288 /**
289  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290  *	@kn: kernfs_node of interest
291  *
292  *	Try to unlink @kn from its sibling rbtree which starts from
293  *	kn->parent->dir.children.  Returns %true if @kn was actually
294  *	removed, %false if @kn wasn't on the rbtree.
295  *
296  *	Locking:
297  *	mutex_lock(kernfs_mutex)
298  */
299 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
300 {
301 	if (RB_EMPTY_NODE(&kn->rb))
302 		return false;
303 
304 	if (kernfs_type(kn) == KERNFS_DIR)
305 		kn->parent->dir.subdirs--;
306 
307 	rb_erase(&kn->rb, &kn->parent->dir.children);
308 	RB_CLEAR_NODE(&kn->rb);
309 	return true;
310 }
311 
312 /**
313  *	kernfs_get_active - get an active reference to kernfs_node
314  *	@kn: kernfs_node to get an active reference to
315  *
316  *	Get an active reference of @kn.  This function is noop if @kn
317  *	is NULL.
318  *
319  *	RETURNS:
320  *	Pointer to @kn on success, NULL on failure.
321  */
322 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
323 {
324 	if (unlikely(!kn))
325 		return NULL;
326 
327 	if (!atomic_inc_unless_negative(&kn->active))
328 		return NULL;
329 
330 	if (kernfs_lockdep(kn))
331 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 	return kn;
333 }
334 
335 /**
336  *	kernfs_put_active - put an active reference to kernfs_node
337  *	@kn: kernfs_node to put an active reference to
338  *
339  *	Put an active reference to @kn.  This function is noop if @kn
340  *	is NULL.
341  */
342 void kernfs_put_active(struct kernfs_node *kn)
343 {
344 	struct kernfs_root *root = kernfs_root(kn);
345 	int v;
346 
347 	if (unlikely(!kn))
348 		return;
349 
350 	if (kernfs_lockdep(kn))
351 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 	v = atomic_dec_return(&kn->active);
353 	if (likely(v != KN_DEACTIVATED_BIAS))
354 		return;
355 
356 	wake_up_all(&root->deactivate_waitq);
357 }
358 
359 /**
360  * kernfs_drain - drain kernfs_node
361  * @kn: kernfs_node to drain
362  *
363  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
364  * removers may invoke this function concurrently on @kn and all will
365  * return after draining is complete.
366  */
367 static void kernfs_drain(struct kernfs_node *kn)
368 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
369 {
370 	struct kernfs_root *root = kernfs_root(kn);
371 
372 	lockdep_assert_held(&kernfs_mutex);
373 	WARN_ON_ONCE(kernfs_active(kn));
374 
375 	mutex_unlock(&kernfs_mutex);
376 
377 	if (kernfs_lockdep(kn)) {
378 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 			lock_contended(&kn->dep_map, _RET_IP_);
381 	}
382 
383 	/* but everyone should wait for draining */
384 	wait_event(root->deactivate_waitq,
385 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
386 
387 	if (kernfs_lockdep(kn)) {
388 		lock_acquired(&kn->dep_map, _RET_IP_);
389 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 	}
391 
392 	kernfs_unmap_bin_file(kn);
393 
394 	mutex_lock(&kernfs_mutex);
395 }
396 
397 /**
398  * kernfs_get - get a reference count on a kernfs_node
399  * @kn: the target kernfs_node
400  */
401 void kernfs_get(struct kernfs_node *kn)
402 {
403 	if (kn) {
404 		WARN_ON(!atomic_read(&kn->count));
405 		atomic_inc(&kn->count);
406 	}
407 }
408 EXPORT_SYMBOL_GPL(kernfs_get);
409 
410 /**
411  * kernfs_put - put a reference count on a kernfs_node
412  * @kn: the target kernfs_node
413  *
414  * Put a reference count of @kn and destroy it if it reached zero.
415  */
416 void kernfs_put(struct kernfs_node *kn)
417 {
418 	struct kernfs_node *parent;
419 	struct kernfs_root *root;
420 
421 	if (!kn || !atomic_dec_and_test(&kn->count))
422 		return;
423 	root = kernfs_root(kn);
424  repeat:
425 	/*
426 	 * Moving/renaming is always done while holding reference.
427 	 * kn->parent won't change beneath us.
