xref: /linux/fs/kernfs/dir.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	if (!kn)
45 		return strlcpy(buf, "(null)", buflen);
46 
47 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49 
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 	size_t depth = 0;
54 
55 	while (to->parent && to != from) {
56 		depth++;
57 		to = to->parent;
58 	}
59 	return depth;
60 }
61 
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 						  struct kernfs_node *b)
64 {
65 	size_t da, db;
66 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67 
68 	if (ra != rb)
69 		return NULL;
70 
71 	da = kernfs_depth(ra->kn, a);
72 	db = kernfs_depth(rb->kn, b);
73 
74 	while (da > db) {
75 		a = a->parent;
76 		da--;
77 	}
78 	while (db > da) {
79 		b = b->parent;
80 		db--;
81 	}
82 
83 	/* worst case b and a will be the same at root */
84 	while (b != a) {
85 		b = b->parent;
86 		a = a->parent;
87 	}
88 
89 	return a;
90 }
91 
92 /**
93  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94  * where kn_from is treated as root of the path.
95  * @kn_from: kernfs node which should be treated as root for the path
96  * @kn_to: kernfs node to which path is needed
97  * @buf: buffer to copy the path into
98  * @buflen: size of @buf
99  *
100  * We need to handle couple of scenarios here:
101  * [1] when @kn_from is an ancestor of @kn_to at some level
102  * kn_from: /n1/n2/n3
103  * kn_to:   /n1/n2/n3/n4/n5
104  * result:  /n4/n5
105  *
106  * [2] when @kn_from is on a different hierarchy and we need to find common
107  * ancestor between @kn_from and @kn_to.
108  * kn_from: /n1/n2/n3/n4
109  * kn_to:   /n1/n2/n5
110  * result:  /../../n5
111  * OR
112  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
113  * kn_to:   /n1/n2/n3         [depth=3]
114  * result:  /../..
115  *
116  * [3] when @kn_to is NULL result will be "(null)"
117  *
118  * Returns the length of the full path.  If the full length is equal to or
119  * greater than @buflen, @buf contains the truncated path with the trailing
120  * '\0'.  On error, -errno is returned.
121  */
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 					struct kernfs_node *kn_from,
124 					char *buf, size_t buflen)
125 {
126 	struct kernfs_node *kn, *common;
127 	const char parent_str[] = "/..";
128 	size_t depth_from, depth_to, len = 0;
129 	int i, j;
130 
131 	if (!kn_to)
132 		return strlcpy(buf, "(null)", buflen);
133 
134 	if (!kn_from)
135 		kn_from = kernfs_root(kn_to)->kn;
136 
137 	if (kn_from == kn_to)
138 		return strlcpy(buf, "/", buflen);
139 
140 	if (!buf)
141 		return -EINVAL;
142 
143 	common = kernfs_common_ancestor(kn_from, kn_to);
144 	if (WARN_ON(!common))
145 		return -EINVAL;
146 
147 	depth_to = kernfs_depth(common, kn_to);
148 	depth_from = kernfs_depth(common, kn_from);
149 
150 	buf[0] = '\0';
151 
152 	for (i = 0; i < depth_from; i++)
153 		len += strlcpy(buf + len, parent_str,
154 			       len < buflen ? buflen - len : 0);
155 
156 	/* Calculate how many bytes we need for the rest */
157 	for (i = depth_to - 1; i >= 0; i--) {
158 		for (kn = kn_to, j = 0; j < i; j++)
159 			kn = kn->parent;
160 		len += strlcpy(buf + len, "/",
161 			       len < buflen ? buflen - len : 0);
162 		len += strlcpy(buf + len, kn->name,
163 			       len < buflen ? buflen - len : 0);
164 	}
165 
166 	return len;
167 }
168 
169 /**
170  * kernfs_name - obtain the name of a given node
171  * @kn: kernfs_node of interest
172  * @buf: buffer to copy @kn's name into
173  * @buflen: size of @buf
174  *
175  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
176  * similar to strlcpy().  It returns the length of @kn's name and if @buf
177  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178  *
179  * Fills buffer with "(null)" if @kn is NULL.
180  *
181  * This function can be called from any context.
182  */
183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184 {
185 	unsigned long flags;
186 	int ret;
187 
188 	spin_lock_irqsave(&kernfs_rename_lock, flags);
189 	ret = kernfs_name_locked(kn, buf, buflen);
190 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 	return ret;
192 }
193 
194 /**
195  * kernfs_path_from_node - build path of node @to relative to @from.
196  * @from: parent kernfs_node relative to which we need to build the path
197  * @to: kernfs_node of interest
198  * @buf: buffer to copy @to's path into
199  * @buflen: size of @buf
200  *
201  * Builds @to's path relative to @from in @buf. @from and @to must
202  * be on the same kernfs-root. If @from is not parent of @to, then a relative
203  * path (which includes '..'s) as needed to reach from @from to @to is
204  * returned.
205  *
206  * Returns the length of the full path.  If the full length is equal to or
207  * greater than @buflen, @buf contains the truncated path with the trailing
208  * '\0'.  On error, -errno is returned.
209  */
210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 			  char *buf, size_t buflen)
212 {
213 	unsigned long flags;
214 	int ret;
215 
216 	spin_lock_irqsave(&kernfs_rename_lock, flags);
217 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222 
223 /**
224  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225  * @kn: kernfs_node of interest
226  *
227  * This function can be called from any context.
228  */
229 void pr_cont_kernfs_name(struct kernfs_node *kn)
230 {
231 	unsigned long flags;
232 
233 	spin_lock_irqsave(&kernfs_rename_lock, flags);
234 
235 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 	pr_cont("%s", kernfs_pr_cont_buf);
237 
238 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239 }
240 
241 /**
242  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243  * @kn: kernfs_node of interest
244  *
245  * This function can be called from any context.
246  */
247 void pr_cont_kernfs_path(struct kernfs_node *kn)
248 {
249 	unsigned long flags;
250 	int sz;
251 
252 	spin_lock_irqsave(&kernfs_rename_lock, flags);
253 
254 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 					  sizeof(kernfs_pr_cont_buf));
256 	if (sz < 0) {
257 		pr_cont("(error)");
258 		goto out;
259 	}
260 
261 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 		pr_cont("(name too long)");
263 		goto out;
264 	}
265 
266 	pr_cont("%s", kernfs_pr_cont_buf);
267 
268 out:
269 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270 }
271 
272 /**
273  * kernfs_get_parent - determine the parent node and pin it
274  * @kn: kernfs_node of interest
275  *
276  * Determines @kn's parent, pins and returns it.  This function can be
277  * called from any context.
