1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 /* 21 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 22 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 23 * will perform wakeups when releasing console_sem. Holding rename_lock 24 * will introduce deadlock if the scheduler reads the kernfs_name in the 25 * wakeup path. 26 */ 27 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 28 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 29 30 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 31 32 static bool __kernfs_active(struct kernfs_node *kn) 33 { 34 return atomic_read(&kn->active) >= 0; 35 } 36 37 static bool kernfs_active(struct kernfs_node *kn) 38 { 39 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 40 return __kernfs_active(kn); 41 } 42 43 static bool kernfs_lockdep(struct kernfs_node *kn) 44 { 45 #ifdef CONFIG_DEBUG_LOCK_ALLOC 46 return kn->flags & KERNFS_LOCKDEP; 47 #else 48 return false; 49 #endif 50 } 51 52 /* kernfs_node_depth - compute depth from @from to @to */ 53 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 54 { 55 size_t depth = 0; 56 57 while (rcu_dereference(to->__parent) && to != from) { 58 depth++; 59 to = rcu_dereference(to->__parent); 60 } 61 return depth; 62 } 63 64 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 65 struct kernfs_node *b) 66 { 67 size_t da, db; 68 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 69 70 if (ra != rb) 71 return NULL; 72 73 da = kernfs_depth(ra->kn, a); 74 db = kernfs_depth(rb->kn, b); 75 76 while (da > db) { 77 a = rcu_dereference(a->__parent); 78 da--; 79 } 80 while (db > da) { 81 b = rcu_dereference(b->__parent); 82 db--; 83 } 84 85 /* worst case b and a will be the same at root */ 86 while (b != a) { 87 b = rcu_dereference(b->__parent); 88 a = rcu_dereference(a->__parent); 89 } 90 91 return a; 92 } 93 94 /** 95 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 96 * where kn_from is treated as root of the path. 97 * @kn_from: kernfs node which should be treated as root for the path 98 * @kn_to: kernfs node to which path is needed 99 * @buf: buffer to copy the path into 100 * @buflen: size of @buf 101 * 102 * We need to handle couple of scenarios here: 103 * [1] when @kn_from is an ancestor of @kn_to at some level 104 * kn_from: /n1/n2/n3 105 * kn_to: /n1/n2/n3/n4/n5 106 * result: /n4/n5 107 * 108 * [2] when @kn_from is on a different hierarchy and we need to find common 109 * ancestor between @kn_from and @kn_to. 110 * kn_from: /n1/n2/n3/n4 111 * kn_to: /n1/n2/n5 112 * result: /../../n5 113 * OR 114 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 115 * kn_to: /n1/n2/n3 [depth=3] 116 * result: /../.. 117 * 118 * [3] when @kn_to is %NULL result will be "(null)" 119 * 120 * Return: the length of the constructed path. If the path would have been 121 * greater than @buflen, @buf contains the truncated path with the trailing 122 * '\0'. On error, -errno is returned. 123 */ 124 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 125 struct kernfs_node *kn_from, 126 char *buf, size_t buflen) 127 { 128 struct kernfs_node *kn, *common; 129 const char parent_str[] = "/.."; 130 size_t depth_from, depth_to, len = 0; 131 ssize_t copied; 132 int i, j; 133 134 if (!kn_to) 135 return strscpy(buf, "(null)", buflen); 136 137 if (!kn_from) 138 kn_from = kernfs_root(kn_to)->kn; 139 140 if (kn_from == kn_to) 141 return strscpy(buf, "/", buflen); 142 143 common = kernfs_common_ancestor(kn_from, kn_to); 144 if (WARN_ON(!common)) 145 return -EINVAL; 146 147 depth_to = kernfs_depth(common, kn_to); 148 depth_from = kernfs_depth(common, kn_from); 149 150 buf[0] = '\0'; 151 152 for (i = 0; i < depth_from; i++) { 153 copied = strscpy(buf + len, parent_str, buflen - len); 154 if (copied < 0) 155 return copied; 156 len += copied; 157 } 158 159 /* Calculate how many bytes we need for the rest */ 160 for (i = depth_to - 1; i >= 0; i--) { 161 const char *name; 162 163 for (kn = kn_to, j = 0; j < i; j++) 164 kn = rcu_dereference(kn->__parent); 165 166 name = rcu_dereference(kn->name); 167 len += scnprintf(buf + len, buflen - len, "/%s", name); 168 } 169 170 return len; 171 } 172 173 /** 174 * kernfs_name - obtain the name of a given node 175 * @kn: kernfs_node of interest 176 * @buf: buffer to copy @kn's name into 177 * @buflen: size of @buf 178 * 179 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 180 * similar to strscpy(). 181 * 182 * Fills buffer with "(null)" if @kn is %NULL. 183 * 184 * Return: the resulting length of @buf. If @buf isn't long enough, 185 * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG. 186 * 187 * This function can be called from any context. 188 */ 189 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 190 { 191 struct kernfs_node *kn_parent; 192 193 if (!kn) 194 return strscpy(buf, "(null)", buflen); 195 196 guard(rcu)(); 197 /* 198 * KERNFS_ROOT_INVARIANT_PARENT is ignored here. The name is RCU freed and 199 * the parent is either existing or not. 200 */ 201 kn_parent = rcu_dereference(kn->__parent); 202 return strscpy(buf, kn_parent ? rcu_dereference(kn->name) : "/", buflen); 203 } 204 205 /** 206 * kernfs_path_from_node - build path of node @to relative to @from. 207 * @from: parent kernfs_node relative to which we need to build the path 208 * @to: kernfs_node of interest 209 * @buf: buffer to copy @to's path into 210 * @buflen: size of @buf 211 * 212 * Builds @to's path relative to @from in @buf. @from and @to must 213 * be on the same kernfs-root. If @from is not parent of @to, then a relative 214 * path (which includes '..'s) as needed to reach from @from to @to is 215 * returned. 216 * 217 * Return: the length of the constructed path. If the path would have been 218 * greater than @buflen, @buf contains the truncated path with the trailing 219 * '\0'. On error, -errno is returned. 220 */ 221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 222 char *buf, size_t buflen) 223 { 224 struct kernfs_root *root; 225 226 guard(rcu)(); 227 if (to) { 228 root = kernfs_root(to); 229 if (!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)) { 230 guard(read_lock_irqsave)(&root->kernfs_rename_lock); 231 return kernfs_path_from_node_locked(to, from, buf, buflen); 232 } 233 } 234 return kernfs_path_from_node_locked(to, from, buf, buflen); 235 } 236 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 237 238 /** 239 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 240 * @kn: kernfs_node of interest 241 * 242 * This function can be called from any context. 243 */ 244 void pr_cont_kernfs_name(struct kernfs_node *kn) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 249 250 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 251 pr_cont("%s", kernfs_pr_cont_buf); 252 253 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 254 } 255 256 /** 257 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 258 * @kn: kernfs_node of interest 259 * 260 * This function can be called from any context. 