1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 /* 21 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 22 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 23 * will perform wakeups when releasing console_sem. Holding rename_lock 24 * will introduce deadlock if the scheduler reads the kernfs_name in the 25 * wakeup path. 26 */ 27 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 28 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 29 30 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 31 32 static bool __kernfs_active(struct kernfs_node *kn) 33 { 34 return atomic_read(&kn->active) >= 0; 35 } 36 37 static bool kernfs_active(struct kernfs_node *kn) 38 { 39 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 40 return __kernfs_active(kn); 41 } 42 43 static bool kernfs_lockdep(struct kernfs_node *kn) 44 { 45 #ifdef CONFIG_DEBUG_LOCK_ALLOC 46 return kn->flags & KERNFS_LOCKDEP; 47 #else 48 return false; 49 #endif 50 } 51 52 /* kernfs_node_depth - compute depth from @from to @to */ 53 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 54 { 55 size_t depth = 0; 56 57 while (rcu_dereference(to->__parent) && to != from) { 58 depth++; 59 to = rcu_dereference(to->__parent); 60 } 61 return depth; 62 } 63 64 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 65 struct kernfs_node *b) 66 { 67 size_t da, db; 68 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 69 70 if (ra != rb) 71 return NULL; 72 73 da = kernfs_depth(ra->kn, a); 74 db = kernfs_depth(rb->kn, b); 75 76 while (da > db) { 77 a = rcu_dereference(a->__parent); 78 da--; 79 } 80 while (db > da) { 81 b = rcu_dereference(b->__parent); 82 db--; 83 } 84 85 /* worst case b and a will be the same at root */ 86 while (b != a) { 87 b = rcu_dereference(b->__parent); 88 a = rcu_dereference(a->__parent); 89 } 90 91 return a; 92 } 93 94 /** 95 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 96 * where kn_from is treated as root of the path. 97 * @kn_from: kernfs node which should be treated as root for the path 98 * @kn_to: kernfs node to which path is needed 99 * @buf: buffer to copy the path into 100 * @buflen: size of @buf 101 * 102 * We need to handle couple of scenarios here: 103 * [1] when @kn_from is an ancestor of @kn_to at some level 104 * kn_from: /n1/n2/n3 105 * kn_to: /n1/n2/n3/n4/n5 106 * result: /n4/n5 107 * 108 * [2] when @kn_from is on a different hierarchy and we need to find common 109 * ancestor between @kn_from and @kn_to. 110 * kn_from: /n1/n2/n3/n4 111 * kn_to: /n1/n2/n5 112 * result: /../../n5 113 * OR 114 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 115 * kn_to: /n1/n2/n3 [depth=3] 116 * result: /../.. 117 * 118 * [3] when @kn_to is %NULL result will be "(null)" 119 * 120 * Return: the length of the constructed path. If the path would have been 121 * greater than @buflen, @buf contains the truncated path with the trailing 122 * '\0'. On error, -errno is returned. 123 */ 124 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 125 struct kernfs_node *kn_from, 126 char *buf, size_t buflen) 127 { 128 struct kernfs_node *kn, *common; 129 const char parent_str[] = "/.."; 130 size_t depth_from, depth_to, len = 0; 131 ssize_t copied; 132 int i, j; 133 134 if (!kn_to) 135 return strscpy(buf, "(null)", buflen); 136 137 if (!kn_from) 138 kn_from = kernfs_root(kn_to)->kn; 139 140 if (kn_from == kn_to) 141 return strscpy(buf, "/", buflen); 142 143 common = kernfs_common_ancestor(kn_from, kn_to); 144 if (WARN_ON(!common)) 145 return -EINVAL; 146 147 depth_to = kernfs_depth(common, kn_to); 148 depth_from = kernfs_depth(common, kn_from); 149 150 buf[0] = '\0'; 151 152 for (i = 0; i < depth_from; i++) { 153 copied = strscpy(buf + len, parent_str, buflen - len); 154 if (copied < 0) 155 return copied; 156 len += copied; 157 } 158 159 /* Calculate how many bytes we need for the rest */ 160 for (i = depth_to - 1; i >= 0; i--) { 161 const char *name; 162 163 for (kn = kn_to, j = 0; j < i; j++) 164 kn = rcu_dereference(kn->__parent); 165 166 name = rcu_dereference(kn->name); 167 len += scnprintf(buf + len, buflen - len, "/%s", name); 168 } 169 170 return len; 171 } 172 173 /** 174 * kernfs_name - obtain the name of a given node 175 * @kn: kernfs_node of interest 176 * @buf: buffer to copy @kn's name into 177 * @buflen: size of @buf 178 * 179 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 180 * similar to strscpy(). 181 * 182 * Fills buffer with "(null)" if @kn is %NULL. 183 * 184 * Return: the resulting length of @buf. If @buf isn't long enough, 185 * it's filled up to @buflen-1 and nul terminated, and returns -E2BIG. 186 * 187 * This function can be called from any context. 188 */ 189 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 190 { 191 struct kernfs_node *kn_parent; 192 193 if (!kn) 194 return strscpy(buf, "(null)", buflen); 195 196 guard(rcu)(); 197 /* 198 * KERNFS_ROOT_INVARIANT_PARENT is ignored here. The name is RCU freed and 199 * the parent is either existing or not. 200 */ 201 kn_parent = rcu_dereference(kn->__parent); 202 return strscpy(buf, kn_parent ? rcu_dereference(kn->name) : "/", buflen); 203 } 204 205 /** 206 * kernfs_path_from_node - build path of node @to relative to @from. 207 * @from: parent kernfs_node relative to which we need to build the path 208 * @to: kernfs_node of interest 209 * @buf: buffer to copy @to's path into 210 * @buflen: size of @buf 211 * 212 * Builds @to's path relative to @from in @buf. @from and @to must 213 * be on the same kernfs-root. If @from is not parent of @to, then a relative 214 * path (which includes '..'s) as needed to reach from @from to @to is 215 * returned. 