1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strscpy(buf, "(null)", buflen); 58 59 return strscpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the constructed path. If the path would have been 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 ssize_t copied; 142 int i, j; 143 144 if (!kn_to) 145 return strscpy(buf, "(null)", buflen); 146 147 if (!kn_from) 148 kn_from = kernfs_root(kn_to)->kn; 149 150 if (kn_from == kn_to) 151 return strscpy(buf, "/", buflen); 152 153 common = kernfs_common_ancestor(kn_from, kn_to); 154 if (WARN_ON(!common)) 155 return -EINVAL; 156 157 depth_to = kernfs_depth(common, kn_to); 158 depth_from = kernfs_depth(common, kn_from); 159 160 buf[0] = '\0'; 161 162 for (i = 0; i < depth_from; i++) { 163 copied = strscpy(buf + len, parent_str, buflen - len); 164 if (copied < 0) 165 return copied; 166 len += copied; 167 } 168 169 /* Calculate how many bytes we need for the rest */ 170 for (i = depth_to - 1; i >= 0; i--) { 171 for (kn = kn_to, j = 0; j < i; j++) 172 kn = kn->parent; 173 174 len += scnprintf(buf + len, buflen - len, "/%s", kn->name); 175 } 176 177 return len; 178 } 179 180 /** 181 * kernfs_name - obtain the name of a given node 182 * @kn: kernfs_node of interest 183 * @buf: buffer to copy @kn's name into 184 * @buflen: size of @buf 185 * 186 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 187 * similar to strscpy(). 188 * 189 * Fills buffer with "(null)" if @kn is %NULL. 190 * 191 * Return: the resulting length of @buf. If @buf isn't long enough, 192 * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG. 193 * 194 * This function can be called from any context. 195 */ 196 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 197 { 198 unsigned long flags; 199 int ret; 200 201 read_lock_irqsave(&kernfs_rename_lock, flags); 202 ret = kernfs_name_locked(kn, buf, buflen); 203 read_unlock_irqrestore(&kernfs_rename_lock, flags); 204 return ret; 205 } 206 207 /** 208 * kernfs_path_from_node - build path of node @to relative to @from. 209 * @from: parent kernfs_node relative to which we need to build the path 210 * @to: kernfs_node of interest 211 * @buf: buffer to copy @to's path into 212 * @buflen: size of @buf 213 * 214 * Builds @to's path relative to @from in @buf. @from and @to must 215 * be on the same kernfs-root. If @from is not parent of @to, then a relative 216 * path (which includes '..'s) as needed to reach from @from to @to is 217 * returned. 218 * 219 * Return: the length of the constructed path. If the path would have been 220 * greater than @buflen, @buf contains the truncated path with the trailing 221 * '\0'. On error, -errno is returned. 222 */ 223 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 224 char *buf, size_t buflen) 225 { 226 unsigned long flags; 227 int ret; 228 229 read_lock_irqsave(&kernfs_rename_lock, flags); 230 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 231 read_unlock_irqrestore(&kernfs_rename_lock, flags); 232 return ret; 233 } 234 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 235 236 /** 237 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 238 * @kn: kernfs_node of interest 239 * 240 * This function can be called from any context. 241 */ 242 void pr_cont_kernfs_name(struct kernfs_node *kn) 243 { 244 unsigned long flags; 245 246 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 247 248 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 249 pr_cont("%s", kernfs_pr_cont_buf); 250 251 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 252 } 253 254 /** 255 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 256 * @kn: kernfs_node of interest 257 * 258 * This function can be called from any context. 259 */ 260 void pr_cont_kernfs_path(struct kernfs_node *kn) 261 { 262 unsigned long flags; 263 int sz; 264 265 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 266 267 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 268 sizeof(kernfs_pr_cont_buf)); 269 if (sz < 0) { 270 if (sz == -E2BIG) 271 pr_cont("(name too long)"); 272 else 273 pr_cont("(error)"); 274 goto out; 275 } 276 277 pr_cont("%s", kernfs_pr_cont_buf); 278 279 out: 280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 281 } 282 283 /** 284 * kernfs_get_parent - determine the parent node and pin it 285 * @kn: kernfs_node of interest 286 * 287 * Determines @kn's parent, pins and returns it. This function can be 288 * called from any context. 289 * 290 * Return: parent node of @kn 291 */ 292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 293 { 294 struct kernfs_node *parent; 295 unsigned long flags; 296 297 read_lock_irqsave(&kernfs_rename_lock, flags); 298 parent = kn->parent; 299 kernfs_get(parent); 300 read_unlock_irqrestore(&kernfs_rename_lock, flags); 301 302 return parent; 303 } 304 305 /** 306 * kernfs_name_hash - calculate hash of @ns + @name 307 * @name: Null terminated string to hash 308 * @ns: Namespace tag to hash 309 * 310 * Return: 31-bit hash of ns + name (so it fits in an off_t) 311 */ 312 static unsigned int kernfs_name_hash(const char *name, const void *ns) 313 { 314 unsigned long hash = init_name_hash(ns); 315 unsigned int len = strlen(name); 316 while (len--) 317 hash = partial_name_hash(*name++, hash); 318 hash = end_name_hash(hash); 319 hash &= 0x7fffffffU; 320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 321 if (hash < 2) 322 hash += 2; 323 if (hash >= INT_MAX) 324 hash = INT_MAX - 1; 325 return hash; 326 } 327 328 static int kernfs_name_compare(unsigned int hash, const char *name, 329 const void *ns, const struct kernfs_node *kn) 330 { 331 if (hash < kn->hash) 332 return -1; 333 if (hash > kn->hash) 334 return 1; 335 if (ns < kn->ns) 336 return -1; 337 if (ns > kn->ns) 338 return 1; 339 return strcmp(name, kn->name); 340 } 341 342 static int kernfs_sd_compare(const struct kernfs_node *left, 343 const struct kernfs_node *right) 344 { 345 return kernfs_name_compare(left->hash, left->name, left->ns, right); 346 } 347 348 /** 349 * kernfs_link_sibling - link kernfs_node into sibling rbtree 350 * @kn: kernfs_node of interest 351 * 352 * Link @kn into its sibling rbtree which starts from 353 * @kn->parent->dir.children. 354 * 355 * Locking: 356 * kernfs_rwsem held exclusive 357 * 358 * Return: 359 * %0 on success, -EEXIST on failure. 