428 	 */
429 	parent = kn->parent;
430 
431 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
434 
435 	if (kernfs_type(kn) == KERNFS_LINK)
436 		kernfs_put(kn->symlink.target_kn);
437 
438 	kfree_const(kn->name);
439 
440 	if (kn->iattr) {
441 		if (kn->iattr->ia_secdata)
442 			security_release_secctx(kn->iattr->ia_secdata,
443 						kn->iattr->ia_secdata_len);
444 		simple_xattrs_free(&kn->iattr->xattrs);
445 	}
446 	kfree(kn->iattr);
447 	ida_simple_remove(&root->ino_ida, kn->ino);
448 	kmem_cache_free(kernfs_node_cache, kn);
449 
450 	kn = parent;
451 	if (kn) {
452 		if (atomic_dec_and_test(&kn->count))
453 			goto repeat;
454 	} else {
455 		/* just released the root kn, free @root too */
456 		ida_destroy(&root->ino_ida);
457 		kfree(root);
458 	}
459 }
460 EXPORT_SYMBOL_GPL(kernfs_put);
461 
462 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
463 {
464 	struct kernfs_node *kn;
465 
466 	if (flags & LOOKUP_RCU)
467 		return -ECHILD;
468 
469 	/* Always perform fresh lookup for negatives */
470 	if (d_really_is_negative(dentry))
471 		goto out_bad_unlocked;
472 
473 	kn = dentry->d_fsdata;
474 	mutex_lock(&kernfs_mutex);
475 
476 	/* The kernfs node has been deactivated */
477 	if (!kernfs_active(kn))
478 		goto out_bad;
479 
480 	/* The kernfs node has been moved? */
481 	if (dentry->d_parent->d_fsdata != kn->parent)
482 		goto out_bad;
483 
484 	/* The kernfs node has been renamed */
485 	if (strcmp(dentry->d_name.name, kn->name) != 0)
486 		goto out_bad;
487 
488 	/* The kernfs node has been moved to a different namespace */
489 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
491 		goto out_bad;
492 
493 	mutex_unlock(&kernfs_mutex);
494 	return 1;
495 out_bad:
496 	mutex_unlock(&kernfs_mutex);
497 out_bad_unlocked:
498 	return 0;
499 }
500 
501 static void kernfs_dop_release(struct dentry *dentry)
502 {
503 	kernfs_put(dentry->d_fsdata);
504 }
505 
506 const struct dentry_operations kernfs_dops = {
507 	.d_revalidate	= kernfs_dop_revalidate,
508 	.d_release	= kernfs_dop_release,
509 };
510 
511 /**
512  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513  * @dentry: the dentry in question
514  *
515  * Return the kernfs_node associated with @dentry.  If @dentry is not a
516  * kernfs one, %NULL is returned.
517  *
518  * While the returned kernfs_node will stay accessible as long as @dentry
519  * is accessible, the returned node can be in any state and the caller is
520  * fully responsible for determining what's accessible.
521  */
522 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523 {
524 	if (dentry->d_sb->s_op == &kernfs_sops)
525 		return dentry->d_fsdata;
526 	return NULL;
527 }
528 
529 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 					     const char *name, umode_t mode,
531 					     unsigned flags)
532 {
533 	struct kernfs_node *kn;
534 	int ret;
535 
536 	name = kstrdup_const(name, GFP_KERNEL);
537 	if (!name)
538 		return NULL;
539 
540 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 	if (!kn)
542 		goto err_out1;
543 
544 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
545 	if (ret < 0)
546 		goto err_out2;
547 	kn->ino = ret;
548 
549 	atomic_set(&kn->count, 1);
550 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
551 	RB_CLEAR_NODE(&kn->rb);
552 
553 	kn->name = name;
554 	kn->mode = mode;
555 	kn->flags = flags;
556 
557 	return kn;
558 
559  err_out2:
560 	kmem_cache_free(kernfs_node_cache, kn);
561  err_out1:
562 	kfree_const(name);
563 	return NULL;
564 }
565 
566 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
567 				    const char *name, umode_t mode,
568 				    unsigned flags)
569 {
570 	struct kernfs_node *kn;
571 
572 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
573 	if (kn) {
574 		kernfs_get(parent);
575 		kn->parent = parent;
576 	}
577 	return kn;
578 }
579 
580 /**
581  *	kernfs_add_one - add kernfs_node to parent without warning
582  *	@kn: kernfs_node to be added
583  *
584  *	The caller must already have initialized @kn->parent.  This
585  *	function increments nlink of the parent's inode if @kn is a
586  *	directory and link into the children list of the parent.
587  *
588  *	RETURNS:
589  *	0 on success, -EEXIST if entry with the given name already
590  *	exists.