216 * 217 * Return: the length of the constructed path. If the path would have been 218 * greater than @buflen, @buf contains the truncated path with the trailing 219 * '\0'. On error, -errno is returned. 220 */ 221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 222 char *buf, size_t buflen) 223 { 224 struct kernfs_root *root; 225 226 guard(rcu)(); 227 if (to) { 228 root = kernfs_root(to); 229 if (!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)) { 230 guard(read_lock_irqsave)(&root->kernfs_rename_lock); 231 return kernfs_path_from_node_locked(to, from, buf, buflen); 232 } 233 } 234 return kernfs_path_from_node_locked(to, from, buf, buflen); 235 } 236 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 237 238 /** 239 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 240 * @kn: kernfs_node of interest 241 * 242 * This function can be called from any context. 243 */ 244 void pr_cont_kernfs_name(struct kernfs_node *kn) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 249 250 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 251 pr_cont("%s", kernfs_pr_cont_buf); 252 253 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 254 } 255 256 /** 257 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 258 * @kn: kernfs_node of interest 259 * 260 * This function can be called from any context. 261 */ 262 void pr_cont_kernfs_path(struct kernfs_node *kn) 263 { 264 unsigned long flags; 265 int sz; 266 267 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 268 269 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 270 sizeof(kernfs_pr_cont_buf)); 271 if (sz < 0) { 272 if (sz == -E2BIG) 273 pr_cont("(name too long)"); 274 else 275 pr_cont("(error)"); 276 goto out; 277 } 278 279 pr_cont("%s", kernfs_pr_cont_buf); 280 281 out: 282 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 283 } 284 285 /** 286 * kernfs_get_parent - determine the parent node and pin it 287 * @kn: kernfs_node of interest 288 * 289 * Determines @kn's parent, pins and returns it. This function can be 290 * called from any context. 291 * 292 * Return: parent node of @kn 293 */ 294 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 295 { 296 struct kernfs_node *parent; 297 struct kernfs_root *root; 298 unsigned long flags; 299 300 root = kernfs_root(kn); 301 read_lock_irqsave(&root->kernfs_rename_lock, flags); 302 parent = kernfs_parent(kn); 303 kernfs_get(parent); 304 read_unlock_irqrestore(&root->kernfs_rename_lock, flags); 305 306 return parent; 307 } 308 309 /** 310 * kernfs_name_hash - calculate hash of @ns + @name 311 * @name: Null terminated string to hash 312 * @ns: Namespace tag to hash 313 * 314 * Return: 31-bit hash of ns + name (so it fits in an off_t) 315 */ 316 static unsigned int kernfs_name_hash(const char *name, const void *ns) 317 { 318 unsigned long hash = init_name_hash(ns); 319 unsigned int len = strlen(name); 320 while (len--) 321 hash = partial_name_hash(*name++, hash); 322 hash = end_name_hash(hash); 323 hash &= 0x7fffffffU; 324 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 325 if (hash < 2) 326 hash += 2; 327 if (hash >= INT_MAX) 328 hash = INT_MAX - 1; 329 return hash; 330 } 331 332 static int kernfs_name_compare(unsigned int hash, const char *name, 333 const void *ns, const struct kernfs_node *kn) 334 { 335 if (hash < kn->hash) 336 return -1; 337 if (hash > kn->hash) 338 return 1; 339 if (ns < kn->ns) 340 return -1; 341 if (ns > kn->ns) 342 return 1; 343 return strcmp(name, kernfs_rcu_name(kn)); 344 } 345 346 static int kernfs_sd_compare(const struct kernfs_node *left, 347 const struct kernfs_node *right) 348 { 349 return kernfs_name_compare(left->hash, kernfs_rcu_name(left), left->ns, right); 350 } 351 352 /** 353 * kernfs_link_sibling - link kernfs_node into sibling rbtree 354 * @kn: kernfs_node of interest 355 * 356 * Link @kn into its sibling rbtree which starts from 357 * @kn->parent->dir.children. 358 * 359 * Locking: 360 * kernfs_rwsem held exclusive 361 * 362 * Return: 363 * %0 on success, -EEXIST on failure. 364 */ 365 static int kernfs_link_sibling(struct kernfs_node *kn) 366 { 367 struct rb_node *parent = NULL; 368 struct kernfs_node *kn_parent; 369 struct rb_node **node; 370 371 kn_parent = kernfs_parent(kn); 372 node = &kn_parent->dir.children.rb_node; 373 374 while (*node) { 375 struct kernfs_node *pos; 376 int result; 377 378 pos = rb_to_kn(*node); 379 parent = *node; 380 result = kernfs_sd_compare(kn, pos); 381 if (result < 0) 382 node = &pos->rb.rb_left; 383 else if (result > 0) 384 node = &pos->rb.rb_right; 385 else 386 return -EEXIST; 387 } 388 389 /* add new node and rebalance the tree */ 390 rb_link_node(&kn->rb, parent, node); 391 rb_insert_color(&kn->rb, &kn_parent->dir.children); 392 393 /* successfully added, account subdir number */ 394 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 395 if (kernfs_type(kn) == KERNFS_DIR) 396 kn_parent->dir.subdirs++; 397 kernfs_inc_rev(kn_parent); 398 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 399 400 return 0; 401 } 402 403 /** 404 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 405 * @kn: kernfs_node of interest 406 * 407 * Try to unlink @kn from its sibling rbtree which starts from 408 * kn->parent->dir.children. 409 * 410 * Return: %true if @kn was actually removed, 411 * %false if @kn wasn't on the rbtree. 