360 */ 361 static int kernfs_link_sibling(struct kernfs_node *kn) 362 { 363 struct rb_node **node = &kn->parent->dir.children.rb_node; 364 struct rb_node *parent = NULL; 365 366 while (*node) { 367 struct kernfs_node *pos; 368 int result; 369 370 pos = rb_to_kn(*node); 371 parent = *node; 372 result = kernfs_sd_compare(kn, pos); 373 if (result < 0) 374 node = &pos->rb.rb_left; 375 else if (result > 0) 376 node = &pos->rb.rb_right; 377 else 378 return -EEXIST; 379 } 380 381 /* add new node and rebalance the tree */ 382 rb_link_node(&kn->rb, parent, node); 383 rb_insert_color(&kn->rb, &kn->parent->dir.children); 384 385 /* successfully added, account subdir number */ 386 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 387 if (kernfs_type(kn) == KERNFS_DIR) 388 kn->parent->dir.subdirs++; 389 kernfs_inc_rev(kn->parent); 390 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 391 392 return 0; 393 } 394 395 /** 396 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 397 * @kn: kernfs_node of interest 398 * 399 * Try to unlink @kn from its sibling rbtree which starts from 400 * kn->parent->dir.children. 401 * 402 * Return: %true if @kn was actually removed, 403 * %false if @kn wasn't on the rbtree. 404 * 405 * Locking: 406 * kernfs_rwsem held exclusive 407 */ 408 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 409 { 410 if (RB_EMPTY_NODE(&kn->rb)) 411 return false; 412 413 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 414 if (kernfs_type(kn) == KERNFS_DIR) 415 kn->parent->dir.subdirs--; 416 kernfs_inc_rev(kn->parent); 417 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 418 419 rb_erase(&kn->rb, &kn->parent->dir.children); 420 RB_CLEAR_NODE(&kn->rb); 421 return true; 422 } 423 424 /** 425 * kernfs_get_active - get an active reference to kernfs_node 426 * @kn: kernfs_node to get an active reference to 427 * 428 * Get an active reference of @kn. This function is noop if @kn 429 * is %NULL. 430 * 431 * Return: 432 * Pointer to @kn on success, %NULL on failure. 433 */ 434 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 435 { 436 if (unlikely(!kn)) 437 return NULL; 438 439 if (!atomic_inc_unless_negative(&kn->active)) 440 return NULL; 441 442 if (kernfs_lockdep(kn)) 443 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 444 return kn; 445 } 446 447 /** 448 * kernfs_put_active - put an active reference to kernfs_node 449 * @kn: kernfs_node to put an active reference to 450 * 451 * Put an active reference to @kn. This function is noop if @kn 452 * is %NULL. 453 */ 454 void kernfs_put_active(struct kernfs_node *kn) 455 { 456 int v; 457 458 if (unlikely(!kn)) 459 return; 460 461 if (kernfs_lockdep(kn)) 462 rwsem_release(&kn->dep_map, _RET_IP_); 463 v = atomic_dec_return(&kn->active); 464 if (likely(v != KN_DEACTIVATED_BIAS)) 465 return; 466 467 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 468 } 469 470 /** 471 * kernfs_drain - drain kernfs_node 472 * @kn: kernfs_node to drain 473 * 474 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 475 * removers may invoke this function concurrently on @kn and all will 476 * return after draining is complete. 477 */ 478 static void kernfs_drain(struct kernfs_node *kn) 479 __releases(&kernfs_root(kn)->kernfs_rwsem) 480 __acquires(&kernfs_root(kn)->kernfs_rwsem) 481 { 482 struct kernfs_root *root = kernfs_root(kn); 483 484 lockdep_assert_held_write(&root->kernfs_rwsem); 485 WARN_ON_ONCE(kernfs_active(kn)); 486 487 /* 488 * Skip draining if already fully drained. This avoids draining and its 489 * lockdep annotations for nodes which have never been activated 490 * allowing embedding kernfs_remove() in create error paths without 491 * worrying about draining. 492 */ 493 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 494 !kernfs_should_drain_open_files(kn)) 495 return; 496 497 up_write(&root->kernfs_rwsem); 498 499 if (kernfs_lockdep(kn)) { 500 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 501 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 502 lock_contended(&kn->dep_map, _RET_IP_); 503 } 504 505 wait_event(root->deactivate_waitq, 506 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 507 508 if (kernfs_lockdep(kn)) { 509 lock_acquired(&kn->dep_map, _RET_IP_); 510 rwsem_release(&kn->dep_map, _RET_IP_); 511 } 512 513 if (kernfs_should_drain_open_files(kn)) 514 kernfs_drain_open_files(kn); 515 516 down_write(&root->kernfs_rwsem); 517 } 518 519 /** 520 * kernfs_get - get a reference count on a kernfs_node 521 * @kn: the target kernfs_node 522 */ 523 void kernfs_get(struct kernfs_node *kn) 524 { 525 if (kn) { 526 WARN_ON(!atomic_read(&kn->count)); 527 atomic_inc(&kn->count); 528 } 529 } 530 EXPORT_SYMBOL_GPL(kernfs_get); 531 532 static void kernfs_free_rcu(struct rcu_head *rcu) 533 { 534 struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu); 535 536 kfree_const(kn->name); 537 538 if (kn->iattr) { 539 simple_xattrs_free(&kn->iattr->xattrs, NULL); 540 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 541 } 542 543 kmem_cache_free(kernfs_node_cache, kn); 544 } 545 546 /** 547 * kernfs_put - put a reference count on a kernfs_node 548 * @kn: the target kernfs_node 549 * 550 * Put a reference count of @kn and destroy it if it reached zero. 551 */ 552 void kernfs_put(struct kernfs_node *kn) 553 { 554 struct kernfs_node *parent; 555 struct kernfs_root *root; 556 557 if (!kn || !atomic_dec_and_test(&kn->count)) 558 return; 559 root = kernfs_root(kn); 560 repeat: 561 /* 562 * Moving/renaming is always done while holding reference. 563 * kn->parent won't change beneath us. 564 */ 565 parent = kn->parent; 566 567 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 568 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 569 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 570 571 if (kernfs_type(kn) == KERNFS_LINK) 572 kernfs_put(kn->symlink.target_kn); 573 574 spin_lock(&kernfs_idr_lock); 575 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 576 spin_unlock(&kernfs_idr_lock); 577 578 call_rcu(&kn->rcu, kernfs_free_rcu); 579 580 kn = parent; 581 if (kn) { 582 if (atomic_dec_and_test(&kn->count)) 583 goto repeat; 584 } else { 585 /* just released the root kn, free @root too */ 586 idr_destroy(&root->ino_idr); 587 kfree_rcu(root, rcu); 588 } 589 } 590 EXPORT_SYMBOL_GPL(kernfs_put); 591 592 /** 593 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 594 * @dentry: the dentry in question 595 * 596 * Return: the kernfs_node associated with @dentry. If @dentry is not a 597 * kernfs one, %NULL is returned. 