261 */ 262 void pr_cont_kernfs_path(struct kernfs_node *kn) 263 { 264 unsigned long flags; 265 int sz; 266 267 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 268 269 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 270 sizeof(kernfs_pr_cont_buf)); 271 if (sz < 0) { 272 if (sz == -E2BIG) 273 pr_cont("(name too long)"); 274 else 275 pr_cont("(error)"); 276 goto out; 277 } 278 279 pr_cont("%s", kernfs_pr_cont_buf); 280 281 out: 282 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 283 } 284 285 /** 286 * kernfs_get_parent - determine the parent node and pin it 287 * @kn: kernfs_node of interest 288 * 289 * Determines @kn's parent, pins and returns it. This function can be 290 * called from any context. 291 * 292 * Return: parent node of @kn 293 */ 294 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 295 { 296 struct kernfs_node *parent; 297 struct kernfs_root *root; 298 unsigned long flags; 299 300 root = kernfs_root(kn); 301 read_lock_irqsave(&root->kernfs_rename_lock, flags); 302 parent = kernfs_parent(kn); 303 kernfs_get(parent); 304 read_unlock_irqrestore(&root->kernfs_rename_lock, flags); 305 306 return parent; 307 } 308 309 /** 310 * kernfs_name_hash - calculate hash of @ns + @name 311 * @name: Null terminated string to hash 312 * @ns: Namespace tag to hash 313 * 314 * Return: 31-bit hash of ns + name (so it fits in an off_t) 315 */ 316 static unsigned int kernfs_name_hash(const char *name, const void *ns) 317 { 318 unsigned long hash = init_name_hash(ns); 319 unsigned int len = strlen(name); 320 while (len--) 321 hash = partial_name_hash(*name++, hash); 322 hash = end_name_hash(hash); 323 hash &= 0x7fffffffU; 324 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 325 if (hash < 2) 326 hash += 2; 327 if (hash >= INT_MAX) 328 hash = INT_MAX - 1; 329 return hash; 330 } 331 332 static int kernfs_name_compare(unsigned int hash, const char *name, 333 const void *ns, const struct kernfs_node *kn) 334 { 335 if (hash < kn->hash) 336 return -1; 337 if (hash > kn->hash) 338 return 1; 339 if (ns < kn->ns) 340 return -1; 341 if (ns > kn->ns) 342 return 1; 343 return strcmp(name, kernfs_rcu_name(kn)); 344 } 345 346 static int kernfs_sd_compare(const struct kernfs_node *left, 347 const struct kernfs_node *right) 348 { 349 return kernfs_name_compare(left->hash, kernfs_rcu_name(left), left->ns, right); 350 } 351 352 /** 353 * kernfs_link_sibling - link kernfs_node into sibling rbtree 354 * @kn: kernfs_node of interest 355 * 356 * Link @kn into its sibling rbtree which starts from 357 * @kn->parent->dir.children. 358 * 359 * Locking: 360 * kernfs_rwsem held exclusive 361 * 362 * Return: 363 * %0 on success, -EEXIST on failure. 364 */ 365 static int kernfs_link_sibling(struct kernfs_node *kn) 366 { 367 struct rb_node *parent = NULL; 368 struct kernfs_node *kn_parent; 369 struct rb_node **node; 370 371 kn_parent = kernfs_parent(kn); 372 node = &kn_parent->dir.children.rb_node; 373 374 while (*node) { 375 struct kernfs_node *pos; 376 int result; 377 378 pos = rb_to_kn(*node); 379 parent = *node; 380 result = kernfs_sd_compare(kn, pos); 381 if (result < 0) 382 node = &pos->rb.rb_left; 383 else if (result > 0) 384 node = &pos->rb.rb_right; 385 else 386 return -EEXIST; 387 } 388 389 /* add new node and rebalance the tree */ 390 rb_link_node(&kn->rb, parent, node); 391 rb_insert_color(&kn->rb, &kn_parent->dir.children); 392 393 /* successfully added, account subdir number */ 394 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 395 if (kernfs_type(kn) == KERNFS_DIR) 396 kn_parent->dir.subdirs++; 397 kernfs_inc_rev(kn_parent); 398 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 399 400 return 0; 401 } 402 403 /** 404 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 405 * @kn: kernfs_node of interest 406 * 407 * Try to unlink @kn from its sibling rbtree which starts from 408 * kn->parent->dir.children. 409 * 410 * Return: %true if @kn was actually removed, 411 * %false if @kn wasn't on the rbtree. 412 * 413 * Locking: 414 * kernfs_rwsem held exclusive 415 */ 416 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 417 { 418 struct kernfs_node *kn_parent; 419 420 if (RB_EMPTY_NODE(&kn->rb)) 421 return false; 422 423 kn_parent = kernfs_parent(kn); 424 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 425 if (kernfs_type(kn) == KERNFS_DIR) 426 kn_parent->dir.subdirs--; 427 kernfs_inc_rev(kn_parent); 428 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 429 430 rb_erase(&kn->rb, &kn_parent->dir.children); 431 RB_CLEAR_NODE(&kn->rb); 432 return true; 433 } 434 435 /** 436 * kernfs_get_active - get an active reference to kernfs_node 437 * @kn: kernfs_node to get an active reference to 438 * 439 * Get an active reference of @kn. This function is noop if @kn 440 * is %NULL. 441 * 442 * Return: 443 * Pointer to @kn on success, %NULL on failure. 444 */ 445 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 446 { 447 if (unlikely(!kn)) 448 return NULL; 449 450 if (!atomic_inc_unless_negative(&kn->active)) 451 return NULL; 452 453 if (kernfs_lockdep(kn)) 454 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 455 return kn; 456 } 457 458 /** 459 * kernfs_put_active - put an active reference to kernfs_node 460 * @kn: kernfs_node to put an active reference to 461 * 462 * Put an active reference to @kn. This function is noop if @kn 463 * is %NULL. 464 */ 465 void kernfs_put_active(struct kernfs_node *kn) 466 { 467 int v; 468 469 if (unlikely(!kn)) 470 return; 471 472 if (kernfs_lockdep(kn)) 473 rwsem_release(&kn->dep_map, _RET_IP_); 474 v = atomic_dec_return(&kn->active); 475 if (likely(v != KN_DEACTIVATED_BIAS)) 476 return; 477 478 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 479 } 480 481 /** 482 * kernfs_drain - drain kernfs_node 483 * @kn: kernfs_node to drain 484 * 485 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 486 * removers may invoke this function concurrently on @kn and all will 487 * return after draining is complete. 488 */ 489 static void kernfs_drain(struct kernfs_node *kn) 490 __releases(&kernfs_root(kn)->kernfs_rwsem) 491 __acquires(&kernfs_root(kn)->kernfs_rwsem) 492 { 493 struct kernfs_root *root = kernfs_root(kn); 494 495 lockdep_assert_held_write(&root->kernfs_rwsem); 496 WARN_ON_ONCE(kernfs_active(kn)); 497 498 /* 499 * Skip draining if already fully drained. This avoids draining and its 500 * lockdep annotations for nodes which have never been activated 501 * allowing embedding kernfs_remove() in create error paths without 502 * worrying about draining. 