412 * 413 * Locking: 414 * kernfs_rwsem held exclusive 415 */ 416 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 417 { 418 struct kernfs_node *kn_parent; 419 420 if (RB_EMPTY_NODE(&kn->rb)) 421 return false; 422 423 kn_parent = kernfs_parent(kn); 424 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 425 if (kernfs_type(kn) == KERNFS_DIR) 426 kn_parent->dir.subdirs--; 427 kernfs_inc_rev(kn_parent); 428 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 429 430 rb_erase(&kn->rb, &kn_parent->dir.children); 431 RB_CLEAR_NODE(&kn->rb); 432 return true; 433 } 434 435 /** 436 * kernfs_get_active - get an active reference to kernfs_node 437 * @kn: kernfs_node to get an active reference to 438 * 439 * Get an active reference of @kn. This function is noop if @kn 440 * is %NULL. 441 * 442 * Return: 443 * Pointer to @kn on success, %NULL on failure. 444 */ 445 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 446 { 447 if (unlikely(!kn)) 448 return NULL; 449 450 if (!atomic_inc_unless_negative(&kn->active)) 451 return NULL; 452 453 if (kernfs_lockdep(kn)) 454 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 455 return kn; 456 } 457 458 /** 459 * kernfs_put_active - put an active reference to kernfs_node 460 * @kn: kernfs_node to put an active reference to 461 * 462 * Put an active reference to @kn. This function is noop if @kn 463 * is %NULL. 464 */ 465 void kernfs_put_active(struct kernfs_node *kn) 466 { 467 int v; 468 469 if (unlikely(!kn)) 470 return; 471 472 if (kernfs_lockdep(kn)) 473 rwsem_release(&kn->dep_map, _RET_IP_); 474 v = atomic_dec_return(&kn->active); 475 if (likely(v != KN_DEACTIVATED_BIAS)) 476 return; 477 478 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 479 } 480 481 /** 482 * kernfs_drain - drain kernfs_node 483 * @kn: kernfs_node to drain 484 * 485 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 486 * removers may invoke this function concurrently on @kn and all will 487 * return after draining is complete. 488 */ 489 static void kernfs_drain(struct kernfs_node *kn) 490 __releases(&kernfs_root(kn)->kernfs_rwsem) 491 __acquires(&kernfs_root(kn)->kernfs_rwsem) 492 { 493 struct kernfs_root *root = kernfs_root(kn); 494 495 lockdep_assert_held_write(&root->kernfs_rwsem); 496 WARN_ON_ONCE(kernfs_active(kn)); 497 498 /* 499 * Skip draining if already fully drained. This avoids draining and its 500 * lockdep annotations for nodes which have never been activated 501 * allowing embedding kernfs_remove() in create error paths without 502 * worrying about draining. 503 */ 504 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 505 !kernfs_should_drain_open_files(kn)) 506 return; 507 508 up_write(&root->kernfs_rwsem); 509 510 if (kernfs_lockdep(kn)) { 511 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 512 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 513 lock_contended(&kn->dep_map, _RET_IP_); 514 } 515 516 wait_event(root->deactivate_waitq, 517 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 518 519 if (kernfs_lockdep(kn)) { 520 lock_acquired(&kn->dep_map, _RET_IP_); 521 rwsem_release(&kn->dep_map, _RET_IP_); 522 } 523 524 if (kernfs_should_drain_open_files(kn)) 525 kernfs_drain_open_files(kn); 526 527 down_write(&root->kernfs_rwsem); 528 } 529 530 /** 531 * kernfs_get - get a reference count on a kernfs_node 532 * @kn: the target kernfs_node 533 */ 534 void kernfs_get(struct kernfs_node *kn) 535 { 536 if (kn) { 537 WARN_ON(!atomic_read(&kn->count)); 538 atomic_inc(&kn->count); 539 } 540 } 541 EXPORT_SYMBOL_GPL(kernfs_get); 542 543 static void kernfs_free_rcu(struct rcu_head *rcu) 544 { 545 struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu); 546 547 /* If the whole node goes away, then name can't be used outside */ 548 kfree_const(rcu_access_pointer(kn->name)); 549 550 if (kn->iattr) { 551 simple_xattrs_free(&kn->iattr->xattrs, NULL); 552 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 553 } 554 555 kmem_cache_free(kernfs_node_cache, kn); 556 } 557 558 /** 559 * kernfs_put - put a reference count on a kernfs_node 560 * @kn: the target kernfs_node 561 * 562 * Put a reference count of @kn and destroy it if it reached zero. 563 */ 564 void kernfs_put(struct kernfs_node *kn) 565 { 566 struct kernfs_node *parent; 567 struct kernfs_root *root; 568 569 if (!kn || !atomic_dec_and_test(&kn->count)) 570 return; 571 root = kernfs_root(kn); 572 repeat: 573 /* 574 * Moving/renaming is always done while holding reference. 575 * kn->parent won't change beneath us. 576 */ 577 parent = kernfs_parent(kn); 578 579 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 580 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 581 parent ? rcu_dereference(parent->name) : "", 582 rcu_dereference(kn->name), atomic_read(&kn->active)); 583 584 if (kernfs_type(kn) == KERNFS_LINK) 585 kernfs_put(kn->symlink.target_kn); 586 587 spin_lock(&root->kernfs_idr_lock); 588 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 589 spin_unlock(&root->kernfs_idr_lock); 590 591 call_rcu(&kn->rcu, kernfs_free_rcu); 592 593 kn = parent; 594 if (kn) { 595 if (atomic_dec_and_test(&kn->count)) 596 goto repeat; 597 } else { 598 /* just released the root kn, free @root too */ 599 idr_destroy(&root->ino_idr); 600 kfree_rcu(root, rcu); 601 } 602 } 603 EXPORT_SYMBOL_GPL(kernfs_put); 604 605 /** 606 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 607 * @dentry: the dentry in question 608 * 609 * Return: the kernfs_node associated with @dentry. If @dentry is not a 610 * kernfs one, %NULL is returned. 