1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strlcpy(buf, "(null)", buflen); 58 59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the full path. If the full length is equal to or 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 int i, j; 142 143 if (!kn_to) 144 return strlcpy(buf, "(null)", buflen); 145 146 if (!kn_from) 147 kn_from = kernfs_root(kn_to)->kn; 148 149 if (kn_from == kn_to) 150 return strlcpy(buf, "/", buflen); 151 152 common = kernfs_common_ancestor(kn_from, kn_to); 153 if (WARN_ON(!common)) 154 return -EINVAL; 155 156 depth_to = kernfs_depth(common, kn_to); 157 depth_from = kernfs_depth(common, kn_from); 158 159 buf[0] = '\0'; 160 161 for (i = 0; i < depth_from; i++) 162 len += strlcpy(buf + len, parent_str, 163 len < buflen ? buflen - len : 0); 164 165 /* Calculate how many bytes we need for the rest */ 166 for (i = depth_to - 1; i >= 0; i--) { 167 for (kn = kn_to, j = 0; j < i; j++) 168 kn = kn->parent; 169 len += strlcpy(buf + len, "/", 170 len < buflen ? buflen - len : 0); 171 len += strlcpy(buf + len, kn->name, 172 len < buflen ? buflen - len : 0); 173 } 174 175 return len; 176 } 177 178 /** 179 * kernfs_name - obtain the name of a given node 180 * @kn: kernfs_node of interest 181 * @buf: buffer to copy @kn's name into 182 * @buflen: size of @buf 183 * 184 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 185 * similar to strlcpy(). 186 * 187 * Fills buffer with "(null)" if @kn is %NULL. 188 * 189 * Return: the length of @kn's name and if @buf isn't long enough, 190 * it's filled up to @buflen-1 and nul terminated. 191 * 192 * This function can be called from any context. 193 */ 194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 195 { 196 unsigned long flags; 197 int ret; 198 199 read_lock_irqsave(&kernfs_rename_lock, flags); 200 ret = kernfs_name_locked(kn, buf, buflen); 201 read_unlock_irqrestore(&kernfs_rename_lock, flags); 202 return ret; 203 } 204 205 /** 206 * kernfs_path_from_node - build path of node @to relative to @from. 207 * @from: parent kernfs_node relative to which we need to build the path 208 * @to: kernfs_node of interest 209 * @buf: buffer to copy @to's path into 210 * @buflen: size of @buf 211 * 212 * Builds @to's path relative to @from in @buf. @from and @to must 213 * be on the same kernfs-root. If @from is not parent of @to, then a relative 214 * path (which includes '..'s) as needed to reach from @from to @to is 215 * returned. 216 * 217 * Return: the length of the full path. If the full length is equal to or 218 * greater than @buflen, @buf contains the truncated path with the trailing 219 * '\0'. On error, -errno is returned. 220 */ 221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 222 char *buf, size_t buflen) 223 { 224 unsigned long flags; 225 int ret; 226 227 read_lock_irqsave(&kernfs_rename_lock, flags); 228 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 229 read_unlock_irqrestore(&kernfs_rename_lock, flags); 230 return ret; 231 } 232 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 233 234 /** 235 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 236 * @kn: kernfs_node of interest 237 * 238 * This function can be called from any context. 239 */ 240 void pr_cont_kernfs_name(struct kernfs_node *kn) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 245 246 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 247 pr_cont("%s", kernfs_pr_cont_buf); 248 249 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 250 } 251 252 /** 253 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 254 * @kn: kernfs_node of interest 255 * 256 * This function can be called from any context. 257 */ 258 void pr_cont_kernfs_path(struct kernfs_node *kn) 259 { 260 unsigned long flags; 261 int sz; 262 263 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 264 265 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 266 sizeof(kernfs_pr_cont_buf)); 267 if (sz < 0) { 268 pr_cont("(error)"); 269 goto out; 270 } 271 272 if (sz >= sizeof(kernfs_pr_cont_buf)) { 273 pr_cont("(name too long)"); 274 goto out; 275 } 276 277 pr_cont("%s", kernfs_pr_cont_buf); 278 279 out: 280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 281 } 282 283 /** 284 * kernfs_get_parent - determine the parent node and pin it 285 * @kn: kernfs_node of interest 286 * 287 * Determines @kn's parent, pins and returns it. This function can be 288 * called from any context. 289 * 290 * Return: parent node of @kn 291 */ 292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 293 { 294 struct kernfs_node *parent; 295 unsigned long flags; 296 297 read_lock_irqsave(&kernfs_rename_lock, flags); 298 parent = kn->parent; 299 kernfs_get(parent); 300 read_unlock_irqrestore(&kernfs_rename_lock, flags); 301 302 return parent; 303 } 304 305 /** 306 * kernfs_name_hash - calculate hash of @ns + @name 307 * @name: Null terminated string to hash 308 * @ns: Namespace tag to hash 309 * 310 * Return: 31-bit hash of ns + name (so it fits in an off_t) 311 */ 312 static unsigned int kernfs_name_hash(const char *name, const void *ns) 313 { 314 unsigned long hash = init_name_hash(ns); 315 unsigned int len = strlen(name); 316 while (len--) 317 hash = partial_name_hash(*name++, hash); 318 hash = end_name_hash(hash); 319 hash &= 0x7fffffffU; 320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 321 if (hash < 2) 322 hash += 2; 323 if (hash >= INT_MAX) 324 hash = INT_MAX - 1; 325 return hash; 326 } 327 328 static int kernfs_name_compare(unsigned int hash, const char *name, 329 const void *ns, const struct kernfs_node *kn) 330 { 331 if (hash < kn->hash) 332 return -1; 333 if (hash > kn->hash) 334 return 1; 335 if (ns < kn->ns) 336 return -1; 337 if (ns > kn->ns) 338 return 1; 339 return strcmp(name, kn->name); 340 } 341 342 static int kernfs_sd_compare(const struct kernfs_node *left, 343 const struct kernfs_node *right) 344 { 345 return kernfs_name_compare(left->hash, left->name, left->ns, right); 346 } 347 348 /** 349 * kernfs_link_sibling - link kernfs_node into sibling rbtree 350 * @kn: kernfs_node of interest 351 * 352 * Link @kn into its sibling rbtree which starts from 353 * @kn->parent->dir.children. 