503 */ 504 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 505 !kernfs_should_drain_open_files(kn)) 506 return; 507 508 up_write(&root->kernfs_rwsem); 509 510 if (kernfs_lockdep(kn)) { 511 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 512 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 513 lock_contended(&kn->dep_map, _RET_IP_); 514 } 515 516 wait_event(root->deactivate_waitq, 517 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 518 519 if (kernfs_lockdep(kn)) { 520 lock_acquired(&kn->dep_map, _RET_IP_); 521 rwsem_release(&kn->dep_map, _RET_IP_); 522 } 523 524 if (kernfs_should_drain_open_files(kn)) 525 kernfs_drain_open_files(kn); 526 527 down_write(&root->kernfs_rwsem); 528 } 529 530 /** 531 * kernfs_get - get a reference count on a kernfs_node 532 * @kn: the target kernfs_node 533 */ 534 void kernfs_get(struct kernfs_node *kn) 535 { 536 if (kn) { 537 WARN_ON(!atomic_read(&kn->count)); 538 atomic_inc(&kn->count); 539 } 540 } 541 EXPORT_SYMBOL_GPL(kernfs_get); 542 543 static void kernfs_free_rcu(struct rcu_head *rcu) 544 { 545 struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu); 546 547 /* If the whole node goes away, then name can't be used outside */ 548 kfree_const(rcu_access_pointer(kn->name)); 549 550 if (kn->iattr) { 551 simple_xattrs_free(&kn->iattr->xattrs, NULL); 552 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 553 } 554 555 kmem_cache_free(kernfs_node_cache, kn); 556 } 557 558 /** 559 * kernfs_put - put a reference count on a kernfs_node 560 * @kn: the target kernfs_node 561 * 562 * Put a reference count of @kn and destroy it if it reached zero. 563 */ 564 void kernfs_put(struct kernfs_node *kn) 565 { 566 struct kernfs_node *parent; 567 struct kernfs_root *root; 568 569 if (!kn || !atomic_dec_and_test(&kn->count)) 570 return; 571 root = kernfs_root(kn); 572 repeat: 573 /* 574 * Moving/renaming is always done while holding reference. 575 * kn->parent won't change beneath us. 576 */ 577 parent = kernfs_parent(kn); 578 579 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 580 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 581 parent ? rcu_dereference(parent->name) : "", 582 rcu_dereference(kn->name), atomic_read(&kn->active)); 583 584 if (kernfs_type(kn) == KERNFS_LINK) 585 kernfs_put(kn->symlink.target_kn); 586 587 spin_lock(&root->kernfs_idr_lock); 588 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 589 spin_unlock(&root->kernfs_idr_lock); 590 591 call_rcu(&kn->rcu, kernfs_free_rcu); 592 593 kn = parent; 594 if (kn) { 595 if (atomic_dec_and_test(&kn->count)) 596 goto repeat; 597 } else { 598 /* just released the root kn, free @root too */ 599 idr_destroy(&root->ino_idr); 600 kfree_rcu(root, rcu); 601 } 602 } 603 EXPORT_SYMBOL_GPL(kernfs_put); 604 605 /** 606 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 607 * @dentry: the dentry in question 608 * 609 * Return: the kernfs_node associated with @dentry. If @dentry is not a 610 * kernfs one, %NULL is returned. 611 * 612 * While the returned kernfs_node will stay accessible as long as @dentry 613 * is accessible, the returned node can be in any state and the caller is 614 * fully responsible for determining what's accessible. 615 */ 616 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 617 { 618 if (dentry->d_sb->s_op == &kernfs_sops) 619 return kernfs_dentry_node(dentry); 620 return NULL; 621 } 622 623 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 624 struct kernfs_node *parent, 625 const char *name, umode_t mode, 626 kuid_t uid, kgid_t gid, 627 unsigned flags) 628 { 629 struct kernfs_node *kn; 630 u32 id_highbits; 631 int ret; 632 633 name = kstrdup_const(name, GFP_KERNEL); 634 if (!name) 635 return NULL; 636 637 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 638 if (!kn) 639 goto err_out1; 640 641 idr_preload(GFP_KERNEL); 642 spin_lock(&root->kernfs_idr_lock); 643 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 644 if (ret >= 0 && ret < root->last_id_lowbits) 645 root->id_highbits++; 646 id_highbits = root->id_highbits; 647 root->last_id_lowbits = ret; 648 spin_unlock(&root->kernfs_idr_lock); 649 idr_preload_end(); 650 if (ret < 0) 651 goto err_out2; 652 653 kn->id = (u64)id_highbits << 32 | ret; 654 655 atomic_set(&kn->count, 1); 656 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 657 RB_CLEAR_NODE(&kn->rb); 658 659 rcu_assign_pointer(kn->name, name); 660 kn->mode = mode; 661 kn->flags = flags; 662 663 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 664 struct iattr iattr = { 665 .ia_valid = ATTR_UID | ATTR_GID, 666 .ia_uid = uid, 667 .ia_gid = gid, 668 }; 669 670 ret = __kernfs_setattr(kn, &iattr); 671 if (ret < 0) 672 goto err_out3; 673 } 674 675 if (parent) { 676 ret = security_kernfs_init_security(parent, kn); 677 if (ret) 678 goto err_out4; 679 } 680 681 return kn; 682 683 err_out4: 684 simple_xattrs_free(&kn->iattr->xattrs, NULL); 685 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 686 err_out3: 687 spin_lock(&root->kernfs_idr_lock); 688 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 689 spin_unlock(&root->kernfs_idr_lock); 690 err_out2: 691 kmem_cache_free(kernfs_node_cache, kn); 692 err_out1: 693 kfree_const(name); 694 return NULL; 695 } 696 697 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 698 const char *name, umode_t mode, 699 kuid_t uid, kgid_t gid, 700 unsigned flags) 701 { 702 struct kernfs_node *kn; 703 704 if (parent->mode & S_ISGID) { 705 /* this code block imitates inode_init_owner() for 706 * kernfs 707 */ 708 709 if (parent->iattr) 710 gid = parent->iattr->ia_gid; 711 712 if (flags & KERNFS_DIR) 713 mode |= S_ISGID; 714 } 715 716 kn = __kernfs_new_node(kernfs_root(parent), parent, 717 name, mode, uid, gid, flags); 718 if (kn) { 719 kernfs_get(parent); 720 rcu_assign_pointer(kn->__parent, parent); 721 } 722 return kn; 723 } 724 725 /* 726 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 727 * @root: the kernfs root 728 * @id: the target node id 729 * 730 * @id's lower 32bits encode ino and upper gen. If the gen portion is 731 * zero, all generations are matched. 732 * 733 * Return: %NULL on failure, 734 * otherwise a kernfs node with reference counter incremented. 735 */ 736 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 737 u64 id) 738 { 739 struct kernfs_node *kn; 740 ino_t ino = kernfs_id_ino(id); 741 u32 gen = kernfs_id_gen(id); 742 743 rcu_read_lock(); 744 745 kn = idr_find(&root->ino_idr, (u32)ino); 746 if (!kn) 747 goto err_unlock; 748 749 if (sizeof(ino_t) >= sizeof(u64)) { 750 /* we looked up with the low 32bits, compare the whole */ 751 if (kernfs_ino(kn) != ino) 752 goto err_unlock; 753 } else { 754 /* 0 matches all generations */ 755 if (unlikely(gen && kernfs_gen(kn) != gen)) 756 goto err_unlock; 757 } 758 759 /* 760 * We should fail if @kn has never been activated and guarantee success 761 * if the caller knows that @kn is active. Both can be achieved by 762 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 763 */ 764 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 765 goto err_unlock; 766 767 rcu_read_unlock(); 768 return kn; 769 err_unlock: 770 rcu_read_unlock(); 771 return NULL; 772 } 773 774 /** 775 * kernfs_add_one - add kernfs_node to parent without warning 776 * @kn: kernfs_node to be added 777 * 778 * The caller must already have initialized @kn->parent. This 779 * function increments nlink of the parent's inode if @kn is a 780 * directory and link into the children list of the parent. 