278  */
279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280 {
281 	struct kernfs_node *parent;
282 	unsigned long flags;
283 
284 	spin_lock_irqsave(&kernfs_rename_lock, flags);
285 	parent = kn->parent;
286 	kernfs_get(parent);
287 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288 
289 	return parent;
290 }
291 
292 /**
293  *	kernfs_name_hash
294  *	@name: Null terminated string to hash
295  *	@ns:   Namespace tag to hash
296  *
297  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
298  */
299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
300 {
301 	unsigned long hash = init_name_hash(ns);
302 	unsigned int len = strlen(name);
303 	while (len--)
304 		hash = partial_name_hash(*name++, hash);
305 	hash = end_name_hash(hash);
306 	hash &= 0x7fffffffU;
307 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
308 	if (hash < 2)
309 		hash += 2;
310 	if (hash >= INT_MAX)
311 		hash = INT_MAX - 1;
312 	return hash;
313 }
314 
315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 			       const void *ns, const struct kernfs_node *kn)
317 {
318 	if (hash < kn->hash)
319 		return -1;
320 	if (hash > kn->hash)
321 		return 1;
322 	if (ns < kn->ns)
323 		return -1;
324 	if (ns > kn->ns)
325 		return 1;
326 	return strcmp(name, kn->name);
327 }
328 
329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 			     const struct kernfs_node *right)
331 {
332 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 }
334 
335 /**
336  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
337  *	@kn: kernfs_node of interest
338  *
339  *	Link @kn into its sibling rbtree which starts from
340  *	@kn->parent->dir.children.
341  *
342  *	Locking:
343  *	mutex_lock(kernfs_mutex)
344  *
345  *	RETURNS:
346  *	0 on susccess -EEXIST on failure.
347  */
348 static int kernfs_link_sibling(struct kernfs_node *kn)
349 {
350 	struct rb_node **node = &kn->parent->dir.children.rb_node;
351 	struct rb_node *parent = NULL;
352 
353 	while (*node) {
354 		struct kernfs_node *pos;
355 		int result;
356 
357 		pos = rb_to_kn(*node);
358 		parent = *node;
359 		result = kernfs_sd_compare(kn, pos);
360 		if (result < 0)
361 			node = &pos->rb.rb_left;
362 		else if (result > 0)
363 			node = &pos->rb.rb_right;
364 		else
365 			return -EEXIST;
366 	}
367 
368 	/* add new node and rebalance the tree */
369 	rb_link_node(&kn->rb, parent, node);
370 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
371 
372 	/* successfully added, account subdir number */
373 	if (kernfs_type(kn) == KERNFS_DIR)
374 		kn->parent->dir.subdirs++;
375 
376 	return 0;
377 }
378 
379 /**
380  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381  *	@kn: kernfs_node of interest
382  *
383  *	Try to unlink @kn from its sibling rbtree which starts from
384  *	kn->parent->dir.children.  Returns %true if @kn was actually
385  *	removed, %false if @kn wasn't on the rbtree.
386  *
387  *	Locking:
388  *	mutex_lock(kernfs_mutex)
389  */
390 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
391 {
392 	if (RB_EMPTY_NODE(&kn->rb))
393 		return false;
394 
395 	if (kernfs_type(kn) == KERNFS_DIR)
396 		kn->parent->dir.subdirs--;
397 
398 	rb_erase(&kn->rb, &kn->parent->dir.children);
399 	RB_CLEAR_NODE(&kn->rb);
400 	return true;
401 }
402 
403 /**
404  *	kernfs_get_active - get an active reference to kernfs_node
405  *	@kn: kernfs_node to get an active reference to
406  *
407  *	Get an active reference of @kn.  This function is noop if @kn
408  *	is NULL.
409  *
410  *	RETURNS:
411  *	Pointer to @kn on success, NULL on failure.
412  */
413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
414 {
415 	if (unlikely(!kn))
416 		return NULL;
417 
418 	if (!atomic_inc_unless_negative(&kn->active))
419 		return NULL;
420 
421 	if (kernfs_lockdep(kn))
422 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 	return kn;
424 }
425 
426 /**
427  *	kernfs_put_active - put an active reference to kernfs_node
428  *	@kn: kernfs_node to put an active reference to
429  *
430  *	Put an active reference to @kn.  This function is noop if @kn
431  *	is NULL.
432  */
433 void kernfs_put_active(struct kernfs_node *kn)
434 {
435 	int v;
436 
437 	if (unlikely(!kn))
438 		return;
439 
440 	if (kernfs_lockdep(kn))
441 		rwsem_release(&kn->dep_map, _RET_IP_);
442 	v = atomic_dec_return(&kn->active);
443 	if (likely(v != KN_DEACTIVATED_BIAS))
444 		return;
445 
446 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
447 }
448 
449 /**
450  * kernfs_drain - drain kernfs_node
451  * @kn: kernfs_node to drain
452  *
453  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
454  * removers may invoke this function concurrently on @kn and all will
455  * return after draining is complete.
456  */
457 static void kernfs_drain(struct kernfs_node *kn)
458 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 	struct kernfs_root *root = kernfs_root(kn);
461 
462 	lockdep_assert_held(&kernfs_mutex);
463 	WARN_ON_ONCE(kernfs_active(kn));
464 
465 	mutex_unlock(&kernfs_mutex);
466 
467 	if (kernfs_lockdep(kn)) {
468 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 			lock_contended(&kn->dep_map, _RET_IP_);
471 	}
472 
473 	/* but everyone should wait for draining */
474 	wait_event(root->deactivate_waitq,
475 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476 
477 	if (kernfs_lockdep(kn)) {
478 		lock_acquired(&kn->dep_map, _RET_IP_);
479 		rwsem_release(&kn->dep_map, _RET_IP_);
480 	}
481 
482 	kernfs_drain_open_files(kn);
483 
484 	mutex_lock(&kernfs_mutex);
485 }
486 
487 /**
488  * kernfs_get - get a reference count on a kernfs_node
489  * @kn: the target kernfs_node
490  */
491 void kernfs_get(struct kernfs_node *kn)
492 {
493 	if (kn) {
494 		WARN_ON(!atomic_read(&kn->count));
495 		atomic_inc(&kn->count);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499 
500 /**
501  * kernfs_put - put a reference count on a kernfs_node
502  * @kn: the target kernfs_node
503  *
504  * Put a reference count of @kn and destroy it if it reached zero.