354 * 355 * Locking: 356 * kernfs_rwsem held exclusive 357 * 358 * Return: 359 * %0 on success, -EEXIST on failure. 360 */ 361 static int kernfs_link_sibling(struct kernfs_node *kn) 362 { 363 struct rb_node **node = &kn->parent->dir.children.rb_node; 364 struct rb_node *parent = NULL; 365 366 while (*node) { 367 struct kernfs_node *pos; 368 int result; 369 370 pos = rb_to_kn(*node); 371 parent = *node; 372 result = kernfs_sd_compare(kn, pos); 373 if (result < 0) 374 node = &pos->rb.rb_left; 375 else if (result > 0) 376 node = &pos->rb.rb_right; 377 else 378 return -EEXIST; 379 } 380 381 /* add new node and rebalance the tree */ 382 rb_link_node(&kn->rb, parent, node); 383 rb_insert_color(&kn->rb, &kn->parent->dir.children); 384 385 /* successfully added, account subdir number */ 386 if (kernfs_type(kn) == KERNFS_DIR) 387 kn->parent->dir.subdirs++; 388 kernfs_inc_rev(kn->parent); 389 390 return 0; 391 } 392 393 /** 394 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 395 * @kn: kernfs_node of interest 396 * 397 * Try to unlink @kn from its sibling rbtree which starts from 398 * kn->parent->dir.children. 399 * 400 * Return: %true if @kn was actually removed, 401 * %false if @kn wasn't on the rbtree. 402 * 403 * Locking: 404 * kernfs_rwsem held exclusive 405 */ 406 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 407 { 408 if (RB_EMPTY_NODE(&kn->rb)) 409 return false; 410 411 if (kernfs_type(kn) == KERNFS_DIR) 412 kn->parent->dir.subdirs--; 413 kernfs_inc_rev(kn->parent); 414 415 rb_erase(&kn->rb, &kn->parent->dir.children); 416 RB_CLEAR_NODE(&kn->rb); 417 return true; 418 } 419 420 /** 421 * kernfs_get_active - get an active reference to kernfs_node 422 * @kn: kernfs_node to get an active reference to 423 * 424 * Get an active reference of @kn. This function is noop if @kn 425 * is %NULL. 426 * 427 * Return: 428 * Pointer to @kn on success, %NULL on failure. 429 */ 430 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 431 { 432 if (unlikely(!kn)) 433 return NULL; 434 435 if (!atomic_inc_unless_negative(&kn->active)) 436 return NULL; 437 438 if (kernfs_lockdep(kn)) 439 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 440 return kn; 441 } 442 443 /** 444 * kernfs_put_active - put an active reference to kernfs_node 445 * @kn: kernfs_node to put an active reference to 446 * 447 * Put an active reference to @kn. This function is noop if @kn 448 * is %NULL. 449 */ 450 void kernfs_put_active(struct kernfs_node *kn) 451 { 452 int v; 453 454 if (unlikely(!kn)) 455 return; 456 457 if (kernfs_lockdep(kn)) 458 rwsem_release(&kn->dep_map, _RET_IP_); 459 v = atomic_dec_return(&kn->active); 460 if (likely(v != KN_DEACTIVATED_BIAS)) 461 return; 462 463 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 464 } 465 466 /** 467 * kernfs_drain - drain kernfs_node 468 * @kn: kernfs_node to drain 469 * 470 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 471 * removers may invoke this function concurrently on @kn and all will 472 * return after draining is complete. 473 */ 474 static void kernfs_drain(struct kernfs_node *kn) 475 __releases(&kernfs_root(kn)->kernfs_rwsem) 476 __acquires(&kernfs_root(kn)->kernfs_rwsem) 477 { 478 struct kernfs_root *root = kernfs_root(kn); 479 480 lockdep_assert_held_write(&root->kernfs_rwsem); 481 WARN_ON_ONCE(kernfs_active(kn)); 482 483 /* 484 * Skip draining if already fully drained. This avoids draining and its 485 * lockdep annotations for nodes which have never been activated 486 * allowing embedding kernfs_remove() in create error paths without 487 * worrying about draining. 488 */ 489 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 490 !kernfs_should_drain_open_files(kn)) 491 return; 492 493 up_write(&root->kernfs_rwsem); 494 495 if (kernfs_lockdep(kn)) { 496 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 497 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 498 lock_contended(&kn->dep_map, _RET_IP_); 499 } 500 501 wait_event(root->deactivate_waitq, 502 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 503 504 if (kernfs_lockdep(kn)) { 505 lock_acquired(&kn->dep_map, _RET_IP_); 506 rwsem_release(&kn->dep_map, _RET_IP_); 507 } 508 509 if (kernfs_should_drain_open_files(kn)) 510 kernfs_drain_open_files(kn); 511 512 down_write(&root->kernfs_rwsem); 513 } 514 515 /** 516 * kernfs_get - get a reference count on a kernfs_node 517 * @kn: the target kernfs_node 518 */ 519 void kernfs_get(struct kernfs_node *kn) 520 { 521 if (kn) { 522 WARN_ON(!atomic_read(&kn->count)); 523 atomic_inc(&kn->count); 524 } 525 } 526 EXPORT_SYMBOL_GPL(kernfs_get); 527 528 /** 529 * kernfs_put - put a reference count on a kernfs_node 530 * @kn: the target kernfs_node 531 * 532 * Put a reference count of @kn and destroy it if it reached zero. 533 */ 534 void kernfs_put(struct kernfs_node *kn) 535 { 536 struct kernfs_node *parent; 537 struct kernfs_root *root; 538 539 if (!kn || !atomic_dec_and_test(&kn->count)) 540 return; 541 root = kernfs_root(kn); 542 repeat: 543 /* 544 * Moving/renaming is always done while holding reference. 545 * kn->parent won't change beneath us. 546 */ 547 parent = kn->parent; 548 549 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 550 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 551 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 552 553 if (kernfs_type(kn) == KERNFS_LINK) 554 kernfs_put(kn->symlink.target_kn); 555 556 kfree_const(kn->name); 557 558 if (kn->iattr) { 559 simple_xattrs_free(&kn->iattr->xattrs); 560 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 561 } 562 spin_lock(&kernfs_idr_lock); 563 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 564 spin_unlock(&kernfs_idr_lock); 565 kmem_cache_free(kernfs_node_cache, kn); 566 567 kn = parent; 568 if (kn) { 569 if (atomic_dec_and_test(&kn->count)) 570 goto repeat; 571 } else { 572 /* just released the root kn, free @root too */ 573 idr_destroy(&root->ino_idr); 574 kfree(root); 575 } 576 } 577 EXPORT_SYMBOL_GPL(kernfs_put); 578 579 /** 580 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 581 * @dentry: the dentry in question 582 * 583 * Return: the kernfs_node associated with @dentry. If @dentry is not a 584 * kernfs one, %NULL is returned. 