781 * 782 * Return: 783 * %0 on success, -EEXIST if entry with the given name already 784 * exists. 785 */ 786 int kernfs_add_one(struct kernfs_node *kn) 787 { 788 struct kernfs_root *root = kernfs_root(kn); 789 struct kernfs_iattrs *ps_iattr; 790 struct kernfs_node *parent; 791 bool has_ns; 792 int ret; 793 794 down_write(&root->kernfs_rwsem); 795 parent = kernfs_parent(kn); 796 797 ret = -EINVAL; 798 has_ns = kernfs_ns_enabled(parent); 799 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 800 has_ns ? "required" : "invalid", 801 kernfs_rcu_name(parent), kernfs_rcu_name(kn))) 802 goto out_unlock; 803 804 if (kernfs_type(parent) != KERNFS_DIR) 805 goto out_unlock; 806 807 ret = -ENOENT; 808 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 809 goto out_unlock; 810 811 kn->hash = kernfs_name_hash(kernfs_rcu_name(kn), kn->ns); 812 813 ret = kernfs_link_sibling(kn); 814 if (ret) 815 goto out_unlock; 816 817 /* Update timestamps on the parent */ 818 down_write(&root->kernfs_iattr_rwsem); 819 820 ps_iattr = parent->iattr; 821 if (ps_iattr) { 822 ktime_get_real_ts64(&ps_iattr->ia_ctime); 823 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 824 } 825 826 up_write(&root->kernfs_iattr_rwsem); 827 up_write(&root->kernfs_rwsem); 828 829 /* 830 * Activate the new node unless CREATE_DEACTIVATED is requested. 831 * If not activated here, the kernfs user is responsible for 832 * activating the node with kernfs_activate(). A node which hasn't 833 * been activated is not visible to userland and its removal won't 834 * trigger deactivation. 835 */ 836 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 837 kernfs_activate(kn); 838 return 0; 839 840 out_unlock: 841 up_write(&root->kernfs_rwsem); 842 return ret; 843 } 844 845 /** 846 * kernfs_find_ns - find kernfs_node with the given name 847 * @parent: kernfs_node to search under 848 * @name: name to look for 849 * @ns: the namespace tag to use 850 * 851 * Look for kernfs_node with name @name under @parent. 852 * 853 * Return: pointer to the found kernfs_node on success, %NULL on failure. 854 */ 855 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 856 const unsigned char *name, 857 const void *ns) 858 { 859 struct rb_node *node = parent->dir.children.rb_node; 860 bool has_ns = kernfs_ns_enabled(parent); 861 unsigned int hash; 862 863 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 864 865 if (has_ns != (bool)ns) { 866 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 867 has_ns ? "required" : "invalid", kernfs_rcu_name(parent), name); 868 return NULL; 869 } 870 871 hash = kernfs_name_hash(name, ns); 872 while (node) { 873 struct kernfs_node *kn; 874 int result; 875 876 kn = rb_to_kn(node); 877 result = kernfs_name_compare(hash, name, ns, kn); 878 if (result < 0) 879 node = node->rb_left; 880 else if (result > 0) 881 node = node->rb_right; 882 else 883 return kn; 884 } 885 return NULL; 886 } 887 888 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 889 const unsigned char *path, 890 const void *ns) 891 { 892 ssize_t len; 893 char *p, *name; 894 895 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 896 897 spin_lock_irq(&kernfs_pr_cont_lock); 898 899 len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 900 901 if (len < 0) { 902 spin_unlock_irq(&kernfs_pr_cont_lock); 903 return NULL; 904 } 905 906 p = kernfs_pr_cont_buf; 907 908 while ((name = strsep(&p, "/")) && parent) { 909 if (*name == '\0') 910 continue; 911 parent = kernfs_find_ns(parent, name, ns); 912 } 913 914 spin_unlock_irq(&kernfs_pr_cont_lock); 915 916 return parent; 917 } 918 919 /** 920 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 921 * @parent: kernfs_node to search under 922 * @name: name to look for 923 * @ns: the namespace tag to use 924 * 925 * Look for kernfs_node with name @name under @parent and get a reference 926 * if found. This function may sleep. 927 * 928 * Return: pointer to the found kernfs_node on success, %NULL on failure. 929 */ 930 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 931 const char *name, const void *ns) 932 { 933 struct kernfs_node *kn; 934 struct kernfs_root *root = kernfs_root(parent); 935 936 down_read(&root->kernfs_rwsem); 937 kn = kernfs_find_ns(parent, name, ns); 938 kernfs_get(kn); 939 up_read(&root->kernfs_rwsem); 940 941 return kn; 942 } 943 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 944 945 /** 946 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 947 * @parent: kernfs_node to search under 948 * @path: path to look for 949 * @ns: the namespace tag to use 950 * 951 * Look for kernfs_node with path @path under @parent and get a reference 952 * if found. This function may sleep. 953 * 954 * Return: pointer to the found kernfs_node on success, %NULL on failure. 955 */ 956 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 957 const char *path, const void *ns) 958 { 959 struct kernfs_node *kn; 960 struct kernfs_root *root = kernfs_root(parent); 961 962 down_read(&root->kernfs_rwsem); 963 kn = kernfs_walk_ns(parent, path, ns); 964 kernfs_get(kn); 965 up_read(&root->kernfs_rwsem); 966 967 return kn; 968 } 969 970 unsigned int kernfs_root_flags(struct kernfs_node *kn) 971 { 972 return kernfs_root(kn)->flags; 973 } 974 975 /** 976 * kernfs_create_root - create a new kernfs hierarchy 977 * @scops: optional syscall operations for the hierarchy 978 * @flags: KERNFS_ROOT_* flags 979 * @priv: opaque data associated with the new directory 980 * 981 * Return: the root of the new hierarchy on success, ERR_PTR() value on 982 * failure. 983 */ 984 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 985 unsigned int flags, void *priv) 986 { 987 struct kernfs_root *root; 988 struct kernfs_node *kn; 989 990 root = kzalloc(sizeof(*root), GFP_KERNEL); 991 if (!root) 992 return ERR_PTR(-ENOMEM); 993 994 idr_init(&root->ino_idr); 995 spin_lock_init(&root->kernfs_idr_lock); 996 init_rwsem(&root->kernfs_rwsem); 997 init_rwsem(&root->kernfs_iattr_rwsem); 998 init_rwsem(&root->kernfs_supers_rwsem); 999 INIT_LIST_HEAD(&root->supers); 1000 rwlock_init(&root->kernfs_rename_lock); 1001 1002 /* 1003 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 1004 * High bits generation. The starting value for both ino and 1005 * genenration is 1. Initialize upper 32bit allocation 1006 * accordingly. 