1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 /* kernfs_node_depth - compute depth from @from to @to */ 55 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 56 { 57 size_t depth = 0; 58 59 while (rcu_dereference(to->__parent) && to != from) { 60 depth++; 61 to = rcu_dereference(to->__parent); 62 } 63 return depth; 64 } 65 66 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 67 struct kernfs_node *b) 68 { 69 size_t da, db; 70 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 71 72 if (ra != rb) 73 return NULL; 74 75 da = kernfs_depth(ra->kn, a); 76 db = kernfs_depth(rb->kn, b); 77 78 while (da > db) { 79 a = rcu_dereference(a->__parent); 80 da--; 81 } 82 while (db > da) { 83 b = rcu_dereference(b->__parent); 84 db--; 85 } 86 87 /* worst case b and a will be the same at root */ 88 while (b != a) { 89 b = rcu_dereference(b->__parent); 90 a = rcu_dereference(a->__parent); 91 } 92 93 return a; 94 } 95 96 /** 97 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 98 * where kn_from is treated as root of the path. 99 * @kn_from: kernfs node which should be treated as root for the path 100 * @kn_to: kernfs node to which path is needed 101 * @buf: buffer to copy the path into 102 * @buflen: size of @buf 103 * 104 * We need to handle couple of scenarios here: 105 * [1] when @kn_from is an ancestor of @kn_to at some level 106 * kn_from: /n1/n2/n3 107 * kn_to: /n1/n2/n3/n4/n5 108 * result: /n4/n5 109 * 110 * [2] when @kn_from is on a different hierarchy and we need to find common 111 * ancestor between @kn_from and @kn_to. 112 * kn_from: /n1/n2/n3/n4 113 * kn_to: /n1/n2/n5 114 * result: /../../n5 115 * OR 116 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 117 * kn_to: /n1/n2/n3 [depth=3] 118 * result: /../.. 119 * 120 * [3] when @kn_to is %NULL result will be "(null)" 121 * 122 * Return: the length of the constructed path. If the path would have been 123 * greater than @buflen, @buf contains the truncated path with the trailing 124 * '\0'. On error, -errno is returned. 125 */ 126 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 127 struct kernfs_node *kn_from, 128 char *buf, size_t buflen) 129 { 130 struct kernfs_node *kn, *common; 131 const char parent_str[] = "/.."; 132 size_t depth_from, depth_to, len = 0; 133 ssize_t copied; 134 int i, j; 135 136 if (!kn_to) 137 return strscpy(buf, "(null)", buflen); 138 139 if (!kn_from) 140 kn_from = kernfs_root(kn_to)->kn; 141 142 if (kn_from == kn_to) 143 return strscpy(buf, "/", buflen); 144 145 common = kernfs_common_ancestor(kn_from, kn_to); 146 if (WARN_ON(!common)) 147 return -EINVAL; 148 149 depth_to = kernfs_depth(common, kn_to); 150 depth_from = kernfs_depth(common, kn_from); 151 152 buf[0] = '\0'; 153 154 for (i = 0; i < depth_from; i++) { 155 copied = strscpy(buf + len, parent_str, buflen - len); 156 if (copied < 0) 157 return copied; 158 len += copied; 159 } 160 161 /* Calculate how many bytes we need for the rest */ 162 for (i = depth_to - 1; i >= 0; i--) { 163 const char *name; 164 165 for (kn = kn_to, j = 0; j < i; j++) 166 kn = rcu_dereference(kn->__parent); 167 168 name = rcu_dereference(kn->name); 169 len += scnprintf(buf + len, buflen - len, "/%s", name); 170 } 171 172 return len; 173 } 174 175 /** 176 * kernfs_name - obtain the name of a given node 177 * @kn: kernfs_node of interest 178 * @buf: buffer to copy @kn's name into 179 * @buflen: size of @buf 180 * 181 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 182 * similar to strscpy(). 183 * 184 * Fills buffer with "(null)" if @kn is %NULL. 185 * 186 * Return: the resulting length of @buf. If @buf isn't long enough, 187 * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG. 188 * 189 * This function can be called from any context. 190 */ 191 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 192 { 193 struct kernfs_node *kn_parent; 194 195 if (!kn) 196 return strscpy(buf, "(null)", buflen); 197 198 guard(rcu)(); 199 /* 200 * KERNFS_ROOT_INVARIANT_PARENT is ignored here. The name is RCU freed and 201 * the parent is either existing or not. 202 */ 203 kn_parent = rcu_dereference(kn->__parent); 204 return strscpy(buf, kn_parent ? rcu_dereference(kn->name) : "/", buflen); 205 } 206 207 /** 208 * kernfs_path_from_node - build path of node @to relative to @from. 209 * @from: parent kernfs_node relative to which we need to build the path 210 * @to: kernfs_node of interest 211 * @buf: buffer to copy @to's path into 212 * @buflen: size of @buf 213 * 214 * Builds @to's path relative to @from in @buf. @from and @to must 215 * be on the same kernfs-root. If @from is not parent of @to, then a relative 216 * path (which includes '..'s) as needed to reach from @from to @to is 217 * returned. 218 * 219 * Return: the length of the constructed path. If the path would have been 220 * greater than @buflen, @buf contains the truncated path with the trailing 221 * '\0'. On error, -errno is returned. 222 */ 223 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 224 char *buf, size_t buflen) 225 { 226 struct kernfs_root *root; 227 228 guard(rcu)(); 229 if (to) { 230 root = kernfs_root(to); 231 if (!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)) { 232 guard(read_lock_irqsave)(&kernfs_rename_lock); 233 return kernfs_path_from_node_locked(to, from, buf, buflen); 234 } 235 } 236 return kernfs_path_from_node_locked(to, from, buf, buflen); 237 } 238 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 239 240 /** 241 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 242 * @kn: kernfs_node of interest 243 * 244 * This function can be called from any context. 245 */ 246 void pr_cont_kernfs_name(struct kernfs_node *kn) 247 { 248 unsigned long flags; 249 250 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 251 252 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 253 pr_cont("%s", kernfs_pr_cont_buf); 254 255 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 256 } 257 258 /** 259 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 260 * @kn: kernfs_node of interest 261 * 262 * This function can be called from any context. 263 */ 264 void pr_cont_kernfs_path(struct kernfs_node *kn) 265 { 266 unsigned long flags; 267 int sz; 268 269 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 270 271 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 272 sizeof(kernfs_pr_cont_buf)); 273 if (sz < 0) { 274 if (sz == -E2BIG) 275 pr_cont("(name too long)"); 276 else 277 pr_cont("(error)"); 278 goto out; 279 } 280 281 pr_cont("%s", kernfs_pr_cont_buf); 282 283 out: 284 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 285 } 286 287 /** 288 * kernfs_get_parent - determine the parent node and pin it 289 * @kn: kernfs_node of interest 290 * 291 * Determines @kn's parent, pins and returns it. This function can be 292 * called from any context. 