1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strlcpy(buf, "(null)", buflen); 58 59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the full path. If the full length is equal to or 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 int i, j; 142 143 if (!kn_to) 144 return strlcpy(buf, "(null)", buflen); 145 146 if (!kn_from) 147 kn_from = kernfs_root(kn_to)->kn; 148 149 if (kn_from == kn_to) 150 return strlcpy(buf, "/", buflen); 151 152 common = kernfs_common_ancestor(kn_from, kn_to); 153 if (WARN_ON(!common)) 154 return -EINVAL; 155 156 depth_to = kernfs_depth(common, kn_to); 157 depth_from = kernfs_depth(common, kn_from); 158 159 buf[0] = '\0'; 160 161 for (i = 0; i < depth_from; i++) 162 len += strlcpy(buf + len, parent_str, 163 len < buflen ? buflen - len : 0); 164 165 /* Calculate how many bytes we need for the rest */ 166 for (i = depth_to - 1; i >= 0; i--) { 167 for (kn = kn_to, j = 0; j < i; j++) 168 kn = kn->parent; 169 len += strlcpy(buf + len, "/", 170 len < buflen ? buflen - len : 0); 171 len += strlcpy(buf + len, kn->name, 172 len < buflen ? buflen - len : 0); 173 } 174 175 return len; 176 } 177 178 /** 179 * kernfs_name - obtain the name of a given node 180 * @kn: kernfs_node of interest 181 * @buf: buffer to copy @kn's name into 182 * @buflen: size of @buf 183 * 184 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 185 * similar to strlcpy(). 186 * 187 * Fills buffer with "(null)" if @kn is %NULL. 188 * 189 * Return: the length of @kn's name and if @buf isn't long enough, 190 * it's filled up to @buflen-1 and nul terminated. 191 * 192 * This function can be called from any context. 193 */ 194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 195 { 196 unsigned long flags; 197 int ret; 198 199 spin_lock_irqsave(&kernfs_rename_lock, flags); 200 ret = kernfs_name_locked(kn, buf, buflen); 201 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 202 return ret; 203 } 204 205 /** 206 * kernfs_path_from_node - build path of node @to relative to @from. 207 * @from: parent kernfs_node relative to which we need to build the path 208 * @to: kernfs_node of interest 209 * @buf: buffer to copy @to's path into 210 * @buflen: size of @buf 211 * 212 * Builds @to's path relative to @from in @buf. @from and @to must 213 * be on the same kernfs-root. If @from is not parent of @to, then a relative 214 * path (which includes '..'s) as needed to reach from @from to @to is 215 * returned. 216 * 217 * Return: the length of the full path. If the full length is equal to or 218 * greater than @buflen, @buf contains the truncated path with the trailing 219 * '\0'. On error, -errno is returned. 220 */ 221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 222 char *buf, size_t buflen) 223 { 224 unsigned long flags; 225 int ret; 226 227 spin_lock_irqsave(&kernfs_rename_lock, flags); 228 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 229 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 230 return ret; 231 } 232 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 233 234 /** 235 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 236 * @kn: kernfs_node of interest 237 * 238 * This function can be called from any context. 239 */ 240 void pr_cont_kernfs_name(struct kernfs_node *kn) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 245 246 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 247 pr_cont("%s", kernfs_pr_cont_buf); 248 249 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 250 } 251 252 /** 253 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 254 * @kn: kernfs_node of interest 255 * 256 * This function can be called from any context. 257 */ 258 void pr_cont_kernfs_path(struct kernfs_node *kn) 259 { 260 unsigned long flags; 261 int sz; 262 263 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 264 265 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 266 sizeof(kernfs_pr_cont_buf)); 267 if (sz < 0) { 268 pr_cont("(error)"); 269 goto out; 270 } 271 272 if (sz >= sizeof(kernfs_pr_cont_buf)) { 273 pr_cont("(name too long)"); 274 goto out; 275 } 276 277 pr_cont("%s", kernfs_pr_cont_buf); 278 279 out: 280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 281 } 282 283 /** 284 * kernfs_get_parent - determine the parent node and pin it 285 * @kn: kernfs_node of interest 286 * 287 * Determines @kn's parent, pins and returns it. This function can be 288 * called from any context. 289 * 290 * Return: parent node of @kn 291 */ 292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 293 { 294 struct kernfs_node *parent; 295 unsigned long flags; 296 297 spin_lock_irqsave(&kernfs_rename_lock, flags); 298 parent = kn->parent; 299 kernfs_get(parent); 300 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 301 302 return parent; 303 } 304 305 /** 306 * kernfs_name_hash - calculate hash of @ns + @name 307 * @name: Null terminated string to hash 308 * @ns: Namespace tag to hash 309 * 310 * Return: 31-bit hash of ns + name (so it fits in an off_t) 311 */ 312 static unsigned int kernfs_name_hash(const char *name, const void *ns) 313 { 314 unsigned long hash = init_name_hash(ns); 315 unsigned int len = strlen(name); 316 while (len--) 317 hash = partial_name_hash(*name++, hash); 318 hash = end_name_hash(hash); 319 hash &= 0x7fffffffU; 320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 321 if (hash < 2) 322 hash += 2; 323 if (hash >= INT_MAX) 324 hash = INT_MAX - 1; 325 return hash; 326 } 327 328 static int kernfs_name_compare(unsigned int hash, const char *name, 329 const void *ns, const struct kernfs_node *kn) 330 { 331 if (hash < kn->hash) 332 return -1; 333 if (hash > kn->hash) 334 return 1; 335 if (ns < kn->ns) 336 return -1; 337 if (ns > kn->ns) 338 return 1; 339 return strcmp(name, kn->name); 340 } 341 342 static int kernfs_sd_compare(const struct kernfs_node *left, 343 const struct kernfs_node *right) 344 { 345 return kernfs_name_compare(left->hash, left->name, left->ns, right); 346 } 347 348 /** 349 * kernfs_link_sibling - link kernfs_node into sibling rbtree 350 * @kn: kernfs_node of interest 351 * 352 * Link @kn into its sibling rbtree which starts from 353 * @kn->parent->dir.children. 