1007 */ 1008 if (sizeof(ino_t) >= sizeof(u64)) 1009 root->id_highbits = 0; 1010 else 1011 root->id_highbits = 1; 1012 1013 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 1014 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 1015 KERNFS_DIR); 1016 if (!kn) { 1017 idr_destroy(&root->ino_idr); 1018 kfree(root); 1019 return ERR_PTR(-ENOMEM); 1020 } 1021 1022 kn->priv = priv; 1023 kn->dir.root = root; 1024 1025 root->syscall_ops = scops; 1026 root->flags = flags; 1027 root->kn = kn; 1028 init_waitqueue_head(&root->deactivate_waitq); 1029 1030 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 1031 kernfs_activate(kn); 1032 1033 return root; 1034 } 1035 1036 /** 1037 * kernfs_destroy_root - destroy a kernfs hierarchy 1038 * @root: root of the hierarchy to destroy 1039 * 1040 * Destroy the hierarchy anchored at @root by removing all existing 1041 * directories and destroying @root. 1042 */ 1043 void kernfs_destroy_root(struct kernfs_root *root) 1044 { 1045 /* 1046 * kernfs_remove holds kernfs_rwsem from the root so the root 1047 * shouldn't be freed during the operation. 1048 */ 1049 kernfs_get(root->kn); 1050 kernfs_remove(root->kn); 1051 kernfs_put(root->kn); /* will also free @root */ 1052 } 1053 1054 /** 1055 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1056 * @root: root to use to lookup 1057 * 1058 * Return: @root's kernfs_node 1059 */ 1060 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1061 { 1062 return root->kn; 1063 } 1064 1065 /** 1066 * kernfs_create_dir_ns - create a directory 1067 * @parent: parent in which to create a new directory 1068 * @name: name of the new directory 1069 * @mode: mode of the new directory 1070 * @uid: uid of the new directory 1071 * @gid: gid of the new directory 1072 * @priv: opaque data associated with the new directory 1073 * @ns: optional namespace tag of the directory 1074 * 1075 * Return: the created node on success, ERR_PTR() value on failure. 1076 */ 1077 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1078 const char *name, umode_t mode, 1079 kuid_t uid, kgid_t gid, 1080 void *priv, const void *ns) 1081 { 1082 struct kernfs_node *kn; 1083 int rc; 1084 1085 /* allocate */ 1086 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1087 uid, gid, KERNFS_DIR); 1088 if (!kn) 1089 return ERR_PTR(-ENOMEM); 1090 1091 kn->dir.root = parent->dir.root; 1092 kn->ns = ns; 1093 kn->priv = priv; 1094 1095 /* link in */ 1096 rc = kernfs_add_one(kn); 1097 if (!rc) 1098 return kn; 1099 1100 kernfs_put(kn); 1101 return ERR_PTR(rc); 1102 } 1103 1104 /** 1105 * kernfs_create_empty_dir - create an always empty directory 1106 * @parent: parent in which to create a new directory 1107 * @name: name of the new directory 1108 * 1109 * Return: the created node on success, ERR_PTR() value on failure. 1110 */ 1111 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1112 const char *name) 1113 { 1114 struct kernfs_node *kn; 1115 int rc; 1116 1117 /* allocate */ 1118 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1119 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1120 if (!kn) 1121 return ERR_PTR(-ENOMEM); 1122 1123 kn->flags |= KERNFS_EMPTY_DIR; 1124 kn->dir.root = parent->dir.root; 1125 kn->ns = NULL; 1126 kn->priv = NULL; 1127 1128 /* link in */ 1129 rc = kernfs_add_one(kn); 1130 if (!rc) 1131 return kn; 1132 1133 kernfs_put(kn); 1134 return ERR_PTR(rc); 1135 } 1136 1137 static int kernfs_dop_revalidate(struct inode *dir, const struct qstr *name, 1138 struct dentry *dentry, unsigned int flags) 1139 { 1140 struct kernfs_node *kn, *parent; 1141 struct kernfs_root *root; 1142 1143 if (flags & LOOKUP_RCU) 1144 return -ECHILD; 1145 1146 /* Negative hashed dentry? */ 1147 if (d_really_is_negative(dentry)) { 1148 /* If the kernfs parent node has changed discard and 1149 * proceed to ->lookup. 1150 * 1151 * There's nothing special needed here when getting the 1152 * dentry parent, even if a concurrent rename is in 1153 * progress. That's because the dentry is negative so 1154 * it can only be the target of the rename and it will 1155 * be doing a d_move() not a replace. Consequently the 1156 * dentry d_parent won't change over the d_move(). 1157 * 1158 * Also kernfs negative dentries transitioning from 1159 * negative to positive during revalidate won't happen 1160 * because they are invalidated on containing directory 1161 * changes and the lookup re-done so that a new positive 1162 * dentry can be properly created. 1163 */ 1164 root = kernfs_root_from_sb(dentry->d_sb); 1165 down_read(&root->kernfs_rwsem); 1166 parent = kernfs_dentry_node(dentry->d_parent); 1167 if (parent) { 1168 if (kernfs_dir_changed(parent, dentry)) { 1169 up_read(&root->kernfs_rwsem); 1170 return 0; 1171 } 1172 } 1173 up_read(&root->kernfs_rwsem); 1174 1175 /* The kernfs parent node hasn't changed, leave the 1176 * dentry negative and return success. 1177 */ 1178 return 1; 1179 } 1180 1181 kn = kernfs_dentry_node(dentry); 1182 root = kernfs_root(kn); 1183 down_read(&root->kernfs_rwsem); 1184 1185 /* The kernfs node has been deactivated */ 1186 if (!kernfs_active(kn)) 1187 goto out_bad; 1188 1189 parent = kernfs_parent(kn); 1190 /* The kernfs node has been moved? */ 1191 if (kernfs_dentry_node(dentry->d_parent) != parent) 1192 goto out_bad; 1193 1194 /* The kernfs node has been renamed */ 1195 if (strcmp(dentry->d_name.name, kernfs_rcu_name(kn)) != 0) 1196 goto out_bad; 1197 1198 /* The kernfs node has been moved to a different namespace */ 1199 if (parent && kernfs_ns_enabled(parent) && 1200 kernfs_info(dentry->d_sb)->ns != kn->ns) 1201 goto out_bad; 1202 1203 up_read(&root->kernfs_rwsem); 1204 return 1; 1205 out_bad: 1206 up_read(&root->kernfs_rwsem); 1207 return 0; 1208 } 1209 1210 const struct dentry_operations kernfs_dops = { 1211 .d_revalidate = kernfs_dop_revalidate, 1212 }; 1213 1214 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1215 struct dentry *dentry, 1216 unsigned int flags) 1217 { 1218 struct kernfs_node *parent = dir->i_private; 1219 struct kernfs_node *kn; 1220 struct kernfs_root *root; 1221 struct inode *inode = NULL; 1222 const void *ns = NULL; 1223 1224 root = kernfs_root(parent); 1225 down_read(&root->kernfs_rwsem); 1226 if (kernfs_ns_enabled(parent)) 1227 ns = kernfs_info(dir->i_sb)->ns; 1228 1229 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1230 /* attach dentry and inode */ 1231 if (kn) { 1232 /* Inactive nodes are invisible to the VFS so don't 1233 * create a negative. 1234 */ 1235 if (!kernfs_active(kn)) { 1236 up_read(&root->kernfs_rwsem); 1237 return NULL; 1238 } 1239 inode = kernfs_get_inode(dir->i_sb, kn); 1240 if (!inode) 1241 inode = ERR_PTR(-ENOMEM); 1242 } 1243 /* 1244 * Needed for negative dentry validation. 1245 * The negative dentry can be created in kernfs_iop_lookup() 1246 * or transforms from positive dentry in dentry_unlink_inode() 1247 * called from vfs_rmdir(). 