1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strlcpy(buf, "(null)", buflen); 58 59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the full path. If the full length is equal to or 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 int i, j; 142 143 if (!kn_to) 144 return strlcpy(buf, "(null)", buflen); 145 146 if (!kn_from) 147 kn_from = kernfs_root(kn_to)->kn; 148 149 if (kn_from == kn_to) 150 return strlcpy(buf, "/", buflen); 151 152 common = kernfs_common_ancestor(kn_from, kn_to); 153 if (WARN_ON(!common)) 154 return -EINVAL; 155 156 depth_to = kernfs_depth(common, kn_to); 157 depth_from = kernfs_depth(common, kn_from); 158 159 buf[0] = '\0'; 160 161 for (i = 0; i < depth_from; i++) 162 len += strlcpy(buf + len, parent_str, 163 len < buflen ? buflen - len : 0); 164 165 /* Calculate how many bytes we need for the rest */ 166 for (i = depth_to - 1; i >= 0; i--) { 167 for (kn = kn_to, j = 0; j < i; j++) 168 kn = kn->parent; 169 len += strlcpy(buf + len, "/", 170 len < buflen ? buflen - len : 0); 171 len += strlcpy(buf + len, kn->name, 172 len < buflen ? buflen - len : 0); 173 } 174 175 return len; 176 } 177 178 /** 179 * kernfs_name - obtain the name of a given node 180 * @kn: kernfs_node of interest 181 * @buf: buffer to copy @kn's name into 182 * @buflen: size of @buf 183 * 184 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 185 * similar to strlcpy(). 186 * 187 * Fills buffer with "(null)" if @kn is %NULL. 188 * 189 * Return: the length of @kn's name and if @buf isn't long enough, 190 * it's filled up to @buflen-1 and nul terminated. 191 * 192 * This function can be called from any context. 193 */ 194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 195 { 196 unsigned long flags; 197 int ret; 198 199 read_lock_irqsave(&kernfs_rename_lock, flags); 200 ret = kernfs_name_locked(kn, buf, buflen); 201 read_unlock_irqrestore(&kernfs_rename_lock, flags); 202 return ret; 203 } 204 205 /** 206 * kernfs_path_from_node - build path of node @to relative to @from. 207 * @from: parent kernfs_node relative to which we need to build the path 208 * @to: kernfs_node of interest 209 * @buf: buffer to copy @to's path into 210 * @buflen: size of @buf 211 * 212 * Builds @to's path relative to @from in @buf. @from and @to must 213 * be on the same kernfs-root. If @from is not parent of @to, then a relative 214 * path (which includes '..'s) as needed to reach from @from to @to is 215 * returned. 216 * 217 * Return: the length of the full path. If the full length is equal to or 218 * greater than @buflen, @buf contains the truncated path with the trailing 219 * '\0'. On error, -errno is returned. 220 */ 221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 222 char *buf, size_t buflen) 223 { 224 unsigned long flags; 225 int ret; 226 227 read_lock_irqsave(&kernfs_rename_lock, flags); 228 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 229 read_unlock_irqrestore(&kernfs_rename_lock, flags); 230 return ret; 231 } 232 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 233 234 /** 235 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 236 * @kn: kernfs_node of interest 237 * 238 * This function can be called from any context. 239 */ 240 void pr_cont_kernfs_name(struct kernfs_node *kn) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 245 246 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 247 pr_cont("%s", kernfs_pr_cont_buf); 248 249 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 250 } 251 252 /** 253 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 254 * @kn: kernfs_node of interest 255 * 256 * This function can be called from any context. 257 */ 258 void pr_cont_kernfs_path(struct kernfs_node *kn) 259 { 260 unsigned long flags; 261 int sz; 262 263 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 264 265 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 266 sizeof(kernfs_pr_cont_buf)); 267 if (sz < 0) { 268 pr_cont("(error)"); 269 goto out; 270 } 271 272 if (sz >= sizeof(kernfs_pr_cont_buf)) { 273 pr_cont("(name too long)"); 274 goto out; 275 } 276 277 pr_cont("%s", kernfs_pr_cont_buf); 278 279 out: 280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 281 } 282 283 /** 284 * kernfs_get_parent - determine the parent node and pin it 285 * @kn: kernfs_node of interest 286 * 287 * Determines @kn's parent, pins and returns it. This function can be 288 * called from any context. 289 * 290 * Return: parent node of @kn 291 */ 292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 293 { 294 struct kernfs_node *parent; 295 unsigned long flags; 296 297 read_lock_irqsave(&kernfs_rename_lock, flags); 298 parent = kn->parent; 299 kernfs_get(parent); 300 read_unlock_irqrestore(&kernfs_rename_lock, flags); 301 302 return parent; 303 } 304 305 /** 306 * kernfs_name_hash - calculate hash of @ns + @name 307 * @name: Null terminated string to hash 308 * @ns: Namespace tag to hash 309 * 310 * Return: 31-bit hash of ns + name (so it fits in an off_t) 311 */ 312 static unsigned int kernfs_name_hash(const char *name, const void *ns) 313 { 314 unsigned long hash = init_name_hash(ns); 315 unsigned int len = strlen(name); 316 while (len--) 317 hash = partial_name_hash(*name++, hash); 318 hash = end_name_hash(hash); 319 hash &= 0x7fffffffU; 320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 321 if (hash < 2) 322 hash += 2; 323 if (hash >= INT_MAX) 324 hash = INT_MAX - 1; 325 return hash; 326 } 327 328 static int kernfs_name_compare(unsigned int hash, const char *name, 329 const void *ns, const struct kernfs_node *kn) 330 { 331 if (hash < kn->hash) 332 return -1; 333 if (hash > kn->hash) 334 return 1; 335 if (ns < kn->ns) 336 return -1; 337 if (ns > kn->ns) 338 return 1; 339 return strcmp(name, kn->name); 340 } 341 342 static int kernfs_sd_compare(const struct kernfs_node *left, 343 const struct kernfs_node *right) 344 { 345 return kernfs_name_compare(left->hash, left->name, left->ns, right); 346 } 347 348 /** 349 * kernfs_link_sibling - link kernfs_node into sibling rbtree 350 * @kn: kernfs_node of interest 351 * 352 * Link @kn into its sibling rbtree which starts from 353 * @kn->parent->dir.children. 