611 * 612 * While the returned kernfs_node will stay accessible as long as @dentry 613 * is accessible, the returned node can be in any state and the caller is 614 * fully responsible for determining what's accessible. 615 */ 616 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 617 { 618 if (dentry->d_sb->s_op == &kernfs_sops) 619 return kernfs_dentry_node(dentry); 620 return NULL; 621 } 622 623 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 624 struct kernfs_node *parent, 625 const char *name, umode_t mode, 626 kuid_t uid, kgid_t gid, 627 unsigned flags) 628 { 629 struct kernfs_node *kn; 630 u32 id_highbits; 631 int ret; 632 633 name = kstrdup_const(name, GFP_KERNEL); 634 if (!name) 635 return NULL; 636 637 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 638 if (!kn) 639 goto err_out1; 640 641 idr_preload(GFP_KERNEL); 642 spin_lock(&root->kernfs_idr_lock); 643 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 644 if (ret >= 0 && ret < root->last_id_lowbits) 645 root->id_highbits++; 646 id_highbits = root->id_highbits; 647 root->last_id_lowbits = ret; 648 spin_unlock(&root->kernfs_idr_lock); 649 idr_preload_end(); 650 if (ret < 0) 651 goto err_out2; 652 653 kn->id = (u64)id_highbits << 32 | ret; 654 655 atomic_set(&kn->count, 1); 656 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 657 RB_CLEAR_NODE(&kn->rb); 658 659 rcu_assign_pointer(kn->name, name); 660 kn->mode = mode; 661 kn->flags = flags; 662 663 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 664 struct iattr iattr = { 665 .ia_valid = ATTR_UID | ATTR_GID, 666 .ia_uid = uid, 667 .ia_gid = gid, 668 }; 669 670 ret = __kernfs_setattr(kn, &iattr); 671 if (ret < 0) 672 goto err_out3; 673 } 674 675 if (parent) { 676 ret = security_kernfs_init_security(parent, kn); 677 if (ret) 678 goto err_out4; 679 } 680 681 return kn; 682 683 err_out4: 684 if (kn->iattr) { 685 simple_xattrs_free(&kn->iattr->xattrs, NULL); 686 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 687 } 688 err_out3: 689 spin_lock(&root->kernfs_idr_lock); 690 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 691 spin_unlock(&root->kernfs_idr_lock); 692 err_out2: 693 kmem_cache_free(kernfs_node_cache, kn); 694 err_out1: 695 kfree_const(name); 696 return NULL; 697 } 698 699 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 700 const char *name, umode_t mode, 701 kuid_t uid, kgid_t gid, 702 unsigned flags) 703 { 704 struct kernfs_node *kn; 705 706 if (parent->mode & S_ISGID) { 707 /* this code block imitates inode_init_owner() for 708 * kernfs 709 */ 710 711 if (parent->iattr) 712 gid = parent->iattr->ia_gid; 713 714 if (flags & KERNFS_DIR) 715 mode |= S_ISGID; 716 } 717 718 kn = __kernfs_new_node(kernfs_root(parent), parent, 719 name, mode, uid, gid, flags); 720 if (kn) { 721 kernfs_get(parent); 722 rcu_assign_pointer(kn->__parent, parent); 723 } 724 return kn; 725 } 726 727 /* 728 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 729 * @root: the kernfs root 730 * @id: the target node id 731 * 732 * @id's lower 32bits encode ino and upper gen. If the gen portion is 733 * zero, all generations are matched. 734 * 735 * Return: %NULL on failure, 736 * otherwise a kernfs node with reference counter incremented. 737 */ 738 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 739 u64 id) 740 { 741 struct kernfs_node *kn; 742 ino_t ino = kernfs_id_ino(id); 743 u32 gen = kernfs_id_gen(id); 744 745 rcu_read_lock(); 746 747 kn = idr_find(&root->ino_idr, (u32)ino); 748 if (!kn) 749 goto err_unlock; 750 751 if (sizeof(ino_t) >= sizeof(u64)) { 752 /* we looked up with the low 32bits, compare the whole */ 753 if (kernfs_ino(kn) != ino) 754 goto err_unlock; 755 } else { 756 /* 0 matches all generations */ 757 if (unlikely(gen && kernfs_gen(kn) != gen)) 758 goto err_unlock; 759 } 760 761 /* 762 * We should fail if @kn has never been activated and guarantee success 763 * if the caller knows that @kn is active. Both can be achieved by 764 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 765 */ 766 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 767 goto err_unlock; 768 769 rcu_read_unlock(); 770 return kn; 771 err_unlock: 772 rcu_read_unlock(); 773 return NULL; 774 } 775 776 /** 777 * kernfs_add_one - add kernfs_node to parent without warning 778 * @kn: kernfs_node to be added 779 * 780 * The caller must already have initialized @kn->parent. This 781 * function increments nlink of the parent's inode if @kn is a 782 * directory and link into the children list of the parent. 783 * 784 * Return: 785 * %0 on success, -EEXIST if entry with the given name already 786 * exists. 787 */ 788 int kernfs_add_one(struct kernfs_node *kn) 789 { 790 struct kernfs_root *root = kernfs_root(kn); 791 struct kernfs_iattrs *ps_iattr; 792 struct kernfs_node *parent; 793 bool has_ns; 794 int ret; 795 796 down_write(&root->kernfs_rwsem); 797 parent = kernfs_parent(kn); 798 799 ret = -EINVAL; 800 has_ns = kernfs_ns_enabled(parent); 801 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 802 has_ns ? "required" : "invalid", 803 kernfs_rcu_name(parent), kernfs_rcu_name(kn))) 804 goto out_unlock; 805 806 if (kernfs_type(parent) != KERNFS_DIR) 807 goto out_unlock; 808 809 ret = -ENOENT; 810 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 811 goto out_unlock; 812 813 kn->hash = kernfs_name_hash(kernfs_rcu_name(kn), kn->ns); 814 815 ret = kernfs_link_sibling(kn); 816 if (ret) 817 goto out_unlock; 818 819 /* Update timestamps on the parent */ 820 down_write(&root->kernfs_iattr_rwsem); 821 822 ps_iattr = parent->iattr; 823 if (ps_iattr) { 824 ktime_get_real_ts64(&ps_iattr->ia_ctime); 825 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 826 } 827 828 up_write(&root->kernfs_iattr_rwsem); 829 up_write(&root->kernfs_rwsem); 830 831 /* 832 * Activate the new node unless CREATE_DEACTIVATED is requested. 