585 * 586 * While the returned kernfs_node will stay accessible as long as @dentry 587 * is accessible, the returned node can be in any state and the caller is 588 * fully responsible for determining what's accessible. 589 */ 590 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 591 { 592 if (dentry->d_sb->s_op == &kernfs_sops) 593 return kernfs_dentry_node(dentry); 594 return NULL; 595 } 596 597 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 598 struct kernfs_node *parent, 599 const char *name, umode_t mode, 600 kuid_t uid, kgid_t gid, 601 unsigned flags) 602 { 603 struct kernfs_node *kn; 604 u32 id_highbits; 605 int ret; 606 607 name = kstrdup_const(name, GFP_KERNEL); 608 if (!name) 609 return NULL; 610 611 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 612 if (!kn) 613 goto err_out1; 614 615 idr_preload(GFP_KERNEL); 616 spin_lock(&kernfs_idr_lock); 617 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 618 if (ret >= 0 && ret < root->last_id_lowbits) 619 root->id_highbits++; 620 id_highbits = root->id_highbits; 621 root->last_id_lowbits = ret; 622 spin_unlock(&kernfs_idr_lock); 623 idr_preload_end(); 624 if (ret < 0) 625 goto err_out2; 626 627 kn->id = (u64)id_highbits << 32 | ret; 628 629 atomic_set(&kn->count, 1); 630 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 631 RB_CLEAR_NODE(&kn->rb); 632 633 kn->name = name; 634 kn->mode = mode; 635 kn->flags = flags; 636 637 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 638 struct iattr iattr = { 639 .ia_valid = ATTR_UID | ATTR_GID, 640 .ia_uid = uid, 641 .ia_gid = gid, 642 }; 643 644 ret = __kernfs_setattr(kn, &iattr); 645 if (ret < 0) 646 goto err_out3; 647 } 648 649 if (parent) { 650 ret = security_kernfs_init_security(parent, kn); 651 if (ret) 652 goto err_out3; 653 } 654 655 return kn; 656 657 err_out3: 658 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 659 err_out2: 660 kmem_cache_free(kernfs_node_cache, kn); 661 err_out1: 662 kfree_const(name); 663 return NULL; 664 } 665 666 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 667 const char *name, umode_t mode, 668 kuid_t uid, kgid_t gid, 669 unsigned flags) 670 { 671 struct kernfs_node *kn; 672 673 kn = __kernfs_new_node(kernfs_root(parent), parent, 674 name, mode, uid, gid, flags); 675 if (kn) { 676 kernfs_get(parent); 677 kn->parent = parent; 678 } 679 return kn; 680 } 681 682 /* 683 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 684 * @root: the kernfs root 685 * @id: the target node id 686 * 687 * @id's lower 32bits encode ino and upper gen. If the gen portion is 688 * zero, all generations are matched. 689 * 690 * Return: %NULL on failure, 691 * otherwise a kernfs node with reference counter incremented. 692 */ 693 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 694 u64 id) 695 { 696 struct kernfs_node *kn; 697 ino_t ino = kernfs_id_ino(id); 698 u32 gen = kernfs_id_gen(id); 699 700 spin_lock(&kernfs_idr_lock); 701 702 kn = idr_find(&root->ino_idr, (u32)ino); 703 if (!kn) 704 goto err_unlock; 705 706 if (sizeof(ino_t) >= sizeof(u64)) { 707 /* we looked up with the low 32bits, compare the whole */ 708 if (kernfs_ino(kn) != ino) 709 goto err_unlock; 710 } else { 711 /* 0 matches all generations */ 712 if (unlikely(gen && kernfs_gen(kn) != gen)) 713 goto err_unlock; 714 } 715 716 /* 717 * We should fail if @kn has never been activated and guarantee success 718 * if the caller knows that @kn is active. Both can be achieved by 719 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 720 */ 721 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 722 goto err_unlock; 723 724 spin_unlock(&kernfs_idr_lock); 725 return kn; 726 err_unlock: 727 spin_unlock(&kernfs_idr_lock); 728 return NULL; 729 } 730 731 /** 732 * kernfs_add_one - add kernfs_node to parent without warning 733 * @kn: kernfs_node to be added 734 * 735 * The caller must already have initialized @kn->parent. This 736 * function increments nlink of the parent's inode if @kn is a 737 * directory and link into the children list of the parent. 738 * 739 * Return: 740 * %0 on success, -EEXIST if entry with the given name already 741 * exists. 742 */ 743 int kernfs_add_one(struct kernfs_node *kn) 744 { 745 struct kernfs_node *parent = kn->parent; 746 struct kernfs_root *root = kernfs_root(parent); 747 struct kernfs_iattrs *ps_iattr; 748 bool has_ns; 749 int ret; 750 751 down_write(&root->kernfs_rwsem); 752 753 ret = -EINVAL; 754 has_ns = kernfs_ns_enabled(parent); 755 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 756 has_ns ? "required" : "invalid", parent->name, kn->name)) 757 goto out_unlock; 758 759 if (kernfs_type(parent) != KERNFS_DIR) 760 goto out_unlock; 761 762 ret = -ENOENT; 763 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 764 goto out_unlock; 765 766 kn->hash = kernfs_name_hash(kn->name, kn->ns); 767 768 ret = kernfs_link_sibling(kn); 769 if (ret) 770 goto out_unlock; 771 772 /* Update timestamps on the parent */ 773 down_write(&root->kernfs_iattr_rwsem); 774 775 ps_iattr = parent->iattr; 776 if (ps_iattr) { 777 ktime_get_real_ts64(&ps_iattr->ia_ctime); 778 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 779 } 780 781 up_write(&root->kernfs_iattr_rwsem); 782 up_write(&root->kernfs_rwsem); 783 784 /* 785 * Activate the new node unless CREATE_DEACTIVATED is requested. 786 * If not activated here, the kernfs user is responsible for 787 * activating the node with kernfs_activate(). A node which hasn't 788 * been activated is not visible to userland and its removal won't 789 * trigger deactivation. 790 */ 791 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 792 kernfs_activate(kn); 793 return 0; 794 795 out_unlock: 796 up_write(&root->kernfs_rwsem); 797 return ret; 798 } 799 800 /** 801 * kernfs_find_ns - find kernfs_node with the given name 802 * @parent: kernfs_node to search under 803 * @name: name to look for 804 * @ns: the namespace tag to use 805 * 806 * Look for kernfs_node with name @name under @parent. 807 * 808 * Return: pointer to the found kernfs_node on success, %NULL on failure. 