505  */
506 void kernfs_put(struct kernfs_node *kn)
507 {
508 	struct kernfs_node *parent;
509 	struct kernfs_root *root;
510 
511 	if (!kn || !atomic_dec_and_test(&kn->count))
512 		return;
513 	root = kernfs_root(kn);
514  repeat:
515 	/*
516 	 * Moving/renaming is always done while holding reference.
517 	 * kn->parent won't change beneath us.
518 	 */
519 	parent = kn->parent;
520 
521 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
522 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
523 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
524 
525 	if (kernfs_type(kn) == KERNFS_LINK)
526 		kernfs_put(kn->symlink.target_kn);
527 
528 	kfree_const(kn->name);
529 
530 	if (kn->iattr) {
531 		simple_xattrs_free(&kn->iattr->xattrs);
532 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
533 	}
534 	spin_lock(&kernfs_idr_lock);
535 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
536 	spin_unlock(&kernfs_idr_lock);
537 	kmem_cache_free(kernfs_node_cache, kn);
538 
539 	kn = parent;
540 	if (kn) {
541 		if (atomic_dec_and_test(&kn->count))
542 			goto repeat;
543 	} else {
544 		/* just released the root kn, free @root too */
545 		idr_destroy(&root->ino_idr);
546 		kfree(root);
547 	}
548 }
549 EXPORT_SYMBOL_GPL(kernfs_put);
550 
551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
552 {
553 	struct kernfs_node *kn;
554 
555 	if (flags & LOOKUP_RCU)
556 		return -ECHILD;
557 
558 	/* Always perform fresh lookup for negatives */
559 	if (d_really_is_negative(dentry))
560 		goto out_bad_unlocked;
561 
562 	kn = kernfs_dentry_node(dentry);
563 	mutex_lock(&kernfs_mutex);
564 
565 	/* The kernfs node has been deactivated */
566 	if (!kernfs_active(kn))
567 		goto out_bad;
568 
569 	/* The kernfs node has been moved? */
570 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
571 		goto out_bad;
572 
573 	/* The kernfs node has been renamed */
574 	if (strcmp(dentry->d_name.name, kn->name) != 0)
575 		goto out_bad;
576 
577 	/* The kernfs node has been moved to a different namespace */
578 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
579 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
580 		goto out_bad;
581 
582 	mutex_unlock(&kernfs_mutex);
583 	return 1;
584 out_bad:
585 	mutex_unlock(&kernfs_mutex);
586 out_bad_unlocked:
587 	return 0;
588 }
589 
590 const struct dentry_operations kernfs_dops = {
591 	.d_revalidate	= kernfs_dop_revalidate,
592 };
593 
594 /**
595  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
596  * @dentry: the dentry in question
597  *
598  * Return the kernfs_node associated with @dentry.  If @dentry is not a
599  * kernfs one, %NULL is returned.
600  *
601  * While the returned kernfs_node will stay accessible as long as @dentry
602  * is accessible, the returned node can be in any state and the caller is
603  * fully responsible for determining what's accessible.
604  */
605 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
606 {
607 	if (dentry->d_sb->s_op == &kernfs_sops)
608 		return kernfs_dentry_node(dentry);
609 	return NULL;
610 }
611 
612 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
613 					     struct kernfs_node *parent,
614 					     const char *name, umode_t mode,
615 					     kuid_t uid, kgid_t gid,
616 					     unsigned flags)
617 {
618 	struct kernfs_node *kn;
619 	u32 id_highbits;
620 	int ret;
621 
622 	name = kstrdup_const(name, GFP_KERNEL);
623 	if (!name)
624 		return NULL;
625 
626 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
627 	if (!kn)
628 		goto err_out1;
629 
630 	idr_preload(GFP_KERNEL);
631 	spin_lock(&kernfs_idr_lock);
632 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
633 	if (ret >= 0 && ret < root->last_id_lowbits)
634 		root->id_highbits++;
635 	id_highbits = root->id_highbits;
636 	root->last_id_lowbits = ret;
637 	spin_unlock(&kernfs_idr_lock);
638 	idr_preload_end();
639 	if (ret < 0)
640 		goto err_out2;
641 
642 	kn->id = (u64)id_highbits << 32 | ret;
643 
644 	atomic_set(&kn->count, 1);
645 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
646 	RB_CLEAR_NODE(&kn->rb);
647 
648 	kn->name = name;
649 	kn->mode = mode;
650 	kn->flags = flags;
651 
652 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
653 		struct iattr iattr = {
654 			.ia_valid = ATTR_UID | ATTR_GID,
655 			.ia_uid = uid,
656 			.ia_gid = gid,
657 		};
658 
659 		ret = __kernfs_setattr(kn, &iattr);
660 		if (ret < 0)
661 			goto err_out3;
662 	}
663 
664 	if (parent) {
665 		ret = security_kernfs_init_security(parent, kn);
666 		if (ret)
667 			goto err_out3;
668 	}
669 
670 	return kn;
671 
672  err_out3:
673 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
674  err_out2:
675 	kmem_cache_free(kernfs_node_cache, kn);
676  err_out1:
677 	kfree_const(name);
678 	return NULL;
679 }
680 
681 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
682 				    const char *name, umode_t mode,
683 				    kuid_t uid, kgid_t gid,
684 				    unsigned flags)
685 {
686 	struct kernfs_node *kn;
687 
688 	kn = __kernfs_new_node(kernfs_root(parent), parent,
689 			       name, mode, uid, gid, flags);
690 	if (kn) {
691 		kernfs_get(parent);
692 		kn->parent = parent;
693 	}
694 	return kn;
695 }
696 
697 /*
698  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
699  * @root: the kernfs root
700  * @id: the target node id
701  *
702  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
703  * zero, all generations are matched.