293 * 294 * Return: parent node of @kn 295 */ 296 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 297 { 298 struct kernfs_node *parent; 299 unsigned long flags; 300 301 read_lock_irqsave(&kernfs_rename_lock, flags); 302 parent = kernfs_parent(kn); 303 kernfs_get(parent); 304 read_unlock_irqrestore(&kernfs_rename_lock, flags); 305 306 return parent; 307 } 308 309 /** 310 * kernfs_name_hash - calculate hash of @ns + @name 311 * @name: Null terminated string to hash 312 * @ns: Namespace tag to hash 313 * 314 * Return: 31-bit hash of ns + name (so it fits in an off_t) 315 */ 316 static unsigned int kernfs_name_hash(const char *name, const void *ns) 317 { 318 unsigned long hash = init_name_hash(ns); 319 unsigned int len = strlen(name); 320 while (len--) 321 hash = partial_name_hash(*name++, hash); 322 hash = end_name_hash(hash); 323 hash &= 0x7fffffffU; 324 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 325 if (hash < 2) 326 hash += 2; 327 if (hash >= INT_MAX) 328 hash = INT_MAX - 1; 329 return hash; 330 } 331 332 static int kernfs_name_compare(unsigned int hash, const char *name, 333 const void *ns, const struct kernfs_node *kn) 334 { 335 if (hash < kn->hash) 336 return -1; 337 if (hash > kn->hash) 338 return 1; 339 if (ns < kn->ns) 340 return -1; 341 if (ns > kn->ns) 342 return 1; 343 return strcmp(name, kernfs_rcu_name(kn)); 344 } 345 346 static int kernfs_sd_compare(const struct kernfs_node *left, 347 const struct kernfs_node *right) 348 { 349 return kernfs_name_compare(left->hash, kernfs_rcu_name(left), left->ns, right); 350 } 351 352 /** 353 * kernfs_link_sibling - link kernfs_node into sibling rbtree 354 * @kn: kernfs_node of interest 355 * 356 * Link @kn into its sibling rbtree which starts from 357 * @kn->parent->dir.children. 358 * 359 * Locking: 360 * kernfs_rwsem held exclusive 361 * 362 * Return: 363 * %0 on success, -EEXIST on failure. 364 */ 365 static int kernfs_link_sibling(struct kernfs_node *kn) 366 { 367 struct rb_node *parent = NULL; 368 struct kernfs_node *kn_parent; 369 struct rb_node **node; 370 371 kn_parent = kernfs_parent(kn); 372 node = &kn_parent->dir.children.rb_node; 373 374 while (*node) { 375 struct kernfs_node *pos; 376 int result; 377 378 pos = rb_to_kn(*node); 379 parent = *node; 380 result = kernfs_sd_compare(kn, pos); 381 if (result < 0) 382 node = &pos->rb.rb_left; 383 else if (result > 0) 384 node = &pos->rb.rb_right; 385 else 386 return -EEXIST; 387 } 388 389 /* add new node and rebalance the tree */ 390 rb_link_node(&kn->rb, parent, node); 391 rb_insert_color(&kn->rb, &kn_parent->dir.children); 392 393 /* successfully added, account subdir number */ 394 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 395 if (kernfs_type(kn) == KERNFS_DIR) 396 kn_parent->dir.subdirs++; 397 kernfs_inc_rev(kn_parent); 398 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 399 400 return 0; 401 } 402 403 /** 404 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 405 * @kn: kernfs_node of interest 406 * 407 * Try to unlink @kn from its sibling rbtree which starts from 408 * kn->parent->dir.children. 409 * 410 * Return: %true if @kn was actually removed, 411 * %false if @kn wasn't on the rbtree. 412 * 413 * Locking: 414 * kernfs_rwsem held exclusive 415 */ 416 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 417 { 418 struct kernfs_node *kn_parent; 419 420 if (RB_EMPTY_NODE(&kn->rb)) 421 return false; 422 423 kn_parent = kernfs_parent(kn); 424 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 425 if (kernfs_type(kn) == KERNFS_DIR) 426 kn_parent->dir.subdirs--; 427 kernfs_inc_rev(kn_parent); 428 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 429 430 rb_erase(&kn->rb, &kn_parent->dir.children); 431 RB_CLEAR_NODE(&kn->rb); 432 return true; 433 } 434 435 /** 436 * kernfs_get_active - get an active reference to kernfs_node 437 * @kn: kernfs_node to get an active reference to 438 * 439 * Get an active reference of @kn. This function is noop if @kn 440 * is %NULL. 441 * 442 * Return: 443 * Pointer to @kn on success, %NULL on failure. 444 */ 445 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 446 { 447 if (unlikely(!kn)) 448 return NULL; 449 450 if (!atomic_inc_unless_negative(&kn->active)) 451 return NULL; 452 453 if (kernfs_lockdep(kn)) 454 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 455 return kn; 456 } 457 458 /** 459 * kernfs_put_active - put an active reference to kernfs_node 460 * @kn: kernfs_node to put an active reference to 461 * 462 * Put an active reference to @kn. This function is noop if @kn 463 * is %NULL. 464 */ 465 void kernfs_put_active(struct kernfs_node *kn) 466 { 467 int v; 468 469 if (unlikely(!kn)) 470 return; 471 472 if (kernfs_lockdep(kn)) 473 rwsem_release(&kn->dep_map, _RET_IP_); 474 v = atomic_dec_return(&kn->active); 475 if (likely(v != KN_DEACTIVATED_BIAS)) 476 return; 477 478 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 479 } 480 481 /** 482 * kernfs_drain - drain kernfs_node 483 * @kn: kernfs_node to drain 484 * 485 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 486 * removers may invoke this function concurrently on @kn and all will 487 * return after draining is complete. 488 */ 489 static void kernfs_drain(struct kernfs_node *kn) 490 __releases(&kernfs_root(kn)->kernfs_rwsem) 491 __acquires(&kernfs_root(kn)->kernfs_rwsem) 492 { 493 struct kernfs_root *root = kernfs_root(kn); 494 495 lockdep_assert_held_write(&root->kernfs_rwsem); 496 WARN_ON_ONCE(kernfs_active(kn)); 497 498 /* 499 * Skip draining if already fully drained. This avoids draining and its 500 * lockdep annotations for nodes which have never been activated 501 * allowing embedding kernfs_remove() in create error paths without 502 * worrying about draining. 