809 */ 810 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 811 const unsigned char *name, 812 const void *ns) 813 { 814 struct rb_node *node = parent->dir.children.rb_node; 815 bool has_ns = kernfs_ns_enabled(parent); 816 unsigned int hash; 817 818 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 819 820 if (has_ns != (bool)ns) { 821 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 822 has_ns ? "required" : "invalid", parent->name, name); 823 return NULL; 824 } 825 826 hash = kernfs_name_hash(name, ns); 827 while (node) { 828 struct kernfs_node *kn; 829 int result; 830 831 kn = rb_to_kn(node); 832 result = kernfs_name_compare(hash, name, ns, kn); 833 if (result < 0) 834 node = node->rb_left; 835 else if (result > 0) 836 node = node->rb_right; 837 else 838 return kn; 839 } 840 return NULL; 841 } 842 843 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 844 const unsigned char *path, 845 const void *ns) 846 { 847 size_t len; 848 char *p, *name; 849 850 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 851 852 spin_lock_irq(&kernfs_pr_cont_lock); 853 854 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 855 856 if (len >= sizeof(kernfs_pr_cont_buf)) { 857 spin_unlock_irq(&kernfs_pr_cont_lock); 858 return NULL; 859 } 860 861 p = kernfs_pr_cont_buf; 862 863 while ((name = strsep(&p, "/")) && parent) { 864 if (*name == '\0') 865 continue; 866 parent = kernfs_find_ns(parent, name, ns); 867 } 868 869 spin_unlock_irq(&kernfs_pr_cont_lock); 870 871 return parent; 872 } 873 874 /** 875 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 876 * @parent: kernfs_node to search under 877 * @name: name to look for 878 * @ns: the namespace tag to use 879 * 880 * Look for kernfs_node with name @name under @parent and get a reference 881 * if found. This function may sleep. 882 * 883 * Return: pointer to the found kernfs_node on success, %NULL on failure. 884 */ 885 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 886 const char *name, const void *ns) 887 { 888 struct kernfs_node *kn; 889 struct kernfs_root *root = kernfs_root(parent); 890 891 down_read(&root->kernfs_rwsem); 892 kn = kernfs_find_ns(parent, name, ns); 893 kernfs_get(kn); 894 up_read(&root->kernfs_rwsem); 895 896 return kn; 897 } 898 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 899 900 /** 901 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 902 * @parent: kernfs_node to search under 903 * @path: path to look for 904 * @ns: the namespace tag to use 905 * 906 * Look for kernfs_node with path @path under @parent and get a reference 907 * if found. This function may sleep. 908 * 909 * Return: pointer to the found kernfs_node on success, %NULL on failure. 910 */ 911 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 912 const char *path, const void *ns) 913 { 914 struct kernfs_node *kn; 915 struct kernfs_root *root = kernfs_root(parent); 916 917 down_read(&root->kernfs_rwsem); 918 kn = kernfs_walk_ns(parent, path, ns); 919 kernfs_get(kn); 920 up_read(&root->kernfs_rwsem); 921 922 return kn; 923 } 924 925 /** 926 * kernfs_create_root - create a new kernfs hierarchy 927 * @scops: optional syscall operations for the hierarchy 928 * @flags: KERNFS_ROOT_* flags 929 * @priv: opaque data associated with the new directory 930 * 931 * Return: the root of the new hierarchy on success, ERR_PTR() value on 932 * failure. 933 */ 934 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 935 unsigned int flags, void *priv) 936 { 937 struct kernfs_root *root; 938 struct kernfs_node *kn; 939 940 root = kzalloc(sizeof(*root), GFP_KERNEL); 941 if (!root) 942 return ERR_PTR(-ENOMEM); 943 944 idr_init(&root->ino_idr); 945 init_rwsem(&root->kernfs_rwsem); 946 init_rwsem(&root->kernfs_iattr_rwsem); 947 init_rwsem(&root->kernfs_supers_rwsem); 948 INIT_LIST_HEAD(&root->supers); 949 950 /* 951 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 952 * High bits generation. The starting value for both ino and 953 * genenration is 1. Initialize upper 32bit allocation 954 * accordingly. 955 */ 956 if (sizeof(ino_t) >= sizeof(u64)) 957 root->id_highbits = 0; 958 else 959 root->id_highbits = 1; 960 961 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 962 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 963 KERNFS_DIR); 964 if (!kn) { 965 idr_destroy(&root->ino_idr); 966 kfree(root); 967 return ERR_PTR(-ENOMEM); 968 } 969 970 kn->priv = priv; 971 kn->dir.root = root; 972 973 root->syscall_ops = scops; 974 root->flags = flags; 975 root->kn = kn; 976 init_waitqueue_head(&root->deactivate_waitq); 977 978 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 979 kernfs_activate(kn); 980 981 return root; 982 } 983 984 /** 985 * kernfs_destroy_root - destroy a kernfs hierarchy 986 * @root: root of the hierarchy to destroy 987 * 988 * Destroy the hierarchy anchored at @root by removing all existing 989 * directories and destroying @root. 990 */ 991 void kernfs_destroy_root(struct kernfs_root *root) 992 { 993 /* 994 * kernfs_remove holds kernfs_rwsem from the root so the root 995 * shouldn't be freed during the operation. 996 */ 997 kernfs_get(root->kn); 998 kernfs_remove(root->kn); 999 kernfs_put(root->kn); /* will also free @root */ 1000 } 1001 1002 /** 1003 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1004 * @root: root to use to lookup 1005 * 1006 * Return: @root's kernfs_node 1007 */ 1008 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1009 { 1010 return root->kn; 1011 } 1012 1013 /** 1014 * kernfs_create_dir_ns - create a directory 1015 * @parent: parent in which to create a new directory 1016 * @name: name of the new directory 1017 * @mode: mode of the new directory 1018 * @uid: uid of the new directory 1019 * @gid: gid of the new directory 1020 * @priv: opaque data associated with the new directory 1021 * @ns: optional namespace tag of the directory 1022 * 1023 * Return: the created node on success, ERR_PTR() value on failure. 