354 * 355 * Locking: 356 * kernfs_rwsem held exclusive 357 * 358 * Return: 359 * %0 on success, -EEXIST on failure. 360 */ 361 static int kernfs_link_sibling(struct kernfs_node *kn) 362 { 363 struct rb_node **node = &kn->parent->dir.children.rb_node; 364 struct rb_node *parent = NULL; 365 366 while (*node) { 367 struct kernfs_node *pos; 368 int result; 369 370 pos = rb_to_kn(*node); 371 parent = *node; 372 result = kernfs_sd_compare(kn, pos); 373 if (result < 0) 374 node = &pos->rb.rb_left; 375 else if (result > 0) 376 node = &pos->rb.rb_right; 377 else 378 return -EEXIST; 379 } 380 381 /* add new node and rebalance the tree */ 382 rb_link_node(&kn->rb, parent, node); 383 rb_insert_color(&kn->rb, &kn->parent->dir.children); 384 385 /* successfully added, account subdir number */ 386 if (kernfs_type(kn) == KERNFS_DIR) 387 kn->parent->dir.subdirs++; 388 kernfs_inc_rev(kn->parent); 389 390 return 0; 391 } 392 393 /** 394 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 395 * @kn: kernfs_node of interest 396 * 397 * Try to unlink @kn from its sibling rbtree which starts from 398 * kn->parent->dir.children. 399 * 400 * Return: %true if @kn was actually removed, 401 * %false if @kn wasn't on the rbtree. 402 * 403 * Locking: 404 * kernfs_rwsem held exclusive 405 */ 406 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 407 { 408 if (RB_EMPTY_NODE(&kn->rb)) 409 return false; 410 411 if (kernfs_type(kn) == KERNFS_DIR) 412 kn->parent->dir.subdirs--; 413 kernfs_inc_rev(kn->parent); 414 415 rb_erase(&kn->rb, &kn->parent->dir.children); 416 RB_CLEAR_NODE(&kn->rb); 417 return true; 418 } 419 420 /** 421 * kernfs_get_active - get an active reference to kernfs_node 422 * @kn: kernfs_node to get an active reference to 423 * 424 * Get an active reference of @kn. This function is noop if @kn 425 * is %NULL. 426 * 427 * Return: 428 * Pointer to @kn on success, %NULL on failure. 429 */ 430 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 431 { 432 if (unlikely(!kn)) 433 return NULL; 434 435 if (!atomic_inc_unless_negative(&kn->active)) 436 return NULL; 437 438 if (kernfs_lockdep(kn)) 439 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 440 return kn; 441 } 442 443 /** 444 * kernfs_put_active - put an active reference to kernfs_node 445 * @kn: kernfs_node to put an active reference to 446 * 447 * Put an active reference to @kn. This function is noop if @kn 448 * is %NULL. 449 */ 450 void kernfs_put_active(struct kernfs_node *kn) 451 { 452 int v; 453 454 if (unlikely(!kn)) 455 return; 456 457 if (kernfs_lockdep(kn)) 458 rwsem_release(&kn->dep_map, _RET_IP_); 459 v = atomic_dec_return(&kn->active); 460 if (likely(v != KN_DEACTIVATED_BIAS)) 461 return; 462 463 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 464 } 465 466 /** 467 * kernfs_drain - drain kernfs_node 468 * @kn: kernfs_node to drain 469 * 470 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 471 * removers may invoke this function concurrently on @kn and all will 472 * return after draining is complete. 473 */ 474 static void kernfs_drain(struct kernfs_node *kn) 475 __releases(&kernfs_root(kn)->kernfs_rwsem) 476 __acquires(&kernfs_root(kn)->kernfs_rwsem) 477 { 478 struct kernfs_root *root = kernfs_root(kn); 479 480 lockdep_assert_held_write(&root->kernfs_rwsem); 481 WARN_ON_ONCE(kernfs_active(kn)); 482 483 /* 484 * Skip draining if already fully drained. This avoids draining and its 485 * lockdep annotations for nodes which have never been activated 486 * allowing embedding kernfs_remove() in create error paths without 487 * worrying about draining. 488 */ 489 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 490 !kernfs_should_drain_open_files(kn)) 491 return; 492 493 up_write(&root->kernfs_rwsem); 494 495 if (kernfs_lockdep(kn)) { 496 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 497 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 498 lock_contended(&kn->dep_map, _RET_IP_); 499 } 500 501 wait_event(root->deactivate_waitq, 502 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 503 504 if (kernfs_lockdep(kn)) { 505 lock_acquired(&kn->dep_map, _RET_IP_); 506 rwsem_release(&kn->dep_map, _RET_IP_); 507 } 508 509 if (kernfs_should_drain_open_files(kn)) 510 kernfs_drain_open_files(kn); 511 512 down_write(&root->kernfs_rwsem); 513 } 514 515 /** 516 * kernfs_get - get a reference count on a kernfs_node 517 * @kn: the target kernfs_node 518 */ 519 void kernfs_get(struct kernfs_node *kn) 520 { 521 if (kn) { 522 WARN_ON(!atomic_read(&kn->count)); 523 atomic_inc(&kn->count); 524 } 525 } 526 EXPORT_SYMBOL_GPL(kernfs_get); 527 528 /** 529 * kernfs_put - put a reference count on a kernfs_node 530 * @kn: the target kernfs_node 531 * 532 * Put a reference count of @kn and destroy it if it reached zero. 533 */ 534 void kernfs_put(struct kernfs_node *kn) 535 { 536 struct kernfs_node *parent; 537 struct kernfs_root *root; 538 539 if (!kn || !atomic_dec_and_test(&kn->count)) 540 return; 541 root = kernfs_root(kn); 542 repeat: 543 /* 544 * Moving/renaming is always done while holding reference. 545 * kn->parent won't change beneath us. 546 */ 547 parent = kn->parent; 548 549 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 550 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 551 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 552 553 if (kernfs_type(kn) == KERNFS_LINK) 554 kernfs_put(kn->symlink.target_kn); 555 556 kfree_const(kn->name); 557 558 if (kn->iattr) { 559 simple_xattrs_free(&kn->iattr->xattrs); 560 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 561 } 562 spin_lock(&kernfs_idr_lock); 563 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 564 spin_unlock(&kernfs_idr_lock); 565 kmem_cache_free(kernfs_node_cache, kn); 566 567 kn = parent; 568 if (kn) { 569 if (atomic_dec_and_test(&kn->count)) 570 goto repeat; 571 } else { 572 /* just released the root kn, free @root too */ 573 idr_destroy(&root->ino_idr); 574 kfree(root); 575 } 576 } 577 EXPORT_SYMBOL_GPL(kernfs_put); 578 579 /** 580 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 581 * @dentry: the dentry in question 582 * 583 * Return: the kernfs_node associated with @dentry. If @dentry is not a 584 * kernfs one, %NULL is returned. 