503 */ 504 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 505 !kernfs_should_drain_open_files(kn)) 506 return; 507 508 up_write(&root->kernfs_rwsem); 509 510 if (kernfs_lockdep(kn)) { 511 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 512 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 513 lock_contended(&kn->dep_map, _RET_IP_); 514 } 515 516 wait_event(root->deactivate_waitq, 517 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 518 519 if (kernfs_lockdep(kn)) { 520 lock_acquired(&kn->dep_map, _RET_IP_); 521 rwsem_release(&kn->dep_map, _RET_IP_); 522 } 523 524 if (kernfs_should_drain_open_files(kn)) 525 kernfs_drain_open_files(kn); 526 527 down_write(&root->kernfs_rwsem); 528 } 529 530 /** 531 * kernfs_get - get a reference count on a kernfs_node 532 * @kn: the target kernfs_node 533 */ 534 void kernfs_get(struct kernfs_node *kn) 535 { 536 if (kn) { 537 WARN_ON(!atomic_read(&kn->count)); 538 atomic_inc(&kn->count); 539 } 540 } 541 EXPORT_SYMBOL_GPL(kernfs_get); 542 543 static void kernfs_free_rcu(struct rcu_head *rcu) 544 { 545 struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu); 546 547 /* If the whole node goes away, then name can't be used outside */ 548 kfree_const(rcu_access_pointer(kn->name)); 549 550 if (kn->iattr) { 551 simple_xattrs_free(&kn->iattr->xattrs, NULL); 552 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 553 } 554 555 kmem_cache_free(kernfs_node_cache, kn); 556 } 557 558 /** 559 * kernfs_put - put a reference count on a kernfs_node 560 * @kn: the target kernfs_node 561 * 562 * Put a reference count of @kn and destroy it if it reached zero. 563 */ 564 void kernfs_put(struct kernfs_node *kn) 565 { 566 struct kernfs_node *parent; 567 struct kernfs_root *root; 568 569 if (!kn || !atomic_dec_and_test(&kn->count)) 570 return; 571 root = kernfs_root(kn); 572 repeat: 573 /* 574 * Moving/renaming is always done while holding reference. 575 * kn->parent won't change beneath us. 576 */ 577 parent = kernfs_parent(kn); 578 579 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 580 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 581 parent ? rcu_dereference(parent->name) : "", 582 rcu_dereference(kn->name), atomic_read(&kn->active)); 583 584 if (kernfs_type(kn) == KERNFS_LINK) 585 kernfs_put(kn->symlink.target_kn); 586 587 spin_lock(&kernfs_idr_lock); 588 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 589 spin_unlock(&kernfs_idr_lock); 590 591 call_rcu(&kn->rcu, kernfs_free_rcu); 592 593 kn = parent; 594 if (kn) { 595 if (atomic_dec_and_test(&kn->count)) 596 goto repeat; 597 } else { 598 /* just released the root kn, free @root too */ 599 idr_destroy(&root->ino_idr); 600 kfree_rcu(root, rcu); 601 } 602 } 603 EXPORT_SYMBOL_GPL(kernfs_put); 604 605 /** 606 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 607 * @dentry: the dentry in question 608 * 609 * Return: the kernfs_node associated with @dentry. If @dentry is not a 610 * kernfs one, %NULL is returned. 611 * 612 * While the returned kernfs_node will stay accessible as long as @dentry 613 * is accessible, the returned node can be in any state and the caller is 614 * fully responsible for determining what's accessible. 615 */ 616 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 617 { 618 if (dentry->d_sb->s_op == &kernfs_sops) 619 return kernfs_dentry_node(dentry); 620 return NULL; 621 } 622 623 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 624 struct kernfs_node *parent, 625 const char *name, umode_t mode, 626 kuid_t uid, kgid_t gid, 627 unsigned flags) 628 { 629 struct kernfs_node *kn; 630 u32 id_highbits; 631 int ret; 632 633 name = kstrdup_const(name, GFP_KERNEL); 634 if (!name) 635 return NULL; 636 637 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 638 if (!kn) 639 goto err_out1; 640 641 idr_preload(GFP_KERNEL); 642 spin_lock(&kernfs_idr_lock); 643 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 644 if (ret >= 0 && ret < root->last_id_lowbits) 645 root->id_highbits++; 646 id_highbits = root->id_highbits; 647 root->last_id_lowbits = ret; 648 spin_unlock(&kernfs_idr_lock); 649 idr_preload_end(); 650 if (ret < 0) 651 goto err_out2; 652 653 kn->id = (u64)id_highbits << 32 | ret; 654 655 atomic_set(&kn->count, 1); 656 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 657 RB_CLEAR_NODE(&kn->rb); 658 659 rcu_assign_pointer(kn->name, name); 660 kn->mode = mode; 661 kn->flags = flags; 662 663 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 664 struct iattr iattr = { 665 .ia_valid = ATTR_UID | ATTR_GID, 666 .ia_uid = uid, 667 .ia_gid = gid, 668 }; 669 670 ret = __kernfs_setattr(kn, &iattr); 671 if (ret < 0) 672 goto err_out3; 673 } 674 675 if (parent) { 676 ret = security_kernfs_init_security(parent, kn); 677 if (ret) 678 goto err_out3; 679 } 680 681 return kn; 682 683 err_out3: 684 spin_lock(&kernfs_idr_lock); 685 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 686 spin_unlock(&kernfs_idr_lock); 687 err_out2: 688 kmem_cache_free(kernfs_node_cache, kn); 689 err_out1: 690 kfree_const(name); 691 return NULL; 692 } 693 694 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 695 const char *name, umode_t mode, 696 kuid_t uid, kgid_t gid, 697 unsigned flags) 698 { 699 struct kernfs_node *kn; 700 701 if (parent->mode & S_ISGID) { 702 /* this code block imitates inode_init_owner() for 703 * kernfs 704 */ 705 706 if (parent->iattr) 707 gid = parent->iattr->ia_gid; 708 709 if (flags & KERNFS_DIR) 710 mode |= S_ISGID; 711 } 712 713 kn = __kernfs_new_node(kernfs_root(parent), parent, 714 name, mode, uid, gid, flags); 715 if (kn) { 716 kernfs_get(parent); 717 rcu_assign_pointer(kn->__parent, parent); 718 } 719 return kn; 720 } 721 722 /* 723 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 724 * @root: the kernfs root 725 * @id: the target node id 726 * 727 * @id's lower 32bits encode ino and upper gen. If the gen portion is 728 * zero, all generations are matched. 729 * 730 * Return: %NULL on failure, 731 * otherwise a kernfs node with reference counter incremented. 732 */ 733 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 734 u64 id) 735 { 736 struct kernfs_node *kn; 737 ino_t ino = kernfs_id_ino(id); 738 u32 gen = kernfs_id_gen(id); 739 740 rcu_read_lock(); 741 742 kn = idr_find(&root->ino_idr, (u32)ino); 743 if (!kn) 744 goto err_unlock; 745 746 if (sizeof(ino_t) >= sizeof(u64)) { 747 /* we looked up with the low 32bits, compare the whole */ 748 if (kernfs_ino(kn) != ino) 749 goto err_unlock; 750 } else { 751 /* 0 matches all generations */ 752 if (unlikely(gen && kernfs_gen(kn) != gen)) 753 goto err_unlock; 754 } 755 756 /* 757 * We should fail if @kn has never been activated and guarantee success 758 * if the caller knows that @kn is active. Both can be achieved by 759 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 760 */ 761 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 762 goto err_unlock; 763 764 rcu_read_unlock(); 765 return kn; 766 err_unlock: 767 rcu_read_unlock(); 768 return NULL; 769 } 770 771 /** 772 * kernfs_add_one - add kernfs_node to parent without warning 773 * @kn: kernfs_node to be added 774 * 775 * The caller must already have initialized @kn->parent. This 776 * function increments nlink of the parent's inode if @kn is a 777 * directory and link into the children list of the parent. 778 * 779 * Return: 780 * %0 on success, -EEXIST if entry with the given name already 781 * exists. 