354 * 355 * Locking: 356 * kernfs_rwsem held exclusive 357 * 358 * Return: 359 * %0 on success, -EEXIST on failure. 360 */ 361 static int kernfs_link_sibling(struct kernfs_node *kn) 362 { 363 struct rb_node **node = &kn->parent->dir.children.rb_node; 364 struct rb_node *parent = NULL; 365 366 while (*node) { 367 struct kernfs_node *pos; 368 int result; 369 370 pos = rb_to_kn(*node); 371 parent = *node; 372 result = kernfs_sd_compare(kn, pos); 373 if (result < 0) 374 node = &pos->rb.rb_left; 375 else if (result > 0) 376 node = &pos->rb.rb_right; 377 else 378 return -EEXIST; 379 } 380 381 /* add new node and rebalance the tree */ 382 rb_link_node(&kn->rb, parent, node); 383 rb_insert_color(&kn->rb, &kn->parent->dir.children); 384 385 /* successfully added, account subdir number */ 386 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 387 if (kernfs_type(kn) == KERNFS_DIR) 388 kn->parent->dir.subdirs++; 389 kernfs_inc_rev(kn->parent); 390 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 391 392 return 0; 393 } 394 395 /** 396 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 397 * @kn: kernfs_node of interest 398 * 399 * Try to unlink @kn from its sibling rbtree which starts from 400 * kn->parent->dir.children. 401 * 402 * Return: %true if @kn was actually removed, 403 * %false if @kn wasn't on the rbtree. 404 * 405 * Locking: 406 * kernfs_rwsem held exclusive 407 */ 408 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 409 { 410 if (RB_EMPTY_NODE(&kn->rb)) 411 return false; 412 413 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 414 if (kernfs_type(kn) == KERNFS_DIR) 415 kn->parent->dir.subdirs--; 416 kernfs_inc_rev(kn->parent); 417 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 418 419 rb_erase(&kn->rb, &kn->parent->dir.children); 420 RB_CLEAR_NODE(&kn->rb); 421 return true; 422 } 423 424 /** 425 * kernfs_get_active - get an active reference to kernfs_node 426 * @kn: kernfs_node to get an active reference to 427 * 428 * Get an active reference of @kn. This function is noop if @kn 429 * is %NULL. 430 * 431 * Return: 432 * Pointer to @kn on success, %NULL on failure. 433 */ 434 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 435 { 436 if (unlikely(!kn)) 437 return NULL; 438 439 if (!atomic_inc_unless_negative(&kn->active)) 440 return NULL; 441 442 if (kernfs_lockdep(kn)) 443 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 444 return kn; 445 } 446 447 /** 448 * kernfs_put_active - put an active reference to kernfs_node 449 * @kn: kernfs_node to put an active reference to 450 * 451 * Put an active reference to @kn. This function is noop if @kn 452 * is %NULL. 453 */ 454 void kernfs_put_active(struct kernfs_node *kn) 455 { 456 int v; 457 458 if (unlikely(!kn)) 459 return; 460 461 if (kernfs_lockdep(kn)) 462 rwsem_release(&kn->dep_map, _RET_IP_); 463 v = atomic_dec_return(&kn->active); 464 if (likely(v != KN_DEACTIVATED_BIAS)) 465 return; 466 467 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 468 } 469 470 /** 471 * kernfs_drain - drain kernfs_node 472 * @kn: kernfs_node to drain 473 * 474 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 475 * removers may invoke this function concurrently on @kn and all will 476 * return after draining is complete. 477 */ 478 static void kernfs_drain(struct kernfs_node *kn) 479 __releases(&kernfs_root(kn)->kernfs_rwsem) 480 __acquires(&kernfs_root(kn)->kernfs_rwsem) 481 { 482 struct kernfs_root *root = kernfs_root(kn); 483 484 lockdep_assert_held_write(&root->kernfs_rwsem); 485 WARN_ON_ONCE(kernfs_active(kn)); 486 487 /* 488 * Skip draining if already fully drained. This avoids draining and its 489 * lockdep annotations for nodes which have never been activated 490 * allowing embedding kernfs_remove() in create error paths without 491 * worrying about draining. 492 */ 493 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 494 !kernfs_should_drain_open_files(kn)) 495 return; 496 497 up_write(&root->kernfs_rwsem); 498 499 if (kernfs_lockdep(kn)) { 500 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 501 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 502 lock_contended(&kn->dep_map, _RET_IP_); 503 } 504 505 wait_event(root->deactivate_waitq, 506 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 507 508 if (kernfs_lockdep(kn)) { 509 lock_acquired(&kn->dep_map, _RET_IP_); 510 rwsem_release(&kn->dep_map, _RET_IP_); 511 } 512 513 if (kernfs_should_drain_open_files(kn)) 514 kernfs_drain_open_files(kn); 515 516 down_write(&root->kernfs_rwsem); 517 } 518 519 /** 520 * kernfs_get - get a reference count on a kernfs_node 521 * @kn: the target kernfs_node 522 */ 523 void kernfs_get(struct kernfs_node *kn) 524 { 525 if (kn) { 526 WARN_ON(!atomic_read(&kn->count)); 527 atomic_inc(&kn->count); 528 } 529 } 530 EXPORT_SYMBOL_GPL(kernfs_get); 531 532 /** 533 * kernfs_put - put a reference count on a kernfs_node 534 * @kn: the target kernfs_node 535 * 536 * Put a reference count of @kn and destroy it if it reached zero. 537 */ 538 void kernfs_put(struct kernfs_node *kn) 539 { 540 struct kernfs_node *parent; 541 struct kernfs_root *root; 542 543 if (!kn || !atomic_dec_and_test(&kn->count)) 544 return; 545 root = kernfs_root(kn); 546 repeat: 547 /* 548 * Moving/renaming is always done while holding reference. 549 * kn->parent won't change beneath us. 550 */ 551 parent = kn->parent; 552 553 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 554 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 555 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 556 557 if (kernfs_type(kn) == KERNFS_LINK) 558 kernfs_put(kn->symlink.target_kn); 559 560 kfree_const(kn->name); 561 562 if (kn->iattr) { 563 simple_xattrs_free(&kn->iattr->xattrs, NULL); 564 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 565 } 566 spin_lock(&kernfs_idr_lock); 567 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 568 spin_unlock(&kernfs_idr_lock); 569 kmem_cache_free(kernfs_node_cache, kn); 570 571 kn = parent; 572 if (kn) { 573 if (atomic_dec_and_test(&kn->count)) 574 goto repeat; 575 } else { 576 /* just released the root kn, free @root too */ 577 idr_destroy(&root->ino_idr); 578 kfree(root); 579 } 580 } 581 EXPORT_SYMBOL_GPL(kernfs_put); 582 583 /** 584 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 585 * @dentry: the dentry in question 586 * 587 * Return: the kernfs_node associated with @dentry. If @dentry is not a 588 * kernfs one, %NULL is returned. 