591  */
592 int kernfs_add_one(struct kernfs_node *kn)
593 {
594 	struct kernfs_node *parent = kn->parent;
595 	struct kernfs_iattrs *ps_iattr;
596 	bool has_ns;
597 	int ret;
598 
599 	mutex_lock(&kernfs_mutex);
600 
601 	ret = -EINVAL;
602 	has_ns = kernfs_ns_enabled(parent);
603 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
604 		 has_ns ? "required" : "invalid", parent->name, kn->name))
605 		goto out_unlock;
606 
607 	if (kernfs_type(parent) != KERNFS_DIR)
608 		goto out_unlock;
609 
610 	ret = -ENOENT;
611 	if (parent->flags & KERNFS_EMPTY_DIR)
612 		goto out_unlock;
613 
614 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
615 		goto out_unlock;
616 
617 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
618 
619 	ret = kernfs_link_sibling(kn);
620 	if (ret)
621 		goto out_unlock;
622 
623 	/* Update timestamps on the parent */
624 	ps_iattr = parent->iattr;
625 	if (ps_iattr) {
626 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
627 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
628 	}
629 
630 	mutex_unlock(&kernfs_mutex);
631 
632 	/*
633 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
634 	 * If not activated here, the kernfs user is responsible for
635 	 * activating the node with kernfs_activate().  A node which hasn't
636 	 * been activated is not visible to userland and its removal won't
637 	 * trigger deactivation.
638 	 */
639 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
640 		kernfs_activate(kn);
641 	return 0;
642 
643 out_unlock:
644 	mutex_unlock(&kernfs_mutex);
645 	return ret;
646 }
647 
648 /**
649  * kernfs_find_ns - find kernfs_node with the given name
650  * @parent: kernfs_node to search under
651  * @name: name to look for
652  * @ns: the namespace tag to use
653  *
654  * Look for kernfs_node with name @name under @parent.  Returns pointer to
655  * the found kernfs_node on success, %NULL on failure.
656  */
657 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
658 					  const unsigned char *name,
659 					  const void *ns)
660 {
661 	struct rb_node *node = parent->dir.children.rb_node;
662 	bool has_ns = kernfs_ns_enabled(parent);
663 	unsigned int hash;
664 
665 	lockdep_assert_held(&kernfs_mutex);
666 
667 	if (has_ns != (bool)ns) {
668 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
669 		     has_ns ? "required" : "invalid", parent->name, name);
670 		return NULL;
671 	}
672 
673 	hash = kernfs_name_hash(name, ns);
674 	while (node) {
675 		struct kernfs_node *kn;
676 		int result;
677 
678 		kn = rb_to_kn(node);
679 		result = kernfs_name_compare(hash, name, ns, kn);
680 		if (result < 0)
681 			node = node->rb_left;
682 		else if (result > 0)
683 			node = node->rb_right;
684 		else
685 			return kn;
686 	}
687 	return NULL;
688 }
689 
690 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
691 					  const unsigned char *path,
692 					  const void *ns)
693 {
694 	static char path_buf[PATH_MAX];	/* protected by kernfs_mutex */
695 	size_t len = strlcpy(path_buf, path, PATH_MAX);
696 	char *p = path_buf;
697 	char *name;
698 
699 	lockdep_assert_held(&kernfs_mutex);
700 
701 	if (len >= PATH_MAX)
702 		return NULL;
703 
704 	while ((name = strsep(&p, "/")) && parent) {
705 		if (*name == '\0')
706 			continue;
707 		parent = kernfs_find_ns(parent, name, ns);
708 	}
709 
710 	return parent;
711 }
712 
713 /**
714  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
715  * @parent: kernfs_node to search under
716  * @name: name to look for
717  * @ns: the namespace tag to use
718  *
719  * Look for kernfs_node with name @name under @parent and get a reference
720  * if found.  This function may sleep and returns pointer to the found
721  * kernfs_node on success, %NULL on failure.
722  */
723 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
724 					   const char *name, const void *ns)
725 {
726 	struct kernfs_node *kn;
727 
728 	mutex_lock(&kernfs_mutex);
729 	kn = kernfs_find_ns(parent, name, ns);
730 	kernfs_get(kn);
731 	mutex_unlock(&kernfs_mutex);
732 
733 	return kn;
734 }
735 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
736 
737 /**
738  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
739  * @parent: kernfs_node to search under
740  * @path: path to look for
741  * @ns: the namespace tag to use
742  *
743  * Look for kernfs_node with path @path under @parent and get a reference
744  * if found.  This function may sleep and returns pointer to the found
745  * kernfs_node on success, %NULL on failure.
746  */
747 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
748 					   const char *path, const void *ns)
749 {
750 	struct kernfs_node *kn;
751 
752 	mutex_lock(&kernfs_mutex);
753 	kn = kernfs_walk_ns(parent, path, ns);
754 	kernfs_get(kn);
755 	mutex_unlock(&kernfs_mutex);
756 
757 	return kn;
758 }
759 
760 /**
761  * kernfs_create_root - create a new kernfs hierarchy
762  * @scops: optional syscall operations for the hierarchy
763  * @flags: KERNFS_ROOT_* flags
764  * @priv: opaque data associated with the new directory
765  *
766  * Returns the root of the new hierarchy on success, ERR_PTR() value on
767  * failure.