782 */ 783 int kernfs_add_one(struct kernfs_node *kn) 784 { 785 struct kernfs_root *root = kernfs_root(kn); 786 struct kernfs_iattrs *ps_iattr; 787 struct kernfs_node *parent; 788 bool has_ns; 789 int ret; 790 791 down_write(&root->kernfs_rwsem); 792 parent = kernfs_parent(kn); 793 794 ret = -EINVAL; 795 has_ns = kernfs_ns_enabled(parent); 796 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 797 has_ns ? "required" : "invalid", 798 kernfs_rcu_name(parent), kernfs_rcu_name(kn))) 799 goto out_unlock; 800 801 if (kernfs_type(parent) != KERNFS_DIR) 802 goto out_unlock; 803 804 ret = -ENOENT; 805 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 806 goto out_unlock; 807 808 kn->hash = kernfs_name_hash(kernfs_rcu_name(kn), kn->ns); 809 810 ret = kernfs_link_sibling(kn); 811 if (ret) 812 goto out_unlock; 813 814 /* Update timestamps on the parent */ 815 down_write(&root->kernfs_iattr_rwsem); 816 817 ps_iattr = parent->iattr; 818 if (ps_iattr) { 819 ktime_get_real_ts64(&ps_iattr->ia_ctime); 820 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 821 } 822 823 up_write(&root->kernfs_iattr_rwsem); 824 up_write(&root->kernfs_rwsem); 825 826 /* 827 * Activate the new node unless CREATE_DEACTIVATED is requested. 828 * If not activated here, the kernfs user is responsible for 829 * activating the node with kernfs_activate(). A node which hasn't 830 * been activated is not visible to userland and its removal won't 831 * trigger deactivation. 832 */ 833 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 834 kernfs_activate(kn); 835 return 0; 836 837 out_unlock: 838 up_write(&root->kernfs_rwsem); 839 return ret; 840 } 841 842 /** 843 * kernfs_find_ns - find kernfs_node with the given name 844 * @parent: kernfs_node to search under 845 * @name: name to look for 846 * @ns: the namespace tag to use 847 * 848 * Look for kernfs_node with name @name under @parent. 849 * 850 * Return: pointer to the found kernfs_node on success, %NULL on failure. 851 */ 852 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 853 const unsigned char *name, 854 const void *ns) 855 { 856 struct rb_node *node = parent->dir.children.rb_node; 857 bool has_ns = kernfs_ns_enabled(parent); 858 unsigned int hash; 859 860 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 861 862 if (has_ns != (bool)ns) { 863 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 864 has_ns ? "required" : "invalid", kernfs_rcu_name(parent), name); 865 return NULL; 866 } 867 868 hash = kernfs_name_hash(name, ns); 869 while (node) { 870 struct kernfs_node *kn; 871 int result; 872 873 kn = rb_to_kn(node); 874 result = kernfs_name_compare(hash, name, ns, kn); 875 if (result < 0) 876 node = node->rb_left; 877 else if (result > 0) 878 node = node->rb_right; 879 else 880 return kn; 881 } 882 return NULL; 883 } 884 885 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 886 const unsigned char *path, 887 const void *ns) 888 { 889 ssize_t len; 890 char *p, *name; 891 892 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 893 894 spin_lock_irq(&kernfs_pr_cont_lock); 895 896 len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 897 898 if (len < 0) { 899 spin_unlock_irq(&kernfs_pr_cont_lock); 900 return NULL; 901 } 902 903 p = kernfs_pr_cont_buf; 904 905 while ((name = strsep(&p, "/")) && parent) { 906 if (*name == '\0') 907 continue; 908 parent = kernfs_find_ns(parent, name, ns); 909 } 910 911 spin_unlock_irq(&kernfs_pr_cont_lock); 912 913 return parent; 914 } 915 916 /** 917 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 918 * @parent: kernfs_node to search under 919 * @name: name to look for 920 * @ns: the namespace tag to use 921 * 922 * Look for kernfs_node with name @name under @parent and get a reference 923 * if found. This function may sleep. 924 * 925 * Return: pointer to the found kernfs_node on success, %NULL on failure. 926 */ 927 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 928 const char *name, const void *ns) 929 { 930 struct kernfs_node *kn; 931 struct kernfs_root *root = kernfs_root(parent); 932 933 down_read(&root->kernfs_rwsem); 934 kn = kernfs_find_ns(parent, name, ns); 935 kernfs_get(kn); 936 up_read(&root->kernfs_rwsem); 937 938 return kn; 939 } 940 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 941 942 /** 943 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 944 * @parent: kernfs_node to search under 945 * @path: path to look for 946 * @ns: the namespace tag to use 947 * 948 * Look for kernfs_node with path @path under @parent and get a reference 949 * if found. This function may sleep. 950 * 951 * Return: pointer to the found kernfs_node on success, %NULL on failure. 952 */ 953 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 954 const char *path, const void *ns) 955 { 956 struct kernfs_node *kn; 957 struct kernfs_root *root = kernfs_root(parent); 958 959 down_read(&root->kernfs_rwsem); 960 kn = kernfs_walk_ns(parent, path, ns); 961 kernfs_get(kn); 962 up_read(&root->kernfs_rwsem); 963 964 return kn; 965 } 966 967 unsigned int kernfs_root_flags(struct kernfs_node *kn) 968 { 969 return kernfs_root(kn)->flags; 970 } 971 972 /** 973 * kernfs_create_root - create a new kernfs hierarchy 974 * @scops: optional syscall operations for the hierarchy 975 * @flags: KERNFS_ROOT_* flags 976 * @priv: opaque data associated with the new directory 977 * 978 * Return: the root of the new hierarchy on success, ERR_PTR() value on 979 * failure. 980 */ 981 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 982 unsigned int flags, void *priv) 983 { 984 struct kernfs_root *root; 985 struct kernfs_node *kn; 986 987 root = kzalloc(sizeof(*root), GFP_KERNEL); 988 if (!root) 989 return ERR_PTR(-ENOMEM); 990 991 idr_init(&root->ino_idr); 992 init_rwsem(&root->kernfs_rwsem); 993 init_rwsem(&root->kernfs_iattr_rwsem); 994 init_rwsem(&root->kernfs_supers_rwsem); 995 INIT_LIST_HEAD(&root->supers); 996 997 /* 998 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 999 * High bits generation. The starting value for both ino and 1000 * genenration is 1. Initialize upper 32bit allocation 1001 * accordingly. 1002 */ 1003 if (sizeof(ino_t) >= sizeof(u64)) 1004 root->id_highbits = 0; 1005 else 1006 root->id_highbits = 1; 1007 1008 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 1009 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 1010 KERNFS_DIR); 1011 if (!kn) { 1012 idr_destroy(&root->ino_idr); 1013 kfree(root); 1014 return ERR_PTR(-ENOMEM); 1015 } 1016 1017 kn->priv = priv; 1018 kn->dir.root = root; 1019 1020 root->syscall_ops = scops; 1021 root->flags = flags; 1022 root->kn = kn; 1023 init_waitqueue_head(&root->deactivate_waitq); 1024 1025 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 1026 kernfs_activate(kn); 1027 1028 return root; 1029 } 1030 1031 /** 1032 * kernfs_destroy_root - destroy a kernfs hierarchy 1033 * @root: root of the hierarchy to destroy 1034 * 1035 * Destroy the hierarchy anchored at @root by removing all existing 1036 * directories and destroying @root. 1037 */ 1038 void kernfs_destroy_root(struct kernfs_root *root) 1039 { 1040 /* 1041 * kernfs_remove holds kernfs_rwsem from the root so the root 1042 * shouldn't be freed during the operation. 