589 * 590 * While the returned kernfs_node will stay accessible as long as @dentry 591 * is accessible, the returned node can be in any state and the caller is 592 * fully responsible for determining what's accessible. 593 */ 594 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 595 { 596 if (dentry->d_sb->s_op == &kernfs_sops) 597 return kernfs_dentry_node(dentry); 598 return NULL; 599 } 600 601 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 602 struct kernfs_node *parent, 603 const char *name, umode_t mode, 604 kuid_t uid, kgid_t gid, 605 unsigned flags) 606 { 607 struct kernfs_node *kn; 608 u32 id_highbits; 609 int ret; 610 611 name = kstrdup_const(name, GFP_KERNEL); 612 if (!name) 613 return NULL; 614 615 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 616 if (!kn) 617 goto err_out1; 618 619 idr_preload(GFP_KERNEL); 620 spin_lock(&kernfs_idr_lock); 621 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 622 if (ret >= 0 && ret < root->last_id_lowbits) 623 root->id_highbits++; 624 id_highbits = root->id_highbits; 625 root->last_id_lowbits = ret; 626 spin_unlock(&kernfs_idr_lock); 627 idr_preload_end(); 628 if (ret < 0) 629 goto err_out2; 630 631 kn->id = (u64)id_highbits << 32 | ret; 632 633 atomic_set(&kn->count, 1); 634 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 635 RB_CLEAR_NODE(&kn->rb); 636 637 kn->name = name; 638 kn->mode = mode; 639 kn->flags = flags; 640 641 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 642 struct iattr iattr = { 643 .ia_valid = ATTR_UID | ATTR_GID, 644 .ia_uid = uid, 645 .ia_gid = gid, 646 }; 647 648 ret = __kernfs_setattr(kn, &iattr); 649 if (ret < 0) 650 goto err_out3; 651 } 652 653 if (parent) { 654 ret = security_kernfs_init_security(parent, kn); 655 if (ret) 656 goto err_out3; 657 } 658 659 return kn; 660 661 err_out3: 662 spin_lock(&kernfs_idr_lock); 663 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 664 spin_unlock(&kernfs_idr_lock); 665 err_out2: 666 kmem_cache_free(kernfs_node_cache, kn); 667 err_out1: 668 kfree_const(name); 669 return NULL; 670 } 671 672 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 673 const char *name, umode_t mode, 674 kuid_t uid, kgid_t gid, 675 unsigned flags) 676 { 677 struct kernfs_node *kn; 678 679 kn = __kernfs_new_node(kernfs_root(parent), parent, 680 name, mode, uid, gid, flags); 681 if (kn) { 682 kernfs_get(parent); 683 kn->parent = parent; 684 } 685 return kn; 686 } 687 688 /* 689 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 690 * @root: the kernfs root 691 * @id: the target node id 692 * 693 * @id's lower 32bits encode ino and upper gen. If the gen portion is 694 * zero, all generations are matched. 695 * 696 * Return: %NULL on failure, 697 * otherwise a kernfs node with reference counter incremented. 698 */ 699 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 700 u64 id) 701 { 702 struct kernfs_node *kn; 703 ino_t ino = kernfs_id_ino(id); 704 u32 gen = kernfs_id_gen(id); 705 706 spin_lock(&kernfs_idr_lock); 707 708 kn = idr_find(&root->ino_idr, (u32)ino); 709 if (!kn) 710 goto err_unlock; 711 712 if (sizeof(ino_t) >= sizeof(u64)) { 713 /* we looked up with the low 32bits, compare the whole */ 714 if (kernfs_ino(kn) != ino) 715 goto err_unlock; 716 } else { 717 /* 0 matches all generations */ 718 if (unlikely(gen && kernfs_gen(kn) != gen)) 719 goto err_unlock; 720 } 721 722 /* 723 * We should fail if @kn has never been activated and guarantee success 724 * if the caller knows that @kn is active. Both can be achieved by 725 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 726 */ 727 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 728 goto err_unlock; 729 730 spin_unlock(&kernfs_idr_lock); 731 return kn; 732 err_unlock: 733 spin_unlock(&kernfs_idr_lock); 734 return NULL; 735 } 736 737 /** 738 * kernfs_add_one - add kernfs_node to parent without warning 739 * @kn: kernfs_node to be added 740 * 741 * The caller must already have initialized @kn->parent. This 742 * function increments nlink of the parent's inode if @kn is a 743 * directory and link into the children list of the parent. 744 * 745 * Return: 746 * %0 on success, -EEXIST if entry with the given name already 747 * exists. 748 */ 749 int kernfs_add_one(struct kernfs_node *kn) 750 { 751 struct kernfs_node *parent = kn->parent; 752 struct kernfs_root *root = kernfs_root(parent); 753 struct kernfs_iattrs *ps_iattr; 754 bool has_ns; 755 int ret; 756 757 down_write(&root->kernfs_rwsem); 758 759 ret = -EINVAL; 760 has_ns = kernfs_ns_enabled(parent); 761 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 762 has_ns ? "required" : "invalid", parent->name, kn->name)) 763 goto out_unlock; 764 765 if (kernfs_type(parent) != KERNFS_DIR) 766 goto out_unlock; 767 768 ret = -ENOENT; 769 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 770 goto out_unlock; 771 772 kn->hash = kernfs_name_hash(kn->name, kn->ns); 773 774 ret = kernfs_link_sibling(kn); 775 if (ret) 776 goto out_unlock; 777 778 /* Update timestamps on the parent */ 779 down_write(&root->kernfs_iattr_rwsem); 780 781 ps_iattr = parent->iattr; 782 if (ps_iattr) { 783 ktime_get_real_ts64(&ps_iattr->ia_ctime); 784 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 785 } 786 787 up_write(&root->kernfs_iattr_rwsem); 788 up_write(&root->kernfs_rwsem); 789 790 /* 791 * Activate the new node unless CREATE_DEACTIVATED is requested. 792 * If not activated here, the kernfs user is responsible for 793 * activating the node with kernfs_activate(). A node which hasn't 794 * been activated is not visible to userland and its removal won't 795 * trigger deactivation. 796 */ 797 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 798 kernfs_activate(kn); 799 return 0; 800 801 out_unlock: 802 up_write(&root->kernfs_rwsem); 803 return ret; 804 } 805 806 /** 807 * kernfs_find_ns - find kernfs_node with the given name 808 * @parent: kernfs_node to search under 809 * @name: name to look for 810 * @ns: the namespace tag to use 811 * 812 * Look for kernfs_node with name @name under @parent. 