768  */
769 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
770 				       unsigned int flags, void *priv)
771 {
772 	struct kernfs_root *root;
773 	struct kernfs_node *kn;
774 
775 	root = kzalloc(sizeof(*root), GFP_KERNEL);
776 	if (!root)
777 		return ERR_PTR(-ENOMEM);
778 
779 	ida_init(&root->ino_ida);
780 	INIT_LIST_HEAD(&root->supers);
781 
782 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
783 			       KERNFS_DIR);
784 	if (!kn) {
785 		ida_destroy(&root->ino_ida);
786 		kfree(root);
787 		return ERR_PTR(-ENOMEM);
788 	}
789 
790 	kn->priv = priv;
791 	kn->dir.root = root;
792 
793 	root->syscall_ops = scops;
794 	root->flags = flags;
795 	root->kn = kn;
796 	init_waitqueue_head(&root->deactivate_waitq);
797 
798 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
799 		kernfs_activate(kn);
800 
801 	return root;
802 }
803 
804 /**
805  * kernfs_destroy_root - destroy a kernfs hierarchy
806  * @root: root of the hierarchy to destroy
807  *
808  * Destroy the hierarchy anchored at @root by removing all existing
809  * directories and destroying @root.
810  */
811 void kernfs_destroy_root(struct kernfs_root *root)
812 {
813 	kernfs_remove(root->kn);	/* will also free @root */
814 }
815 
816 /**
817  * kernfs_create_dir_ns - create a directory
818  * @parent: parent in which to create a new directory
819  * @name: name of the new directory
820  * @mode: mode of the new directory
821  * @priv: opaque data associated with the new directory
822  * @ns: optional namespace tag of the directory
823  *
824  * Returns the created node on success, ERR_PTR() value on failure.
825  */
826 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
827 					 const char *name, umode_t mode,
828 					 void *priv, const void *ns)
829 {
830 	struct kernfs_node *kn;
831 	int rc;
832 
833 	/* allocate */
834 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
835 	if (!kn)
836 		return ERR_PTR(-ENOMEM);
837 
838 	kn->dir.root = parent->dir.root;
839 	kn->ns = ns;
840 	kn->priv = priv;
841 
842 	/* link in */
843 	rc = kernfs_add_one(kn);
844 	if (!rc)
845 		return kn;
846 
847 	kernfs_put(kn);
848 	return ERR_PTR(rc);
849 }
850 
851 /**
852  * kernfs_create_empty_dir - create an always empty directory
853  * @parent: parent in which to create a new directory
854  * @name: name of the new directory
855  *
856  * Returns the created node on success, ERR_PTR() value on failure.
857  */
858 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
859 					    const char *name)
860 {
861 	struct kernfs_node *kn;
862 	int rc;
863 
864 	/* allocate */
865 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
866 	if (!kn)
867 		return ERR_PTR(-ENOMEM);
868 
869 	kn->flags |= KERNFS_EMPTY_DIR;
870 	kn->dir.root = parent->dir.root;
871 	kn->ns = NULL;
872 	kn->priv = NULL;
873 
874 	/* link in */
875 	rc = kernfs_add_one(kn);
876 	if (!rc)
877 		return kn;
878 
879 	kernfs_put(kn);
880 	return ERR_PTR(rc);
881 }
882 
883 static struct dentry *kernfs_iop_lookup(struct inode *dir,
884 					struct dentry *dentry,
885 					unsigned int flags)
886 {
887 	struct dentry *ret;
888 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
889 	struct kernfs_node *kn;
890 	struct inode *inode;
891 	const void *ns = NULL;
892 
893 	mutex_lock(&kernfs_mutex);
894 
895 	if (kernfs_ns_enabled(parent))
896 		ns = kernfs_info(dir->i_sb)->ns;
897 
898 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
899 
900 	/* no such entry */
901 	if (!kn || !kernfs_active(kn)) {
902 		ret = NULL;
903 		goto out_unlock;
904 	}
905 	kernfs_get(kn);
906 	dentry->d_fsdata = kn;
907 
908 	/* attach dentry and inode */
909 	inode = kernfs_get_inode(dir->i_sb, kn);
910 	if (!inode) {
911 		ret = ERR_PTR(-ENOMEM);
912 		goto out_unlock;
913 	}
914 
915 	/* instantiate and hash dentry */
916 	ret = d_splice_alias(inode, dentry);
917  out_unlock:
918 	mutex_unlock(&kernfs_mutex);
919 	return ret;
920 }
921 
922 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
923 			    umode_t mode)
924 {
925 	struct kernfs_node *parent = dir->i_private;
926 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
927 	int ret;
928 
929 	if (!scops || !scops->mkdir)
930 		return -EPERM;
931 
932 	if (!kernfs_get_active(parent))
933 		return -ENODEV;
934 
935 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
936 
937 	kernfs_put_active(parent);
938 	return ret;
939 }
940 
941 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
942 {