1043 */ 1044 kernfs_get(root->kn); 1045 kernfs_remove(root->kn); 1046 kernfs_put(root->kn); /* will also free @root */ 1047 } 1048 1049 /** 1050 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1051 * @root: root to use to lookup 1052 * 1053 * Return: @root's kernfs_node 1054 */ 1055 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1056 { 1057 return root->kn; 1058 } 1059 1060 /** 1061 * kernfs_create_dir_ns - create a directory 1062 * @parent: parent in which to create a new directory 1063 * @name: name of the new directory 1064 * @mode: mode of the new directory 1065 * @uid: uid of the new directory 1066 * @gid: gid of the new directory 1067 * @priv: opaque data associated with the new directory 1068 * @ns: optional namespace tag of the directory 1069 * 1070 * Return: the created node on success, ERR_PTR() value on failure. 1071 */ 1072 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1073 const char *name, umode_t mode, 1074 kuid_t uid, kgid_t gid, 1075 void *priv, const void *ns) 1076 { 1077 struct kernfs_node *kn; 1078 int rc; 1079 1080 /* allocate */ 1081 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1082 uid, gid, KERNFS_DIR); 1083 if (!kn) 1084 return ERR_PTR(-ENOMEM); 1085 1086 kn->dir.root = parent->dir.root; 1087 kn->ns = ns; 1088 kn->priv = priv; 1089 1090 /* link in */ 1091 rc = kernfs_add_one(kn); 1092 if (!rc) 1093 return kn; 1094 1095 kernfs_put(kn); 1096 return ERR_PTR(rc); 1097 } 1098 1099 /** 1100 * kernfs_create_empty_dir - create an always empty directory 1101 * @parent: parent in which to create a new directory 1102 * @name: name of the new directory 1103 * 1104 * Return: the created node on success, ERR_PTR() value on failure. 1105 */ 1106 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1107 const char *name) 1108 { 1109 struct kernfs_node *kn; 1110 int rc; 1111 1112 /* allocate */ 1113 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1114 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1115 if (!kn) 1116 return ERR_PTR(-ENOMEM); 1117 1118 kn->flags |= KERNFS_EMPTY_DIR; 1119 kn->dir.root = parent->dir.root; 1120 kn->ns = NULL; 1121 kn->priv = NULL; 1122 1123 /* link in */ 1124 rc = kernfs_add_one(kn); 1125 if (!rc) 1126 return kn; 1127 1128 kernfs_put(kn); 1129 return ERR_PTR(rc); 1130 } 1131 1132 static int kernfs_dop_revalidate(struct inode *dir, const struct qstr *name, 1133 struct dentry *dentry, unsigned int flags) 1134 { 1135 struct kernfs_node *kn, *parent; 1136 struct kernfs_root *root; 1137 1138 if (flags & LOOKUP_RCU) 1139 return -ECHILD; 1140 1141 /* Negative hashed dentry? */ 1142 if (d_really_is_negative(dentry)) { 1143 /* If the kernfs parent node has changed discard and 1144 * proceed to ->lookup. 1145 * 1146 * There's nothing special needed here when getting the 1147 * dentry parent, even if a concurrent rename is in 1148 * progress. That's because the dentry is negative so 1149 * it can only be the target of the rename and it will 1150 * be doing a d_move() not a replace. Consequently the 1151 * dentry d_parent won't change over the d_move(). 1152 * 1153 * Also kernfs negative dentries transitioning from 1154 * negative to positive during revalidate won't happen 1155 * because they are invalidated on containing directory 1156 * changes and the lookup re-done so that a new positive 1157 * dentry can be properly created. 1158 */ 1159 root = kernfs_root_from_sb(dentry->d_sb); 1160 down_read(&root->kernfs_rwsem); 1161 parent = kernfs_dentry_node(dentry->d_parent); 1162 if (parent) { 1163 if (kernfs_dir_changed(parent, dentry)) { 1164 up_read(&root->kernfs_rwsem); 1165 return 0; 1166 } 1167 } 1168 up_read(&root->kernfs_rwsem); 1169 1170 /* The kernfs parent node hasn't changed, leave the 1171 * dentry negative and return success. 1172 */ 1173 return 1; 1174 } 1175 1176 kn = kernfs_dentry_node(dentry); 1177 root = kernfs_root(kn); 1178 down_read(&root->kernfs_rwsem); 1179 1180 /* The kernfs node has been deactivated */ 1181 if (!kernfs_active(kn)) 1182 goto out_bad; 1183 1184 parent = kernfs_parent(kn); 1185 /* The kernfs node has been moved? */ 1186 if (kernfs_dentry_node(dentry->d_parent) != parent) 1187 goto out_bad; 1188 1189 /* The kernfs node has been renamed */ 1190 if (strcmp(dentry->d_name.name, kernfs_rcu_name(kn)) != 0) 1191 goto out_bad; 1192 1193 /* The kernfs node has been moved to a different namespace */ 1194 if (parent && kernfs_ns_enabled(parent) && 1195 kernfs_info(dentry->d_sb)->ns != kn->ns) 1196 goto out_bad; 1197 1198 up_read(&root->kernfs_rwsem); 1199 return 1; 1200 out_bad: 1201 up_read(&root->kernfs_rwsem); 1202 return 0; 1203 } 1204 1205 const struct dentry_operations kernfs_dops = { 1206 .d_revalidate = kernfs_dop_revalidate, 1207 }; 1208 1209 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1210 struct dentry *dentry, 1211 unsigned int flags) 1212 { 1213 struct kernfs_node *parent = dir->i_private; 1214 struct kernfs_node *kn; 1215 struct kernfs_root *root; 1216 struct inode *inode = NULL; 1217 const void *ns = NULL; 1218 1219 root = kernfs_root(parent); 1220 down_read(&root->kernfs_rwsem); 1221 if (kernfs_ns_enabled(parent)) 1222 ns = kernfs_info(dir->i_sb)->ns; 1223 1224 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1225 /* attach dentry and inode */ 1226 if (kn) { 1227 /* Inactive nodes are invisible to the VFS so don't 1228 * create a negative. 1229 */ 1230 if (!kernfs_active(kn)) { 1231 up_read(&root->kernfs_rwsem); 1232 return NULL; 1233 } 1234 inode = kernfs_get_inode(dir->i_sb, kn); 1235 if (!inode) 1236 inode = ERR_PTR(-ENOMEM); 1237 } 1238 /* 1239 * Needed for negative dentry validation. 1240 * The negative dentry can be created in kernfs_iop_lookup() 1241 * or transforms from positive dentry in dentry_unlink_inode() 1242 * called from vfs_rmdir(). 