598 * 599 * While the returned kernfs_node will stay accessible as long as @dentry 600 * is accessible, the returned node can be in any state and the caller is 601 * fully responsible for determining what's accessible. 602 */ 603 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 604 { 605 if (dentry->d_sb->s_op == &kernfs_sops) 606 return kernfs_dentry_node(dentry); 607 return NULL; 608 } 609 610 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 611 struct kernfs_node *parent, 612 const char *name, umode_t mode, 613 kuid_t uid, kgid_t gid, 614 unsigned flags) 615 { 616 struct kernfs_node *kn; 617 u32 id_highbits; 618 int ret; 619 620 name = kstrdup_const(name, GFP_KERNEL); 621 if (!name) 622 return NULL; 623 624 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 625 if (!kn) 626 goto err_out1; 627 628 idr_preload(GFP_KERNEL); 629 spin_lock(&kernfs_idr_lock); 630 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 631 if (ret >= 0 && ret < root->last_id_lowbits) 632 root->id_highbits++; 633 id_highbits = root->id_highbits; 634 root->last_id_lowbits = ret; 635 spin_unlock(&kernfs_idr_lock); 636 idr_preload_end(); 637 if (ret < 0) 638 goto err_out2; 639 640 kn->id = (u64)id_highbits << 32 | ret; 641 642 atomic_set(&kn->count, 1); 643 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 644 RB_CLEAR_NODE(&kn->rb); 645 646 kn->name = name; 647 kn->mode = mode; 648 kn->flags = flags; 649 650 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 651 struct iattr iattr = { 652 .ia_valid = ATTR_UID | ATTR_GID, 653 .ia_uid = uid, 654 .ia_gid = gid, 655 }; 656 657 ret = __kernfs_setattr(kn, &iattr); 658 if (ret < 0) 659 goto err_out3; 660 } 661 662 if (parent) { 663 ret = security_kernfs_init_security(parent, kn); 664 if (ret) 665 goto err_out3; 666 } 667 668 return kn; 669 670 err_out3: 671 spin_lock(&kernfs_idr_lock); 672 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 673 spin_unlock(&kernfs_idr_lock); 674 err_out2: 675 kmem_cache_free(kernfs_node_cache, kn); 676 err_out1: 677 kfree_const(name); 678 return NULL; 679 } 680 681 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 682 const char *name, umode_t mode, 683 kuid_t uid, kgid_t gid, 684 unsigned flags) 685 { 686 struct kernfs_node *kn; 687 688 if (parent->mode & S_ISGID) { 689 /* this code block imitates inode_init_owner() for 690 * kernfs 691 */ 692 693 if (parent->iattr) 694 gid = parent->iattr->ia_gid; 695 696 if (flags & KERNFS_DIR) 697 mode |= S_ISGID; 698 } 699 700 kn = __kernfs_new_node(kernfs_root(parent), parent, 701 name, mode, uid, gid, flags); 702 if (kn) { 703 kernfs_get(parent); 704 kn->parent = parent; 705 } 706 return kn; 707 } 708 709 /* 710 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 711 * @root: the kernfs root 712 * @id: the target node id 713 * 714 * @id's lower 32bits encode ino and upper gen. If the gen portion is 715 * zero, all generations are matched. 716 * 717 * Return: %NULL on failure, 718 * otherwise a kernfs node with reference counter incremented. 719 */ 720 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 721 u64 id) 722 { 723 struct kernfs_node *kn; 724 ino_t ino = kernfs_id_ino(id); 725 u32 gen = kernfs_id_gen(id); 726 727 rcu_read_lock(); 728 729 kn = idr_find(&root->ino_idr, (u32)ino); 730 if (!kn) 731 goto err_unlock; 732 733 if (sizeof(ino_t) >= sizeof(u64)) { 734 /* we looked up with the low 32bits, compare the whole */ 735 if (kernfs_ino(kn) != ino) 736 goto err_unlock; 737 } else { 738 /* 0 matches all generations */ 739 if (unlikely(gen && kernfs_gen(kn) != gen)) 740 goto err_unlock; 741 } 742 743 /* 744 * We should fail if @kn has never been activated and guarantee success 745 * if the caller knows that @kn is active. Both can be achieved by 746 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 747 */ 748 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 749 goto err_unlock; 750 751 rcu_read_unlock(); 752 return kn; 753 err_unlock: 754 rcu_read_unlock(); 755 return NULL; 756 } 757 758 /** 759 * kernfs_add_one - add kernfs_node to parent without warning 760 * @kn: kernfs_node to be added 761 * 762 * The caller must already have initialized @kn->parent. This 763 * function increments nlink of the parent's inode if @kn is a 764 * directory and link into the children list of the parent. 765 * 766 * Return: 767 * %0 on success, -EEXIST if entry with the given name already 768 * exists. 769 */ 770 int kernfs_add_one(struct kernfs_node *kn) 771 { 772 struct kernfs_node *parent = kn->parent; 773 struct kernfs_root *root = kernfs_root(parent); 774 struct kernfs_iattrs *ps_iattr; 775 bool has_ns; 776 int ret; 777 778 down_write(&root->kernfs_rwsem); 779 780 ret = -EINVAL; 781 has_ns = kernfs_ns_enabled(parent); 782 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 783 has_ns ? "required" : "invalid", parent->name, kn->name)) 784 goto out_unlock; 785 786 if (kernfs_type(parent) != KERNFS_DIR) 787 goto out_unlock; 788 789 ret = -ENOENT; 790 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 791 goto out_unlock; 792 793 kn->hash = kernfs_name_hash(kn->name, kn->ns); 794 795 ret = kernfs_link_sibling(kn); 796 if (ret) 797 goto out_unlock; 798 799 /* Update timestamps on the parent */ 800 down_write(&root->kernfs_iattr_rwsem); 801 802 ps_iattr = parent->iattr; 803 if (ps_iattr) { 804 ktime_get_real_ts64(&ps_iattr->ia_ctime); 805 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 806 } 807 808 up_write(&root->kernfs_iattr_rwsem); 809 up_write(&root->kernfs_rwsem); 810 811 /* 812 * Activate the new node unless CREATE_DEACTIVATED is requested. 813 * If not activated here, the kernfs user is responsible for 814 * activating the node with kernfs_activate(). A node which hasn't 815 * been activated is not visible to userland and its removal won't 816 * trigger deactivation. 