1024 */ 1025 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1026 const char *name, umode_t mode, 1027 kuid_t uid, kgid_t gid, 1028 void *priv, const void *ns) 1029 { 1030 struct kernfs_node *kn; 1031 int rc; 1032 1033 /* allocate */ 1034 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1035 uid, gid, KERNFS_DIR); 1036 if (!kn) 1037 return ERR_PTR(-ENOMEM); 1038 1039 kn->dir.root = parent->dir.root; 1040 kn->ns = ns; 1041 kn->priv = priv; 1042 1043 /* link in */ 1044 rc = kernfs_add_one(kn); 1045 if (!rc) 1046 return kn; 1047 1048 kernfs_put(kn); 1049 return ERR_PTR(rc); 1050 } 1051 1052 /** 1053 * kernfs_create_empty_dir - create an always empty directory 1054 * @parent: parent in which to create a new directory 1055 * @name: name of the new directory 1056 * 1057 * Return: the created node on success, ERR_PTR() value on failure. 1058 */ 1059 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1060 const char *name) 1061 { 1062 struct kernfs_node *kn; 1063 int rc; 1064 1065 /* allocate */ 1066 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1067 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1068 if (!kn) 1069 return ERR_PTR(-ENOMEM); 1070 1071 kn->flags |= KERNFS_EMPTY_DIR; 1072 kn->dir.root = parent->dir.root; 1073 kn->ns = NULL; 1074 kn->priv = NULL; 1075 1076 /* link in */ 1077 rc = kernfs_add_one(kn); 1078 if (!rc) 1079 return kn; 1080 1081 kernfs_put(kn); 1082 return ERR_PTR(rc); 1083 } 1084 1085 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1086 { 1087 struct kernfs_node *kn; 1088 struct kernfs_root *root; 1089 1090 if (flags & LOOKUP_RCU) 1091 return -ECHILD; 1092 1093 /* Negative hashed dentry? */ 1094 if (d_really_is_negative(dentry)) { 1095 struct kernfs_node *parent; 1096 1097 /* If the kernfs parent node has changed discard and 1098 * proceed to ->lookup. 1099 * 1100 * There's nothing special needed here when getting the 1101 * dentry parent, even if a concurrent rename is in 1102 * progress. That's because the dentry is negative so 1103 * it can only be the target of the rename and it will 1104 * be doing a d_move() not a replace. Consequently the 1105 * dentry d_parent won't change over the d_move(). 1106 * 1107 * Also kernfs negative dentries transitioning from 1108 * negative to positive during revalidate won't happen 1109 * because they are invalidated on containing directory 1110 * changes and the lookup re-done so that a new positive 1111 * dentry can be properly created. 1112 */ 1113 root = kernfs_root_from_sb(dentry->d_sb); 1114 down_read(&root->kernfs_rwsem); 1115 parent = kernfs_dentry_node(dentry->d_parent); 1116 if (parent) { 1117 if (kernfs_dir_changed(parent, dentry)) { 1118 up_read(&root->kernfs_rwsem); 1119 return 0; 1120 } 1121 } 1122 up_read(&root->kernfs_rwsem); 1123 1124 /* The kernfs parent node hasn't changed, leave the 1125 * dentry negative and return success. 1126 */ 1127 return 1; 1128 } 1129 1130 kn = kernfs_dentry_node(dentry); 1131 root = kernfs_root(kn); 1132 down_read(&root->kernfs_rwsem); 1133 1134 /* The kernfs node has been deactivated */ 1135 if (!kernfs_active(kn)) 1136 goto out_bad; 1137 1138 /* The kernfs node has been moved? */ 1139 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1140 goto out_bad; 1141 1142 /* The kernfs node has been renamed */ 1143 if (strcmp(dentry->d_name.name, kn->name) != 0) 1144 goto out_bad; 1145 1146 /* The kernfs node has been moved to a different namespace */ 1147 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1148 kernfs_info(dentry->d_sb)->ns != kn->ns) 1149 goto out_bad; 1150 1151 up_read(&root->kernfs_rwsem); 1152 return 1; 1153 out_bad: 1154 up_read(&root->kernfs_rwsem); 1155 return 0; 1156 } 1157 1158 const struct dentry_operations kernfs_dops = { 1159 .d_revalidate = kernfs_dop_revalidate, 1160 }; 1161 1162 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1163 struct dentry *dentry, 1164 unsigned int flags) 1165 { 1166 struct kernfs_node *parent = dir->i_private; 1167 struct kernfs_node *kn; 1168 struct kernfs_root *root; 1169 struct inode *inode = NULL; 1170 const void *ns = NULL; 1171 1172 root = kernfs_root(parent); 1173 down_read(&root->kernfs_rwsem); 1174 if (kernfs_ns_enabled(parent)) 1175 ns = kernfs_info(dir->i_sb)->ns; 1176 1177 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1178 /* attach dentry and inode */ 1179 if (kn) { 1180 /* Inactive nodes are invisible to the VFS so don't 1181 * create a negative. 1182 */ 1183 if (!kernfs_active(kn)) { 1184 up_read(&root->kernfs_rwsem); 1185 return NULL; 1186 } 1187 inode = kernfs_get_inode(dir->i_sb, kn); 1188 if (!inode) 1189 inode = ERR_PTR(-ENOMEM); 1190 } 1191 /* 1192 * Needed for negative dentry validation. 1193 * The negative dentry can be created in kernfs_iop_lookup() 1194 * or transforms from positive dentry in dentry_unlink_inode() 1195 * called from vfs_rmdir(). 1196 */ 1197 if (!IS_ERR(inode)) 1198 kernfs_set_rev(parent, dentry); 1199 up_read(&root->kernfs_rwsem); 1200 1201 /* instantiate and hash (possibly negative) dentry */ 1202 return d_splice_alias(inode, dentry); 1203 } 1204 1205 static int kernfs_iop_mkdir(struct mnt_idmap *idmap, 1206 struct inode *dir, struct dentry *dentry, 1207 umode_t mode) 1208 { 1209 struct kernfs_node *parent = dir->i_private; 1210 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1211 int ret; 1212 1213 if (!scops || !scops->mkdir) 1214 return -EPERM; 1215 1216 if (!kernfs_get_active(parent)) 1217 return -ENODEV; 1218 1219 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1220 1221 kernfs_put_active(parent); 1222 return ret; 1223 } 1224 1225 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1226 { 1227 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1228 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1229 int ret; 1230 1231 if (!scops || !scops->rmdir) 1232 return -EPERM; 1233 1234 if (!kernfs_get_active(kn)) 1235 return -ENODEV; 1236 1237 ret = scops->rmdir(kn); 1238 1239 kernfs_put_active(kn); 1240 return ret; 1241 } 1242 1243 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1244 struct inode *old_dir, struct dentry *old_dentry, 1245 struct inode *new_dir, struct dentry *new_dentry, 1246 unsigned int flags) 1247 { 1248 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1249 struct kernfs_node *new_parent = new_dir->i_private; 1250 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1251 int ret; 1252 1253 if (flags) 1254 