833 * If not activated here, the kernfs user is responsible for 834 * activating the node with kernfs_activate(). A node which hasn't 835 * been activated is not visible to userland and its removal won't 836 * trigger deactivation. 837 */ 838 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 839 kernfs_activate(kn); 840 return 0; 841 842 out_unlock: 843 up_write(&root->kernfs_rwsem); 844 return ret; 845 } 846 847 /** 848 * kernfs_find_ns - find kernfs_node with the given name 849 * @parent: kernfs_node to search under 850 * @name: name to look for 851 * @ns: the namespace tag to use 852 * 853 * Look for kernfs_node with name @name under @parent. 854 * 855 * Return: pointer to the found kernfs_node on success, %NULL on failure. 856 */ 857 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 858 const unsigned char *name, 859 const void *ns) 860 { 861 struct rb_node *node = parent->dir.children.rb_node; 862 bool has_ns = kernfs_ns_enabled(parent); 863 unsigned int hash; 864 865 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 866 867 if (has_ns != (bool)ns) { 868 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 869 has_ns ? "required" : "invalid", kernfs_rcu_name(parent), name); 870 return NULL; 871 } 872 873 hash = kernfs_name_hash(name, ns); 874 while (node) { 875 struct kernfs_node *kn; 876 int result; 877 878 kn = rb_to_kn(node); 879 result = kernfs_name_compare(hash, name, ns, kn); 880 if (result < 0) 881 node = node->rb_left; 882 else if (result > 0) 883 node = node->rb_right; 884 else 885 return kn; 886 } 887 return NULL; 888 } 889 890 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 891 const unsigned char *path, 892 const void *ns) 893 { 894 ssize_t len; 895 char *p, *name; 896 897 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 898 899 spin_lock_irq(&kernfs_pr_cont_lock); 900 901 len = strscpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 902 903 if (len < 0) { 904 spin_unlock_irq(&kernfs_pr_cont_lock); 905 return NULL; 906 } 907 908 p = kernfs_pr_cont_buf; 909 910 while ((name = strsep(&p, "/")) && parent) { 911 if (*name == '\0') 912 continue; 913 parent = kernfs_find_ns(parent, name, ns); 914 } 915 916 spin_unlock_irq(&kernfs_pr_cont_lock); 917 918 return parent; 919 } 920 921 /** 922 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 923 * @parent: kernfs_node to search under 924 * @name: name to look for 925 * @ns: the namespace tag to use 926 * 927 * Look for kernfs_node with name @name under @parent and get a reference 928 * if found. This function may sleep. 929 * 930 * Return: pointer to the found kernfs_node on success, %NULL on failure. 931 */ 932 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 933 const char *name, const void *ns) 934 { 935 struct kernfs_node *kn; 936 struct kernfs_root *root = kernfs_root(parent); 937 938 down_read(&root->kernfs_rwsem); 939 kn = kernfs_find_ns(parent, name, ns); 940 kernfs_get(kn); 941 up_read(&root->kernfs_rwsem); 942 943 return kn; 944 } 945 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 946 947 /** 948 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 949 * @parent: kernfs_node to search under 950 * @path: path to look for 951 * @ns: the namespace tag to use 952 * 953 * Look for kernfs_node with path @path under @parent and get a reference 954 * if found. This function may sleep. 955 * 956 * Return: pointer to the found kernfs_node on success, %NULL on failure. 957 */ 958 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 959 const char *path, const void *ns) 960 { 961 struct kernfs_node *kn; 962 struct kernfs_root *root = kernfs_root(parent); 963 964 down_read(&root->kernfs_rwsem); 965 kn = kernfs_walk_ns(parent, path, ns); 966 kernfs_get(kn); 967 up_read(&root->kernfs_rwsem); 968 969 return kn; 970 } 971 972 unsigned int kernfs_root_flags(struct kernfs_node *kn) 973 { 974 return kernfs_root(kn)->flags; 975 } 976 977 /** 978 * kernfs_create_root - create a new kernfs hierarchy 979 * @scops: optional syscall operations for the hierarchy 980 * @flags: KERNFS_ROOT_* flags 981 * @priv: opaque data associated with the new directory 982 * 983 * Return: the root of the new hierarchy on success, ERR_PTR() value on 984 * failure. 985 */ 986 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 987 unsigned int flags, void *priv) 988 { 989 struct kernfs_root *root; 990 struct kernfs_node *kn; 991 992 root = kzalloc(sizeof(*root), GFP_KERNEL); 993 if (!root) 994 return ERR_PTR(-ENOMEM); 995 996 idr_init(&root->ino_idr); 997 spin_lock_init(&root->kernfs_idr_lock); 998 init_rwsem(&root->kernfs_rwsem); 999 init_rwsem(&root->kernfs_iattr_rwsem); 1000 init_rwsem(&root->kernfs_supers_rwsem); 1001 INIT_LIST_HEAD(&root->supers); 1002 rwlock_init(&root->kernfs_rename_lock); 1003 1004 /* 1005 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 1006 * High bits generation. The starting value for both ino and 1007 * genenration is 1. Initialize upper 32bit allocation 1008 * accordingly. 