817 */ 818 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 819 kernfs_activate(kn); 820 return 0; 821 822 out_unlock: 823 up_write(&root->kernfs_rwsem); 824 return ret; 825 } 826 827 /** 828 * kernfs_find_ns - find kernfs_node with the given name 829 * @parent: kernfs_node to search under 830 * @name: name to look for 831 * @ns: the namespace tag to use 832 * 833 * Look for kernfs_node with name @name under @parent. 834 * 835 * Return: pointer to the found kernfs_node on success, %NULL on failure. 836 */ 837 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 838 const unsigned char *name, 839 const void *ns) 840 { 841 struct rb_node *node = parent->dir.children.rb_node; 842 bool has_ns = kernfs_ns_enabled(parent); 843 unsigned int hash; 844 845 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 846 847 if (has_ns != (bool)ns) { 848 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 849 has_ns ? "required" : "invalid", parent->name, name); 850 return NULL; 851 } 852 853 hash = kernfs_name_hash(name, ns); 854 while (node) { 855 struct kernfs_node *kn; 856 int result; 857 858 kn = rb_to_kn(node); 859 result = kernfs_name_compare(hash, name, ns, kn); 860 if (result < 0) 861 node = node->rb_left; 862 else if (result > 0) 863 node = node->rb_right; 864 else 865 return kn; 866 } 867 return NULL; 868 } 869 870 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 871 const unsigned char *path, 872 const void *ns) 873 { 874 ssize_t len; 875 char *p, *name; 876 877 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 878 879 spin_lock_irq(&kernfs_pr_cont_lock); 880 881 len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 882 883 if (len < 0) { 884 spin_unlock_irq(&kernfs_pr_cont_lock); 885 return NULL; 886 } 887 888 p = kernfs_pr_cont_buf; 889 890 while ((name = strsep(&p, "/")) && parent) { 891 if (*name == '\0') 892 continue; 893 parent = kernfs_find_ns(parent, name, ns); 894 } 895 896 spin_unlock_irq(&kernfs_pr_cont_lock); 897 898 return parent; 899 } 900 901 /** 902 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 903 * @parent: kernfs_node to search under 904 * @name: name to look for 905 * @ns: the namespace tag to use 906 * 907 * Look for kernfs_node with name @name under @parent and get a reference 908 * if found. This function may sleep. 909 * 910 * Return: pointer to the found kernfs_node on success, %NULL on failure. 911 */ 912 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 913 const char *name, const void *ns) 914 { 915 struct kernfs_node *kn; 916 struct kernfs_root *root = kernfs_root(parent); 917 918 down_read(&root->kernfs_rwsem); 919 kn = kernfs_find_ns(parent, name, ns); 920 kernfs_get(kn); 921 up_read(&root->kernfs_rwsem); 922 923 return kn; 924 } 925 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 926 927 /** 928 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 929 * @parent: kernfs_node to search under 930 * @path: path to look for 931 * @ns: the namespace tag to use 932 * 933 * Look for kernfs_node with path @path under @parent and get a reference 934 * if found. This function may sleep. 935 * 936 * Return: pointer to the found kernfs_node on success, %NULL on failure. 937 */ 938 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 939 const char *path, const void *ns) 940 { 941 struct kernfs_node *kn; 942 struct kernfs_root *root = kernfs_root(parent); 943 944 down_read(&root->kernfs_rwsem); 945 kn = kernfs_walk_ns(parent, path, ns); 946 kernfs_get(kn); 947 up_read(&root->kernfs_rwsem); 948 949 return kn; 950 } 951 952 /** 953 * kernfs_create_root - create a new kernfs hierarchy 954 * @scops: optional syscall operations for the hierarchy 955 * @flags: KERNFS_ROOT_* flags 956 * @priv: opaque data associated with the new directory 957 * 958 * Return: the root of the new hierarchy on success, ERR_PTR() value on 959 * failure. 960 */ 961 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 962 unsigned int flags, void *priv) 963 { 964 struct kernfs_root *root; 965 struct kernfs_node *kn; 966 967 root = kzalloc(sizeof(*root), GFP_KERNEL); 968 if (!root) 969 return ERR_PTR(-ENOMEM); 970 971 idr_init(&root->ino_idr); 972 init_rwsem(&root->kernfs_rwsem); 973 init_rwsem(&root->kernfs_iattr_rwsem); 974 init_rwsem(&root->kernfs_supers_rwsem); 975 INIT_LIST_HEAD(&root->supers); 976 977 /* 978 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 979 * High bits generation. The starting value for both ino and 980 * genenration is 1. Initialize upper 32bit allocation 981 * accordingly. 982 */ 983 if (sizeof(ino_t) >= sizeof(u64)) 984 root->id_highbits = 0; 985 else 986 root->id_highbits = 1; 987 988 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 989 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 990 KERNFS_DIR); 991 if (!kn) { 992 idr_destroy(&root->ino_idr); 993 kfree(root); 994 return ERR_PTR(-ENOMEM); 995 } 996 997 kn->priv = priv; 998 kn->dir.root = root; 999 1000 root->syscall_ops = scops; 1001 root->flags = flags; 1002 root->kn = kn; 1003 init_waitqueue_head(&root->deactivate_waitq); 1004 1005 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 1006 kernfs_activate(kn); 1007 1008 return root; 1009 } 1010 1011 /** 1012 * kernfs_destroy_root - destroy a kernfs hierarchy 1013 * @root: root of the hierarchy to destroy 1014 * 1015 * Destroy the hierarchy anchored at @root by removing all existing 1016 * directories and destroying @root. 1017 */ 1018 void kernfs_destroy_root(struct kernfs_root *root) 1019 { 1020 /* 1021 * kernfs_remove holds kernfs_rwsem from the root so the root 1022 * shouldn't be freed during the operation. 1023 */ 1024 kernfs_get(root->kn); 1025 kernfs_remove(root->kn); 1026 kernfs_put(root->kn); /* will also free @root */ 1027 } 1028 1029 /** 1030 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1031 * @root: root to use to lookup 1032 * 1033 * Return: @root's kernfs_node 1034 */ 1035 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1036 { 1037 return root->kn; 1038 } 1039 1040 /** 1041 * kernfs_create_dir_ns - create a directory 1042 * @parent: parent in which to create a new directory 1043 * @name: name of the new directory 1044 * @mode: mode of the new directory 1045 * @uid: uid of the new directory 1046 * @gid: gid of the new directory 1047 * @priv: opaque data associated with the new directory 1048 * @ns: optional namespace tag of the directory 1049 * 1050 * Return: the created node on success, ERR_PTR() value on failure. 