return -EINVAL; 1255 1256 if (!scops || !scops->rename) 1257 return -EPERM; 1258 1259 if (!kernfs_get_active(kn)) 1260 return -ENODEV; 1261 1262 if (!kernfs_get_active(new_parent)) { 1263 kernfs_put_active(kn); 1264 return -ENODEV; 1265 } 1266 1267 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1268 1269 kernfs_put_active(new_parent); 1270 kernfs_put_active(kn); 1271 return ret; 1272 } 1273 1274 const struct inode_operations kernfs_dir_iops = { 1275 .lookup = kernfs_iop_lookup, 1276 .permission = kernfs_iop_permission, 1277 .setattr = kernfs_iop_setattr, 1278 .getattr = kernfs_iop_getattr, 1279 .listxattr = kernfs_iop_listxattr, 1280 1281 .mkdir = kernfs_iop_mkdir, 1282 .rmdir = kernfs_iop_rmdir, 1283 .rename = kernfs_iop_rename, 1284 }; 1285 1286 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1287 { 1288 struct kernfs_node *last; 1289 1290 while (true) { 1291 struct rb_node *rbn; 1292 1293 last = pos; 1294 1295 if (kernfs_type(pos) != KERNFS_DIR) 1296 break; 1297 1298 rbn = rb_first(&pos->dir.children); 1299 if (!rbn) 1300 break; 1301 1302 pos = rb_to_kn(rbn); 1303 } 1304 1305 return last; 1306 } 1307 1308 /** 1309 * kernfs_next_descendant_post - find the next descendant for post-order walk 1310 * @pos: the current position (%NULL to initiate traversal) 1311 * @root: kernfs_node whose descendants to walk 1312 * 1313 * Find the next descendant to visit for post-order traversal of @root's 1314 * descendants. @root is included in the iteration and the last node to be 1315 * visited. 1316 * 1317 * Return: the next descendant to visit or %NULL when done. 1318 */ 1319 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1320 struct kernfs_node *root) 1321 { 1322 struct rb_node *rbn; 1323 1324 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1325 1326 /* if first iteration, visit leftmost descendant which may be root */ 1327 if (!pos) 1328 return kernfs_leftmost_descendant(root); 1329 1330 /* if we visited @root, we're done */ 1331 if (pos == root) 1332 return NULL; 1333 1334 /* if there's an unvisited sibling, visit its leftmost descendant */ 1335 rbn = rb_next(&pos->rb); 1336 if (rbn) 1337 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1338 1339 /* no sibling left, visit parent */ 1340 return pos->parent; 1341 } 1342 1343 static void kernfs_activate_one(struct kernfs_node *kn) 1344 { 1345 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1346 1347 kn->flags |= KERNFS_ACTIVATED; 1348 1349 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1350 return; 1351 1352 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1353 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1354 1355 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1356 } 1357 1358 /** 1359 * kernfs_activate - activate a node which started deactivated 1360 * @kn: kernfs_node whose subtree is to be activated 1361 * 1362 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1363 * needs to be explicitly activated. A node which hasn't been activated 1364 * isn't visible to userland and deactivation is skipped during its 1365 * removal. This is useful to construct atomic init sequences where 1366 * creation of multiple nodes should either succeed or fail atomically. 1367 * 1368 * The caller is responsible for ensuring that this function is not called 1369 * after kernfs_remove*() is invoked on @kn. 1370 */ 1371 void kernfs_activate(struct kernfs_node *kn) 1372 { 1373 struct kernfs_node *pos; 1374 struct kernfs_root *root = kernfs_root(kn); 1375 1376 down_write(&root->kernfs_rwsem); 1377 1378 pos = NULL; 1379 while ((pos = kernfs_next_descendant_post(pos, kn))) 1380 kernfs_activate_one(pos); 1381 1382 up_write(&root->kernfs_rwsem); 1383 } 1384 1385 /** 1386 * kernfs_show - show or hide a node 1387 * @kn: kernfs_node to show or hide 1388 * @show: whether to show or hide 1389 * 1390 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1391 * ignored in future activaitons. If %true, the mark is removed and activation 1392 * state is restored. This function won't implicitly activate a new node in a 1393 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1394 * 1395 * To avoid recursion complexities, directories aren't supported for now. 1396 */ 1397 void kernfs_show(struct kernfs_node *kn, bool show) 1398 { 1399 struct kernfs_root *root = kernfs_root(kn); 1400 1401 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1402 return; 1403 1404 down_write(&root->kernfs_rwsem); 1405 1406 if (show) { 1407 kn->flags &= ~KERNFS_HIDDEN; 1408 if (kn->flags & KERNFS_ACTIVATED) 1409 kernfs_activate_one(kn); 1410 } else { 1411 kn->flags |= KERNFS_HIDDEN; 1412 if (kernfs_active(kn)) 1413 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1414 kernfs_drain(kn); 1415 } 1416 1417 up_write(&root->kernfs_rwsem); 1418 } 1419 1420 static void __kernfs_remove(struct kernfs_node *kn) 1421 { 1422 struct kernfs_node *pos; 1423 1424 /* Short-circuit if non-root @kn has already finished removal. */ 1425 if (!kn) 1426 return; 1427 1428 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1429 1430 /* 1431 * This is for kernfs_remove_self() which plays with active ref 1432 * after removal. 1433 */ 1434 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1435 return; 1436 1437 pr_debug("kernfs %s: removing\n", kn->name); 1438 1439 /* prevent new usage by marking all nodes removing and deactivating */ 1440 pos = NULL; 1441 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1442 pos->flags |= KERNFS_REMOVING; 1443 if (kernfs_active(pos)) 1444 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1445 } 1446 1447 /* deactivate and unlink the subtree node-by-node */ 1448 do { 1449 pos = kernfs_leftmost_descendant(kn); 1450 1451 /* 1452 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1453 * base ref could have been put by someone else by the time 1454 * the function returns. Make sure it doesn't go away 1455 * underneath us. 1456 */ 1457 kernfs_get(pos); 1458 1459 kernfs_drain(pos); 1460 1461 /* 1462 * kernfs_unlink_sibling() succeeds once per node. Use it 1463 * to decide who's responsible for cleanups. 