1248 */ 1249 if (!IS_ERR(inode)) 1250 kernfs_set_rev(parent, dentry); 1251 up_read(&root->kernfs_rwsem); 1252 1253 /* instantiate and hash (possibly negative) dentry */ 1254 return d_splice_alias(inode, dentry); 1255 } 1256 1257 static struct dentry *kernfs_iop_mkdir(struct mnt_idmap *idmap, 1258 struct inode *dir, struct dentry *dentry, 1259 umode_t mode) 1260 { 1261 struct kernfs_node *parent = dir->i_private; 1262 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1263 int ret; 1264 1265 if (!scops || !scops->mkdir) 1266 return ERR_PTR(-EPERM); 1267 1268 if (!kernfs_get_active(parent)) 1269 return ERR_PTR(-ENODEV); 1270 1271 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1272 1273 kernfs_put_active(parent); 1274 return ERR_PTR(ret); 1275 } 1276 1277 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1278 { 1279 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1280 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1281 int ret; 1282 1283 if (!scops || !scops->rmdir) 1284 return -EPERM; 1285 1286 if (!kernfs_get_active(kn)) 1287 return -ENODEV; 1288 1289 ret = scops->rmdir(kn); 1290 1291 kernfs_put_active(kn); 1292 return ret; 1293 } 1294 1295 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1296 struct inode *old_dir, struct dentry *old_dentry, 1297 struct inode *new_dir, struct dentry *new_dentry, 1298 unsigned int flags) 1299 { 1300 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1301 struct kernfs_node *new_parent = new_dir->i_private; 1302 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1303 int ret; 1304 1305 if (flags) 1306 return -EINVAL; 1307 1308 if (!scops || !scops->rename) 1309 return -EPERM; 1310 1311 if (!kernfs_get_active(kn)) 1312 return -ENODEV; 1313 1314 if (!kernfs_get_active(new_parent)) { 1315 kernfs_put_active(kn); 1316 return -ENODEV; 1317 } 1318 1319 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1320 1321 kernfs_put_active(new_parent); 1322 kernfs_put_active(kn); 1323 return ret; 1324 } 1325 1326 const struct inode_operations kernfs_dir_iops = { 1327 .lookup = kernfs_iop_lookup, 1328 .permission = kernfs_iop_permission, 1329 .setattr = kernfs_iop_setattr, 1330 .getattr = kernfs_iop_getattr, 1331 .listxattr = kernfs_iop_listxattr, 1332 1333 .mkdir = kernfs_iop_mkdir, 1334 .rmdir = kernfs_iop_rmdir, 1335 .rename = kernfs_iop_rename, 1336 }; 1337 1338 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1339 { 1340 struct kernfs_node *last; 1341 1342 while (true) { 1343 struct rb_node *rbn; 1344 1345 last = pos; 1346 1347 if (kernfs_type(pos) != KERNFS_DIR) 1348 break; 1349 1350 rbn = rb_first(&pos->dir.children); 1351 if (!rbn) 1352 break; 1353 1354 pos = rb_to_kn(rbn); 1355 } 1356 1357 return last; 1358 } 1359 1360 /** 1361 * kernfs_next_descendant_post - find the next descendant for post-order walk 1362 * @pos: the current position (%NULL to initiate traversal) 1363 * @root: kernfs_node whose descendants to walk 1364 * 1365 * Find the next descendant to visit for post-order traversal of @root's 1366 * descendants. @root is included in the iteration and the last node to be 1367 * visited. 1368 * 1369 * Return: the next descendant to visit or %NULL when done. 1370 */ 1371 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1372 struct kernfs_node *root) 1373 { 1374 struct rb_node *rbn; 1375 1376 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1377 1378 /* if first iteration, visit leftmost descendant which may be root */ 1379 if (!pos) 1380 return kernfs_leftmost_descendant(root); 1381 1382 /* if we visited @root, we're done */ 1383 if (pos == root) 1384 return NULL; 1385 1386 /* if there's an unvisited sibling, visit its leftmost descendant */ 1387 rbn = rb_next(&pos->rb); 1388 if (rbn) 1389 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1390 1391 /* no sibling left, visit parent */ 1392 return kernfs_parent(pos); 1393 } 1394 1395 static void kernfs_activate_one(struct kernfs_node *kn) 1396 { 1397 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1398 1399 kn->flags |= KERNFS_ACTIVATED; 1400 1401 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1402 return; 1403 1404 WARN_ON_ONCE(rcu_access_pointer(kn->__parent) && RB_EMPTY_NODE(&kn->rb)); 1405 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1406 1407 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1408 } 1409 1410 /** 1411 * kernfs_activate - activate a node which started deactivated 1412 * @kn: kernfs_node whose subtree is to be activated 1413 * 1414 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1415 * needs to be explicitly activated. A node which hasn't been activated 1416 * isn't visible to userland and deactivation is skipped during its 1417 * removal. This is useful to construct atomic init sequences where 1418 * creation of multiple nodes should either succeed or fail atomically. 1419 * 1420 * The caller is responsible for ensuring that this function is not called 1421 * after kernfs_remove*() is invoked on @kn. 1422 */ 1423 void kernfs_activate(struct kernfs_node *kn) 1424 { 1425 struct kernfs_node *pos; 1426 struct kernfs_root *root = kernfs_root(kn); 1427 1428 down_write(&root->kernfs_rwsem); 1429 1430 pos = NULL; 1431 while ((pos = kernfs_next_descendant_post(pos, kn))) 1432 kernfs_activate_one(pos); 1433 1434 up_write(&root->kernfs_rwsem); 1435 } 1436 1437 /** 1438 * kernfs_show - show or hide a node 1439 * @kn: kernfs_node to show or hide 1440 * @show: whether to show or hide 1441 * 1442 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1443 * ignored in future activaitons. If %true, the mark is removed and activation 1444 * state is restored. This function won't implicitly activate a new node in a 1445 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1446 * 1447 * To avoid recursion complexities, directories aren't supported for now. 1448 */ 1449 void kernfs_show(struct kernfs_node *kn, bool show) 1450 { 1451 struct kernfs_root *root = kernfs_root(kn); 1452 1453 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1454 return; 1455 1456 down_write(&root->kernfs_rwsem); 1457 1458 if (show) { 1459 kn->flags &= ~KERNFS_HIDDEN; 1460 if (kn->flags & KERNFS_ACTIVATED) 1461 kernfs_activate_one(kn); 1462 } else { 1463 kn->flags |= KERNFS_HIDDEN; 1464 if (kernfs_active(kn)) 1465 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1466 kernfs_drain(kn); 1467 } 1468 1469 up_write(&root->kernfs_rwsem); 1470 } 1471 1472 static void __kernfs_remove(struct kernfs_node *kn) 1473 { 1474 struct kernfs_node *pos, *parent; 1475 1476 /* Short-circuit if non-root @kn has already finished removal. */ 1477 if (!kn) 1478 return; 1479 1480 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1481 1482 /* 1483 * This is for kernfs_remove_self() which plays with active ref 1484 * after removal. 