813 * 814 * Return: pointer to the found kernfs_node on success, %NULL on failure. 815 */ 816 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 817 const unsigned char *name, 818 const void *ns) 819 { 820 struct rb_node *node = parent->dir.children.rb_node; 821 bool has_ns = kernfs_ns_enabled(parent); 822 unsigned int hash; 823 824 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 825 826 if (has_ns != (bool)ns) { 827 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 828 has_ns ? "required" : "invalid", parent->name, name); 829 return NULL; 830 } 831 832 hash = kernfs_name_hash(name, ns); 833 while (node) { 834 struct kernfs_node *kn; 835 int result; 836 837 kn = rb_to_kn(node); 838 result = kernfs_name_compare(hash, name, ns, kn); 839 if (result < 0) 840 node = node->rb_left; 841 else if (result > 0) 842 node = node->rb_right; 843 else 844 return kn; 845 } 846 return NULL; 847 } 848 849 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 850 const unsigned char *path, 851 const void *ns) 852 { 853 size_t len; 854 char *p, *name; 855 856 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 857 858 spin_lock_irq(&kernfs_pr_cont_lock); 859 860 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 861 862 if (len >= sizeof(kernfs_pr_cont_buf)) { 863 spin_unlock_irq(&kernfs_pr_cont_lock); 864 return NULL; 865 } 866 867 p = kernfs_pr_cont_buf; 868 869 while ((name = strsep(&p, "/")) && parent) { 870 if (*name == '\0') 871 continue; 872 parent = kernfs_find_ns(parent, name, ns); 873 } 874 875 spin_unlock_irq(&kernfs_pr_cont_lock); 876 877 return parent; 878 } 879 880 /** 881 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 882 * @parent: kernfs_node to search under 883 * @name: name to look for 884 * @ns: the namespace tag to use 885 * 886 * Look for kernfs_node with name @name under @parent and get a reference 887 * if found. This function may sleep. 888 * 889 * Return: pointer to the found kernfs_node on success, %NULL on failure. 890 */ 891 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 892 const char *name, const void *ns) 893 { 894 struct kernfs_node *kn; 895 struct kernfs_root *root = kernfs_root(parent); 896 897 down_read(&root->kernfs_rwsem); 898 kn = kernfs_find_ns(parent, name, ns); 899 kernfs_get(kn); 900 up_read(&root->kernfs_rwsem); 901 902 return kn; 903 } 904 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 905 906 /** 907 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 908 * @parent: kernfs_node to search under 909 * @path: path to look for 910 * @ns: the namespace tag to use 911 * 912 * Look for kernfs_node with path @path under @parent and get a reference 913 * if found. This function may sleep. 914 * 915 * Return: pointer to the found kernfs_node on success, %NULL on failure. 916 */ 917 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 918 const char *path, const void *ns) 919 { 920 struct kernfs_node *kn; 921 struct kernfs_root *root = kernfs_root(parent); 922 923 down_read(&root->kernfs_rwsem); 924 kn = kernfs_walk_ns(parent, path, ns); 925 kernfs_get(kn); 926 up_read(&root->kernfs_rwsem); 927 928 return kn; 929 } 930 931 /** 932 * kernfs_create_root - create a new kernfs hierarchy 933 * @scops: optional syscall operations for the hierarchy 934 * @flags: KERNFS_ROOT_* flags 935 * @priv: opaque data associated with the new directory 936 * 937 * Return: the root of the new hierarchy on success, ERR_PTR() value on 938 * failure. 939 */ 940 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 941 unsigned int flags, void *priv) 942 { 943 struct kernfs_root *root; 944 struct kernfs_node *kn; 945 946 root = kzalloc(sizeof(*root), GFP_KERNEL); 947 if (!root) 948 return ERR_PTR(-ENOMEM); 949 950 idr_init(&root->ino_idr); 951 init_rwsem(&root->kernfs_rwsem); 952 init_rwsem(&root->kernfs_iattr_rwsem); 953 init_rwsem(&root->kernfs_supers_rwsem); 954 INIT_LIST_HEAD(&root->supers); 955 956 /* 957 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 958 * High bits generation. The starting value for both ino and 959 * genenration is 1. Initialize upper 32bit allocation 960 * accordingly. 961 */ 962 if (sizeof(ino_t) >= sizeof(u64)) 963 root->id_highbits = 0; 964 else 965 root->id_highbits = 1; 966 967 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 968 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 969 KERNFS_DIR); 970 if (!kn) { 971 idr_destroy(&root->ino_idr); 972 kfree(root); 973 return ERR_PTR(-ENOMEM); 974 } 975 976 kn->priv = priv; 977 kn->dir.root = root; 978 979 root->syscall_ops = scops; 980 root->flags = flags; 981 root->kn = kn; 982 init_waitqueue_head(&root->deactivate_waitq); 983 984 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 985 kernfs_activate(kn); 986 987 return root; 988 } 989 990 /** 991 * kernfs_destroy_root - destroy a kernfs hierarchy 992 * @root: root of the hierarchy to destroy 993 * 994 * Destroy the hierarchy anchored at @root by removing all existing 995 * directories and destroying @root. 996 */ 997 void kernfs_destroy_root(struct kernfs_root *root) 998 { 999 /* 1000 * kernfs_remove holds kernfs_rwsem from the root so the root 1001 * shouldn't be freed during the operation. 1002 */ 1003 kernfs_get(root->kn); 1004 kernfs_remove(root->kn); 1005 kernfs_put(root->kn); /* will also free @root */ 1006 } 1007 1008 /** 1009 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1010 * @root: root to use to lookup 1011 * 1012 * Return: @root's kernfs_node 1013 */ 1014 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1015 { 1016 return root->kn; 1017 } 1018 1019 /** 1020 * kernfs_create_dir_ns - create a directory 1021 * @parent: parent in which to create a new directory 1022 * @name: name of the new directory 1023 * @mode: mode of the new directory 1024 * @uid: uid of the new directory 1025 * @gid: gid of the new directory 1026 * @priv: opaque data associated with the new directory 1027 * @ns: optional namespace tag of the directory 1028 * 1029 * Return: the created node on success, ERR_PTR() value on failure. 