704  *
705  * RETURNS:
706  * NULL on failure. Return a kernfs node with reference counter incremented
707  */
708 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
709 						   u64 id)
710 {
711 	struct kernfs_node *kn;
712 	ino_t ino = kernfs_id_ino(id);
713 	u32 gen = kernfs_id_gen(id);
714 
715 	spin_lock(&kernfs_idr_lock);
716 
717 	kn = idr_find(&root->ino_idr, (u32)ino);
718 	if (!kn)
719 		goto err_unlock;
720 
721 	if (sizeof(ino_t) >= sizeof(u64)) {
722 		/* we looked up with the low 32bits, compare the whole */
723 		if (kernfs_ino(kn) != ino)
724 			goto err_unlock;
725 	} else {
726 		/* 0 matches all generations */
727 		if (unlikely(gen && kernfs_gen(kn) != gen))
728 			goto err_unlock;
729 	}
730 
731 	/*
732 	 * ACTIVATED is protected with kernfs_mutex but it was clear when
733 	 * @kn was added to idr and we just wanna see it set.  No need to
734 	 * grab kernfs_mutex.
735 	 */
736 	if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
737 		     !atomic_inc_not_zero(&kn->count)))
738 		goto err_unlock;
739 
740 	spin_unlock(&kernfs_idr_lock);
741 	return kn;
742 err_unlock:
743 	spin_unlock(&kernfs_idr_lock);
744 	return NULL;
745 }
746 
747 /**
748  *	kernfs_add_one - add kernfs_node to parent without warning
749  *	@kn: kernfs_node to be added
750  *
751  *	The caller must already have initialized @kn->parent.  This
752  *	function increments nlink of the parent's inode if @kn is a
753  *	directory and link into the children list of the parent.
754  *
755  *	RETURNS:
756  *	0 on success, -EEXIST if entry with the given name already
757  *	exists.
758  */
759 int kernfs_add_one(struct kernfs_node *kn)
760 {
761 	struct kernfs_node *parent = kn->parent;
762 	struct kernfs_iattrs *ps_iattr;
763 	bool has_ns;
764 	int ret;
765 
766 	mutex_lock(&kernfs_mutex);
767 
768 	ret = -EINVAL;
769 	has_ns = kernfs_ns_enabled(parent);
770 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
771 		 has_ns ? "required" : "invalid", parent->name, kn->name))
772 		goto out_unlock;
773 
774 	if (kernfs_type(parent) != KERNFS_DIR)
775 		goto out_unlock;
776 
777 	ret = -ENOENT;
778 	if (parent->flags & KERNFS_EMPTY_DIR)
779 		goto out_unlock;
780 
781 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
782 		goto out_unlock;
783 
784 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
785 
786 	ret = kernfs_link_sibling(kn);
787 	if (ret)
788 		goto out_unlock;
789 
790 	/* Update timestamps on the parent */
791 	ps_iattr = parent->iattr;
792 	if (ps_iattr) {
793 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
794 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
795 	}
796 
797 	mutex_unlock(&kernfs_mutex);
798 
799 	/*
800 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
801 	 * If not activated here, the kernfs user is responsible for
802 	 * activating the node with kernfs_activate().  A node which hasn't
803 	 * been activated is not visible to userland and its removal won't
804 	 * trigger deactivation.
805 	 */
806 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
807 		kernfs_activate(kn);
808 	return 0;
809 
810 out_unlock:
811 	mutex_unlock(&kernfs_mutex);
812 	return ret;
813 }
814 
815 /**
816  * kernfs_find_ns - find kernfs_node with the given name
817  * @parent: kernfs_node to search under
818  * @name: name to look for
819  * @ns: the namespace tag to use
820  *
821  * Look for kernfs_node with name @name under @parent.  Returns pointer to
822  * the found kernfs_node on success, %NULL on failure.
823  */
824 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
825 					  const unsigned char *name,
826 					  const void *ns)
827 {
828 	struct rb_node *node = parent->dir.children.rb_node;
829 	bool has_ns = kernfs_ns_enabled(parent);
830 	unsigned int hash;
831 
832 	lockdep_assert_held(&kernfs_mutex);
833 
834 	if (has_ns != (bool)ns) {
835 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
836 		     has_ns ? "required" : "invalid", parent->name, name);
837 		return NULL;
838 	}
839 
840 	hash = kernfs_name_hash(name, ns);
841 	while (node) {
842 		struct kernfs_node *kn;
843 		int result;
844 
845 		kn = rb_to_kn(node);
846 		result = kernfs_name_compare(hash, name, ns, kn);
847 		if (result < 0)
848 			node = node->rb_left;
849 		else if (result > 0)
850 			node = node->rb_right;
851 		else
852 			return kn;
853 	}
854 	return NULL;
855 }
856 
857 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
858 					  const unsigned char *path,
859 					  const void *ns)
860 {
861 	size_t len;
862 	char *p, *name;
863 
864 	lockdep_assert_held(&kernfs_mutex);
865 
866 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
867 	spin_lock_irq(&kernfs_rename_lock);
868 
869 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
870 
871 	if (len >= sizeof(kernfs_pr_cont_buf)) {
872 		spin_unlock_irq(&kernfs_rename_lock);
873 		return NULL;
874 	}
875 
876 	p = kernfs_pr_cont_buf;
877 
878 	while ((name = strsep(&p, "/")) && parent) {
879 		if (*name == '\0')
880 			continue;
881 		parent = kernfs_find_ns(parent, name, ns);
882 	}
883 
884 	spin_unlock_irq(&kernfs_rename_lock);
885 
886 	return parent;
887 }
888 
889 /**
890  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
891  * @parent: kernfs_node to search under
892  * @name: name to look for
893  * @ns: the namespace tag to use
894  *
895  * Look for kernfs_node with name @name under @parent and get a reference
896  * if found.  This function may sleep and returns pointer to the found
897  * kernfs_node on success, %NULL on failure.