1485 */ 1486 if (kernfs_parent(kn) && RB_EMPTY_NODE(&kn->rb)) 1487 return; 1488 1489 pr_debug("kernfs %s: removing\n", kernfs_rcu_name(kn)); 1490 1491 /* prevent new usage by marking all nodes removing and deactivating */ 1492 pos = NULL; 1493 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1494 pos->flags |= KERNFS_REMOVING; 1495 if (kernfs_active(pos)) 1496 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1497 } 1498 1499 /* deactivate and unlink the subtree node-by-node */ 1500 do { 1501 pos = kernfs_leftmost_descendant(kn); 1502 1503 /* 1504 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1505 * base ref could have been put by someone else by the time 1506 * the function returns. Make sure it doesn't go away 1507 * underneath us. 1508 */ 1509 kernfs_get(pos); 1510 1511 kernfs_drain(pos); 1512 parent = kernfs_parent(pos); 1513 /* 1514 * kernfs_unlink_sibling() succeeds once per node. Use it 1515 * to decide who's responsible for cleanups. 1516 */ 1517 if (!parent || kernfs_unlink_sibling(pos)) { 1518 struct kernfs_iattrs *ps_iattr = 1519 parent ? parent->iattr : NULL; 1520 1521 /* update timestamps on the parent */ 1522 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1523 1524 if (ps_iattr) { 1525 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1526 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1527 } 1528 1529 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1530 kernfs_put(pos); 1531 } 1532 1533 kernfs_put(pos); 1534 } while (pos != kn); 1535 } 1536 1537 /** 1538 * kernfs_remove - remove a kernfs_node recursively 1539 * @kn: the kernfs_node to remove 1540 * 1541 * Remove @kn along with all its subdirectories and files. 1542 */ 1543 void kernfs_remove(struct kernfs_node *kn) 1544 { 1545 struct kernfs_root *root; 1546 1547 if (!kn) 1548 return; 1549 1550 root = kernfs_root(kn); 1551 1552 down_write(&root->kernfs_rwsem); 1553 __kernfs_remove(kn); 1554 up_write(&root->kernfs_rwsem); 1555 } 1556 1557 /** 1558 * kernfs_break_active_protection - break out of active protection 1559 * @kn: the self kernfs_node 1560 * 1561 * The caller must be running off of a kernfs operation which is invoked 1562 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1563 * this function must also be matched with an invocation of 1564 * kernfs_unbreak_active_protection(). 1565 * 1566 * This function releases the active reference of @kn the caller is 1567 * holding. Once this function is called, @kn may be removed at any point 1568 * and the caller is solely responsible for ensuring that the objects it 1569 * dereferences are accessible. 1570 */ 1571 void kernfs_break_active_protection(struct kernfs_node *kn) 1572 { 1573 /* 1574 * Take out ourself out of the active ref dependency chain. If 1575 * we're called without an active ref, lockdep will complain. 1576 */ 1577 kernfs_put_active(kn); 1578 } 1579 1580 /** 1581 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1582 * @kn: the self kernfs_node 1583 * 1584 * If kernfs_break_active_protection() was called, this function must be 1585 * invoked before finishing the kernfs operation. Note that while this 1586 * function restores the active reference, it doesn't and can't actually 1587 * restore the active protection - @kn may already or be in the process of 1588 * being drained and removed. Once kernfs_break_active_protection() is 1589 * invoked, that protection is irreversibly gone for the kernfs operation 1590 * instance. 1591 * 1592 * While this function may be called at any point after 1593 * kernfs_break_active_protection() is invoked, its most useful location 1594 * would be right before the enclosing kernfs operation returns. 1595 */ 1596 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1597 { 1598 /* 1599 * @kn->active could be in any state; however, the increment we do 1600 * here will be undone as soon as the enclosing kernfs operation 1601 * finishes and this temporary bump can't break anything. If @kn 1602 * is alive, nothing changes. If @kn is being deactivated, the 1603 * soon-to-follow put will either finish deactivation or restore 1604 * deactivated state. If @kn is already removed, the temporary 1605 * bump is guaranteed to be gone before @kn is released. 1606 */ 1607 atomic_inc(&kn->active); 1608 if (kernfs_lockdep(kn)) 1609 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1610 } 1611 1612 /** 1613 * kernfs_remove_self - remove a kernfs_node from its own method 1614 * @kn: the self kernfs_node to remove 1615 * 1616 * The caller must be running off of a kernfs operation which is invoked 1617 * with an active reference - e.g. one of kernfs_ops. This can be used to 1618 * implement a file operation which deletes itself. 1619 * 1620 * For example, the "delete" file for a sysfs device directory can be 1621 * implemented by invoking kernfs_remove_self() on the "delete" file 1622 * itself. This function breaks the circular dependency of trying to 1623 * deactivate self while holding an active ref itself. It isn't necessary 1624 * to modify the usual removal path to use kernfs_remove_self(). The 1625 * "delete" implementation can simply invoke kernfs_remove_self() on self 1626 * before proceeding with the usual removal path. kernfs will ignore later 1627 * kernfs_remove() on self. 1628 * 1629 * kernfs_remove_self() can be called multiple times concurrently on the 1630 * same kernfs_node. Only the first one actually performs removal and 1631 * returns %true. All others will wait until the kernfs operation which 1632 * won self-removal finishes and return %false. Note that the losers wait 1633 * for the completion of not only the winning kernfs_remove_self() but also 1634 * the whole kernfs_ops which won the arbitration. This can be used to 1635 * guarantee, for example, all concurrent writes to a "delete" file to 1636 * finish only after the whole operation is complete. 1637 * 1638 * Return: %true if @kn is removed by this call, otherwise %false. 1639 */ 1640 bool kernfs_remove_self(struct kernfs_node *kn) 1641 { 1642 bool ret; 1643 struct kernfs_root *root = kernfs_root(kn); 1644 1645 down_write(&root->kernfs_rwsem); 1646 kernfs_break_active_protection(kn); 1647 1648 /* 1649 * SUICIDAL is used to arbitrate among competing invocations. Only 1650 * the first one will actually perform removal. When the removal 1651 * is complete, SUICIDED is set and the active ref is restored 1652 * while kernfs_rwsem for held exclusive. The ones which lost 1653 * arbitration waits for SUICIDED && drained which can happen only 1654 * after the enclosing kernfs operation which executed the winning 1655 * instance of kernfs_remove_self() finished. 1656 */ 1657 if (!