943 	struct kernfs_node *kn  = dentry->d_fsdata;
944 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
945 	int ret;
946 
947 	if (!scops || !scops->rmdir)
948 		return -EPERM;
949 
950 	if (!kernfs_get_active(kn))
951 		return -ENODEV;
952 
953 	ret = scops->rmdir(kn);
954 
955 	kernfs_put_active(kn);
956 	return ret;
957 }
958 
959 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
960 			     struct inode *new_dir, struct dentry *new_dentry)
961 {
962 	struct kernfs_node *kn  = old_dentry->d_fsdata;
963 	struct kernfs_node *new_parent = new_dir->i_private;
964 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
965 	int ret;
966 
967 	if (!scops || !scops->rename)
968 		return -EPERM;
969 
970 	if (!kernfs_get_active(kn))
971 		return -ENODEV;
972 
973 	if (!kernfs_get_active(new_parent)) {
974 		kernfs_put_active(kn);
975 		return -ENODEV;
976 	}
977 
978 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
979 
980 	kernfs_put_active(new_parent);
981 	kernfs_put_active(kn);
982 	return ret;
983 }
984 
985 const struct inode_operations kernfs_dir_iops = {
986 	.lookup		= kernfs_iop_lookup,
987 	.permission	= kernfs_iop_permission,
988 	.setattr	= kernfs_iop_setattr,
989 	.getattr	= kernfs_iop_getattr,
990 	.setxattr	= kernfs_iop_setxattr,
991 	.removexattr	= kernfs_iop_removexattr,
992 	.getxattr	= kernfs_iop_getxattr,
993 	.listxattr	= kernfs_iop_listxattr,
994 
995 	.mkdir		= kernfs_iop_mkdir,
996 	.rmdir		= kernfs_iop_rmdir,
997 	.rename		= kernfs_iop_rename,
998 };
999 
1000 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1001 {
1002 	struct kernfs_node *last;
1003 
1004 	while (true) {
1005 		struct rb_node *rbn;
1006 
1007 		last = pos;
1008 
1009 		if (kernfs_type(pos) != KERNFS_DIR)
1010 			break;
1011 
1012 		rbn = rb_first(&pos->dir.children);
1013 		if (!rbn)
1014 			break;
1015 
1016 		pos = rb_to_kn(rbn);
1017 	}
1018 
1019 	return last;
1020 }
1021 
1022 /**
1023  * kernfs_next_descendant_post - find the next descendant for post-order walk
1024  * @pos: the current position (%NULL to initiate traversal)
1025  * @root: kernfs_node whose descendants to walk
1026  *
1027  * Find the next descendant to visit for post-order traversal of @root's
1028  * descendants.  @root is included in the iteration and the last node to be
1029  * visited.
1030  */
1031 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1032 						       struct kernfs_node *root)
1033 {
1034 	struct rb_node *rbn;
1035 
1036 	lockdep_assert_held(&kernfs_mutex);
1037 
1038 	/* if first iteration, visit leftmost descendant which may be root */
1039 	if (!pos)
1040 		return kernfs_leftmost_descendant(root);
1041 
1042 	/* if we visited @root, we're done */
1043 	if (pos == root)
1044 		return NULL;
1045 
1046 	/* if there's an unvisited sibling, visit its leftmost descendant */
1047 	rbn = rb_next(&pos->rb);
1048 	if (rbn)
1049 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1050 
1051 	/* no sibling left, visit parent */
1052 	return pos->parent;
1053 }
1054 
1055 /**
1056  * kernfs_activate - activate a node which started deactivated
1057  * @kn: kernfs_node whose subtree is to be activated
1058  *
1059  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1060  * needs to be explicitly activated.  A node which hasn't been activated
1061  * isn't visible to userland and deactivation is skipped during its
1062  * removal.  This is useful to construct atomic init sequences where
1063  * creation of multiple nodes should either succeed or fail atomically.
1064  *
1065  * The caller is responsible for ensuring that this function is not called
1066  * after kernfs_remove*() is invoked on @kn.
1067  */
1068 void kernfs_activate(struct kernfs_node *kn)
1069 {
1070 	struct kernfs_node *pos;
1071 
1072 	mutex_lock(&kernfs_mutex);
1073 
1074 	pos = NULL;
1075 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1076 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1077 			continue;
1078 
1079 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1080 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1081 
1082 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1083 		pos->flags |= KERNFS_ACTIVATED;
1084 	}
1085 
1086 	mutex_unlock(&kernfs_mutex);
1087 }
1088 
1089 static void __kernfs_remove(struct kernfs_node *kn)
1090 {
1091 	struct kernfs_node *pos;
1092 
1093 	lockdep_assert_held(&kernfs_mutex);
1094 
1095 	/*
1096 	 * Short-circuit if non-root @kn has already finished removal.