1051 */ 1052 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1053 const char *name, umode_t mode, 1054 kuid_t uid, kgid_t gid, 1055 void *priv, const void *ns) 1056 { 1057 struct kernfs_node *kn; 1058 int rc; 1059 1060 /* allocate */ 1061 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1062 uid, gid, KERNFS_DIR); 1063 if (!kn) 1064 return ERR_PTR(-ENOMEM); 1065 1066 kn->dir.root = parent->dir.root; 1067 kn->ns = ns; 1068 kn->priv = priv; 1069 1070 /* link in */ 1071 rc = kernfs_add_one(kn); 1072 if (!rc) 1073 return kn; 1074 1075 kernfs_put(kn); 1076 return ERR_PTR(rc); 1077 } 1078 1079 /** 1080 * kernfs_create_empty_dir - create an always empty directory 1081 * @parent: parent in which to create a new directory 1082 * @name: name of the new directory 1083 * 1084 * Return: the created node on success, ERR_PTR() value on failure. 1085 */ 1086 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1087 const char *name) 1088 { 1089 struct kernfs_node *kn; 1090 int rc; 1091 1092 /* allocate */ 1093 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1094 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1095 if (!kn) 1096 return ERR_PTR(-ENOMEM); 1097 1098 kn->flags |= KERNFS_EMPTY_DIR; 1099 kn->dir.root = parent->dir.root; 1100 kn->ns = NULL; 1101 kn->priv = NULL; 1102 1103 /* link in */ 1104 rc = kernfs_add_one(kn); 1105 if (!rc) 1106 return kn; 1107 1108 kernfs_put(kn); 1109 return ERR_PTR(rc); 1110 } 1111 1112 static int kernfs_dop_revalidate(struct inode *dir, const struct qstr *name, 1113 struct dentry *dentry, unsigned int flags) 1114 { 1115 struct kernfs_node *kn; 1116 struct kernfs_root *root; 1117 1118 if (flags & LOOKUP_RCU) 1119 return -ECHILD; 1120 1121 /* Negative hashed dentry? */ 1122 if (d_really_is_negative(dentry)) { 1123 struct kernfs_node *parent; 1124 1125 /* If the kernfs parent node has changed discard and 1126 * proceed to ->lookup. 1127 * 1128 * There's nothing special needed here when getting the 1129 * dentry parent, even if a concurrent rename is in 1130 * progress. That's because the dentry is negative so 1131 * it can only be the target of the rename and it will 1132 * be doing a d_move() not a replace. Consequently the 1133 * dentry d_parent won't change over the d_move(). 1134 * 1135 * Also kernfs negative dentries transitioning from 1136 * negative to positive during revalidate won't happen 1137 * because they are invalidated on containing directory 1138 * changes and the lookup re-done so that a new positive 1139 * dentry can be properly created. 1140 */ 1141 root = kernfs_root_from_sb(dentry->d_sb); 1142 down_read(&root->kernfs_rwsem); 1143 parent = kernfs_dentry_node(dentry->d_parent); 1144 if (parent) { 1145 if (kernfs_dir_changed(parent, dentry)) { 1146 up_read(&root->kernfs_rwsem); 1147 return 0; 1148 } 1149 } 1150 up_read(&root->kernfs_rwsem); 1151 1152 /* The kernfs parent node hasn't changed, leave the 1153 * dentry negative and return success. 1154 */ 1155 return 1; 1156 } 1157 1158 kn = kernfs_dentry_node(dentry); 1159 root = kernfs_root(kn); 1160 down_read(&root->kernfs_rwsem); 1161 1162 /* The kernfs node has been deactivated */ 1163 if (!kernfs_active(kn)) 1164 goto out_bad; 1165 1166 /* The kernfs node has been moved? */ 1167 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1168 goto out_bad; 1169 1170 /* The kernfs node has been renamed */ 1171 if (strcmp(dentry->d_name.name, kn->name) != 0) 1172 goto out_bad; 1173 1174 /* The kernfs node has been moved to a different namespace */ 1175 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1176 kernfs_info(dentry->d_sb)->ns != kn->ns) 1177 goto out_bad; 1178 1179 up_read(&root->kernfs_rwsem); 1180 return 1; 1181 out_bad: 1182 up_read(&root->kernfs_rwsem); 1183 return 0; 1184 } 1185 1186 const struct dentry_operations kernfs_dops = { 1187 .d_revalidate = kernfs_dop_revalidate, 1188 }; 1189 1190 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1191 struct dentry *dentry, 1192 unsigned int flags) 1193 { 1194 struct kernfs_node *parent = dir->i_private; 1195 struct kernfs_node *kn; 1196 struct kernfs_root *root; 1197 struct inode *inode = NULL; 1198 const void *ns = NULL; 1199 1200 root = kernfs_root(parent); 1201 down_read(&root->kernfs_rwsem); 1202 if (kernfs_ns_enabled(parent)) 1203 ns = kernfs_info(dir->i_sb)->ns; 1204 1205 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1206 /* attach dentry and inode */ 1207 if (kn) { 1208 /* Inactive nodes are invisible to the VFS so don't 1209 * create a negative. 1210 */ 1211 if (!kernfs_active(kn)) { 1212 up_read(&root->kernfs_rwsem); 1213 return NULL; 1214 } 1215 inode = kernfs_get_inode(dir->i_sb, kn); 1216 if (!inode) 1217 inode = ERR_PTR(-ENOMEM); 1218 } 1219 /* 1220 * Needed for negative dentry validation. 1221 * The negative dentry can be created in kernfs_iop_lookup() 1222 * or transforms from positive dentry in dentry_unlink_inode() 1223 * called from vfs_rmdir(). 1224 */ 1225 if (!IS_ERR(inode)) 1226 kernfs_set_rev(parent, dentry); 1227 up_read(&root->kernfs_rwsem); 1228 1229 /* instantiate and hash (possibly negative) dentry */ 1230 return d_splice_alias(inode, dentry); 1231 } 1232 1233 static int kernfs_iop_mkdir(struct mnt_idmap *idmap, 1234 struct inode *dir, struct dentry *dentry, 1235 umode_t mode) 1236 { 1237 struct kernfs_node *parent = dir->i_private; 1238 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1239 int ret; 1240 1241 if (!scops || !scops->mkdir) 1242 return -EPERM; 1243 1244 if (!kernfs_get_active(parent)) 1245 return -ENODEV; 1246 1247 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1248 1249 kernfs_put_active(parent); 1250 return ret; 1251 } 1252 1253 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1254 { 1255 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1256 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1257 int ret; 1258 1259 if (!scops || !scops->rmdir) 1260 return -EPERM; 1261 1262 if (!kernfs_get_active(kn)) 1263 return -ENODEV; 1264 1265 ret = scops->rmdir(kn); 1266 1267 kernfs_put_active(kn); 1268 return ret; 1269 } 1270 1271 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1272 struct inode *old_dir, struct dentry *old_dentry, 1273 