1464 */ 1465 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1466 struct kernfs_iattrs *ps_iattr = 1467 pos->parent ? pos->parent->iattr : NULL; 1468 1469 /* update timestamps on the parent */ 1470 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1471 1472 if (ps_iattr) { 1473 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1474 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1475 } 1476 1477 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1478 kernfs_put(pos); 1479 } 1480 1481 kernfs_put(pos); 1482 } while (pos != kn); 1483 } 1484 1485 /** 1486 * kernfs_remove - remove a kernfs_node recursively 1487 * @kn: the kernfs_node to remove 1488 * 1489 * Remove @kn along with all its subdirectories and files. 1490 */ 1491 void kernfs_remove(struct kernfs_node *kn) 1492 { 1493 struct kernfs_root *root; 1494 1495 if (!kn) 1496 return; 1497 1498 root = kernfs_root(kn); 1499 1500 down_write(&root->kernfs_rwsem); 1501 __kernfs_remove(kn); 1502 up_write(&root->kernfs_rwsem); 1503 } 1504 1505 /** 1506 * kernfs_break_active_protection - break out of active protection 1507 * @kn: the self kernfs_node 1508 * 1509 * The caller must be running off of a kernfs operation which is invoked 1510 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1511 * this function must also be matched with an invocation of 1512 * kernfs_unbreak_active_protection(). 1513 * 1514 * This function releases the active reference of @kn the caller is 1515 * holding. Once this function is called, @kn may be removed at any point 1516 * and the caller is solely responsible for ensuring that the objects it 1517 * dereferences are accessible. 1518 */ 1519 void kernfs_break_active_protection(struct kernfs_node *kn) 1520 { 1521 /* 1522 * Take out ourself out of the active ref dependency chain. If 1523 * we're called without an active ref, lockdep will complain. 1524 */ 1525 kernfs_put_active(kn); 1526 } 1527 1528 /** 1529 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1530 * @kn: the self kernfs_node 1531 * 1532 * If kernfs_break_active_protection() was called, this function must be 1533 * invoked before finishing the kernfs operation. Note that while this 1534 * function restores the active reference, it doesn't and can't actually 1535 * restore the active protection - @kn may already or be in the process of 1536 * being removed. Once kernfs_break_active_protection() is invoked, that 1537 * protection is irreversibly gone for the kernfs operation instance. 1538 * 1539 * While this function may be called at any point after 1540 * kernfs_break_active_protection() is invoked, its most useful location 1541 * would be right before the enclosing kernfs operation returns. 1542 */ 1543 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1544 { 1545 /* 1546 * @kn->active could be in any state; however, the increment we do 1547 * here will be undone as soon as the enclosing kernfs operation 1548 * finishes and this temporary bump can't break anything. If @kn 1549 * is alive, nothing changes. If @kn is being deactivated, the 1550 * soon-to-follow put will either finish deactivation or restore 1551 * deactivated state. If @kn is already removed, the temporary 1552 * bump is guaranteed to be gone before @kn is released. 1553 */ 1554 atomic_inc(&kn->active); 1555 if (kernfs_lockdep(kn)) 1556 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1557 } 1558 1559 /** 1560 * kernfs_remove_self - remove a kernfs_node from its own method 1561 * @kn: the self kernfs_node to remove 1562 * 1563 * The caller must be running off of a kernfs operation which is invoked 1564 * with an active reference - e.g. one of kernfs_ops. This can be used to 1565 * implement a file operation which deletes itself. 1566 * 1567 * For example, the "delete" file for a sysfs device directory can be 1568 * implemented by invoking kernfs_remove_self() on the "delete" file 1569 * itself. This function breaks the circular dependency of trying to 1570 * deactivate self while holding an active ref itself. It isn't necessary 1571 * to modify the usual removal path to use kernfs_remove_self(). The 1572 * "delete" implementation can simply invoke kernfs_remove_self() on self 1573 * before proceeding with the usual removal path. kernfs will ignore later 1574 * kernfs_remove() on self. 1575 * 1576 * kernfs_remove_self() can be called multiple times concurrently on the 1577 * same kernfs_node. Only the first one actually performs removal and 1578 * returns %true. All others will wait until the kernfs operation which 1579 * won self-removal finishes and return %false. Note that the losers wait 1580 * for the completion of not only the winning kernfs_remove_self() but also 1581 * the whole kernfs_ops which won the arbitration. This can be used to 1582 * guarantee, for example, all concurrent writes to a "delete" file to 1583 * finish only after the whole operation is complete. 1584 * 1585 * Return: %true if @kn is removed by this call, otherwise %false. 1586 */ 1587 bool kernfs_remove_self(struct kernfs_node *kn) 1588 { 1589 bool ret; 1590 struct kernfs_root *root = kernfs_root(kn); 1591 1592 down_write(&root->kernfs_rwsem); 1593 kernfs_break_active_protection(kn); 1594 1595 /* 1596 * SUICIDAL is used to arbitrate among competing invocations. Only 1597 * the first one will actually perform removal. When the removal 1598 * is complete, SUICIDED is set and the active ref is restored 1599 * while kernfs_rwsem for held exclusive. The ones which lost 1600 * arbitration waits for SUICIDED && drained which can happen only 1601 * after the enclosing kernfs operation which executed the winning 1602 * instance of kernfs_remove_self() finished. 1603 */ 1604 if (!(kn->flags & KERNFS_SUICIDAL)) { 1605 kn->flags |= KERNFS_SUICIDAL; 1606 __kernfs_remove(kn); 1607 kn->flags |= KERNFS_SUICIDED; 1608 ret = true; 1609 } else { 1610 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1611 DEFINE_WAIT(wait); 1612 1613 while (true) { 1614 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1615 1616 if ((kn->flags & KERNFS_SUICIDED) && 1617 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1618 break; 1619 1620 up_write(&root->kernfs_rwsem); 1621 schedule(); 1622 down_write(&root->kernfs_rwsem); 1623 } 1624 finish_wait(waitq, &wait); 1625 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1626 ret = false; 1627 } 1628 1629 /* 1630 * This must be done while kernfs_rwsem held exclusive; otherwise, 1631 * waiting for SUICIDED && deactivated could finish prematurely. 