1097 	 * This is for kernfs_remove_self() which plays with active ref
1098 	 * after removal.
1099 	 */
1100 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1101 		return;
1102 
1103 	pr_debug("kernfs %s: removing\n", kn->name);
1104 
1105 	/* prevent any new usage under @kn by deactivating all nodes */
1106 	pos = NULL;
1107 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1108 		if (kernfs_active(pos))
1109 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1110 
1111 	/* deactivate and unlink the subtree node-by-node */
1112 	do {
1113 		pos = kernfs_leftmost_descendant(kn);
1114 
1115 		/*
1116 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1117 		 * base ref could have been put by someone else by the time
1118 		 * the function returns.  Make sure it doesn't go away
1119 		 * underneath us.
1120 		 */
1121 		kernfs_get(pos);
1122 
1123 		/*
1124 		 * Drain iff @kn was activated.  This avoids draining and
1125 		 * its lockdep annotations for nodes which have never been
1126 		 * activated and allows embedding kernfs_remove() in create
1127 		 * error paths without worrying about draining.
1128 		 */
1129 		if (kn->flags & KERNFS_ACTIVATED)
1130 			kernfs_drain(pos);
1131 		else
1132 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1133 
1134 		/*
1135 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1136 		 * to decide who's responsible for cleanups.
1137 		 */
1138 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1139 			struct kernfs_iattrs *ps_iattr =
1140 				pos->parent ? pos->parent->iattr : NULL;
1141 
1142 			/* update timestamps on the parent */
1143 			if (ps_iattr) {
1144 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1145 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1146 			}
1147 
1148 			kernfs_put(pos);
1149 		}
1150 
1151 		kernfs_put(pos);
1152 	} while (pos != kn);
1153 }
1154 
1155 /**
1156  * kernfs_remove - remove a kernfs_node recursively
1157  * @kn: the kernfs_node to remove
1158  *
1159  * Remove @kn along with all its subdirectories and files.
1160  */
1161 void kernfs_remove(struct kernfs_node *kn)
1162 {
1163 	mutex_lock(&kernfs_mutex);
1164 	__kernfs_remove(kn);
1165 	mutex_unlock(&kernfs_mutex);
1166 }
1167 
1168 /**
1169  * kernfs_break_active_protection - break out of active protection
1170  * @kn: the self kernfs_node
1171  *
1172  * The caller must be running off of a kernfs operation which is invoked
1173  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1174  * this function must also be matched with an invocation of
1175  * kernfs_unbreak_active_protection().
1176  *
1177  * This function releases the active reference of @kn the caller is
1178  * holding.  Once this function is called, @kn may be removed at any point
1179  * and the caller is solely responsible for ensuring that the objects it
1180  * dereferences are accessible.
1181  */
1182 void kernfs_break_active_protection(struct kernfs_node *kn)
1183 {
1184 	/*
1185 	 * Take out ourself out of the active ref dependency chain.  If
1186 	 * we're called without an active ref, lockdep will complain.
1187 	 */
1188 	kernfs_put_active(kn);
1189 }
1190 
1191 /**
1192  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1193  * @kn: the self kernfs_node
1194  *
1195  * If kernfs_break_active_protection() was called, this function must be
1196  * invoked before finishing the kernfs operation.  Note that while this
1197  * function restores the active reference, it doesn't and can't actually
1198  * restore the active protection - @kn may already or be in the process of
1199  * being removed.  Once kernfs_break_active_protection() is invoked, that
1200  * protection is irreversibly gone for the kernfs operation instance.
1201  *
1202  * While this function may be called at any point after
1203  * kernfs_break_active_protection() is invoked, its most useful location
1204  * would be right before the enclosing kernfs operation returns.
1205  */
1206 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1207 {
1208 	/*
1209 	 * @kn->active could be in any state; however, the increment we do
1210 	 * here will be undone as soon as the enclosing kernfs operation
1211 	 * finishes and this temporary bump can't break anything.  If @kn
1212 	 * is alive, nothing changes.  If @kn is being deactivated, the
1213 	 * soon-to-follow put will either finish deactivation or restore
1214 	 * deactivated state.  If @kn is already removed, the temporary
1215 	 * bump is guaranteed to be gone before @kn is released.
1216 	 */
1217 	atomic_inc(&kn->active);
1218 	if (kernfs_lockdep(kn))
1219 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1220 }
1221 
1222 /**
1223  * kernfs_remove_self - remove a kernfs_node from its own method
1224  * @kn: the self kernfs_node to remove
1225  *
1226  * The caller must be running off of a kernfs operation which is invoked
1227  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1228  * implement a file operation which deletes itself.