585 * 586 * While the returned kernfs_node will stay accessible as long as @dentry 587 * is accessible, the returned node can be in any state and the caller is 588 * fully responsible for determining what's accessible. 589 */ 590 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 591 { 592 if (dentry->d_sb->s_op == &kernfs_sops) 593 return kernfs_dentry_node(dentry); 594 return NULL; 595 } 596 597 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 598 struct kernfs_node *parent, 599 const char *name, umode_t mode, 600 kuid_t uid, kgid_t gid, 601 unsigned flags) 602 { 603 struct kernfs_node *kn; 604 u32 id_highbits; 605 int ret; 606 607 name = kstrdup_const(name, GFP_KERNEL); 608 if (!name) 609 return NULL; 610 611 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 612 if (!kn) 613 goto err_out1; 614 615 idr_preload(GFP_KERNEL); 616 spin_lock(&kernfs_idr_lock); 617 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 618 if (ret >= 0 && ret < root->last_id_lowbits) 619 root->id_highbits++; 620 id_highbits = root->id_highbits; 621 root->last_id_lowbits = ret; 622 spin_unlock(&kernfs_idr_lock); 623 idr_preload_end(); 624 if (ret < 0) 625 goto err_out2; 626 627 kn->id = (u64)id_highbits << 32 | ret; 628 629 atomic_set(&kn->count, 1); 630 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 631 RB_CLEAR_NODE(&kn->rb); 632 633 kn->name = name; 634 kn->mode = mode; 635 kn->flags = flags; 636 637 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 638 struct iattr iattr = { 639 .ia_valid = ATTR_UID | ATTR_GID, 640 .ia_uid = uid, 641 .ia_gid = gid, 642 }; 643 644 ret = __kernfs_setattr(kn, &iattr); 645 if (ret < 0) 646 goto err_out3; 647 } 648 649 if (parent) { 650 ret = security_kernfs_init_security(parent, kn); 651 if (ret) 652 goto err_out3; 653 } 654 655 return kn; 656 657 err_out3: 658 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 659 err_out2: 660 kmem_cache_free(kernfs_node_cache, kn); 661 err_out1: 662 kfree_const(name); 663 return NULL; 664 } 665 666 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 667 const char *name, umode_t mode, 668 kuid_t uid, kgid_t gid, 669 unsigned flags) 670 { 671 struct kernfs_node *kn; 672 673 kn = __kernfs_new_node(kernfs_root(parent), parent, 674 name, mode, uid, gid, flags); 675 if (kn) { 676 kernfs_get(parent); 677 kn->parent = parent; 678 } 679 return kn; 680 } 681 682 /* 683 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 684 * @root: the kernfs root 685 * @id: the target node id 686 * 687 * @id's lower 32bits encode ino and upper gen. If the gen portion is 688 * zero, all generations are matched. 689 * 690 * Return: %NULL on failure, 691 * otherwise a kernfs node with reference counter incremented. 692 */ 693 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 694 u64 id) 695 { 696 struct kernfs_node *kn; 697 ino_t ino = kernfs_id_ino(id); 698 u32 gen = kernfs_id_gen(id); 699 700 spin_lock(&kernfs_idr_lock); 701 702 kn = idr_find(&root->ino_idr, (u32)ino); 703 if (!kn) 704 goto err_unlock; 705 706 if (sizeof(ino_t) >= sizeof(u64)) { 707 /* we looked up with the low 32bits, compare the whole */ 708 if (kernfs_ino(kn) != ino) 709 goto err_unlock; 710 } else { 711 /* 0 matches all generations */ 712 if (unlikely(gen && kernfs_gen(kn) != gen)) 713 goto err_unlock; 714 } 715 716 /* 717 * We should fail if @kn has never been activated and guarantee success 718 * if the caller knows that @kn is active. Both can be achieved by 719 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 720 */ 721 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 722 goto err_unlock; 723 724 spin_unlock(&kernfs_idr_lock); 725 return kn; 726 err_unlock: 727 spin_unlock(&kernfs_idr_lock); 728 return NULL; 729 } 730 731 /** 732 * kernfs_add_one - add kernfs_node to parent without warning 733 * @kn: kernfs_node to be added 734 * 735 * The caller must already have initialized @kn->parent. This 736 * function increments nlink of the parent's inode if @kn is a 737 * directory and link into the children list of the parent. 738 * 739 * Return: 740 * %0 on success, -EEXIST if entry with the given name already 741 * exists. 742 */ 743 int kernfs_add_one(struct kernfs_node *kn) 744 { 745 struct kernfs_node *parent = kn->parent; 746 struct kernfs_root *root = kernfs_root(parent); 747 struct kernfs_iattrs *ps_iattr; 748 bool has_ns; 749 int ret; 750 751 down_write(&root->kernfs_rwsem); 752 753 ret = -EINVAL; 754 has_ns = kernfs_ns_enabled(parent); 755 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 756 has_ns ? "required" : "invalid", parent->name, kn->name)) 757 goto out_unlock; 758 759 if (kernfs_type(parent) != KERNFS_DIR) 760 goto out_unlock; 761 762 ret = -ENOENT; 763 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 764 goto out_unlock; 765 766 kn->hash = kernfs_name_hash(kn->name, kn->ns); 767 768 ret = kernfs_link_sibling(kn); 769 if (ret) 770 goto out_unlock; 771 772 /* Update timestamps on the parent */ 773 ps_iattr = parent->iattr; 774 if (ps_iattr) { 775 ktime_get_real_ts64(&ps_iattr->ia_ctime); 776 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 777 } 778 779 up_write(&root->kernfs_rwsem); 780 781 /* 782 * Activate the new node unless CREATE_DEACTIVATED is requested. 783 * If not activated here, the kernfs user is responsible for 784 * activating the node with kernfs_activate(). A node which hasn't 785 * been activated is not visible to userland and its removal won't 786 * trigger deactivation. 787 */ 788 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 789 kernfs_activate(kn); 790 return 0; 791 792 out_unlock: 793 up_write(&root->kernfs_rwsem); 794 return ret; 795 } 796 797 /** 798 * kernfs_find_ns - find kernfs_node with the given name 799 * @parent: kernfs_node to search under 800 * @name: name to look for 801 * @ns: the namespace tag to use 802 * 803 * Look for kernfs_node with name @name under @parent. 804 * 805 * Return: pointer to the found kernfs_node on success, %NULL on failure. 