(kn->flags & KERNFS_SUICIDAL)) { 1658 kn->flags |= KERNFS_SUICIDAL; 1659 __kernfs_remove(kn); 1660 kn->flags |= KERNFS_SUICIDED; 1661 ret = true; 1662 } else { 1663 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1664 DEFINE_WAIT(wait); 1665 1666 while (true) { 1667 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1668 1669 if ((kn->flags & KERNFS_SUICIDED) && 1670 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1671 break; 1672 1673 up_write(&root->kernfs_rwsem); 1674 schedule(); 1675 down_write(&root->kernfs_rwsem); 1676 } 1677 finish_wait(waitq, &wait); 1678 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1679 ret = false; 1680 } 1681 1682 /* 1683 * This must be done while kernfs_rwsem held exclusive; otherwise, 1684 * waiting for SUICIDED && deactivated could finish prematurely. 1685 */ 1686 kernfs_unbreak_active_protection(kn); 1687 1688 up_write(&root->kernfs_rwsem); 1689 return ret; 1690 } 1691 1692 /** 1693 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1694 * @parent: parent of the target 1695 * @name: name of the kernfs_node to remove 1696 * @ns: namespace tag of the kernfs_node to remove 1697 * 1698 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1699 * 1700 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1701 */ 1702 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1703 const void *ns) 1704 { 1705 struct kernfs_node *kn; 1706 struct kernfs_root *root; 1707 1708 if (!parent) { 1709 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1710 name); 1711 return -ENOENT; 1712 } 1713 1714 root = kernfs_root(parent); 1715 down_write(&root->kernfs_rwsem); 1716 1717 kn = kernfs_find_ns(parent, name, ns); 1718 if (kn) { 1719 kernfs_get(kn); 1720 __kernfs_remove(kn); 1721 kernfs_put(kn); 1722 } 1723 1724 up_write(&root->kernfs_rwsem); 1725 1726 if (kn) 1727 return 0; 1728 else 1729 return -ENOENT; 1730 } 1731 1732 /** 1733 * kernfs_rename_ns - move and rename a kernfs_node 1734 * @kn: target node 1735 * @new_parent: new parent to put @sd under 1736 * @new_name: new name 1737 * @new_ns: new namespace tag 1738 * 1739 * Return: %0 on success, -errno on failure. 1740 */ 1741 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1742 const char *new_name, const void *new_ns) 1743 { 1744 struct kernfs_node *old_parent; 1745 struct kernfs_root *root; 1746 const char *old_name; 1747 int error; 1748 1749 /* can't move or rename root */ 1750 if (!rcu_access_pointer(kn->__parent)) 1751 return -EINVAL; 1752 1753 root = kernfs_root(kn); 1754 down_write(&root->kernfs_rwsem); 1755 1756 error = -ENOENT; 1757 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1758 (new_parent->flags & KERNFS_EMPTY_DIR)) 1759 goto out; 1760 1761 old_parent = kernfs_parent(kn); 1762 if (root->flags & KERNFS_ROOT_INVARIANT_PARENT) { 1763 error = -EINVAL; 1764 if (WARN_ON_ONCE(old_parent != new_parent)) 1765 goto out; 1766 } 1767 1768 error = 0; 1769 old_name = kernfs_rcu_name(kn); 1770 if (!new_name) 1771 new_name = old_name; 1772 if ((old_parent == new_parent) && (kn->ns == new_ns) && 1773 (strcmp(old_name, new_name) == 0)) 1774 goto out; /* nothing to rename */ 1775 1776 error = -EEXIST; 1777 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1778 goto out; 1779 1780 /* rename kernfs_node */ 1781 if (strcmp(old_name, new_name) != 0) { 1782 error = -ENOMEM; 1783 new_name = kstrdup_const(new_name, GFP_KERNEL); 1784 if (!new_name) 1785 goto out; 1786 } else { 1787 new_name = NULL; 1788 } 1789 1790 /* 1791 * Move to the appropriate place in the appropriate directories rbtree. 1792 */ 1793 kernfs_unlink_sibling(kn); 1794 1795 /* rename_lock protects ->parent accessors */ 1796 if (old_parent != new_parent) { 1797 kernfs_get(new_parent); 1798 write_lock_irq(&root->kernfs_rename_lock); 1799 1800 rcu_assign_pointer(kn->__parent, new_parent); 1801 1802 kn->ns = new_ns; 1803 if (new_name) 1804 rcu_assign_pointer(kn->name, new_name); 1805 1806 write_unlock_irq(&root->kernfs_rename_lock); 1807 kernfs_put(old_parent); 1808 } else { 1809 /* name assignment is RCU protected, parent is the same */ 1810 kn->ns = new_ns; 1811 if (new_name) 1812 rcu_assign_pointer(kn->name, new_name); 1813 } 1814 1815 kn->hash = kernfs_name_hash(new_name ?: old_name, kn->ns); 1816 kernfs_link_sibling(kn); 1817 1818 if (new_name && !is_kernel_rodata((unsigned long)old_name)) 1819 kfree_rcu_mightsleep(old_name); 1820 1821 error = 0; 1822 out: 1823 up_write(&root->kernfs_rwsem); 1824 return error; 1825 } 1826 1827 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1828 { 1829 kernfs_put(filp->private_data); 1830 return 0; 1831 } 1832 1833 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1834 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1835 { 1836 if (pos) { 1837 int valid = kernfs_active(pos) && 1838 rcu_access_pointer(pos->__parent) == parent && 1839 hash == pos->hash; 1840 kernfs_put(pos); 1841 if (!valid) 1842 pos = NULL; 1843 } 1844 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1845 struct rb_node *node = parent->dir.children.rb_node; 1846 while (node) { 1847 pos = rb_to_kn(node); 1848 1849 if (hash < pos->hash) 1850 node = node->rb_left; 1851 else if (hash > pos->hash) 1852 node = node->rb_right; 1853 else 1854 break; 1855 } 1856 } 1857 /* Skip over entries which are dying/dead or in the wrong namespace */ 1858 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1859 struct rb_node *node = rb_next(&pos->rb); 1860 if (!node) 1861 pos = NULL; 1862 else 1863 pos = rb_to_kn(node); 1864 } 1865 return pos; 1866 } 1867 1868 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1869 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1870 { 1871 pos = kernfs_dir_pos(ns, parent, ino, pos); 1872 if (pos) { 1873 do { 1874 struct rb_node *node = rb_next(&pos->rb); 1875 if (!node) 1876 pos = NULL; 1877 else 1878 pos = rb_to_kn(node); 1879 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1880 } 1881 return pos; 1882 } 1883 1884 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1885 { 1886 struct dentry *dentry = file->f_path.dentry; 1887 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1888 struct kernfs_node *pos = file->private_data; 1889 struct kernfs_root *root; 1890 const void *ns = NULL; 1891 1892 if (!dir_emit_dots(file, ctx)) 1893 return 0; 1894 1895 root = kernfs_root(parent); 1896 down_read(&root->kernfs_rwsem); 1897 1898 if (kernfs_ns_enabled(parent)) 1899 ns = kernfs_info(dentry->d_sb)->ns; 1900 1901 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1902 pos; 1903 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1904 const char *name = kernfs_rcu_name(pos); 1905 unsigned int type = fs_umode_to_dtype(pos->mode); 1906 int len = strlen(name); 1907 ino_t ino = kernfs_ino(pos); 1908 1909 ctx->pos = pos->hash; 1910 file->private_data = pos; 1911 kernfs_get(pos); 1912 1913 if (!dir_emit(ctx, name, len, ino, type)) { 1914 up_read(&root->kernfs_rwsem); 1915 return 0; 1916 } 1917 } 1918 up_read(&root->kernfs_rwsem); 1919 file->private_data = NULL; 1920 ctx->pos = INT_MAX; 1921 return 0; 1922 } 1923 1924 const struct file_operations kernfs_dir_fops = { 1925 .read = generic_read_dir, 1926 .iterate_shared = kernfs_fop_readdir, 1927 .release = kernfs_dir_fop_release, 1928 .llseek = generic_file_llseek, 1929 }; 1930