1229  *
1230  * For example, the "delete" file for a sysfs device directory can be
1231  * implemented by invoking kernfs_remove_self() on the "delete" file
1232  * itself.  This function breaks the circular dependency of trying to
1233  * deactivate self while holding an active ref itself.  It isn't necessary
1234  * to modify the usual removal path to use kernfs_remove_self().  The
1235  * "delete" implementation can simply invoke kernfs_remove_self() on self
1236  * before proceeding with the usual removal path.  kernfs will ignore later
1237  * kernfs_remove() on self.
1238  *
1239  * kernfs_remove_self() can be called multiple times concurrently on the
1240  * same kernfs_node.  Only the first one actually performs removal and
1241  * returns %true.  All others will wait until the kernfs operation which
1242  * won self-removal finishes and return %false.  Note that the losers wait
1243  * for the completion of not only the winning kernfs_remove_self() but also
1244  * the whole kernfs_ops which won the arbitration.  This can be used to
1245  * guarantee, for example, all concurrent writes to a "delete" file to
1246  * finish only after the whole operation is complete.
1247  */
1248 bool kernfs_remove_self(struct kernfs_node *kn)
1249 {
1250 	bool ret;
1251 
1252 	mutex_lock(&kernfs_mutex);
1253 	kernfs_break_active_protection(kn);
1254 
1255 	/*
1256 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1257 	 * the first one will actually perform removal.  When the removal
1258 	 * is complete, SUICIDED is set and the active ref is restored
1259 	 * while holding kernfs_mutex.  The ones which lost arbitration
1260 	 * waits for SUICDED && drained which can happen only after the
1261 	 * enclosing kernfs operation which executed the winning instance
1262 	 * of kernfs_remove_self() finished.
1263 	 */
1264 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1265 		kn->flags |= KERNFS_SUICIDAL;
1266 		__kernfs_remove(kn);
1267 		kn->flags |= KERNFS_SUICIDED;
1268 		ret = true;
1269 	} else {
1270 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1271 		DEFINE_WAIT(wait);
1272 
1273 		while (true) {
1274 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1275 
1276 			if ((kn->flags & KERNFS_SUICIDED) &&
1277 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1278 				break;
1279 
1280 			mutex_unlock(&kernfs_mutex);
1281 			schedule();
1282 			mutex_lock(&kernfs_mutex);
1283 		}
1284 		finish_wait(waitq, &wait);
1285 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1286 		ret = false;
1287 	}
1288 
1289 	/*
1290 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1291 	 * for SUICIDED && deactivated could finish prematurely.
1292 	 */
1293 	kernfs_unbreak_active_protection(kn);
1294 
1295 	mutex_unlock(&kernfs_mutex);
1296 	return ret;
1297 }
1298 
1299 /**
1300  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1301  * @parent: parent of the target
1302  * @name: name of the kernfs_node to remove
1303  * @ns: namespace tag of the kernfs_node to remove
1304  *
1305  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1306  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1307  */
1308 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1309 			     const void *ns)
1310 {
1311 	struct kernfs_node *kn;
1312 
1313 	if (!parent) {
1314 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1315 			name);
1316 		return -ENOENT;
1317 	}
1318 
1319 	mutex_lock(&kernfs_mutex);
1320 
1321 	kn = kernfs_find_ns(parent, name, ns);
1322 	if (kn)
1323 		__kernfs_remove(kn);
1324 
1325 	mutex_unlock(&kernfs_mutex);
1326 
1327 	if (kn)
1328 		return 0;
1329 	else
1330 		return -ENOENT;
1331 }
1332 
1333 /**
1334  * kernfs_rename_ns - move and rename a kernfs_node
1335  * @kn: target node
1336  * @new_parent: new parent to put @sd under
1337  * @new_name: new name
1338  * @new_ns: new namespace tag
1339  */
1340 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1341 		     const char *new_name, const void *new_ns)
1342 {
1343 	struct kernfs_node *old_parent;
1344 	const char *old_name = NULL;
1345 	int error;
1346 
1347 	/* can't move or rename root */
1348 	if (!kn->parent)
1349 		return -EINVAL;
1350 
1351 	mutex_lock(&kernfs_mutex);
1352 
1353 	error = -ENOENT;
1354 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1355 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1356 		goto out;
1357 
1358 	error = 0;
1359 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1360 	    (strcmp(kn->name, new_name) == 0))
1361 		goto out;	/* nothing to rename */
1362 
1363 	error = -EEXIST;
1364 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1365 		goto out;
1366 
1367 	/* rename kernfs_node */
1368 	if (strcmp(kn->name, new_name) != 0) {
1369 		error = -ENOMEM;
1370 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1371 		if (!new_name)
1372 			goto out;
1373 	} else {
1374 		new_name = NULL;
1375 	}
1376 
1377 	/*
1378 	 * Move to the appropriate place in the appropriate directories rbtree.