1030 */ 1031 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1032 const char *name, umode_t mode, 1033 kuid_t uid, kgid_t gid, 1034 void *priv, const void *ns) 1035 { 1036 struct kernfs_node *kn; 1037 int rc; 1038 1039 /* allocate */ 1040 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1041 uid, gid, KERNFS_DIR); 1042 if (!kn) 1043 return ERR_PTR(-ENOMEM); 1044 1045 kn->dir.root = parent->dir.root; 1046 kn->ns = ns; 1047 kn->priv = priv; 1048 1049 /* link in */ 1050 rc = kernfs_add_one(kn); 1051 if (!rc) 1052 return kn; 1053 1054 kernfs_put(kn); 1055 return ERR_PTR(rc); 1056 } 1057 1058 /** 1059 * kernfs_create_empty_dir - create an always empty directory 1060 * @parent: parent in which to create a new directory 1061 * @name: name of the new directory 1062 * 1063 * Return: the created node on success, ERR_PTR() value on failure. 1064 */ 1065 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1066 const char *name) 1067 { 1068 struct kernfs_node *kn; 1069 int rc; 1070 1071 /* allocate */ 1072 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1073 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1074 if (!kn) 1075 return ERR_PTR(-ENOMEM); 1076 1077 kn->flags |= KERNFS_EMPTY_DIR; 1078 kn->dir.root = parent->dir.root; 1079 kn->ns = NULL; 1080 kn->priv = NULL; 1081 1082 /* link in */ 1083 rc = kernfs_add_one(kn); 1084 if (!rc) 1085 return kn; 1086 1087 kernfs_put(kn); 1088 return ERR_PTR(rc); 1089 } 1090 1091 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1092 { 1093 struct kernfs_node *kn; 1094 struct kernfs_root *root; 1095 1096 if (flags & LOOKUP_RCU) 1097 return -ECHILD; 1098 1099 /* Negative hashed dentry? */ 1100 if (d_really_is_negative(dentry)) { 1101 struct kernfs_node *parent; 1102 1103 /* If the kernfs parent node has changed discard and 1104 * proceed to ->lookup. 1105 * 1106 * There's nothing special needed here when getting the 1107 * dentry parent, even if a concurrent rename is in 1108 * progress. That's because the dentry is negative so 1109 * it can only be the target of the rename and it will 1110 * be doing a d_move() not a replace. Consequently the 1111 * dentry d_parent won't change over the d_move(). 1112 * 1113 * Also kernfs negative dentries transitioning from 1114 * negative to positive during revalidate won't happen 1115 * because they are invalidated on containing directory 1116 * changes and the lookup re-done so that a new positive 1117 * dentry can be properly created. 1118 */ 1119 root = kernfs_root_from_sb(dentry->d_sb); 1120 down_read(&root->kernfs_rwsem); 1121 parent = kernfs_dentry_node(dentry->d_parent); 1122 if (parent) { 1123 if (kernfs_dir_changed(parent, dentry)) { 1124 up_read(&root->kernfs_rwsem); 1125 return 0; 1126 } 1127 } 1128 up_read(&root->kernfs_rwsem); 1129 1130 /* The kernfs parent node hasn't changed, leave the 1131 * dentry negative and return success. 1132 */ 1133 return 1; 1134 } 1135 1136 kn = kernfs_dentry_node(dentry); 1137 root = kernfs_root(kn); 1138 down_read(&root->kernfs_rwsem); 1139 1140 /* The kernfs node has been deactivated */ 1141 if (!kernfs_active(kn)) 1142 goto out_bad; 1143 1144 /* The kernfs node has been moved? */ 1145 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1146 goto out_bad; 1147 1148 /* The kernfs node has been renamed */ 1149 if (strcmp(dentry->d_name.name, kn->name) != 0) 1150 goto out_bad; 1151 1152 /* The kernfs node has been moved to a different namespace */ 1153 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1154 kernfs_info(dentry->d_sb)->ns != kn->ns) 1155 goto out_bad; 1156 1157 up_read(&root->kernfs_rwsem); 1158 return 1; 1159 out_bad: 1160 up_read(&root->kernfs_rwsem); 1161 return 0; 1162 } 1163 1164 const struct dentry_operations kernfs_dops = { 1165 .d_revalidate = kernfs_dop_revalidate, 1166 }; 1167 1168 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1169 struct dentry *dentry, 1170 unsigned int flags) 1171 { 1172 struct kernfs_node *parent = dir->i_private; 1173 struct kernfs_node *kn; 1174 struct kernfs_root *root; 1175 struct inode *inode = NULL; 1176 const void *ns = NULL; 1177 1178 root = kernfs_root(parent); 1179 down_read(&root->kernfs_rwsem); 1180 if (kernfs_ns_enabled(parent)) 1181 ns = kernfs_info(dir->i_sb)->ns; 1182 1183 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1184 /* attach dentry and inode */ 1185 if (kn) { 1186 /* Inactive nodes are invisible to the VFS so don't 1187 * create a negative. 1188 */ 1189 if (!kernfs_active(kn)) { 1190 up_read(&root->kernfs_rwsem); 1191 return NULL; 1192 } 1193 inode = kernfs_get_inode(dir->i_sb, kn); 1194 if (!inode) 1195 inode = ERR_PTR(-ENOMEM); 1196 } 1197 /* 1198 * Needed for negative dentry validation. 1199 * The negative dentry can be created in kernfs_iop_lookup() 1200 * or transforms from positive dentry in dentry_unlink_inode() 1201 * called from vfs_rmdir(). 1202 */ 1203 if (!IS_ERR(inode)) 1204 kernfs_set_rev(parent, dentry); 1205 up_read(&root->kernfs_rwsem); 1206 1207 /* instantiate and hash (possibly negative) dentry */ 1208 return d_splice_alias(inode, dentry); 1209 } 1210 1211 static int kernfs_iop_mkdir(struct mnt_idmap *idmap, 1212 struct inode *dir, struct dentry *dentry, 1213 umode_t mode) 1214 { 1215 struct kernfs_node *parent = dir->i_private; 1216 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1217 int ret; 1218 1219 if (!scops || !scops->mkdir) 1220 return -EPERM; 1221 1222 if (!kernfs_get_active(parent)) 1223 return -ENODEV; 1224 1225 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1226 1227 kernfs_put_active(parent); 1228 return ret; 1229 } 1230 1231 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1232 { 1233 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1234 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1235 int ret; 1236 1237 if (!scops || !scops->rmdir) 1238 return -EPERM; 1239 1240 if (!kernfs_get_active(kn)) 1241 return -ENODEV; 1242 1243 ret = scops->rmdir(kn); 1244 1245 kernfs_put_active(kn); 1246 return ret; 1247 } 1248 1249 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1250 struct inode *old_dir, struct dentry *old_dentry, 1251 struct inode *new_dir, struct dentry *new_dentry, 1252 unsigned int flags) 1253 { 1254 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1255 struct kernfs_node *new_parent = new_dir->i_private; 1256 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1257 int ret; 1258 1259 if (flags) 1260 return -EINVAL; 1261 1262 if (!scops || !scops->rename) 1263 return -EPERM; 1264 1265 if (!kernfs_get_active(kn)) 1266 return -ENODEV; 1267 1268 if (!kernfs_get_active(new_parent)) { 1269 kernfs_put_active(kn); 1270 return -ENODEV; 1271 } 1272 1273 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1274 1275 kernfs_put_active(new_parent); 1276 kernfs_put_active(kn); 1277 return ret; 1278 } 1279 1280 const struct inode_operations kernfs_dir_iops = { 1281 .lookup = kernfs_iop_lookup, 1282 .permission = kernfs_iop_permission, 1283 .setattr = kernfs_iop_setattr, 1284 .getattr = kernfs_iop_getattr, 1285 .listxattr = kernfs_iop_listxattr, 1286 1287 .mkdir = kernfs_iop_mkdir, 1288 .rmdir = kernfs_iop_rmdir, 1289 .rename = kernfs_iop_rename, 1290 }; 1291 1292 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1293 { 1294 struct kernfs_node *last; 1295 1296 while (true) { 1297 struct rb_node *rbn; 1298 1299 last = pos; 1300 1301 if (kernfs_type(pos) != KERNFS_DIR) 1302 break; 1303 1304 rbn = rb_first(&pos->dir.children); 1305 if (!rbn) 1306 break; 1307 1308 pos = rb_to_kn(rbn); 1309 } 1310 1311 return last; 1312 } 1313 1314 /** 1315 * kernfs_next_descendant_post - find the next descendant for post-order walk 1316 * @pos: the current position (%NULL to initiate traversal) 1317 * @root: kernfs_node whose descendants to walk 1318 * 1319 * Find the next descendant to visit for post-order traversal of @root's 1320 * descendants. @root is included in the iteration and the last node to be 1321 * visited. 1322 * 1323 * Return: the next descendant to visit or %NULL when done. 1324 */ 1325 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1326 struct kernfs_node *root) 1327 { 1328 struct rb_node *rbn; 1329 1330 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1331 1332 /* if first iteration, visit leftmost descendant which may be root */ 1333 if (!pos) 1334 return kernfs_leftmost_descendant(root); 1335 1336 /* if we visited @root, we're done */ 1337 if (pos == root) 1338 return NULL; 1339 1340 /* if there's an unvisited sibling, visit its leftmost descendant */ 1341 rbn = rb_next(&pos->rb); 1342 if (rbn) 1343 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1344 1345 /* no sibling left, visit parent */ 1346 return pos->parent; 1347 } 1348 1349 static void kernfs_activate_one(struct kernfs_node *kn) 1350 { 1351 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1352 1353 kn->flags |= KERNFS_ACTIVATED; 1354 1355 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1356 return; 1357 1358 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1359 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1360 1361 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1362 } 1363 1364 /** 1365 * kernfs_activate - activate a node which started deactivated 1366 * @kn: kernfs_node whose subtree is to be activated 1367 * 1368 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1369 * needs to be explicitly activated. A node which hasn't been activated 1370 * isn't visible to userland and deactivation is skipped during its 1371 * removal. This is useful to construct atomic init sequences where 1372 * creation of multiple nodes should either succeed or fail atomically. 1373 * 1374 * The caller is responsible for ensuring that this function is not called 1375 * after kernfs_remove*() is invoked on @kn. 1376 */ 1377 void kernfs_activate(struct kernfs_node *kn) 1378 { 1379 struct kernfs_node *pos; 1380 struct kernfs_root *root = kernfs_root(kn); 1381 1382 down_write(&root->kernfs_rwsem); 1383 1384 pos = NULL; 1385 while ((pos = kernfs_next_descendant_post(pos, kn))) 1386 kernfs_activate_one(pos); 1387 1388 up_write(&root->kernfs_rwsem); 1389 } 1390 1391 /** 1392 * kernfs_show - show or hide a node 1393 * @kn: kernfs_node to show or hide 1394 * @show: whether to show or hide 1395 * 1396 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1397 * ignored in future activaitons. If %true, the mark is removed and activation 1398 * state is restored. This function won't implicitly activate a new node in a 1399 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1400 * 1401 * To avoid recursion complexities, directories aren't supported for now. 1402 */ 1403 void kernfs_show(struct kernfs_node *kn, bool show) 1404 { 1405 struct kernfs_root *root = kernfs_root(kn); 1406 1407 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1408 return; 1409 1410 down_write(&root->kernfs_rwsem); 1411 1412 if (show) { 1413 kn->flags &= ~KERNFS_HIDDEN; 1414 if (kn->flags & KERNFS_ACTIVATED) 1415 kernfs_activate_one(kn); 1416 } else { 1417 kn->flags |= KERNFS_HIDDEN; 1418 if (kernfs_active(kn)) 1419 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1420 kernfs_drain(kn); 1421 } 1422 1423 up_write(&root->kernfs_rwsem); 1424 } 1425 1426 static void __kernfs_remove(struct kernfs_node *kn) 1427 { 1428 struct kernfs_node *pos; 1429 1430 /* Short-circuit if non-root @kn has already finished removal. */ 1431 if (!kn) 1432 return; 1433 1434 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1435 1436 /* 1437 * This is for kernfs_remove_self() which plays with active ref 1438 * after removal. 1439 */ 1440 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1441 return; 1442 1443 pr_debug("kernfs %s: removing\n", kn->name); 1444 1445 /* prevent new usage by marking all nodes removing and deactivating */ 1446 pos = NULL; 1447 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1448 pos->flags |= KERNFS_REMOVING; 1449 if (kernfs_active(pos)) 1450 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1451 } 1452 1453 /* deactivate and unlink the subtree node-by-node */ 1454 do { 1455 pos = kernfs_leftmost_descendant(kn); 1456 1457 /* 1458 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1459 * base ref could have been put by someone else by the time 1460 * the function returns. Make sure it doesn't go away 1461 * underneath us. 1462 */ 1463 kernfs_get(pos); 1464 1465 kernfs_drain(pos); 1466 1467 /* 1468 * kernfs_unlink_sibling() succeeds once per node. Use it 1469 * to decide who's responsible for cleanups. 