806 */ 807 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 808 const unsigned char *name, 809 const void *ns) 810 { 811 struct rb_node *node = parent->dir.children.rb_node; 812 bool has_ns = kernfs_ns_enabled(parent); 813 unsigned int hash; 814 815 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 816 817 if (has_ns != (bool)ns) { 818 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 819 has_ns ? "required" : "invalid", parent->name, name); 820 return NULL; 821 } 822 823 hash = kernfs_name_hash(name, ns); 824 while (node) { 825 struct kernfs_node *kn; 826 int result; 827 828 kn = rb_to_kn(node); 829 result = kernfs_name_compare(hash, name, ns, kn); 830 if (result < 0) 831 node = node->rb_left; 832 else if (result > 0) 833 node = node->rb_right; 834 else 835 return kn; 836 } 837 return NULL; 838 } 839 840 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 841 const unsigned char *path, 842 const void *ns) 843 { 844 size_t len; 845 char *p, *name; 846 847 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 848 849 spin_lock_irq(&kernfs_pr_cont_lock); 850 851 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 852 853 if (len >= sizeof(kernfs_pr_cont_buf)) { 854 spin_unlock_irq(&kernfs_pr_cont_lock); 855 return NULL; 856 } 857 858 p = kernfs_pr_cont_buf; 859 860 while ((name = strsep(&p, "/")) && parent) { 861 if (*name == '\0') 862 continue; 863 parent = kernfs_find_ns(parent, name, ns); 864 } 865 866 spin_unlock_irq(&kernfs_pr_cont_lock); 867 868 return parent; 869 } 870 871 /** 872 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 873 * @parent: kernfs_node to search under 874 * @name: name to look for 875 * @ns: the namespace tag to use 876 * 877 * Look for kernfs_node with name @name under @parent and get a reference 878 * if found. This function may sleep. 879 * 880 * Return: pointer to the found kernfs_node on success, %NULL on failure. 881 */ 882 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 883 const char *name, const void *ns) 884 { 885 struct kernfs_node *kn; 886 struct kernfs_root *root = kernfs_root(parent); 887 888 down_read(&root->kernfs_rwsem); 889 kn = kernfs_find_ns(parent, name, ns); 890 kernfs_get(kn); 891 up_read(&root->kernfs_rwsem); 892 893 return kn; 894 } 895 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 896 897 /** 898 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 899 * @parent: kernfs_node to search under 900 * @path: path to look for 901 * @ns: the namespace tag to use 902 * 903 * Look for kernfs_node with path @path under @parent and get a reference 904 * if found. This function may sleep. 905 * 906 * Return: pointer to the found kernfs_node on success, %NULL on failure. 907 */ 908 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 909 const char *path, const void *ns) 910 { 911 struct kernfs_node *kn; 912 struct kernfs_root *root = kernfs_root(parent); 913 914 down_read(&root->kernfs_rwsem); 915 kn = kernfs_walk_ns(parent, path, ns); 916 kernfs_get(kn); 917 up_read(&root->kernfs_rwsem); 918 919 return kn; 920 } 921 922 /** 923 * kernfs_create_root - create a new kernfs hierarchy 924 * @scops: optional syscall operations for the hierarchy 925 * @flags: KERNFS_ROOT_* flags 926 * @priv: opaque data associated with the new directory 927 * 928 * Return: the root of the new hierarchy on success, ERR_PTR() value on 929 * failure. 930 */ 931 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 932 unsigned int flags, void *priv) 933 { 934 struct kernfs_root *root; 935 struct kernfs_node *kn; 936 937 root = kzalloc(sizeof(*root), GFP_KERNEL); 938 if (!root) 939 return ERR_PTR(-ENOMEM); 940 941 idr_init(&root->ino_idr); 942 init_rwsem(&root->kernfs_rwsem); 943 INIT_LIST_HEAD(&root->supers); 944 945 /* 946 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 947 * High bits generation. The starting value for both ino and 948 * genenration is 1. Initialize upper 32bit allocation 949 * accordingly. 950 */ 951 if (sizeof(ino_t) >= sizeof(u64)) 952 root->id_highbits = 0; 953 else 954 root->id_highbits = 1; 955 956 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 957 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 958 KERNFS_DIR); 959 if (!kn) { 960 idr_destroy(&root->ino_idr); 961 kfree(root); 962 return ERR_PTR(-ENOMEM); 963 } 964 965 kn->priv = priv; 966 kn->dir.root = root; 967 968 root->syscall_ops = scops; 969 root->flags = flags; 970 root->kn = kn; 971 init_waitqueue_head(&root->deactivate_waitq); 972 973 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 974 kernfs_activate(kn); 975 976 return root; 977 } 978 979 /** 980 * kernfs_destroy_root - destroy a kernfs hierarchy 981 * @root: root of the hierarchy to destroy 982 * 983 * Destroy the hierarchy anchored at @root by removing all existing 984 * directories and destroying @root. 985 */ 986 void kernfs_destroy_root(struct kernfs_root *root) 987 { 988 /* 989 * kernfs_remove holds kernfs_rwsem from the root so the root 990 * shouldn't be freed during the operation. 991 */ 992 kernfs_get(root->kn); 993 kernfs_remove(root->kn); 994 kernfs_put(root->kn); /* will also free @root */ 995 } 996 997 /** 998 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 999 * @root: root to use to lookup 1000 * 1001 * Return: @root's kernfs_node 1002 */ 1003 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1004 { 1005 return root->kn; 1006 } 1007 1008 /** 1009 * kernfs_create_dir_ns - create a directory 1010 * @parent: parent in which to create a new directory 1011 * @name: name of the new directory 1012 * @mode: mode of the new directory 1013 * @uid: uid of the new directory 1014 * @gid: gid of the new directory 1015 * @priv: opaque data associated with the new directory 1016 * @ns: optional namespace tag of the directory 1017 * 1018 * Return: the created node on success, ERR_PTR() value on failure. 