898  */
899 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
900 					   const char *name, const void *ns)
901 {
902 	struct kernfs_node *kn;
903 
904 	mutex_lock(&kernfs_mutex);
905 	kn = kernfs_find_ns(parent, name, ns);
906 	kernfs_get(kn);
907 	mutex_unlock(&kernfs_mutex);
908 
909 	return kn;
910 }
911 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
912 
913 /**
914  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
915  * @parent: kernfs_node to search under
916  * @path: path to look for
917  * @ns: the namespace tag to use
918  *
919  * Look for kernfs_node with path @path under @parent and get a reference
920  * if found.  This function may sleep and returns pointer to the found
921  * kernfs_node on success, %NULL on failure.
922  */
923 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
924 					   const char *path, const void *ns)
925 {
926 	struct kernfs_node *kn;
927 
928 	mutex_lock(&kernfs_mutex);
929 	kn = kernfs_walk_ns(parent, path, ns);
930 	kernfs_get(kn);
931 	mutex_unlock(&kernfs_mutex);
932 
933 	return kn;
934 }
935 
936 /**
937  * kernfs_create_root - create a new kernfs hierarchy
938  * @scops: optional syscall operations for the hierarchy
939  * @flags: KERNFS_ROOT_* flags
940  * @priv: opaque data associated with the new directory
941  *
942  * Returns the root of the new hierarchy on success, ERR_PTR() value on
943  * failure.
944  */
945 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
946 				       unsigned int flags, void *priv)
947 {
948 	struct kernfs_root *root;
949 	struct kernfs_node *kn;
950 
951 	root = kzalloc(sizeof(*root), GFP_KERNEL);
952 	if (!root)
953 		return ERR_PTR(-ENOMEM);
954 
955 	idr_init(&root->ino_idr);
956 	INIT_LIST_HEAD(&root->supers);
957 
958 	/*
959 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
960 	 * High bits generation.  The starting value for both ino and
961 	 * genenration is 1.  Initialize upper 32bit allocation
962 	 * accordingly.
963 	 */
964 	if (sizeof(ino_t) >= sizeof(u64))
965 		root->id_highbits = 0;
966 	else
967 		root->id_highbits = 1;
968 
969 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
970 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
971 			       KERNFS_DIR);
972 	if (!kn) {
973 		idr_destroy(&root->ino_idr);
974 		kfree(root);
975 		return ERR_PTR(-ENOMEM);
976 	}
977 
978 	kn->priv = priv;
979 	kn->dir.root = root;
980 
981 	root->syscall_ops = scops;
982 	root->flags = flags;
983 	root->kn = kn;
984 	init_waitqueue_head(&root->deactivate_waitq);
985 
986 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
987 		kernfs_activate(kn);
988 
989 	return root;
990 }
991 
992 /**
993  * kernfs_destroy_root - destroy a kernfs hierarchy
994  * @root: root of the hierarchy to destroy
995  *
996  * Destroy the hierarchy anchored at @root by removing all existing
997  * directories and destroying @root.
998  */
999 void kernfs_destroy_root(struct kernfs_root *root)
1000 {
1001 	kernfs_remove(root->kn);	/* will also free @root */
1002 }
1003 
1004 /**
1005  * kernfs_create_dir_ns - create a directory
1006  * @parent: parent in which to create a new directory
1007  * @name: name of the new directory
1008  * @mode: mode of the new directory
1009  * @uid: uid of the new directory
1010  * @gid: gid of the new directory
1011  * @priv: opaque data associated with the new directory
1012  * @ns: optional namespace tag of the directory
1013  *
1014  * Returns the created node on success, ERR_PTR() value on failure.
1015  */
1016 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1017 					 const char *name, umode_t mode,
1018 					 kuid_t uid, kgid_t gid,
1019 					 void *priv, const void *ns)
1020 {
1021 	struct kernfs_node *kn;
1022 	int rc;
1023 
1024 	/* allocate */
1025 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1026 			     uid, gid, KERNFS_DIR);
1027 	if (!kn)
1028 		return ERR_PTR(-ENOMEM);
1029 
1030 	kn->dir.root = parent->dir.root;
1031 	kn->ns = ns;
1032 	kn->priv = priv;
1033 
1034 	/* link in */
1035 	rc = kernfs_add_one(kn);
1036 	if (!rc)
1037 		return kn;
1038 
1039 	kernfs_put(kn);
1040 	return ERR_PTR(rc);
1041 }
1042 
1043 /**
1044  * kernfs_create_empty_dir - create an always empty directory
1045  * @parent: parent in which to create a new directory
1046  * @name: name of the new directory
1047  *
1048  * Returns the created node on success, ERR_PTR() value on failure.
1049  */
1050 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1051 					    const char *name)
1052 {
1053 	struct kernfs_node *kn;
1054 	int rc;
1055 
1056 	/* allocate */
1057 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1058 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1059 	if (!kn)
1060 		return ERR_PTR(-ENOMEM);
1061 
1062 	kn->flags |= KERNFS_EMPTY_DIR;
1063 	kn->dir.root = parent->dir.root;
1064 	kn->ns = NULL;
1065 	kn->priv = NULL;
1066 
1067 	/* link in */
1068 	rc = kernfs_add_one(kn);
1069 	if (!rc)
1070 		return kn;
1071 
1072 	kernfs_put(kn);
1073 	return ERR_PTR(rc);
1074 }
1075 
1076 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1077 					struct dentry *dentry,
1078 					unsigned int flags)
1079 {
1080 	struct dentry *ret;
1081 	struct kernfs_node *parent = dir->i_private;
1082 	struct kernfs_node *kn;
1083 	struct inode *inode;
1084 	const void *ns = NULL;
1085 
1086 	mutex_lock(&kernfs_mutex);
1087 
1088 	if (kernfs_ns_enabled(parent))
1089 		ns = kernfs_info(dir->i_sb)->ns;
1090 
1091 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1092 
1093 	/* no such entry */
1094 	if (!kn || !kernfs_active(kn)) {
1095 		ret = NULL;
1096 		goto out_unlock;
1097 	}
1098 
1099 	/* attach dentry and inode */
1100 	inode = kernfs_get_inode(dir->i_sb, kn);
1101 	if (!inode) {
1102 		ret = ERR_PTR(-ENOMEM);
1103 		goto out_unlock;
1104 	}
1105 
1106 	/* instantiate and hash dentry */
1107 	ret = d_splice_alias(inode, dentry);
1108  out_unlock:
1109 	mutex_unlock(&kernfs_mutex);
1110 	return ret;
1111 }
1112 
1113 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1114 			    umode_t mode)