struct inode *new_dir, struct dentry *new_dentry, 1274 unsigned int flags) 1275 { 1276 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1277 struct kernfs_node *new_parent = new_dir->i_private; 1278 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1279 int ret; 1280 1281 if (flags) 1282 return -EINVAL; 1283 1284 if (!scops || !scops->rename) 1285 return -EPERM; 1286 1287 if (!kernfs_get_active(kn)) 1288 return -ENODEV; 1289 1290 if (!kernfs_get_active(new_parent)) { 1291 kernfs_put_active(kn); 1292 return -ENODEV; 1293 } 1294 1295 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1296 1297 kernfs_put_active(new_parent); 1298 kernfs_put_active(kn); 1299 return ret; 1300 } 1301 1302 const struct inode_operations kernfs_dir_iops = { 1303 .lookup = kernfs_iop_lookup, 1304 .permission = kernfs_iop_permission, 1305 .setattr = kernfs_iop_setattr, 1306 .getattr = kernfs_iop_getattr, 1307 .listxattr = kernfs_iop_listxattr, 1308 1309 .mkdir = kernfs_iop_mkdir, 1310 .rmdir = kernfs_iop_rmdir, 1311 .rename = kernfs_iop_rename, 1312 }; 1313 1314 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1315 { 1316 struct kernfs_node *last; 1317 1318 while (true) { 1319 struct rb_node *rbn; 1320 1321 last = pos; 1322 1323 if (kernfs_type(pos) != KERNFS_DIR) 1324 break; 1325 1326 rbn = rb_first(&pos->dir.children); 1327 if (!rbn) 1328 break; 1329 1330 pos = rb_to_kn(rbn); 1331 } 1332 1333 return last; 1334 } 1335 1336 /** 1337 * kernfs_next_descendant_post - find the next descendant for post-order walk 1338 * @pos: the current position (%NULL to initiate traversal) 1339 * @root: kernfs_node whose descendants to walk 1340 * 1341 * Find the next descendant to visit for post-order traversal of @root's 1342 * descendants. @root is included in the iteration and the last node to be 1343 * visited. 1344 * 1345 * Return: the next descendant to visit or %NULL when done. 1346 */ 1347 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1348 struct kernfs_node *root) 1349 { 1350 struct rb_node *rbn; 1351 1352 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1353 1354 /* if first iteration, visit leftmost descendant which may be root */ 1355 if (!pos) 1356 return kernfs_leftmost_descendant(root); 1357 1358 /* if we visited @root, we're done */ 1359 if (pos == root) 1360 return NULL; 1361 1362 /* if there's an unvisited sibling, visit its leftmost descendant */ 1363 rbn = rb_next(&pos->rb); 1364 if (rbn) 1365 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1366 1367 /* no sibling left, visit parent */ 1368 return pos->parent; 1369 } 1370 1371 static void kernfs_activate_one(struct kernfs_node *kn) 1372 { 1373 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1374 1375 kn->flags |= KERNFS_ACTIVATED; 1376 1377 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1378 return; 1379 1380 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1381 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1382 1383 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1384 } 1385 1386 /** 1387 * kernfs_activate - activate a node which started deactivated 1388 * @kn: kernfs_node whose subtree is to be activated 1389 * 1390 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1391 * needs to be explicitly activated. A node which hasn't been activated 1392 * isn't visible to userland and deactivation is skipped during its 1393 * removal. This is useful to construct atomic init sequences where 1394 * creation of multiple nodes should either succeed or fail atomically. 1395 * 1396 * The caller is responsible for ensuring that this function is not called 1397 * after kernfs_remove*() is invoked on @kn. 1398 */ 1399 void kernfs_activate(struct kernfs_node *kn) 1400 { 1401 struct kernfs_node *pos; 1402 struct kernfs_root *root = kernfs_root(kn); 1403 1404 down_write(&root->kernfs_rwsem); 1405 1406 pos = NULL; 1407 while ((pos = kernfs_next_descendant_post(pos, kn))) 1408 kernfs_activate_one(pos); 1409 1410 up_write(&root->kernfs_rwsem); 1411 } 1412 1413 /** 1414 * kernfs_show - show or hide a node 1415 * @kn: kernfs_node to show or hide 1416 * @show: whether to show or hide 1417 * 1418 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1419 * ignored in future activaitons. If %true, the mark is removed and activation 1420 * state is restored. This function won't implicitly activate a new node in a 1421 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1422 * 1423 * To avoid recursion complexities, directories aren't supported for now. 1424 */ 1425 void kernfs_show(struct kernfs_node *kn, bool show) 1426 { 1427 struct kernfs_root *root = kernfs_root(kn); 1428 1429 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1430 return; 1431 1432 down_write(&root->kernfs_rwsem); 1433 1434 if (show) { 1435 kn->flags &= ~KERNFS_HIDDEN; 1436 if (kn->flags & KERNFS_ACTIVATED) 1437 kernfs_activate_one(kn); 1438 } else { 1439 kn->flags |= KERNFS_HIDDEN; 1440 if (kernfs_active(kn)) 1441 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1442 kernfs_drain(kn); 1443 } 1444 1445 up_write(&root->kernfs_rwsem); 1446 } 1447 1448 static void __kernfs_remove(struct kernfs_node *kn) 1449 { 1450 struct kernfs_node *pos; 1451 1452 /* Short-circuit if non-root @kn has already finished removal. */ 1453 if (!kn) 1454 return; 1455 1456 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1457 1458 /* 1459 * This is for kernfs_remove_self() which plays with active ref 1460 * after removal. 1461 */ 1462 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1463 return; 1464 1465 pr_debug("kernfs %s: removing\n", kn->name); 1466 1467 /* prevent new usage by marking all nodes removing and deactivating */ 1468 pos = NULL; 1469 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1470 pos->flags |= KERNFS_REMOVING; 1471 if (kernfs_active(pos)) 1472 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1473 } 1474 1475 /* deactivate and unlink the subtree node-by-node */ 1476 do { 1477 pos = kernfs_leftmost_descendant(kn); 1478 1479 /* 1480 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1481 * base ref could have been put by someone else by the time 1482 * the function returns. Make sure it doesn't go away 1483 * underneath us. 1484 */ 1485 kernfs_get(pos); 1486 1487 kernfs_drain(pos); 1488 1489 /* 1490 * kernfs_unlink_sibling() succeeds once per node. Use it 1491 * to decide who's responsible for cleanups. 