1019 */ 1020 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1021 const char *name, umode_t mode, 1022 kuid_t uid, kgid_t gid, 1023 void *priv, const void *ns) 1024 { 1025 struct kernfs_node *kn; 1026 int rc; 1027 1028 /* allocate */ 1029 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1030 uid, gid, KERNFS_DIR); 1031 if (!kn) 1032 return ERR_PTR(-ENOMEM); 1033 1034 kn->dir.root = parent->dir.root; 1035 kn->ns = ns; 1036 kn->priv = priv; 1037 1038 /* link in */ 1039 rc = kernfs_add_one(kn); 1040 if (!rc) 1041 return kn; 1042 1043 kernfs_put(kn); 1044 return ERR_PTR(rc); 1045 } 1046 1047 /** 1048 * kernfs_create_empty_dir - create an always empty directory 1049 * @parent: parent in which to create a new directory 1050 * @name: name of the new directory 1051 * 1052 * Return: the created node on success, ERR_PTR() value on failure. 1053 */ 1054 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1055 const char *name) 1056 { 1057 struct kernfs_node *kn; 1058 int rc; 1059 1060 /* allocate */ 1061 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1062 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1063 if (!kn) 1064 return ERR_PTR(-ENOMEM); 1065 1066 kn->flags |= KERNFS_EMPTY_DIR; 1067 kn->dir.root = parent->dir.root; 1068 kn->ns = NULL; 1069 kn->priv = NULL; 1070 1071 /* link in */ 1072 rc = kernfs_add_one(kn); 1073 if (!rc) 1074 return kn; 1075 1076 kernfs_put(kn); 1077 return ERR_PTR(rc); 1078 } 1079 1080 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1081 { 1082 struct kernfs_node *kn; 1083 struct kernfs_root *root; 1084 1085 if (flags & LOOKUP_RCU) 1086 return -ECHILD; 1087 1088 /* Negative hashed dentry? */ 1089 if (d_really_is_negative(dentry)) { 1090 struct kernfs_node *parent; 1091 1092 /* If the kernfs parent node has changed discard and 1093 * proceed to ->lookup. 1094 * 1095 * There's nothing special needed here when getting the 1096 * dentry parent, even if a concurrent rename is in 1097 * progress. That's because the dentry is negative so 1098 * it can only be the target of the rename and it will 1099 * be doing a d_move() not a replace. Consequently the 1100 * dentry d_parent won't change over the d_move(). 1101 * 1102 * Also kernfs negative dentries transitioning from 1103 * negative to positive during revalidate won't happen 1104 * because they are invalidated on containing directory 1105 * changes and the lookup re-done so that a new positive 1106 * dentry can be properly created. 1107 */ 1108 root = kernfs_root_from_sb(dentry->d_sb); 1109 down_read(&root->kernfs_rwsem); 1110 parent = kernfs_dentry_node(dentry->d_parent); 1111 if (parent) { 1112 if (kernfs_dir_changed(parent, dentry)) { 1113 up_read(&root->kernfs_rwsem); 1114 return 0; 1115 } 1116 } 1117 up_read(&root->kernfs_rwsem); 1118 1119 /* The kernfs parent node hasn't changed, leave the 1120 * dentry negative and return success. 1121 */ 1122 return 1; 1123 } 1124 1125 kn = kernfs_dentry_node(dentry); 1126 root = kernfs_root(kn); 1127 down_read(&root->kernfs_rwsem); 1128 1129 /* The kernfs node has been deactivated */ 1130 if (!kernfs_active(kn)) 1131 goto out_bad; 1132 1133 /* The kernfs node has been moved? */ 1134 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1135 goto out_bad; 1136 1137 /* The kernfs node has been renamed */ 1138 if (strcmp(dentry->d_name.name, kn->name) != 0) 1139 goto out_bad; 1140 1141 /* The kernfs node has been moved to a different namespace */ 1142 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1143 kernfs_info(dentry->d_sb)->ns != kn->ns) 1144 goto out_bad; 1145 1146 up_read(&root->kernfs_rwsem); 1147 return 1; 1148 out_bad: 1149 up_read(&root->kernfs_rwsem); 1150 return 0; 1151 } 1152 1153 const struct dentry_operations kernfs_dops = { 1154 .d_revalidate = kernfs_dop_revalidate, 1155 }; 1156 1157 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1158 struct dentry *dentry, 1159 unsigned int flags) 1160 { 1161 struct kernfs_node *parent = dir->i_private; 1162 struct kernfs_node *kn; 1163 struct kernfs_root *root; 1164 struct inode *inode = NULL; 1165 const void *ns = NULL; 1166 1167 root = kernfs_root(parent); 1168 down_read(&root->kernfs_rwsem); 1169 if (kernfs_ns_enabled(parent)) 1170 ns = kernfs_info(dir->i_sb)->ns; 1171 1172 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1173 /* attach dentry and inode */ 1174 if (kn) { 1175 /* Inactive nodes are invisible to the VFS so don't 1176 * create a negative. 1177 */ 1178 if (!kernfs_active(kn)) { 1179 up_read(&root->kernfs_rwsem); 1180 return NULL; 1181 } 1182 inode = kernfs_get_inode(dir->i_sb, kn); 1183 if (!inode) 1184 inode = ERR_PTR(-ENOMEM); 1185 } 1186 /* 1187 * Needed for negative dentry validation. 1188 * The negative dentry can be created in kernfs_iop_lookup() 1189 * or transforms from positive dentry in dentry_unlink_inode() 1190 * called from vfs_rmdir(). 1191 */ 1192 if (!IS_ERR(inode)) 1193 kernfs_set_rev(parent, dentry); 1194 up_read(&root->kernfs_rwsem); 1195 1196 /* instantiate and hash (possibly negative) dentry */ 1197 return d_splice_alias(inode, dentry); 1198 } 1199 1200 static int kernfs_iop_mkdir(struct mnt_idmap *idmap, 1201 struct inode *dir, struct dentry *dentry, 1202 umode_t mode) 1203 { 1204 struct kernfs_node *parent = dir->i_private; 1205 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1206 int ret; 1207 1208 if (!scops || !scops->mkdir) 1209 return -EPERM; 1210 1211 if (!kernfs_get_active(parent)) 1212 return -ENODEV; 1213 1214 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1215 1216 kernfs_put_active(parent); 1217 return ret; 1218 } 1219 1220 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1221 { 1222 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1223 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1224 int ret; 1225 1226 if (!scops || !scops->rmdir) 1227 return -EPERM; 1228 1229 if (!kernfs_get_active(kn)) 1230 return -ENODEV; 1231 1232 ret = scops->rmdir(kn); 1233 1234 kernfs_put_active(kn); 1235 return ret; 1236 } 1237 1238 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1239 struct inode *old_dir, struct dentry *old_dentry, 1240 struct inode *new_dir, struct dentry *new_dentry, 1241 unsigned int flags) 1242 { 1243 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1244 struct kernfs_node *new_parent = new_dir->i_private; 1245 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1246 int ret; 1247 1248 if (flags) 1249 return -EINVAL; 1250 1251 if (!scops || !scops->rename) 1252 return -EPERM; 1253 1254 if (!kernfs_get_active(kn)) 1255 return -ENODEV; 1256 1257 if (!kernfs_get_active(new_parent)) { 1258 kernfs_put_active(kn); 1259 return -ENODEV; 1260 } 1261 1262 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1263 1264 kernfs_put_active(new_parent); 1265 kernfs_put_active(kn); 1266 return ret; 1267 } 1268 1269 const struct inode_operations kernfs_dir_iops = { 1270 .lookup = kernfs_iop_lookup, 1271 .permission = kernfs_iop_permission, 1272 .setattr = kernfs_iop_setattr, 1273 .getattr = kernfs_iop_getattr, 1274 .listxattr = kernfs_iop_listxattr, 1275 1276 .mkdir = kernfs_iop_mkdir, 1277 .rmdir = kernfs_iop_rmdir, 1278 .rename = kernfs_iop_rename, 1279 }; 1280 1281 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1282 { 1283 struct kernfs_node *last; 1284 1285 while (true) { 1286 struct rb_node *rbn; 1287 1288 last = pos; 1289 1290 if (kernfs_type(pos) != KERNFS_DIR) 1291 break; 1292 1293 rbn = rb_first(&pos->dir.children); 1294 if (!rbn) 1295 break; 1296 1297 pos = rb_to_kn(rbn); 1298 } 1299 1300 return last; 1301 } 1302 1303 /** 1304 * kernfs_next_descendant_post - find the next descendant for post-order walk 1305 * @pos: the current position (%NULL to initiate traversal) 1306 * @root: kernfs_node whose descendants to walk 1307 * 1308 * Find the next descendant to visit for post-order traversal of @root's 1309 * descendants. @root is included in the iteration and the last node to be 1310 * visited. 1311 * 1312 * Return: the next descendant to visit or %NULL when done. 1313 */ 1314 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1315 struct kernfs_node *root) 1316 { 1317 struct rb_node *rbn; 1318 1319 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1320 1321 /* if first iteration, visit leftmost descendant which may be root */ 1322 if (!pos) 1323 return kernfs_leftmost_descendant(root); 1324 1325 /* if we visited @root, we're done */ 1326 if (pos == root) 1327 return NULL; 1328 1329 /* if there's an unvisited sibling, visit its leftmost descendant */ 1330 rbn = rb_next(&pos->rb); 1331 if (rbn) 1332 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1333 1334 /* no sibling left, visit parent */ 1335 return pos->parent; 1336 } 1337 1338 static void kernfs_activate_one(struct kernfs_node *kn) 1339 { 1340 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1341 1342 kn->flags |= KERNFS_ACTIVATED; 1343 1344 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1345 return; 1346 1347 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1348 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1349 1350 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1351 } 1352 1353 /** 1354 * kernfs_activate - activate a node which started deactivated 1355 * @kn: kernfs_node whose subtree is to be activated 1356 * 1357 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1358 * needs to be explicitly activated. A node which hasn't been activated 1359 * isn't visible to userland and deactivation is skipped during its 1360 * removal. This is useful to construct atomic init sequences where 1361 * creation of multiple nodes should either succeed or fail atomically. 1362 * 1363 * The caller is responsible for ensuring that this function is not called 1364 * after kernfs_remove*() is invoked on @kn. 1365 */ 1366 void kernfs_activate(struct kernfs_node *kn) 1367 { 1368 struct kernfs_node *pos; 1369 struct kernfs_root *root = kernfs_root(kn); 1370 1371 down_write(&root->kernfs_rwsem); 1372 1373 pos = NULL; 1374 while ((pos = kernfs_next_descendant_post(pos, kn))) 1375 kernfs_activate_one(pos); 1376 1377 up_write(&root->kernfs_rwsem); 1378 } 1379 1380 /** 1381 * kernfs_show - show or hide a node 1382 * @kn: kernfs_node to show or hide 1383 * @show: whether to show or hide 1384 * 1385 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1386 * ignored in future activaitons. If %true, the mark is removed and activation 1387 * state is restored. This function won't implicitly activate a new node in a 1388 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1389 * 1390 * To avoid recursion complexities, directories aren't supported for now. 1391 */ 1392 void kernfs_show(struct kernfs_node *kn, bool show) 1393 { 1394 struct kernfs_root *root = kernfs_root(kn); 1395 1396 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1397 return; 1398 1399 down_write(&root->kernfs_rwsem); 1400 1401 if (show) { 1402 kn->flags &= ~KERNFS_HIDDEN; 1403 if (kn->flags & KERNFS_ACTIVATED) 1404 kernfs_activate_one(kn); 1405 } else { 1406 kn->flags |= KERNFS_HIDDEN; 1407 if (kernfs_active(kn)) 1408 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1409 kernfs_drain(kn); 1410 } 1411 1412 up_write(&root->kernfs_rwsem); 1413 } 1414 1415 static void __kernfs_remove(struct kernfs_node *kn) 1416 { 1417 struct kernfs_node *pos; 1418 1419 /* Short-circuit if non-root @kn has already finished removal. */ 1420 if (!kn) 1421 return; 1422 1423 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1424 1425 /* 1426 * This is for kernfs_remove_self() which plays with active ref 1427 * after removal. 1428 */ 1429 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1430 return; 1431 1432 pr_debug("kernfs %s: removing\n", kn->name); 1433 1434 /* prevent new usage by marking all nodes removing and deactivating */ 1435 pos = NULL; 1436 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1437 pos->flags |= KERNFS_REMOVING; 1438 if (kernfs_active(pos)) 1439 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1440 } 1441 1442 /* deactivate and unlink the subtree node-by-node */ 1443 do { 1444 pos = kernfs_leftmost_descendant(kn); 1445 1446 /* 1447 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1448 * base ref could have been put by someone else by the time 1449 * the function returns. Make sure it doesn't go away 1450 * underneath us. 1451 */ 1452 kernfs_get(pos); 1453 1454 kernfs_drain(pos); 1455 1456 /* 1457 * kernfs_unlink_sibling() succeeds once per node. Use it 1458 * to decide who's responsible for cleanups. 