1009 */ 1010 if (sizeof(ino_t) >= sizeof(u64)) 1011 root->id_highbits = 0; 1012 else 1013 root->id_highbits = 1; 1014 1015 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 1016 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 1017 KERNFS_DIR); 1018 if (!kn) { 1019 idr_destroy(&root->ino_idr); 1020 kfree(root); 1021 return ERR_PTR(-ENOMEM); 1022 } 1023 1024 kn->priv = priv; 1025 kn->dir.root = root; 1026 1027 root->syscall_ops = scops; 1028 root->flags = flags; 1029 root->kn = kn; 1030 init_waitqueue_head(&root->deactivate_waitq); 1031 1032 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 1033 kernfs_activate(kn); 1034 1035 return root; 1036 } 1037 1038 /** 1039 * kernfs_destroy_root - destroy a kernfs hierarchy 1040 * @root: root of the hierarchy to destroy 1041 * 1042 * Destroy the hierarchy anchored at @root by removing all existing 1043 * directories and destroying @root. 1044 */ 1045 void kernfs_destroy_root(struct kernfs_root *root) 1046 { 1047 /* 1048 * kernfs_remove holds kernfs_rwsem from the root so the root 1049 * shouldn't be freed during the operation. 1050 */ 1051 kernfs_get(root->kn); 1052 kernfs_remove(root->kn); 1053 kernfs_put(root->kn); /* will also free @root */ 1054 } 1055 1056 /** 1057 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1058 * @root: root to use to lookup 1059 * 1060 * Return: @root's kernfs_node 1061 */ 1062 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1063 { 1064 return root->kn; 1065 } 1066 1067 /** 1068 * kernfs_create_dir_ns - create a directory 1069 * @parent: parent in which to create a new directory 1070 * @name: name of the new directory 1071 * @mode: mode of the new directory 1072 * @uid: uid of the new directory 1073 * @gid: gid of the new directory 1074 * @priv: opaque data associated with the new directory 1075 * @ns: optional namespace tag of the directory 1076 * 1077 * Return: the created node on success, ERR_PTR() value on failure. 1078 */ 1079 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1080 const char *name, umode_t mode, 1081 kuid_t uid, kgid_t gid, 1082 void *priv, const void *ns) 1083 { 1084 struct kernfs_node *kn; 1085 int rc; 1086 1087 /* allocate */ 1088 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1089 uid, gid, KERNFS_DIR); 1090 if (!kn) 1091 return ERR_PTR(-ENOMEM); 1092 1093 kn->dir.root = parent->dir.root; 1094 kn->ns = ns; 1095 kn->priv = priv; 1096 1097 /* link in */ 1098 rc = kernfs_add_one(kn); 1099 if (!rc) 1100 return kn; 1101 1102 kernfs_put(kn); 1103 return ERR_PTR(rc); 1104 } 1105 1106 /** 1107 * kernfs_create_empty_dir - create an always empty directory 1108 * @parent: parent in which to create a new directory 1109 * @name: name of the new directory 1110 * 1111 * Return: the created node on success, ERR_PTR() value on failure. 1112 */ 1113 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1114 const char *name) 1115 { 1116 struct kernfs_node *kn; 1117 int rc; 1118 1119 /* allocate */ 1120 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1121 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1122 if (!kn) 1123 return ERR_PTR(-ENOMEM); 1124 1125 kn->flags |= KERNFS_EMPTY_DIR; 1126 kn->dir.root = parent->dir.root; 1127 kn->ns = NULL; 1128 kn->priv = NULL; 1129 1130 /* link in */ 1131 rc = kernfs_add_one(kn); 1132 if (!rc) 1133 return kn; 1134 1135 kernfs_put(kn); 1136 return ERR_PTR(rc); 1137 } 1138 1139 static int kernfs_dop_revalidate(struct inode *dir, const struct qstr *name, 1140 struct dentry *dentry, unsigned int flags) 1141 { 1142 struct kernfs_node *kn, *parent; 1143 struct kernfs_root *root; 1144 1145 if (flags & LOOKUP_RCU) 1146 return -ECHILD; 1147 1148 /* Negative hashed dentry? */ 1149 if (d_really_is_negative(dentry)) { 1150 /* If the kernfs parent node has changed discard and 1151 * proceed to ->lookup. 1152 * 1153 * There's nothing special needed here when getting the 1154 * dentry parent, even if a concurrent rename is in 1155 * progress. That's because the dentry is negative so 1156 * it can only be the target of the rename and it will 1157 * be doing a d_move() not a replace. Consequently the 1158 * dentry d_parent won't change over the d_move(). 1159 * 1160 * Also kernfs negative dentries transitioning from 1161 * negative to positive during revalidate won't happen 1162 * because they are invalidated on containing directory 1163 * changes and the lookup re-done so that a new positive 1164 * dentry can be properly created. 1165 */ 1166 root = kernfs_root_from_sb(dentry->d_sb); 1167 down_read(&root->kernfs_rwsem); 1168 parent = kernfs_dentry_node(dentry->d_parent); 1169 if (parent) { 1170 if (kernfs_dir_changed(parent, dentry)) { 1171 up_read(&root->kernfs_rwsem); 1172 return 0; 1173 } 1174 } 1175 up_read(&root->kernfs_rwsem); 1176 1177 /* The kernfs parent node hasn't changed, leave the 1178 * dentry negative and return success. 1179 */ 1180 return 1; 1181 } 1182 1183 kn = kernfs_dentry_node(dentry); 1184 root = kernfs_root(kn); 1185 down_read(&root->kernfs_rwsem); 1186 1187 /* The kernfs node has been deactivated */ 1188 if (!kernfs_active(kn)) 1189 goto out_bad; 1190 1191 parent = kernfs_parent(kn); 1192 /* The kernfs node has been moved? */ 1193 if (kernfs_dentry_node(dentry->d_parent) != parent) 1194 goto out_bad; 1195 1196 /* The kernfs node has been renamed */ 1197 if (strcmp(dentry->d_name.name, kernfs_rcu_name(kn)) != 0) 1198 goto out_bad; 1199 1200 /* The kernfs node has been moved to a different namespace */ 1201 if (parent && kernfs_ns_enabled(parent) && 1202 kernfs_info(dentry->d_sb)->ns != kn->ns) 1203 goto out_bad; 1204 1205 up_read(&root->kernfs_rwsem); 1206 return 1; 1207 out_bad: 1208 up_read(&root->kernfs_rwsem); 1209 return 0; 1210 } 1211 1212 const struct dentry_operations kernfs_dops = { 1213 .d_revalidate = kernfs_dop_revalidate, 1214 }; 1215 1216 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1217 struct dentry *dentry, 1218 unsigned int flags) 1219 { 1220 struct kernfs_node *parent = dir->i_private; 1221 struct kernfs_node *kn; 1222 struct kernfs_root *root; 1223 struct inode *inode = NULL; 1224 const void *ns = NULL; 1225 1226 root = kernfs_root(parent); 1227 down_read(&root->kernfs_rwsem); 1228 if (kernfs_ns_enabled(parent)) 1229 ns = kernfs_info(dir->i_sb)->ns; 1230 1231 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1232 /* attach dentry and inode */ 1233 if (kn) { 1234 /* Inactive nodes are invisible to the VFS so don't 1235 * create a negative. 