1470 */ 1471 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1472 struct kernfs_iattrs *ps_iattr = 1473 pos->parent ? pos->parent->iattr : NULL; 1474 1475 /* update timestamps on the parent */ 1476 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1477 1478 if (ps_iattr) { 1479 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1480 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1481 } 1482 1483 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1484 kernfs_put(pos); 1485 } 1486 1487 kernfs_put(pos); 1488 } while (pos != kn); 1489 } 1490 1491 /** 1492 * kernfs_remove - remove a kernfs_node recursively 1493 * @kn: the kernfs_node to remove 1494 * 1495 * Remove @kn along with all its subdirectories and files. 1496 */ 1497 void kernfs_remove(struct kernfs_node *kn) 1498 { 1499 struct kernfs_root *root; 1500 1501 if (!kn) 1502 return; 1503 1504 root = kernfs_root(kn); 1505 1506 down_write(&root->kernfs_rwsem); 1507 __kernfs_remove(kn); 1508 up_write(&root->kernfs_rwsem); 1509 } 1510 1511 /** 1512 * kernfs_break_active_protection - break out of active protection 1513 * @kn: the self kernfs_node 1514 * 1515 * The caller must be running off of a kernfs operation which is invoked 1516 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1517 * this function must also be matched with an invocation of 1518 * kernfs_unbreak_active_protection(). 1519 * 1520 * This function releases the active reference of @kn the caller is 1521 * holding. Once this function is called, @kn may be removed at any point 1522 * and the caller is solely responsible for ensuring that the objects it 1523 * dereferences are accessible. 1524 */ 1525 void kernfs_break_active_protection(struct kernfs_node *kn) 1526 { 1527 /* 1528 * Take out ourself out of the active ref dependency chain. If 1529 * we're called without an active ref, lockdep will complain. 1530 */ 1531 kernfs_put_active(kn); 1532 } 1533 1534 /** 1535 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1536 * @kn: the self kernfs_node 1537 * 1538 * If kernfs_break_active_protection() was called, this function must be 1539 * invoked before finishing the kernfs operation. Note that while this 1540 * function restores the active reference, it doesn't and can't actually 1541 * restore the active protection - @kn may already or be in the process of 1542 * being removed. Once kernfs_break_active_protection() is invoked, that 1543 * protection is irreversibly gone for the kernfs operation instance. 1544 * 1545 * While this function may be called at any point after 1546 * kernfs_break_active_protection() is invoked, its most useful location 1547 * would be right before the enclosing kernfs operation returns. 1548 */ 1549 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1550 { 1551 /* 1552 * @kn->active could be in any state; however, the increment we do 1553 * here will be undone as soon as the enclosing kernfs operation 1554 * finishes and this temporary bump can't break anything. If @kn 1555 * is alive, nothing changes. If @kn is being deactivated, the 1556 * soon-to-follow put will either finish deactivation or restore 1557 * deactivated state. If @kn is already removed, the temporary 1558 * bump is guaranteed to be gone before @kn is released. 1559 */ 1560 atomic_inc(&kn->active); 1561 if (kernfs_lockdep(kn)) 1562 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1563 } 1564 1565 /** 1566 * kernfs_remove_self - remove a kernfs_node from its own method 1567 * @kn: the self kernfs_node to remove 1568 * 1569 * The caller must be running off of a kernfs operation which is invoked 1570 * with an active reference - e.g. one of kernfs_ops. This can be used to 1571 * implement a file operation which deletes itself. 1572 * 1573 * For example, the "delete" file for a sysfs device directory can be 1574 * implemented by invoking kernfs_remove_self() on the "delete" file 1575 * itself. This function breaks the circular dependency of trying to 1576 * deactivate self while holding an active ref itself. It isn't necessary 1577 * to modify the usual removal path to use kernfs_remove_self(). The 1578 * "delete" implementation can simply invoke kernfs_remove_self() on self 1579 * before proceeding with the usual removal path. kernfs will ignore later 1580 * kernfs_remove() on self. 1581 * 1582 * kernfs_remove_self() can be called multiple times concurrently on the 1583 * same kernfs_node. Only the first one actually performs removal and 1584 * returns %true. All others will wait until the kernfs operation which 1585 * won self-removal finishes and return %false. Note that the losers wait 1586 * for the completion of not only the winning kernfs_remove_self() but also 1587 * the whole kernfs_ops which won the arbitration. This can be used to 1588 * guarantee, for example, all concurrent writes to a "delete" file to 1589 * finish only after the whole operation is complete. 1590 * 1591 * Return: %true if @kn is removed by this call, otherwise %false. 1592 */ 1593 bool kernfs_remove_self(struct kernfs_node *kn) 1594 { 1595 bool ret; 1596 struct kernfs_root *root = kernfs_root(kn); 1597 1598 down_write(&root->kernfs_rwsem); 1599 kernfs_break_active_protection(kn); 1600 1601 /* 1602 * SUICIDAL is used to arbitrate among competing invocations. Only 1603 * the first one will actually perform removal. When the removal 1604 * is complete, SUICIDED is set and the active ref is restored 1605 * while kernfs_rwsem for held exclusive. The ones which lost 1606 * arbitration waits for SUICIDED && drained which can happen only 1607 * after the enclosing kernfs operation which executed the winning 1608 * instance of kernfs_remove_self() finished. 1609 */ 1610 if (!(kn->flags & KERNFS_SUICIDAL)) { 1611 kn->flags |= KERNFS_SUICIDAL; 1612 __kernfs_remove(kn); 1613 kn->flags |= KERNFS_SUICIDED; 1614 ret = true; 1615 } else { 1616 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1617 DEFINE_WAIT(wait); 1618 1619 while (true) { 1620 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1621 1622 if ((kn->flags & KERNFS_SUICIDED) && 1623 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1624 break; 1625 1626 up_write(&root->kernfs_rwsem); 1627 schedule(); 1628 down_write(&root->kernfs_rwsem); 1629 } 1630 finish_wait(waitq, &wait); 1631 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1632 ret = false; 1633 } 1634 1635 /* 1636 * This must be done while kernfs_rwsem held exclusive; otherwise, 1637 * waiting for SUICIDED && deactivated could finish prematurely. 