1243 */ 1244 if (!IS_ERR(inode)) 1245 kernfs_set_rev(parent, dentry); 1246 up_read(&root->kernfs_rwsem); 1247 1248 /* instantiate and hash (possibly negative) dentry */ 1249 return d_splice_alias(inode, dentry); 1250 } 1251 1252 static struct dentry *kernfs_iop_mkdir(struct mnt_idmap *idmap, 1253 struct inode *dir, struct dentry *dentry, 1254 umode_t mode) 1255 { 1256 struct kernfs_node *parent = dir->i_private; 1257 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1258 int ret; 1259 1260 if (!scops || !scops->mkdir) 1261 return ERR_PTR(-EPERM); 1262 1263 if (!kernfs_get_active(parent)) 1264 return ERR_PTR(-ENODEV); 1265 1266 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1267 1268 kernfs_put_active(parent); 1269 return ERR_PTR(ret); 1270 } 1271 1272 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1273 { 1274 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1275 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1276 int ret; 1277 1278 if (!scops || !scops->rmdir) 1279 return -EPERM; 1280 1281 if (!kernfs_get_active(kn)) 1282 return -ENODEV; 1283 1284 ret = scops->rmdir(kn); 1285 1286 kernfs_put_active(kn); 1287 return ret; 1288 } 1289 1290 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1291 struct inode *old_dir, struct dentry *old_dentry, 1292 struct inode *new_dir, struct dentry *new_dentry, 1293 unsigned int flags) 1294 { 1295 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1296 struct kernfs_node *new_parent = new_dir->i_private; 1297 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1298 int ret; 1299 1300 if (flags) 1301 return -EINVAL; 1302 1303 if (!scops || !scops->rename) 1304 return -EPERM; 1305 1306 if (!kernfs_get_active(kn)) 1307 return -ENODEV; 1308 1309 if (!kernfs_get_active(new_parent)) { 1310 kernfs_put_active(kn); 1311 return -ENODEV; 1312 } 1313 1314 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1315 1316 kernfs_put_active(new_parent); 1317 kernfs_put_active(kn); 1318 return ret; 1319 } 1320 1321 const struct inode_operations kernfs_dir_iops = { 1322 .lookup = kernfs_iop_lookup, 1323 .permission = kernfs_iop_permission, 1324 .setattr = kernfs_iop_setattr, 1325 .getattr = kernfs_iop_getattr, 1326 .listxattr = kernfs_iop_listxattr, 1327 1328 .mkdir = kernfs_iop_mkdir, 1329 .rmdir = kernfs_iop_rmdir, 1330 .rename = kernfs_iop_rename, 1331 }; 1332 1333 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1334 { 1335 struct kernfs_node *last; 1336 1337 while (true) { 1338 struct rb_node *rbn; 1339 1340 last = pos; 1341 1342 if (kernfs_type(pos) != KERNFS_DIR) 1343 break; 1344 1345 rbn = rb_first(&pos->dir.children); 1346 if (!rbn) 1347 break; 1348 1349 pos = rb_to_kn(rbn); 1350 } 1351 1352 return last; 1353 } 1354 1355 /** 1356 * kernfs_next_descendant_post - find the next descendant for post-order walk 1357 * @pos: the current position (%NULL to initiate traversal) 1358 * @root: kernfs_node whose descendants to walk 1359 * 1360 * Find the next descendant to visit for post-order traversal of @root's 1361 * descendants. @root is included in the iteration and the last node to be 1362 * visited. 1363 * 1364 * Return: the next descendant to visit or %NULL when done. 1365 */ 1366 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1367 struct kernfs_node *root) 1368 { 1369 struct rb_node *rbn; 1370 1371 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1372 1373 /* if first iteration, visit leftmost descendant which may be root */ 1374 if (!pos) 1375 return kernfs_leftmost_descendant(root); 1376 1377 /* if we visited @root, we're done */ 1378 if (pos == root) 1379 return NULL; 1380 1381 /* if there's an unvisited sibling, visit its leftmost descendant */ 1382 rbn = rb_next(&pos->rb); 1383 if (rbn) 1384 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1385 1386 /* no sibling left, visit parent */ 1387 return kernfs_parent(pos); 1388 } 1389 1390 static void kernfs_activate_one(struct kernfs_node *kn) 1391 { 1392 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1393 1394 kn->flags |= KERNFS_ACTIVATED; 1395 1396 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1397 return; 1398 1399 WARN_ON_ONCE(rcu_access_pointer(kn->__parent) && RB_EMPTY_NODE(&kn->rb)); 1400 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1401 1402 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1403 } 1404 1405 /** 1406 * kernfs_activate - activate a node which started deactivated 1407 * @kn: kernfs_node whose subtree is to be activated 1408 * 1409 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1410 * needs to be explicitly activated. A node which hasn't been activated 1411 * isn't visible to userland and deactivation is skipped during its 1412 * removal. This is useful to construct atomic init sequences where 1413 * creation of multiple nodes should either succeed or fail atomically. 1414 * 1415 * The caller is responsible for ensuring that this function is not called 1416 * after kernfs_remove*() is invoked on @kn. 1417 */ 1418 void kernfs_activate(struct kernfs_node *kn) 1419 { 1420 struct kernfs_node *pos; 1421 struct kernfs_root *root = kernfs_root(kn); 1422 1423 down_write(&root->kernfs_rwsem); 1424 1425 pos = NULL; 1426 while ((pos = kernfs_next_descendant_post(pos, kn))) 1427 kernfs_activate_one(pos); 1428 1429 up_write(&root->kernfs_rwsem); 1430 } 1431 1432 /** 1433 * kernfs_show - show or hide a node 1434 * @kn: kernfs_node to show or hide 1435 * @show: whether to show or hide 1436 * 1437 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1438 * ignored in future activaitons. If %true, the mark is removed and activation 1439 * state is restored. This function won't implicitly activate a new node in a 1440 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1441 * 1442 * To avoid recursion complexities, directories aren't supported for now. 1443 */ 1444 void kernfs_show(struct kernfs_node *kn, bool show) 1445 { 1446 struct kernfs_root *root = kernfs_root(kn); 1447 1448 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1449 return; 1450 1451 down_write(&root->kernfs_rwsem); 1452 1453 if (show) { 1454 kn->flags &= ~KERNFS_HIDDEN; 1455 if (kn->flags & KERNFS_ACTIVATED) 1456 kernfs_activate_one(kn); 1457 } else { 1458 kn->flags |= KERNFS_HIDDEN; 1459 if (kernfs_active(kn)) 1460 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1461 kernfs_drain(kn); 1462 } 1463 1464 up_write(&root->kernfs_rwsem); 1465 } 1466 1467 static void __kernfs_remove(struct kernfs_node *kn) 1468 { 1469 struct kernfs_node *pos, *parent; 1470 1471 /* Short-circuit if non-root @kn has already finished removal. */ 1472 if (!kn) 1473 return; 1474 1475 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1476 1477 /* 1478 * This is for kernfs_remove_self() which plays with active ref 1479 * after removal. 