1115 {
1116 	struct kernfs_node *parent = dir->i_private;
1117 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1118 	int ret;
1119 
1120 	if (!scops || !scops->mkdir)
1121 		return -EPERM;
1122 
1123 	if (!kernfs_get_active(parent))
1124 		return -ENODEV;
1125 
1126 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1127 
1128 	kernfs_put_active(parent);
1129 	return ret;
1130 }
1131 
1132 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1133 {
1134 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1135 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1136 	int ret;
1137 
1138 	if (!scops || !scops->rmdir)
1139 		return -EPERM;
1140 
1141 	if (!kernfs_get_active(kn))
1142 		return -ENODEV;
1143 
1144 	ret = scops->rmdir(kn);
1145 
1146 	kernfs_put_active(kn);
1147 	return ret;
1148 }
1149 
1150 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1151 			     struct inode *new_dir, struct dentry *new_dentry,
1152 			     unsigned int flags)
1153 {
1154 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1155 	struct kernfs_node *new_parent = new_dir->i_private;
1156 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1157 	int ret;
1158 
1159 	if (flags)
1160 		return -EINVAL;
1161 
1162 	if (!scops || !scops->rename)
1163 		return -EPERM;
1164 
1165 	if (!kernfs_get_active(kn))
1166 		return -ENODEV;
1167 
1168 	if (!kernfs_get_active(new_parent)) {
1169 		kernfs_put_active(kn);
1170 		return -ENODEV;
1171 	}
1172 
1173 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1174 
1175 	kernfs_put_active(new_parent);
1176 	kernfs_put_active(kn);
1177 	return ret;
1178 }
1179 
1180 const struct inode_operations kernfs_dir_iops = {
1181 	.lookup		= kernfs_iop_lookup,
1182 	.permission	= kernfs_iop_permission,
1183 	.setattr	= kernfs_iop_setattr,
1184 	.getattr	= kernfs_iop_getattr,
1185 	.listxattr	= kernfs_iop_listxattr,
1186 
1187 	.mkdir		= kernfs_iop_mkdir,
1188 	.rmdir		= kernfs_iop_rmdir,
1189 	.rename		= kernfs_iop_rename,
1190 };
1191 
1192 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1193 {
1194 	struct kernfs_node *last;
1195 
1196 	while (true) {
1197 		struct rb_node *rbn;
1198 
1199 		last = pos;
1200 
1201 		if (kernfs_type(pos) != KERNFS_DIR)
1202 			break;
1203 
1204 		rbn = rb_first(&pos->dir.children);
1205 		if (!rbn)
1206 			break;
1207 
1208 		pos = rb_to_kn(rbn);
1209 	}
1210 
1211 	return last;
1212 }
1213 
1214 /**
1215  * kernfs_next_descendant_post - find the next descendant for post-order walk
1216  * @pos: the current position (%NULL to initiate traversal)
1217  * @root: kernfs_node whose descendants to walk
1218  *
1219  * Find the next descendant to visit for post-order traversal of @root's
1220  * descendants.  @root is included in the iteration and the last node to be
1221  * visited.
1222  */
1223 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1224 						       struct kernfs_node *root)
1225 {
1226 	struct rb_node *rbn;
1227 
1228 	lockdep_assert_held(&kernfs_mutex);
1229 
1230 	/* if first iteration, visit leftmost descendant which may be root */
1231 	if (!pos)
1232 		return kernfs_leftmost_descendant(root);
1233 
1234 	/* if we visited @root, we're done */
1235 	if (pos == root)
1236 		return NULL;
1237 
1238 	/* if there's an unvisited sibling, visit its leftmost descendant */
1239 	rbn = rb_next(&pos->rb);
1240 	if (rbn)
1241 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1242 
1243 	/* no sibling left, visit parent */
1244 	return pos->parent;
1245 }
1246 
1247 /**
1248  * kernfs_activate - activate a node which started deactivated
1249  * @kn: kernfs_node whose subtree is to be activated
1250  *
1251  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1252  * needs to be explicitly activated.  A node which hasn't been activated
1253  * isn't visible to userland and deactivation is skipped during its
1254  * removal.  This is useful to construct atomic init sequences where
1255  * creation of multiple nodes should either succeed or fail atomically.
1256  *
1257  * The caller is responsible for ensuring that this function is not called
1258  * after kernfs_remove*() is invoked on @kn.
1259  */
1260 void kernfs_activate(struct kernfs_node *kn)
1261 {
1262 	struct kernfs_node *pos;
1263 
1264 	mutex_lock(&kernfs_mutex);
1265 
1266 	pos = NULL;
1267 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1268 		if (pos->flags & KERNFS_ACTIVATED)
1269 			continue;
1270 
1271 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1272 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1273 
1274 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1275 		pos->flags |= KERNFS_ACTIVATED;
1276 	}
1277 
1278 	mutex_unlock(&kernfs_mutex);
1279 }
1280 
1281 static void __kernfs_remove(struct kernfs_node *kn)
1282 {
1283 	struct kernfs_node *pos;
1284 
1285 	lockdep_assert_held(&kernfs_mutex);
1286 
1287 	/*
1288 	 * Short-circuit if non-root @kn has already finished removal.
1289 	 * This is for kernfs_remove_self() which plays with active ref
1290 	 * after removal.
1291 	 */
1292 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1293 		return;
1294 
1295 	pr_debug("kernfs %s: removing\n", kn->name);
1296 
1297 	/* prevent any new usage under @kn by deactivating all nodes */
1298 	pos = NULL;
1299 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1300 		if (kernfs_active(pos))
1301 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1302 
1303 	/* deactivate and unlink the subtree node-by-node */
1304 	do {
1305 		pos = kernfs_leftmost_descendant(kn);
1306 
1307 		/*
1308 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1309 		 * base ref could have been put by someone else by the time
1310 		 * the function returns.  Make sure it doesn't go away
1311 		 * underneath us.
1312 		 */
1313 		kernfs_get(pos);
1314 
1315 		/*
1316 		 * Drain iff @kn was activated.  This avoids draining and
1317 		 * its lockdep annotations for nodes which have never been
1318 		 * activated and allows embedding kernfs_remove() in create
1319 		 * error paths without worrying about draining.