1638 */ 1639 kernfs_unbreak_active_protection(kn); 1640 1641 up_write(&root->kernfs_rwsem); 1642 return ret; 1643 } 1644 1645 /** 1646 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1647 * @parent: parent of the target 1648 * @name: name of the kernfs_node to remove 1649 * @ns: namespace tag of the kernfs_node to remove 1650 * 1651 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1652 * 1653 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1654 */ 1655 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1656 const void *ns) 1657 { 1658 struct kernfs_node *kn; 1659 struct kernfs_root *root; 1660 1661 if (!parent) { 1662 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1663 name); 1664 return -ENOENT; 1665 } 1666 1667 root = kernfs_root(parent); 1668 down_write(&root->kernfs_rwsem); 1669 1670 kn = kernfs_find_ns(parent, name, ns); 1671 if (kn) { 1672 kernfs_get(kn); 1673 __kernfs_remove(kn); 1674 kernfs_put(kn); 1675 } 1676 1677 up_write(&root->kernfs_rwsem); 1678 1679 if (kn) 1680 return 0; 1681 else 1682 return -ENOENT; 1683 } 1684 1685 /** 1686 * kernfs_rename_ns - move and rename a kernfs_node 1687 * @kn: target node 1688 * @new_parent: new parent to put @sd under 1689 * @new_name: new name 1690 * @new_ns: new namespace tag 1691 * 1692 * Return: %0 on success, -errno on failure. 1693 */ 1694 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1695 const char *new_name, const void *new_ns) 1696 { 1697 struct kernfs_node *old_parent; 1698 struct kernfs_root *root; 1699 const char *old_name = NULL; 1700 int error; 1701 1702 /* can't move or rename root */ 1703 if (!kn->parent) 1704 return -EINVAL; 1705 1706 root = kernfs_root(kn); 1707 down_write(&root->kernfs_rwsem); 1708 1709 error = -ENOENT; 1710 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1711 (new_parent->flags & KERNFS_EMPTY_DIR)) 1712 goto out; 1713 1714 error = 0; 1715 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1716 (strcmp(kn->name, new_name) == 0)) 1717 goto out; /* nothing to rename */ 1718 1719 error = -EEXIST; 1720 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1721 goto out; 1722 1723 /* rename kernfs_node */ 1724 if (strcmp(kn->name, new_name) != 0) { 1725 error = -ENOMEM; 1726 new_name = kstrdup_const(new_name, GFP_KERNEL); 1727 if (!new_name) 1728 goto out; 1729 } else { 1730 new_name = NULL; 1731 } 1732 1733 /* 1734 * Move to the appropriate place in the appropriate directories rbtree. 1735 */ 1736 kernfs_unlink_sibling(kn); 1737 kernfs_get(new_parent); 1738 1739 /* rename_lock protects ->parent and ->name accessors */ 1740 write_lock_irq(&kernfs_rename_lock); 1741 1742 old_parent = kn->parent; 1743 kn->parent = new_parent; 1744 1745 kn->ns = new_ns; 1746 if (new_name) { 1747 old_name = kn->name; 1748 kn->name = new_name; 1749 } 1750 1751 write_unlock_irq(&kernfs_rename_lock); 1752 1753 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1754 kernfs_link_sibling(kn); 1755 1756 kernfs_put(old_parent); 1757 kfree_const(old_name); 1758 1759 error = 0; 1760 out: 1761 up_write(&root->kernfs_rwsem); 1762 return error; 1763 } 1764 1765 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1766 { 1767 kernfs_put(filp->private_data); 1768 return 0; 1769 } 1770 1771 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1772 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1773 { 1774 if (pos) { 1775 int valid = kernfs_active(pos) && 1776 pos->parent == parent && hash == pos->hash; 1777 kernfs_put(pos); 1778 if (!valid) 1779 pos = NULL; 1780 } 1781 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1782 struct rb_node *node = parent->dir.children.rb_node; 1783 while (node) { 1784 pos = rb_to_kn(node); 1785 1786 if (hash < pos->hash) 1787 node = node->rb_left; 1788 else if (hash > pos->hash) 1789 node = node->rb_right; 1790 else 1791 break; 1792 } 1793 } 1794 /* Skip over entries which are dying/dead or in the wrong namespace */ 1795 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1796 struct rb_node *node = rb_next(&pos->rb); 1797 if (!node) 1798 pos = NULL; 1799 else 1800 pos = rb_to_kn(node); 1801 } 1802 return pos; 1803 } 1804 1805 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1806 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1807 { 1808 pos = kernfs_dir_pos(ns, parent, ino, pos); 1809 if (pos) { 1810 do { 1811 struct rb_node *node = rb_next(&pos->rb); 1812 if (!node) 1813 pos = NULL; 1814 else 1815 pos = rb_to_kn(node); 1816 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1817 } 1818 return pos; 1819 } 1820 1821 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1822 { 1823 struct dentry *dentry = file->f_path.dentry; 1824 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1825 struct kernfs_node *pos = file->private_data; 1826 struct kernfs_root *root; 1827 const void *ns = NULL; 1828 1829 if (!dir_emit_dots(file, ctx)) 1830 return 0; 1831 1832 root = kernfs_root(parent); 1833 down_read(&root->kernfs_rwsem); 1834 1835 if (kernfs_ns_enabled(parent)) 1836 ns = kernfs_info(dentry->d_sb)->ns; 1837 1838 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1839 pos; 1840 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1841 const char *name = pos->name; 1842 unsigned int type = fs_umode_to_dtype(pos->mode); 1843 int len = strlen(name); 1844 ino_t ino = kernfs_ino(pos); 1845 1846 ctx->pos = pos->hash; 1847 file->private_data = pos; 1848 kernfs_get(pos); 1849 1850 up_read(&root->kernfs_rwsem); 1851 if (!dir_emit(ctx, name, len, ino, type)) 1852 return 0; 1853 down_read(&root->kernfs_rwsem); 1854 } 1855 up_read(&root->kernfs_rwsem); 1856 file->private_data = NULL; 1857 ctx->pos = INT_MAX; 1858 return 0; 1859 } 1860 1861 const struct file_operations kernfs_dir_fops = { 1862 .read = generic_read_dir, 1863 .iterate_shared = kernfs_fop_readdir, 1864 .release = kernfs_dir_fop_release, 1865 .llseek = generic_file_llseek, 1866 }; 1867