1236 */ 1237 if (!kernfs_active(kn)) { 1238 up_read(&root->kernfs_rwsem); 1239 return NULL; 1240 } 1241 inode = kernfs_get_inode(dir->i_sb, kn); 1242 if (!inode) 1243 inode = ERR_PTR(-ENOMEM); 1244 } 1245 /* 1246 * Needed for negative dentry validation. 1247 * The negative dentry can be created in kernfs_iop_lookup() 1248 * or transforms from positive dentry in dentry_unlink_inode() 1249 * called from vfs_rmdir(). 1250 */ 1251 if (!IS_ERR(inode)) 1252 kernfs_set_rev(parent, dentry); 1253 up_read(&root->kernfs_rwsem); 1254 1255 /* instantiate and hash (possibly negative) dentry */ 1256 return d_splice_alias(inode, dentry); 1257 } 1258 1259 static struct dentry *kernfs_iop_mkdir(struct mnt_idmap *idmap, 1260 struct inode *dir, struct dentry *dentry, 1261 umode_t mode) 1262 { 1263 struct kernfs_node *parent = dir->i_private; 1264 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1265 int ret; 1266 1267 if (!scops || !scops->mkdir) 1268 return ERR_PTR(-EPERM); 1269 1270 if (!kernfs_get_active(parent)) 1271 return ERR_PTR(-ENODEV); 1272 1273 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1274 1275 kernfs_put_active(parent); 1276 return ERR_PTR(ret); 1277 } 1278 1279 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1280 { 1281 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1282 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1283 int ret; 1284 1285 if (!scops || !scops->rmdir) 1286 return -EPERM; 1287 1288 if (!kernfs_get_active(kn)) 1289 return -ENODEV; 1290 1291 ret = scops->rmdir(kn); 1292 1293 kernfs_put_active(kn); 1294 return ret; 1295 } 1296 1297 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1298 struct inode *old_dir, struct dentry *old_dentry, 1299 struct inode *new_dir, struct dentry *new_dentry, 1300 unsigned int flags) 1301 { 1302 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1303 struct kernfs_node *new_parent = new_dir->i_private; 1304 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1305 int ret; 1306 1307 if (flags) 1308 return -EINVAL; 1309 1310 if (!scops || !scops->rename) 1311 return -EPERM; 1312 1313 if (!kernfs_get_active(kn)) 1314 return -ENODEV; 1315 1316 if (!kernfs_get_active(new_parent)) { 1317 kernfs_put_active(kn); 1318 return -ENODEV; 1319 } 1320 1321 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1322 1323 kernfs_put_active(new_parent); 1324 kernfs_put_active(kn); 1325 return ret; 1326 } 1327 1328 const struct inode_operations kernfs_dir_iops = { 1329 .lookup = kernfs_iop_lookup, 1330 .permission = kernfs_iop_permission, 1331 .setattr = kernfs_iop_setattr, 1332 .getattr = kernfs_iop_getattr, 1333 .listxattr = kernfs_iop_listxattr, 1334 1335 .mkdir = kernfs_iop_mkdir, 1336 .rmdir = kernfs_iop_rmdir, 1337 .rename = kernfs_iop_rename, 1338 }; 1339 1340 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1341 { 1342 struct kernfs_node *last; 1343 1344 while (true) { 1345 struct rb_node *rbn; 1346 1347 last = pos; 1348 1349 if (kernfs_type(pos) != KERNFS_DIR) 1350 break; 1351 1352 rbn = rb_first(&pos->dir.children); 1353 if (!rbn) 1354 break; 1355 1356 pos = rb_to_kn(rbn); 1357 } 1358 1359 return last; 1360 } 1361 1362 /** 1363 * kernfs_next_descendant_post - find the next descendant for post-order walk 1364 * @pos: the current position (%NULL to initiate traversal) 1365 * @root: kernfs_node whose descendants to walk 1366 * 1367 * Find the next descendant to visit for post-order traversal of @root's 1368 * descendants. @root is included in the iteration and the last node to be 1369 * visited. 1370 * 1371 * Return: the next descendant to visit or %NULL when done. 1372 */ 1373 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1374 struct kernfs_node *root) 1375 { 1376 struct rb_node *rbn; 1377 1378 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1379 1380 /* if first iteration, visit leftmost descendant which may be root */ 1381 if (!pos) 1382 return kernfs_leftmost_descendant(root); 1383 1384 /* if we visited @root, we're done */ 1385 if (pos == root) 1386 return NULL; 1387 1388 /* if there's an unvisited sibling, visit its leftmost descendant */ 1389 rbn = rb_next(&pos->rb); 1390 if (rbn) 1391 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1392 1393 /* no sibling left, visit parent */ 1394 return kernfs_parent(pos); 1395 } 1396 1397 static void kernfs_activate_one(struct kernfs_node *kn) 1398 { 1399 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1400 1401 kn->flags |= KERNFS_ACTIVATED; 1402 1403 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1404 return; 1405 1406 WARN_ON_ONCE(rcu_access_pointer(kn->__parent) && RB_EMPTY_NODE(&kn->rb)); 1407 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1408 1409 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1410 } 1411 1412 /** 1413 * kernfs_activate - activate a node which started deactivated 1414 * @kn: kernfs_node whose subtree is to be activated 1415 * 1416 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1417 * needs to be explicitly activated. A node which hasn't been activated 1418 * isn't visible to userland and deactivation is skipped during its 1419 * removal. This is useful to construct atomic init sequences where 1420 * creation of multiple nodes should either succeed or fail atomically. 