1480 */ 1481 if (kernfs_parent(kn) && RB_EMPTY_NODE(&kn->rb)) 1482 return; 1483 1484 pr_debug("kernfs %s: removing\n", kernfs_rcu_name(kn)); 1485 1486 /* prevent new usage by marking all nodes removing and deactivating */ 1487 pos = NULL; 1488 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1489 pos->flags |= KERNFS_REMOVING; 1490 if (kernfs_active(pos)) 1491 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1492 } 1493 1494 /* deactivate and unlink the subtree node-by-node */ 1495 do { 1496 pos = kernfs_leftmost_descendant(kn); 1497 1498 /* 1499 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1500 * base ref could have been put by someone else by the time 1501 * the function returns. Make sure it doesn't go away 1502 * underneath us. 1503 */ 1504 kernfs_get(pos); 1505 1506 kernfs_drain(pos); 1507 parent = kernfs_parent(pos); 1508 /* 1509 * kernfs_unlink_sibling() succeeds once per node. Use it 1510 * to decide who's responsible for cleanups. 1511 */ 1512 if (!parent || kernfs_unlink_sibling(pos)) { 1513 struct kernfs_iattrs *ps_iattr = 1514 parent ? parent->iattr : NULL; 1515 1516 /* update timestamps on the parent */ 1517 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1518 1519 if (ps_iattr) { 1520 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1521 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1522 } 1523 1524 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1525 kernfs_put(pos); 1526 } 1527 1528 kernfs_put(pos); 1529 } while (pos != kn); 1530 } 1531 1532 /** 1533 * kernfs_remove - remove a kernfs_node recursively 1534 * @kn: the kernfs_node to remove 1535 * 1536 * Remove @kn along with all its subdirectories and files. 1537 */ 1538 void kernfs_remove(struct kernfs_node *kn) 1539 { 1540 struct kernfs_root *root; 1541 1542 if (!kn) 1543 return; 1544 1545 root = kernfs_root(kn); 1546 1547 down_write(&root->kernfs_rwsem); 1548 __kernfs_remove(kn); 1549 up_write(&root->kernfs_rwsem); 1550 } 1551 1552 /** 1553 * kernfs_break_active_protection - break out of active protection 1554 * @kn: the self kernfs_node 1555 * 1556 * The caller must be running off of a kernfs operation which is invoked 1557 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1558 * this function must also be matched with an invocation of 1559 * kernfs_unbreak_active_protection(). 1560 * 1561 * This function releases the active reference of @kn the caller is 1562 * holding. Once this function is called, @kn may be removed at any point 1563 * and the caller is solely responsible for ensuring that the objects it 1564 * dereferences are accessible. 1565 */ 1566 void kernfs_break_active_protection(struct kernfs_node *kn) 1567 { 1568 /* 1569 * Take out ourself out of the active ref dependency chain. If 1570 * we're called without an active ref, lockdep will complain. 1571 */ 1572 kernfs_put_active(kn); 1573 } 1574 1575 /** 1576 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1577 * @kn: the self kernfs_node 1578 * 1579 * If kernfs_break_active_protection() was called, this function must be 1580 * invoked before finishing the kernfs operation. Note that while this 1581 * function restores the active reference, it doesn't and can't actually 1582 * restore the active protection - @kn may already or be in the process of 1583 * being removed. Once kernfs_break_active_protection() is invoked, that 1584 * protection is irreversibly gone for the kernfs operation instance. 1585 * 1586 * While this function may be called at any point after 1587 * kernfs_break_active_protection() is invoked, its most useful location 1588 * would be right before the enclosing kernfs operation returns. 1589 */ 1590 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1591 { 1592 /* 1593 * @kn->active could be in any state; however, the increment we do 1594 * here will be undone as soon as the enclosing kernfs operation 1595 * finishes and this temporary bump can't break anything. If @kn 1596 * is alive, nothing changes. If @kn is being deactivated, the 1597 * soon-to-follow put will either finish deactivation or restore 1598 * deactivated state. If @kn is already removed, the temporary 1599 * bump is guaranteed to be gone before @kn is released. 1600 */ 1601 atomic_inc(&kn->active); 1602 if (kernfs_lockdep(kn)) 1603 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1604 } 1605 1606 /** 1607 * kernfs_remove_self - remove a kernfs_node from its own method 1608 * @kn: the self kernfs_node to remove 1609 * 1610 * The caller must be running off of a kernfs operation which is invoked 1611 * with an active reference - e.g. one of kernfs_ops. This can be used to 1612 * implement a file operation which deletes itself. 1613 * 1614 * For example, the "delete" file for a sysfs device directory can be 1615 * implemented by invoking kernfs_remove_self() on the "delete" file 1616 * itself. This function breaks the circular dependency of trying to 1617 * deactivate self while holding an active ref itself. It isn't necessary 1618 * to modify the usual removal path to use kernfs_remove_self(). The 1619 * "delete" implementation can simply invoke kernfs_remove_self() on self 1620 * before proceeding with the usual removal path. kernfs will ignore later 1621 * kernfs_remove() on self. 1622 * 1623 * kernfs_remove_self() can be called multiple times concurrently on the 1624 * same kernfs_node. Only the first one actually performs removal and 1625 * returns %true. All others will wait until the kernfs operation which 1626 * won self-removal finishes and return %false. Note that the losers wait 1627 * for the completion of not only the winning kernfs_remove_self() but also 1628 * the whole kernfs_ops which won the arbitration. This can be used to 1629 * guarantee, for example, all concurrent writes to a "delete" file to 1630 * finish only after the whole operation is complete. 1631 * 1632 * Return: %true if @kn is removed by this call, otherwise %false. 1633 */ 1634 bool kernfs_remove_self(struct kernfs_node *kn) 1635 { 1636 bool ret; 1637 struct kernfs_root *root = kernfs_root(kn); 1638 1639 down_write(&root->kernfs_rwsem); 1640 kernfs_break_active_protection(kn); 1641 1642 /* 1643 * SUICIDAL is used to arbitrate among competing invocations. Only 1644 * the first one will actually perform removal. When the removal 1645 * is complete, SUICIDED is set and the active ref is restored 1646 * while kernfs_rwsem for held exclusive. The ones which lost 1647 * arbitration waits for SUICIDED && drained which can happen only 1648 * after the enclosing kernfs operation which executed the winning 1649 * instance of kernfs_remove_self() finished. 1650 */ 1651 if (!(kn->flags & KERNFS_SUICIDAL)) { 1652 kn->flags |= KERNFS_SUICIDAL; 1653 __kernfs_remove(kn); 1654 kn->flags |= KERNFS_SUICIDED; 1655 ret = true; 1656 } else { 1657 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1658 DEFINE_WAIT(wait); 1659 1660 while (true) { 1661 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1662 1663 if ((kn->flags & KERNFS_SUICIDED) && 1664 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1665 break; 1666 1667 up_write(&root->kernfs_rwsem); 1668 schedule(); 1669 down_write(&root->kernfs_rwsem); 1670 } 1671 finish_wait(waitq, &wait); 1672 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1673 ret = false; 1674 } 1675 1676 /* 1677 * This must be done while kernfs_rwsem held exclusive; otherwise, 1678 * waiting for SUICIDED && deactivated could finish prematurely. 