1379 	 */
1380 	kernfs_unlink_sibling(kn);
1381 	kernfs_get(new_parent);
1382 
1383 	/* rename_lock protects ->parent and ->name accessors */
1384 	spin_lock_irq(&kernfs_rename_lock);
1385 
1386 	old_parent = kn->parent;
1387 	kn->parent = new_parent;
1388 
1389 	kn->ns = new_ns;
1390 	if (new_name) {
1391 		old_name = kn->name;
1392 		kn->name = new_name;
1393 	}
1394 
1395 	spin_unlock_irq(&kernfs_rename_lock);
1396 
1397 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1398 	kernfs_link_sibling(kn);
1399 
1400 	kernfs_put(old_parent);
1401 	kfree_const(old_name);
1402 
1403 	error = 0;
1404  out:
1405 	mutex_unlock(&kernfs_mutex);
1406 	return error;
1407 }
1408 
1409 /* Relationship between s_mode and the DT_xxx types */
1410 static inline unsigned char dt_type(struct kernfs_node *kn)
1411 {
1412 	return (kn->mode >> 12) & 15;
1413 }
1414 
1415 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1416 {
1417 	kernfs_put(filp->private_data);
1418 	return 0;
1419 }
1420 
1421 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1422 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1423 {
1424 	if (pos) {
1425 		int valid = kernfs_active(pos) &&
1426 			pos->parent == parent && hash == pos->hash;
1427 		kernfs_put(pos);
1428 		if (!valid)
1429 			pos = NULL;
1430 	}
1431 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1432 		struct rb_node *node = parent->dir.children.rb_node;
1433 		while (node) {
1434 			pos = rb_to_kn(node);
1435 
1436 			if (hash < pos->hash)
1437 				node = node->rb_left;
1438 			else if (hash > pos->hash)
1439 				node = node->rb_right;
1440 			else
1441 				break;
1442 		}
1443 	}
1444 	/* Skip over entries which are dying/dead or in the wrong namespace */
1445 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1446 		struct rb_node *node = rb_next(&pos->rb);
1447 		if (!node)
1448 			pos = NULL;
1449 		else
1450 			pos = rb_to_kn(node);
1451 	}
1452 	return pos;
1453 }
1454 
1455 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1456 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1457 {
1458 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1459 	if (pos) {
1460 		do {
1461 			struct rb_node *node = rb_next(&pos->rb);
1462 			if (!node)
1463 				pos = NULL;
1464 			else
1465 				pos = rb_to_kn(node);
1466 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1467 	}
1468 	return pos;
1469 }
1470 
1471 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1472 {
1473 	struct dentry *dentry = file->f_path.dentry;
1474 	struct kernfs_node *parent = dentry->d_fsdata;
1475 	struct kernfs_node *pos = file->private_data;
1476 	const void *ns = NULL;
1477 
1478 	if (!dir_emit_dots(file, ctx))
1479 		return 0;
1480 	mutex_lock(&kernfs_mutex);
1481 
1482 	if (kernfs_ns_enabled(parent))
1483 		ns = kernfs_info(dentry->d_sb)->ns;
1484 
1485 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1486 	     pos;
1487 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1488 		const char *name = pos->name;
1489 		unsigned int type = dt_type(pos);
1490 		int len = strlen(name);
1491 		ino_t ino = pos->ino;
1492 
1493 		ctx->pos = pos->hash;
1494 		file->private_data = pos;
1495 		kernfs_get(pos);
1496 
1497 		mutex_unlock(&kernfs_mutex);
1498 		if (!dir_emit(ctx, name, len, ino, type))
1499 			return 0;
1500 		mutex_lock(&kernfs_mutex);
1501 	}
1502 	mutex_unlock(&kernfs_mutex);
1503 	file->private_data = NULL;
1504 	ctx->pos = INT_MAX;
1505 	return 0;
1506 }
1507 
1508 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1509 				    int whence)
1510 {
1511 	struct inode *inode = file_inode(file);
1512 	loff_t ret;
1513 
1514 	inode_lock(inode);
1515 	ret = generic_file_llseek(file, offset, whence);
1516 	inode_unlock(inode);
1517 
1518 	return ret;
1519 }
1520 
1521 const struct file_operations kernfs_dir_fops = {
1522 	.read		= generic_read_dir,
1523 	.iterate	= kernfs_fop_readdir,
1524 	.release	= kernfs_dir_fop_release,
1525 	.llseek		= kernfs_dir_fop_llseek,
1526 };
1527