1459 */ 1460 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1461 struct kernfs_iattrs *ps_iattr = 1462 pos->parent ? pos->parent->iattr : NULL; 1463 1464 /* update timestamps on the parent */ 1465 if (ps_iattr) { 1466 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1467 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1468 } 1469 1470 kernfs_put(pos); 1471 } 1472 1473 kernfs_put(pos); 1474 } while (pos != kn); 1475 } 1476 1477 /** 1478 * kernfs_remove - remove a kernfs_node recursively 1479 * @kn: the kernfs_node to remove 1480 * 1481 * Remove @kn along with all its subdirectories and files. 1482 */ 1483 void kernfs_remove(struct kernfs_node *kn) 1484 { 1485 struct kernfs_root *root; 1486 1487 if (!kn) 1488 return; 1489 1490 root = kernfs_root(kn); 1491 1492 down_write(&root->kernfs_rwsem); 1493 __kernfs_remove(kn); 1494 up_write(&root->kernfs_rwsem); 1495 } 1496 1497 /** 1498 * kernfs_break_active_protection - break out of active protection 1499 * @kn: the self kernfs_node 1500 * 1501 * The caller must be running off of a kernfs operation which is invoked 1502 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1503 * this function must also be matched with an invocation of 1504 * kernfs_unbreak_active_protection(). 1505 * 1506 * This function releases the active reference of @kn the caller is 1507 * holding. Once this function is called, @kn may be removed at any point 1508 * and the caller is solely responsible for ensuring that the objects it 1509 * dereferences are accessible. 1510 */ 1511 void kernfs_break_active_protection(struct kernfs_node *kn) 1512 { 1513 /* 1514 * Take out ourself out of the active ref dependency chain. If 1515 * we're called without an active ref, lockdep will complain. 1516 */ 1517 kernfs_put_active(kn); 1518 } 1519 1520 /** 1521 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1522 * @kn: the self kernfs_node 1523 * 1524 * If kernfs_break_active_protection() was called, this function must be 1525 * invoked before finishing the kernfs operation. Note that while this 1526 * function restores the active reference, it doesn't and can't actually 1527 * restore the active protection - @kn may already or be in the process of 1528 * being removed. Once kernfs_break_active_protection() is invoked, that 1529 * protection is irreversibly gone for the kernfs operation instance. 1530 * 1531 * While this function may be called at any point after 1532 * kernfs_break_active_protection() is invoked, its most useful location 1533 * would be right before the enclosing kernfs operation returns. 1534 */ 1535 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1536 { 1537 /* 1538 * @kn->active could be in any state; however, the increment we do 1539 * here will be undone as soon as the enclosing kernfs operation 1540 * finishes and this temporary bump can't break anything. If @kn 1541 * is alive, nothing changes. If @kn is being deactivated, the 1542 * soon-to-follow put will either finish deactivation or restore 1543 * deactivated state. If @kn is already removed, the temporary 1544 * bump is guaranteed to be gone before @kn is released. 1545 */ 1546 atomic_inc(&kn->active); 1547 if (kernfs_lockdep(kn)) 1548 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1549 } 1550 1551 /** 1552 * kernfs_remove_self - remove a kernfs_node from its own method 1553 * @kn: the self kernfs_node to remove 1554 * 1555 * The caller must be running off of a kernfs operation which is invoked 1556 * with an active reference - e.g. one of kernfs_ops. This can be used to 1557 * implement a file operation which deletes itself. 1558 * 1559 * For example, the "delete" file for a sysfs device directory can be 1560 * implemented by invoking kernfs_remove_self() on the "delete" file 1561 * itself. This function breaks the circular dependency of trying to 1562 * deactivate self while holding an active ref itself. It isn't necessary 1563 * to modify the usual removal path to use kernfs_remove_self(). The 1564 * "delete" implementation can simply invoke kernfs_remove_self() on self 1565 * before proceeding with the usual removal path. kernfs will ignore later 1566 * kernfs_remove() on self. 1567 * 1568 * kernfs_remove_self() can be called multiple times concurrently on the 1569 * same kernfs_node. Only the first one actually performs removal and 1570 * returns %true. All others will wait until the kernfs operation which 1571 * won self-removal finishes and return %false. Note that the losers wait 1572 * for the completion of not only the winning kernfs_remove_self() but also 1573 * the whole kernfs_ops which won the arbitration. This can be used to 1574 * guarantee, for example, all concurrent writes to a "delete" file to 1575 * finish only after the whole operation is complete. 1576 * 1577 * Return: %true if @kn is removed by this call, otherwise %false. 1578 */ 1579 bool kernfs_remove_self(struct kernfs_node *kn) 1580 { 1581 bool ret; 1582 struct kernfs_root *root = kernfs_root(kn); 1583 1584 down_write(&root->kernfs_rwsem); 1585 kernfs_break_active_protection(kn); 1586 1587 /* 1588 * SUICIDAL is used to arbitrate among competing invocations. Only 1589 * the first one will actually perform removal. When the removal 1590 * is complete, SUICIDED is set and the active ref is restored 1591 * while kernfs_rwsem for held exclusive. The ones which lost 1592 * arbitration waits for SUICIDED && drained which can happen only 1593 * after the enclosing kernfs operation which executed the winning 1594 * instance of kernfs_remove_self() finished. 1595 */ 1596 if (!(kn->flags & KERNFS_SUICIDAL)) { 1597 kn->flags |= KERNFS_SUICIDAL; 1598 __kernfs_remove(kn); 1599 kn->flags |= KERNFS_SUICIDED; 1600 ret = true; 1601 } else { 1602 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1603 DEFINE_WAIT(wait); 1604 1605 while (true) { 1606 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1607 1608 if ((kn->flags & KERNFS_SUICIDED) && 1609 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1610 break; 1611 1612 up_write(&root->kernfs_rwsem); 1613 schedule(); 1614 down_write(&root->kernfs_rwsem); 1615 } 1616 finish_wait(waitq, &wait); 1617 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1618 ret = false; 1619 } 1620 1621 /* 1622 * This must be done while kernfs_rwsem held exclusive; otherwise, 1623 * waiting for SUICIDED && deactivated could finish prematurely. 