1492 */ 1493 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1494 struct kernfs_iattrs *ps_iattr = 1495 pos->parent ? pos->parent->iattr : NULL; 1496 1497 /* update timestamps on the parent */ 1498 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1499 1500 if (ps_iattr) { 1501 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1502 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1503 } 1504 1505 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1506 kernfs_put(pos); 1507 } 1508 1509 kernfs_put(pos); 1510 } while (pos != kn); 1511 } 1512 1513 /** 1514 * kernfs_remove - remove a kernfs_node recursively 1515 * @kn: the kernfs_node to remove 1516 * 1517 * Remove @kn along with all its subdirectories and files. 1518 */ 1519 void kernfs_remove(struct kernfs_node *kn) 1520 { 1521 struct kernfs_root *root; 1522 1523 if (!kn) 1524 return; 1525 1526 root = kernfs_root(kn); 1527 1528 down_write(&root->kernfs_rwsem); 1529 __kernfs_remove(kn); 1530 up_write(&root->kernfs_rwsem); 1531 } 1532 1533 /** 1534 * kernfs_break_active_protection - break out of active protection 1535 * @kn: the self kernfs_node 1536 * 1537 * The caller must be running off of a kernfs operation which is invoked 1538 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1539 * this function must also be matched with an invocation of 1540 * kernfs_unbreak_active_protection(). 1541 * 1542 * This function releases the active reference of @kn the caller is 1543 * holding. Once this function is called, @kn may be removed at any point 1544 * and the caller is solely responsible for ensuring that the objects it 1545 * dereferences are accessible. 1546 */ 1547 void kernfs_break_active_protection(struct kernfs_node *kn) 1548 { 1549 /* 1550 * Take out ourself out of the active ref dependency chain. If 1551 * we're called without an active ref, lockdep will complain. 1552 */ 1553 kernfs_put_active(kn); 1554 } 1555 1556 /** 1557 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1558 * @kn: the self kernfs_node 1559 * 1560 * If kernfs_break_active_protection() was called, this function must be 1561 * invoked before finishing the kernfs operation. Note that while this 1562 * function restores the active reference, it doesn't and can't actually 1563 * restore the active protection - @kn may already or be in the process of 1564 * being removed. Once kernfs_break_active_protection() is invoked, that 1565 * protection is irreversibly gone for the kernfs operation instance. 1566 * 1567 * While this function may be called at any point after 1568 * kernfs_break_active_protection() is invoked, its most useful location 1569 * would be right before the enclosing kernfs operation returns. 1570 */ 1571 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1572 { 1573 /* 1574 * @kn->active could be in any state; however, the increment we do 1575 * here will be undone as soon as the enclosing kernfs operation 1576 * finishes and this temporary bump can't break anything. If @kn 1577 * is alive, nothing changes. If @kn is being deactivated, the 1578 * soon-to-follow put will either finish deactivation or restore 1579 * deactivated state. If @kn is already removed, the temporary 1580 * bump is guaranteed to be gone before @kn is released. 1581 */ 1582 atomic_inc(&kn->active); 1583 if (kernfs_lockdep(kn)) 1584 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1585 } 1586 1587 /** 1588 * kernfs_remove_self - remove a kernfs_node from its own method 1589 * @kn: the self kernfs_node to remove 1590 * 1591 * The caller must be running off of a kernfs operation which is invoked 1592 * with an active reference - e.g. one of kernfs_ops. This can be used to 1593 * implement a file operation which deletes itself. 1594 * 1595 * For example, the "delete" file for a sysfs device directory can be 1596 * implemented by invoking kernfs_remove_self() on the "delete" file 1597 * itself. This function breaks the circular dependency of trying to 1598 * deactivate self while holding an active ref itself. It isn't necessary 1599 * to modify the usual removal path to use kernfs_remove_self(). The 1600 * "delete" implementation can simply invoke kernfs_remove_self() on self 1601 * before proceeding with the usual removal path. kernfs will ignore later 1602 * kernfs_remove() on self. 1603 * 1604 * kernfs_remove_self() can be called multiple times concurrently on the 1605 * same kernfs_node. Only the first one actually performs removal and 1606 * returns %true. All others will wait until the kernfs operation which 1607 * won self-removal finishes and return %false. Note that the losers wait 1608 * for the completion of not only the winning kernfs_remove_self() but also 1609 * the whole kernfs_ops which won the arbitration. This can be used to 1610 * guarantee, for example, all concurrent writes to a "delete" file to 1611 * finish only after the whole operation is complete. 1612 * 1613 * Return: %true if @kn is removed by this call, otherwise %false. 1614 */ 1615 bool kernfs_remove_self(struct kernfs_node *kn) 1616 { 1617 bool ret; 1618 struct kernfs_root *root = kernfs_root(kn); 1619 1620 down_write(&root->kernfs_rwsem); 1621 kernfs_break_active_protection(kn); 1622 1623 /* 1624 * SUICIDAL is used to arbitrate among competing invocations. Only 1625 * the first one will actually perform removal. When the removal 1626 * is complete, SUICIDED is set and the active ref is restored 1627 * while kernfs_rwsem for held exclusive. The ones which lost 1628 * arbitration waits for SUICIDED && drained which can happen only 1629 * after the enclosing kernfs operation which executed the winning 1630 * instance of kernfs_remove_self() finished. 1631 */ 1632 if (!(kn->flags & KERNFS_SUICIDAL)) { 1633 kn->flags |= KERNFS_SUICIDAL; 1634 __kernfs_remove(kn); 1635 kn->flags |= KERNFS_SUICIDED; 1636 ret = true; 1637 } else { 1638 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1639 DEFINE_WAIT(wait); 1640 1641 while (true) { 1642 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1643 1644 if ((kn->flags & KERNFS_SUICIDED) && 1645 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1646 break; 1647 1648 up_write(&root->kernfs_rwsem); 1649 schedule(); 1650 down_write(&root->kernfs_rwsem); 1651 } 1652 finish_wait(waitq, &wait); 1653 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1654 ret = false; 1655 } 1656 1657 /* 1658 * This must be done while kernfs_rwsem held exclusive; otherwise, 1659 * waiting for SUICIDED && deactivated could finish prematurely. 