1320 		 */
1321 		if (kn->flags & KERNFS_ACTIVATED)
1322 			kernfs_drain(pos);
1323 		else
1324 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1325 
1326 		/*
1327 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1328 		 * to decide who's responsible for cleanups.
1329 		 */
1330 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1331 			struct kernfs_iattrs *ps_iattr =
1332 				pos->parent ? pos->parent->iattr : NULL;
1333 
1334 			/* update timestamps on the parent */
1335 			if (ps_iattr) {
1336 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1337 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1338 			}
1339 
1340 			kernfs_put(pos);
1341 		}
1342 
1343 		kernfs_put(pos);
1344 	} while (pos != kn);
1345 }
1346 
1347 /**
1348  * kernfs_remove - remove a kernfs_node recursively
1349  * @kn: the kernfs_node to remove
1350  *
1351  * Remove @kn along with all its subdirectories and files.
1352  */
1353 void kernfs_remove(struct kernfs_node *kn)
1354 {
1355 	mutex_lock(&kernfs_mutex);
1356 	__kernfs_remove(kn);
1357 	mutex_unlock(&kernfs_mutex);
1358 }
1359 
1360 /**
1361  * kernfs_break_active_protection - break out of active protection
1362  * @kn: the self kernfs_node
1363  *
1364  * The caller must be running off of a kernfs operation which is invoked
1365  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1366  * this function must also be matched with an invocation of
1367  * kernfs_unbreak_active_protection().
1368  *
1369  * This function releases the active reference of @kn the caller is
1370  * holding.  Once this function is called, @kn may be removed at any point
1371  * and the caller is solely responsible for ensuring that the objects it
1372  * dereferences are accessible.
1373  */
1374 void kernfs_break_active_protection(struct kernfs_node *kn)
1375 {
1376 	/*
1377 	 * Take out ourself out of the active ref dependency chain.  If
1378 	 * we're called without an active ref, lockdep will complain.
1379 	 */
1380 	kernfs_put_active(kn);
1381 }
1382 
1383 /**
1384  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1385  * @kn: the self kernfs_node
1386  *
1387  * If kernfs_break_active_protection() was called, this function must be
1388  * invoked before finishing the kernfs operation.  Note that while this
1389  * function restores the active reference, it doesn't and can't actually
1390  * restore the active protection - @kn may already or be in the process of
1391  * being removed.  Once kernfs_break_active_protection() is invoked, that
1392  * protection is irreversibly gone for the kernfs operation instance.
1393  *
1394  * While this function may be called at any point after
1395  * kernfs_break_active_protection() is invoked, its most useful location
1396  * would be right before the enclosing kernfs operation returns.
1397  */
1398 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1399 {
1400 	/*
1401 	 * @kn->active could be in any state; however, the increment we do
1402 	 * here will be undone as soon as the enclosing kernfs operation
1403 	 * finishes and this temporary bump can't break anything.  If @kn
1404 	 * is alive, nothing changes.  If @kn is being deactivated, the
1405 	 * soon-to-follow put will either finish deactivation or restore
1406 	 * deactivated state.  If @kn is already removed, the temporary
1407 	 * bump is guaranteed to be gone before @kn is released.
1408 	 */
1409 	atomic_inc(&kn->active);
1410 	if (kernfs_lockdep(kn))
1411 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1412 }
1413 
1414 /**
1415  * kernfs_remove_self - remove a kernfs_node from its own method
1416  * @kn: the self kernfs_node to remove
1417  *
1418  * The caller must be running off of a kernfs operation which is invoked
1419  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1420  * implement a file operation which deletes itself.
1421  *
1422  * For example, the "delete" file for a sysfs device directory can be
1423  * implemented by invoking kernfs_remove_self() on the "delete" file
1424  * itself.  This function breaks the circular dependency of trying to
1425  * deactivate self while holding an active ref itself.  It isn't necessary
1426  * to modify the usual removal path to use kernfs_remove_self().  The
1427  * "delete" implementation can simply invoke kernfs_remove_self() on self
1428  * before proceeding with the usual removal path.  kernfs will ignore later
1429  * kernfs_remove() on self.
1430  *
1431  * kernfs_remove_self() can be called multiple times concurrently on the
1432  * same kernfs_node.  Only the first one actually performs removal and
1433  * returns %true.  All others will wait until the kernfs operation which
1434  * won self-removal finishes and return %false.  Note that the losers wait
1435  * for the completion of not only the winning kernfs_remove_self() but also
1436  * the whole kernfs_ops which won the arbitration.  This can be used to
1437  * guarantee, for example, all concurrent writes to a "delete" file to
1438  * finish only after the whole operation is complete.
1439  */
1440 bool kernfs_remove_self(struct kernfs_node *kn)
1441 {
1442 	bool ret;
1443 
1444 	mutex_lock(&kernfs_mutex);
1445 	kernfs_break_active_protection(kn);
1446 
1447 	/*
1448 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1449 	 * the first one will actually perform removal.  When the removal
1450 	 * is complete, SUICIDED is set and the active ref is restored
1451 	 * while holding kernfs_mutex.  The ones which lost arbitration
1452 	 * waits for SUICDED && drained which can happen only after the
1453 	 * enclosing kernfs operation which executed the winning instance
1454 	 * of kernfs_remove_self() finished.
1455 	 */
1456 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1457 		kn->flags |= KERNFS_SUICIDAL;
1458 		__kernfs_remove(kn);
1459 		kn->flags |= KERNFS_SUICIDED;
1460 		ret = true;
1461 	} else {
1462 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1463 		DEFINE_WAIT(wait);
1464 
1465 		while (true) {
1466 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1467 
1468 			if ((kn->flags & KERNFS_SUICIDED) &&
1469 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1470 				break;
1471 
1472 			mutex_unlock(&kernfs_mutex);
1473 			schedule();
1474 			mutex_lock(&kernfs_mutex);
1475 		}
1476 		finish_wait(waitq, &wait);
1477 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1478 		ret = false;
1479 	}
1480 
1481 	/*
1482 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1483 	 * for SUICIDED && deactivated could finish prematurely.