1624 */ 1625 kernfs_unbreak_active_protection(kn); 1626 1627 up_write(&root->kernfs_rwsem); 1628 return ret; 1629 } 1630 1631 /** 1632 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1633 * @parent: parent of the target 1634 * @name: name of the kernfs_node to remove 1635 * @ns: namespace tag of the kernfs_node to remove 1636 * 1637 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1638 * 1639 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1640 */ 1641 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1642 const void *ns) 1643 { 1644 struct kernfs_node *kn; 1645 struct kernfs_root *root; 1646 1647 if (!parent) { 1648 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1649 name); 1650 return -ENOENT; 1651 } 1652 1653 root = kernfs_root(parent); 1654 down_write(&root->kernfs_rwsem); 1655 1656 kn = kernfs_find_ns(parent, name, ns); 1657 if (kn) { 1658 kernfs_get(kn); 1659 __kernfs_remove(kn); 1660 kernfs_put(kn); 1661 } 1662 1663 up_write(&root->kernfs_rwsem); 1664 1665 if (kn) 1666 return 0; 1667 else 1668 return -ENOENT; 1669 } 1670 1671 /** 1672 * kernfs_rename_ns - move and rename a kernfs_node 1673 * @kn: target node 1674 * @new_parent: new parent to put @sd under 1675 * @new_name: new name 1676 * @new_ns: new namespace tag 1677 * 1678 * Return: %0 on success, -errno on failure. 1679 */ 1680 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1681 const char *new_name, const void *new_ns) 1682 { 1683 struct kernfs_node *old_parent; 1684 struct kernfs_root *root; 1685 const char *old_name = NULL; 1686 int error; 1687 1688 /* can't move or rename root */ 1689 if (!kn->parent) 1690 return -EINVAL; 1691 1692 root = kernfs_root(kn); 1693 down_write(&root->kernfs_rwsem); 1694 1695 error = -ENOENT; 1696 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1697 (new_parent->flags & KERNFS_EMPTY_DIR)) 1698 goto out; 1699 1700 error = 0; 1701 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1702 (strcmp(kn->name, new_name) == 0)) 1703 goto out; /* nothing to rename */ 1704 1705 error = -EEXIST; 1706 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1707 goto out; 1708 1709 /* rename kernfs_node */ 1710 if (strcmp(kn->name, new_name) != 0) { 1711 error = -ENOMEM; 1712 new_name = kstrdup_const(new_name, GFP_KERNEL); 1713 if (!new_name) 1714 goto out; 1715 } else { 1716 new_name = NULL; 1717 } 1718 1719 /* 1720 * Move to the appropriate place in the appropriate directories rbtree. 1721 */ 1722 kernfs_unlink_sibling(kn); 1723 kernfs_get(new_parent); 1724 1725 /* rename_lock protects ->parent and ->name accessors */ 1726 spin_lock_irq(&kernfs_rename_lock); 1727 1728 old_parent = kn->parent; 1729 kn->parent = new_parent; 1730 1731 kn->ns = new_ns; 1732 if (new_name) { 1733 old_name = kn->name; 1734 kn->name = new_name; 1735 } 1736 1737 spin_unlock_irq(&kernfs_rename_lock); 1738 1739 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1740 kernfs_link_sibling(kn); 1741 1742 kernfs_put(old_parent); 1743 kfree_const(old_name); 1744 1745 error = 0; 1746 out: 1747 up_write(&root->kernfs_rwsem); 1748 return error; 1749 } 1750 1751 /* Relationship between mode and the DT_xxx types */ 1752 static inline unsigned char dt_type(struct kernfs_node *kn) 1753 { 1754 return (kn->mode >> 12) & 15; 1755 } 1756 1757 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1758 { 1759 kernfs_put(filp->private_data); 1760 return 0; 1761 } 1762 1763 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1764 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1765 { 1766 if (pos) { 1767 int valid = kernfs_active(pos) && 1768 pos->parent == parent && hash == pos->hash; 1769 kernfs_put(pos); 1770 if (!valid) 1771 pos = NULL; 1772 } 1773 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1774 struct rb_node *node = parent->dir.children.rb_node; 1775 while (node) { 1776 pos = rb_to_kn(node); 1777 1778 if (hash < pos->hash) 1779 node = node->rb_left; 1780 else if (hash > pos->hash) 1781 node = node->rb_right; 1782 else 1783 break; 1784 } 1785 } 1786 /* Skip over entries which are dying/dead or in the wrong namespace */ 1787 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1788 struct rb_node *node = rb_next(&pos->rb); 1789 if (!node) 1790 pos = NULL; 1791 else 1792 pos = rb_to_kn(node); 1793 } 1794 return pos; 1795 } 1796 1797 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1798 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1799 { 1800 pos = kernfs_dir_pos(ns, parent, ino, pos); 1801 if (pos) { 1802 do { 1803 struct rb_node *node = rb_next(&pos->rb); 1804 if (!node) 1805 pos = NULL; 1806 else 1807 pos = rb_to_kn(node); 1808 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1809 } 1810 return pos; 1811 } 1812 1813 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1814 { 1815 struct dentry *dentry = file->f_path.dentry; 1816 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1817 struct kernfs_node *pos = file->private_data; 1818 struct kernfs_root *root; 1819 const void *ns = NULL; 1820 1821 if (!dir_emit_dots(file, ctx)) 1822 return 0; 1823 1824 root = kernfs_root(parent); 1825 down_read(&root->kernfs_rwsem); 1826 1827 if (kernfs_ns_enabled(parent)) 1828 ns = kernfs_info(dentry->d_sb)->ns; 1829 1830 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1831 pos; 1832 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1833 const char *name = pos->name; 1834 unsigned int type = dt_type(pos); 1835 int len = strlen(name); 1836 ino_t ino = kernfs_ino(pos); 1837 1838 ctx->pos = pos->hash; 1839 file->private_data = pos; 1840 kernfs_get(pos); 1841 1842 up_read(&root->kernfs_rwsem); 1843 if (!dir_emit(ctx, name, len, ino, type)) 1844 return 0; 1845 down_read(&root->kernfs_rwsem); 1846 } 1847 up_read(&root->kernfs_rwsem); 1848 file->private_data = NULL; 1849 ctx->pos = INT_MAX; 1850 return 0; 1851 } 1852 1853 const struct file_operations kernfs_dir_fops = { 1854 .read = generic_read_dir, 1855 .iterate_shared = kernfs_fop_readdir, 1856 .release = kernfs_dir_fop_release, 1857 .llseek = generic_file_llseek, 1858 }; 1859