1660 */ 1661 kernfs_unbreak_active_protection(kn); 1662 1663 up_write(&root->kernfs_rwsem); 1664 return ret; 1665 } 1666 1667 /** 1668 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1669 * @parent: parent of the target 1670 * @name: name of the kernfs_node to remove 1671 * @ns: namespace tag of the kernfs_node to remove 1672 * 1673 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1674 * 1675 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1676 */ 1677 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1678 const void *ns) 1679 { 1680 struct kernfs_node *kn; 1681 struct kernfs_root *root; 1682 1683 if (!parent) { 1684 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1685 name); 1686 return -ENOENT; 1687 } 1688 1689 root = kernfs_root(parent); 1690 down_write(&root->kernfs_rwsem); 1691 1692 kn = kernfs_find_ns(parent, name, ns); 1693 if (kn) { 1694 kernfs_get(kn); 1695 __kernfs_remove(kn); 1696 kernfs_put(kn); 1697 } 1698 1699 up_write(&root->kernfs_rwsem); 1700 1701 if (kn) 1702 return 0; 1703 else 1704 return -ENOENT; 1705 } 1706 1707 /** 1708 * kernfs_rename_ns - move and rename a kernfs_node 1709 * @kn: target node 1710 * @new_parent: new parent to put @sd under 1711 * @new_name: new name 1712 * @new_ns: new namespace tag 1713 * 1714 * Return: %0 on success, -errno on failure. 1715 */ 1716 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1717 const char *new_name, const void *new_ns) 1718 { 1719 struct kernfs_node *old_parent; 1720 struct kernfs_root *root; 1721 const char *old_name = NULL; 1722 int error; 1723 1724 /* can't move or rename root */ 1725 if (!kn->parent) 1726 return -EINVAL; 1727 1728 root = kernfs_root(kn); 1729 down_write(&root->kernfs_rwsem); 1730 1731 error = -ENOENT; 1732 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1733 (new_parent->flags & KERNFS_EMPTY_DIR)) 1734 goto out; 1735 1736 error = 0; 1737 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1738 (strcmp(kn->name, new_name) == 0)) 1739 goto out; /* nothing to rename */ 1740 1741 error = -EEXIST; 1742 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1743 goto out; 1744 1745 /* rename kernfs_node */ 1746 if (strcmp(kn->name, new_name) != 0) { 1747 error = -ENOMEM; 1748 new_name = kstrdup_const(new_name, GFP_KERNEL); 1749 if (!new_name) 1750 goto out; 1751 } else { 1752 new_name = NULL; 1753 } 1754 1755 /* 1756 * Move to the appropriate place in the appropriate directories rbtree. 1757 */ 1758 kernfs_unlink_sibling(kn); 1759 kernfs_get(new_parent); 1760 1761 /* rename_lock protects ->parent and ->name accessors */ 1762 write_lock_irq(&kernfs_rename_lock); 1763 1764 old_parent = kn->parent; 1765 kn->parent = new_parent; 1766 1767 kn->ns = new_ns; 1768 if (new_name) { 1769 old_name = kn->name; 1770 kn->name = new_name; 1771 } 1772 1773 write_unlock_irq(&kernfs_rename_lock); 1774 1775 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1776 kernfs_link_sibling(kn); 1777 1778 kernfs_put(old_parent); 1779 kfree_const(old_name); 1780 1781 error = 0; 1782 out: 1783 up_write(&root->kernfs_rwsem); 1784 return error; 1785 } 1786 1787 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1788 { 1789 kernfs_put(filp->private_data); 1790 return 0; 1791 } 1792 1793 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1794 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1795 { 1796 if (pos) { 1797 int valid = kernfs_active(pos) && 1798 pos->parent == parent && hash == pos->hash; 1799 kernfs_put(pos); 1800 if (!valid) 1801 pos = NULL; 1802 } 1803 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1804 struct rb_node *node = parent->dir.children.rb_node; 1805 while (node) { 1806 pos = rb_to_kn(node); 1807 1808 if (hash < pos->hash) 1809 node = node->rb_left; 1810 else if (hash > pos->hash) 1811 node = node->rb_right; 1812 else 1813 break; 1814 } 1815 } 1816 /* Skip over entries which are dying/dead or in the wrong namespace */ 1817 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1818 struct rb_node *node = rb_next(&pos->rb); 1819 if (!node) 1820 pos = NULL; 1821 else 1822 pos = rb_to_kn(node); 1823 } 1824 return pos; 1825 } 1826 1827 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1828 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1829 { 1830 pos = kernfs_dir_pos(ns, parent, ino, pos); 1831 if (pos) { 1832 do { 1833 struct rb_node *node = rb_next(&pos->rb); 1834 if (!node) 1835 pos = NULL; 1836 else 1837 pos = rb_to_kn(node); 1838 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1839 } 1840 return pos; 1841 } 1842 1843 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1844 { 1845 struct dentry *dentry = file->f_path.dentry; 1846 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1847 struct kernfs_node *pos = file->private_data; 1848 struct kernfs_root *root; 1849 const void *ns = NULL; 1850 1851 if (!dir_emit_dots(file, ctx)) 1852 return 0; 1853 1854 root = kernfs_root(parent); 1855 down_read(&root->kernfs_rwsem); 1856 1857 if (kernfs_ns_enabled(parent)) 1858 ns = kernfs_info(dentry->d_sb)->ns; 1859 1860 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1861 pos; 1862 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1863 const char *name = pos->name; 1864 unsigned int type = fs_umode_to_dtype(pos->mode); 1865 int len = strlen(name); 1866 ino_t ino = kernfs_ino(pos); 1867 1868 ctx->pos = pos->hash; 1869 file->private_data = pos; 1870 kernfs_get(pos); 1871 1872 up_read(&root->kernfs_rwsem); 1873 if (!dir_emit(ctx, name, len, ino, type)) 1874 return 0; 1875 down_read(&root->kernfs_rwsem); 1876 } 1877 up_read(&root->kernfs_rwsem); 1878 file->private_data = NULL; 1879 ctx->pos = INT_MAX; 1880 return 0; 1881 } 1882 1883 const struct file_operations kernfs_dir_fops = { 1884 .read = generic_read_dir, 1885 .iterate_shared = kernfs_fop_readdir, 1886 .release = kernfs_dir_fop_release, 1887 .llseek = generic_file_llseek, 1888 }; 1889