1484 	 */
1485 	kernfs_unbreak_active_protection(kn);
1486 
1487 	mutex_unlock(&kernfs_mutex);
1488 	return ret;
1489 }
1490 
1491 /**
1492  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1493  * @parent: parent of the target
1494  * @name: name of the kernfs_node to remove
1495  * @ns: namespace tag of the kernfs_node to remove
1496  *
1497  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1498  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1499  */
1500 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1501 			     const void *ns)
1502 {
1503 	struct kernfs_node *kn;
1504 
1505 	if (!parent) {
1506 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1507 			name);
1508 		return -ENOENT;
1509 	}
1510 
1511 	mutex_lock(&kernfs_mutex);
1512 
1513 	kn = kernfs_find_ns(parent, name, ns);
1514 	if (kn)
1515 		__kernfs_remove(kn);
1516 
1517 	mutex_unlock(&kernfs_mutex);
1518 
1519 	if (kn)
1520 		return 0;
1521 	else
1522 		return -ENOENT;
1523 }
1524 
1525 /**
1526  * kernfs_rename_ns - move and rename a kernfs_node
1527  * @kn: target node
1528  * @new_parent: new parent to put @sd under
1529  * @new_name: new name
1530  * @new_ns: new namespace tag
1531  */
1532 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1533 		     const char *new_name, const void *new_ns)
1534 {
1535 	struct kernfs_node *old_parent;
1536 	const char *old_name = NULL;
1537 	int error;
1538 
1539 	/* can't move or rename root */
1540 	if (!kn->parent)
1541 		return -EINVAL;
1542 
1543 	mutex_lock(&kernfs_mutex);
1544 
1545 	error = -ENOENT;
1546 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1547 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1548 		goto out;
1549 
1550 	error = 0;
1551 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1552 	    (strcmp(kn->name, new_name) == 0))
1553 		goto out;	/* nothing to rename */
1554 
1555 	error = -EEXIST;
1556 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1557 		goto out;
1558 
1559 	/* rename kernfs_node */
1560 	if (strcmp(kn->name, new_name) != 0) {
1561 		error = -ENOMEM;
1562 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1563 		if (!new_name)
1564 			goto out;
1565 	} else {
1566 		new_name = NULL;
1567 	}
1568 
1569 	/*
1570 	 * Move to the appropriate place in the appropriate directories rbtree.
1571 	 */
1572 	kernfs_unlink_sibling(kn);
1573 	kernfs_get(new_parent);
1574 
1575 	/* rename_lock protects ->parent and ->name accessors */
1576 	spin_lock_irq(&kernfs_rename_lock);
1577 
1578 	old_parent = kn->parent;
1579 	kn->parent = new_parent;
1580 
1581 	kn->ns = new_ns;
1582 	if (new_name) {
1583 		old_name = kn->name;
1584 		kn->name = new_name;
1585 	}
1586 
1587 	spin_unlock_irq(&kernfs_rename_lock);
1588 
1589 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1590 	kernfs_link_sibling(kn);
1591 
1592 	kernfs_put(old_parent);
1593 	kfree_const(old_name);
1594 
1595 	error = 0;
1596  out:
1597 	mutex_unlock(&kernfs_mutex);
1598 	return error;
1599 }
1600 
1601 /* Relationship between mode and the DT_xxx types */
1602 static inline unsigned char dt_type(struct kernfs_node *kn)
1603 {
1604 	return (kn->mode >> 12) & 15;
1605 }
1606 
1607 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1608 {
1609 	kernfs_put(filp->private_data);
1610 	return 0;
1611 }
1612 
1613 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1614 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1615 {
1616 	if (pos) {
1617 		int valid = kernfs_active(pos) &&
1618 			pos->parent == parent && hash == pos->hash;
1619 		kernfs_put(pos);
1620 		if (!valid)
1621 			pos = NULL;
1622 	}
1623 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1624 		struct rb_node *node = parent->dir.children.rb_node;
1625 		while (node) {
1626 			pos = rb_to_kn(node);
1627 
1628 			if (hash < pos->hash)
1629 				node = node->rb_left;
1630 			else if (hash > pos->hash)
1631 				node = node->rb_right;
1632 			else
1633 				break;
1634 		}
1635 	}
1636 	/* Skip over entries which are dying/dead or in the wrong namespace */
1637 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1638 		struct rb_node *node = rb_next(&pos->rb);
1639 		if (!node)
1640 			pos = NULL;
1641 		else
1642 			pos = rb_to_kn(node);
1643 	}
1644 	return pos;
1645 }
1646 
1647 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1648 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1649 {
1650 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1651 	if (pos) {
1652 		do {
1653 			struct rb_node *node = rb_next(&pos->rb);
1654 			if (!node)
1655 				pos = NULL;
1656 			else
1657 				pos = rb_to_kn(node);
1658 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1659 	}
1660 	return pos;
1661 }
1662 
1663 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1664 {
1665 	struct dentry *dentry = file->f_path.dentry;
1666 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1667 	struct kernfs_node *pos = file->private_data;
1668 	const void *ns = NULL;
1669 
1670 	if (!dir_emit_dots(file, ctx))
1671 		return 0;
1672 	mutex_lock(&kernfs_mutex);
1673 
1674 	if (kernfs_ns_enabled(parent))
1675 		ns = kernfs_info(dentry->d_sb)->ns;
1676 
1677 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1678 	     pos;
1679 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1680 		const char *name = pos->name;
1681 		unsigned int type = dt_type(pos);
1682 		int len = strlen(name);
1683 		ino_t ino = kernfs_ino(pos);
1684 
1685 		ctx->pos = pos->hash;
1686 		file->private_data = pos;
1687 		kernfs_get(pos);
1688 
1689 		mutex_unlock(&kernfs_mutex);
1690 		if (!dir_emit(ctx, name, len, ino, type))
1691 			return 0;
1692 		mutex_lock(&kernfs_mutex);
1693 	}
1694 	mutex_unlock(&kernfs_mutex);
1695 	file->private_data = NULL;
1696 	ctx->pos = INT_MAX;
1697 	return 0;
1698 }
1699 
1700 const struct file_operations kernfs_dir_fops = {
1701 	.read		= generic_read_dir,
1702 	.iterate_shared	= kernfs_fop_readdir,
1703 	.release	= kernfs_dir_fop_release,
1704 	.llseek		= generic_file_llseek,
1705 };
1706