1679 */ 1680 kernfs_unbreak_active_protection(kn); 1681 1682 up_write(&root->kernfs_rwsem); 1683 return ret; 1684 } 1685 1686 /** 1687 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1688 * @parent: parent of the target 1689 * @name: name of the kernfs_node to remove 1690 * @ns: namespace tag of the kernfs_node to remove 1691 * 1692 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1693 * 1694 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1695 */ 1696 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1697 const void *ns) 1698 { 1699 struct kernfs_node *kn; 1700 struct kernfs_root *root; 1701 1702 if (!parent) { 1703 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1704 name); 1705 return -ENOENT; 1706 } 1707 1708 root = kernfs_root(parent); 1709 down_write(&root->kernfs_rwsem); 1710 1711 kn = kernfs_find_ns(parent, name, ns); 1712 if (kn) { 1713 kernfs_get(kn); 1714 __kernfs_remove(kn); 1715 kernfs_put(kn); 1716 } 1717 1718 up_write(&root->kernfs_rwsem); 1719 1720 if (kn) 1721 return 0; 1722 else 1723 return -ENOENT; 1724 } 1725 1726 /** 1727 * kernfs_rename_ns - move and rename a kernfs_node 1728 * @kn: target node 1729 * @new_parent: new parent to put @sd under 1730 * @new_name: new name 1731 * @new_ns: new namespace tag 1732 * 1733 * Return: %0 on success, -errno on failure. 1734 */ 1735 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1736 const char *new_name, const void *new_ns) 1737 { 1738 struct kernfs_node *old_parent; 1739 struct kernfs_root *root; 1740 const char *old_name; 1741 int error; 1742 1743 /* can't move or rename root */ 1744 if (!rcu_access_pointer(kn->__parent)) 1745 return -EINVAL; 1746 1747 root = kernfs_root(kn); 1748 down_write(&root->kernfs_rwsem); 1749 1750 error = -ENOENT; 1751 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1752 (new_parent->flags & KERNFS_EMPTY_DIR)) 1753 goto out; 1754 1755 old_parent = kernfs_parent(kn); 1756 if (root->flags & KERNFS_ROOT_INVARIANT_PARENT) { 1757 error = -EINVAL; 1758 if (WARN_ON_ONCE(old_parent != new_parent)) 1759 goto out; 1760 } 1761 1762 error = 0; 1763 old_name = kernfs_rcu_name(kn); 1764 if (!new_name) 1765 new_name = old_name; 1766 if ((old_parent == new_parent) && (kn->ns == new_ns) && 1767 (strcmp(old_name, new_name) == 0)) 1768 goto out; /* nothing to rename */ 1769 1770 error = -EEXIST; 1771 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1772 goto out; 1773 1774 /* rename kernfs_node */ 1775 if (strcmp(old_name, new_name) != 0) { 1776 error = -ENOMEM; 1777 new_name = kstrdup_const(new_name, GFP_KERNEL); 1778 if (!new_name) 1779 goto out; 1780 } else { 1781 new_name = NULL; 1782 } 1783 1784 /* 1785 * Move to the appropriate place in the appropriate directories rbtree. 1786 */ 1787 kernfs_unlink_sibling(kn); 1788 1789 /* rename_lock protects ->parent accessors */ 1790 if (old_parent != new_parent) { 1791 kernfs_get(new_parent); 1792 write_lock_irq(&kernfs_rename_lock); 1793 1794 rcu_assign_pointer(kn->__parent, new_parent); 1795 1796 kn->ns = new_ns; 1797 if (new_name) 1798 rcu_assign_pointer(kn->name, new_name); 1799 1800 write_unlock_irq(&kernfs_rename_lock); 1801 kernfs_put(old_parent); 1802 } else { 1803 /* name assignment is RCU protected, parent is the same */ 1804 kn->ns = new_ns; 1805 if (new_name) 1806 rcu_assign_pointer(kn->name, new_name); 1807 } 1808 1809 kn->hash = kernfs_name_hash(new_name ?: old_name, kn->ns); 1810 kernfs_link_sibling(kn); 1811 1812 if (new_name && !is_kernel_rodata((unsigned long)old_name)) 1813 kfree_rcu_mightsleep(old_name); 1814 1815 error = 0; 1816 out: 1817 up_write(&root->kernfs_rwsem); 1818 return error; 1819 } 1820 1821 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1822 { 1823 kernfs_put(filp->private_data); 1824 return 0; 1825 } 1826 1827 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1828 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1829 { 1830 if (pos) { 1831 int valid = kernfs_active(pos) && 1832 rcu_access_pointer(pos->__parent) == parent && 1833 hash == pos->hash; 1834 kernfs_put(pos); 1835 if (!valid) 1836 pos = NULL; 1837 } 1838 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1839 struct rb_node *node = parent->dir.children.rb_node; 1840 while (node) { 1841 pos = rb_to_kn(node); 1842 1843 if (hash < pos->hash) 1844 node = node->rb_left; 1845 else if (hash > pos->hash) 1846 node = node->rb_right; 1847 else 1848 break; 1849 } 1850 } 1851 /* Skip over entries which are dying/dead or in the wrong namespace */ 1852 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1853 struct rb_node *node = rb_next(&pos->rb); 1854 if (!node) 1855 pos = NULL; 1856 else 1857 pos = rb_to_kn(node); 1858 } 1859 return pos; 1860 } 1861 1862 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1863 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1864 { 1865 pos = kernfs_dir_pos(ns, parent, ino, pos); 1866 if (pos) { 1867 do { 1868 struct rb_node *node = rb_next(&pos->rb); 1869 if (!node) 1870 pos = NULL; 1871 else 1872 pos = rb_to_kn(node); 1873 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1874 } 1875 return pos; 1876 } 1877 1878 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1879 { 1880 struct dentry *dentry = file->f_path.dentry; 1881 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1882 struct kernfs_node *pos = file->private_data; 1883 struct kernfs_root *root; 1884 const void *ns = NULL; 1885 1886 if (!dir_emit_dots(file, ctx)) 1887 return 0; 1888 1889 root = kernfs_root(parent); 1890 down_read(&root->kernfs_rwsem); 1891 1892 if (kernfs_ns_enabled(parent)) 1893 ns = kernfs_info(dentry->d_sb)->ns; 1894 1895 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1896 pos; 1897 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1898 const char *name = kernfs_rcu_name(pos); 1899 unsigned int type = fs_umode_to_dtype(pos->mode); 1900 int len = strlen(name); 1901 ino_t ino = kernfs_ino(pos); 1902 1903 ctx->pos = pos->hash; 1904 file->private_data = pos; 1905 kernfs_get(pos); 1906 1907 if (!dir_emit(ctx, name, len, ino, type)) { 1908 up_read(&root->kernfs_rwsem); 1909 return 0; 1910 } 1911 } 1912 up_read(&root->kernfs_rwsem); 1913 file->private_data = NULL; 1914 ctx->pos = INT_MAX; 1915 return 0; 1916 } 1917 1918 const struct file_operations kernfs_dir_fops = { 1919 .read = generic_read_dir, 1920 .iterate_shared = kernfs_fop_readdir, 1921 .release = kernfs_dir_fop_release, 1922 .llseek = generic_file_llseek, 1923 }; 1924