1632 */ 1633 kernfs_unbreak_active_protection(kn); 1634 1635 up_write(&root->kernfs_rwsem); 1636 return ret; 1637 } 1638 1639 /** 1640 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1641 * @parent: parent of the target 1642 * @name: name of the kernfs_node to remove 1643 * @ns: namespace tag of the kernfs_node to remove 1644 * 1645 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1646 * 1647 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1648 */ 1649 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1650 const void *ns) 1651 { 1652 struct kernfs_node *kn; 1653 struct kernfs_root *root; 1654 1655 if (!parent) { 1656 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1657 name); 1658 return -ENOENT; 1659 } 1660 1661 root = kernfs_root(parent); 1662 down_write(&root->kernfs_rwsem); 1663 1664 kn = kernfs_find_ns(parent, name, ns); 1665 if (kn) { 1666 kernfs_get(kn); 1667 __kernfs_remove(kn); 1668 kernfs_put(kn); 1669 } 1670 1671 up_write(&root->kernfs_rwsem); 1672 1673 if (kn) 1674 return 0; 1675 else 1676 return -ENOENT; 1677 } 1678 1679 /** 1680 * kernfs_rename_ns - move and rename a kernfs_node 1681 * @kn: target node 1682 * @new_parent: new parent to put @sd under 1683 * @new_name: new name 1684 * @new_ns: new namespace tag 1685 * 1686 * Return: %0 on success, -errno on failure. 1687 */ 1688 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1689 const char *new_name, const void *new_ns) 1690 { 1691 struct kernfs_node *old_parent; 1692 struct kernfs_root *root; 1693 const char *old_name = NULL; 1694 int error; 1695 1696 /* can't move or rename root */ 1697 if (!kn->parent) 1698 return -EINVAL; 1699 1700 root = kernfs_root(kn); 1701 down_write(&root->kernfs_rwsem); 1702 1703 error = -ENOENT; 1704 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1705 (new_parent->flags & KERNFS_EMPTY_DIR)) 1706 goto out; 1707 1708 error = 0; 1709 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1710 (strcmp(kn->name, new_name) == 0)) 1711 goto out; /* nothing to rename */ 1712 1713 error = -EEXIST; 1714 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1715 goto out; 1716 1717 /* rename kernfs_node */ 1718 if (strcmp(kn->name, new_name) != 0) { 1719 error = -ENOMEM; 1720 new_name = kstrdup_const(new_name, GFP_KERNEL); 1721 if (!new_name) 1722 goto out; 1723 } else { 1724 new_name = NULL; 1725 } 1726 1727 /* 1728 * Move to the appropriate place in the appropriate directories rbtree. 1729 */ 1730 kernfs_unlink_sibling(kn); 1731 kernfs_get(new_parent); 1732 1733 /* rename_lock protects ->parent and ->name accessors */ 1734 write_lock_irq(&kernfs_rename_lock); 1735 1736 old_parent = kn->parent; 1737 kn->parent = new_parent; 1738 1739 kn->ns = new_ns; 1740 if (new_name) { 1741 old_name = kn->name; 1742 kn->name = new_name; 1743 } 1744 1745 write_unlock_irq(&kernfs_rename_lock); 1746 1747 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1748 kernfs_link_sibling(kn); 1749 1750 kernfs_put(old_parent); 1751 kfree_const(old_name); 1752 1753 error = 0; 1754 out: 1755 up_write(&root->kernfs_rwsem); 1756 return error; 1757 } 1758 1759 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1760 { 1761 kernfs_put(filp->private_data); 1762 return 0; 1763 } 1764 1765 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1766 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1767 { 1768 if (pos) { 1769 int valid = kernfs_active(pos) && 1770 pos->parent == parent && hash == pos->hash; 1771 kernfs_put(pos); 1772 if (!valid) 1773 pos = NULL; 1774 } 1775 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1776 struct rb_node *node = parent->dir.children.rb_node; 1777 while (node) { 1778 pos = rb_to_kn(node); 1779 1780 if (hash < pos->hash) 1781 node = node->rb_left; 1782 else if (hash > pos->hash) 1783 node = node->rb_right; 1784 else 1785 break; 1786 } 1787 } 1788 /* Skip over entries which are dying/dead or in the wrong namespace */ 1789 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1790 struct rb_node *node = rb_next(&pos->rb); 1791 if (!node) 1792 pos = NULL; 1793 else 1794 pos = rb_to_kn(node); 1795 } 1796 return pos; 1797 } 1798 1799 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1800 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1801 { 1802 pos = kernfs_dir_pos(ns, parent, ino, pos); 1803 if (pos) { 1804 do { 1805 struct rb_node *node = rb_next(&pos->rb); 1806 if (!node) 1807 pos = NULL; 1808 else 1809 pos = rb_to_kn(node); 1810 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1811 } 1812 return pos; 1813 } 1814 1815 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1816 { 1817 struct dentry *dentry = file->f_path.dentry; 1818 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1819 struct kernfs_node *pos = file->private_data; 1820 struct kernfs_root *root; 1821 const void *ns = NULL; 1822 1823 if (!dir_emit_dots(file, ctx)) 1824 return 0; 1825 1826 root = kernfs_root(parent); 1827 down_read(&root->kernfs_rwsem); 1828 1829 if (kernfs_ns_enabled(parent)) 1830 ns = kernfs_info(dentry->d_sb)->ns; 1831 1832 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1833 pos; 1834 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1835 const char *name = pos->name; 1836 unsigned int type = fs_umode_to_dtype(pos->mode); 1837 int len = strlen(name); 1838 ino_t ino = kernfs_ino(pos); 1839 1840 ctx->pos = pos->hash; 1841 file->private_data = pos; 1842 kernfs_get(pos); 1843 1844 up_read(&root->kernfs_rwsem); 1845 if (!dir_emit(ctx, name, len, ino, type)) 1846 return 0; 1847 down_read(&root->kernfs_rwsem); 1848 } 1849 up_read(&root->kernfs_rwsem); 1850 file->private_data = NULL; 1851 ctx->pos = INT_MAX; 1852 return 0; 1853 } 1854 1855 const struct file_operations kernfs_dir_fops = { 1856 .read = generic_read_dir, 1857 .iterate_shared = kernfs_fop_readdir, 1858 .release = kernfs_dir_fop_release, 1859 .llseek = generic_file_llseek, 1860 }; 1861