1421 * 1422 * The caller is responsible for ensuring that this function is not called 1423 * after kernfs_remove*() is invoked on @kn. 1424 */ 1425 void kernfs_activate(struct kernfs_node *kn) 1426 { 1427 struct kernfs_node *pos; 1428 struct kernfs_root *root = kernfs_root(kn); 1429 1430 down_write(&root->kernfs_rwsem); 1431 1432 pos = NULL; 1433 while ((pos = kernfs_next_descendant_post(pos, kn))) 1434 kernfs_activate_one(pos); 1435 1436 up_write(&root->kernfs_rwsem); 1437 } 1438 1439 /** 1440 * kernfs_show - show or hide a node 1441 * @kn: kernfs_node to show or hide 1442 * @show: whether to show or hide 1443 * 1444 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1445 * ignored in future activaitons. If %true, the mark is removed and activation 1446 * state is restored. This function won't implicitly activate a new node in a 1447 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1448 * 1449 * To avoid recursion complexities, directories aren't supported for now. 1450 */ 1451 void kernfs_show(struct kernfs_node *kn, bool show) 1452 { 1453 struct kernfs_root *root = kernfs_root(kn); 1454 1455 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1456 return; 1457 1458 down_write(&root->kernfs_rwsem); 1459 1460 if (show) { 1461 kn->flags &= ~KERNFS_HIDDEN; 1462 if (kn->flags & KERNFS_ACTIVATED) 1463 kernfs_activate_one(kn); 1464 } else { 1465 kn->flags |= KERNFS_HIDDEN; 1466 if (kernfs_active(kn)) 1467 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1468 kernfs_drain(kn); 1469 } 1470 1471 up_write(&root->kernfs_rwsem); 1472 } 1473 1474 static void __kernfs_remove(struct kernfs_node *kn) 1475 { 1476 struct kernfs_node *pos, *parent; 1477 1478 /* Short-circuit if non-root @kn has already finished removal. */ 1479 if (!kn) 1480 return; 1481 1482 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1483 1484 /* 1485 * This is for kernfs_remove_self() which plays with active ref 1486 * after removal. 1487 */ 1488 if (kernfs_parent(kn) && RB_EMPTY_NODE(&kn->rb)) 1489 return; 1490 1491 pr_debug("kernfs %s: removing\n", kernfs_rcu_name(kn)); 1492 1493 /* prevent new usage by marking all nodes removing and deactivating */ 1494 pos = NULL; 1495 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1496 pos->flags |= KERNFS_REMOVING; 1497 if (kernfs_active(pos)) 1498 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1499 } 1500 1501 /* deactivate and unlink the subtree node-by-node */ 1502 do { 1503 pos = kernfs_leftmost_descendant(kn); 1504 1505 /* 1506 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1507 * base ref could have been put by someone else by the time 1508 * the function returns. Make sure it doesn't go away 1509 * underneath us. 1510 */ 1511 kernfs_get(pos); 1512 1513 kernfs_drain(pos); 1514 parent = kernfs_parent(pos); 1515 /* 1516 * kernfs_unlink_sibling() succeeds once per node. Use it 1517 * to decide who's responsible for cleanups. 1518 */ 1519 if (!parent || kernfs_unlink_sibling(pos)) { 1520 struct kernfs_iattrs *ps_iattr = 1521 parent ? parent->iattr : NULL; 1522 1523 /* update timestamps on the parent */ 1524 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1525 1526 if (ps_iattr) { 1527 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1528 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1529 } 1530 1531 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1532 kernfs_put(pos); 1533 } 1534 1535 kernfs_put(pos); 1536 } while (pos != kn); 1537 } 1538 1539 /** 1540 * kernfs_remove - remove a kernfs_node recursively 1541 * @kn: the kernfs_node to remove 1542 * 1543 * Remove @kn along with all its subdirectories and files. 1544 */ 1545 void kernfs_remove(struct kernfs_node *kn) 1546 { 1547 struct kernfs_root *root; 1548 1549 if (!kn) 1550 return; 1551 1552 root = kernfs_root(kn); 1553 1554 down_write(&root->kernfs_rwsem); 1555 __kernfs_remove(kn); 1556 up_write(&root->kernfs_rwsem); 1557 } 1558 1559 /** 1560 * kernfs_break_active_protection - break out of active protection 1561 * @kn: the self kernfs_node 1562 * 1563 * The caller must be running off of a kernfs operation which is invoked 1564 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1565 * this function must also be matched with an invocation of 1566 * kernfs_unbreak_active_protection(). 1567 * 1568 * This function releases the active reference of @kn the caller is 1569 * holding. Once this function is called, @kn may be removed at any point 1570 * and the caller is solely responsible for ensuring that the objects it 1571 * dereferences are accessible. 1572 */ 1573 void kernfs_break_active_protection(struct kernfs_node *kn) 1574 { 1575 /* 1576 * Take out ourself out of the active ref dependency chain. If 1577 * we're called without an active ref, lockdep will complain. 1578 */ 1579 kernfs_put_active(kn); 1580 } 1581 1582 /** 1583 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1584 * @kn: the self kernfs_node 1585 * 1586 * If kernfs_break_active_protection() was called, this function must be 1587 * invoked before finishing the kernfs operation. Note that while this 1588 * function restores the active reference, it doesn't and can't actually 1589 * restore the active protection - @kn may already or be in the process of 1590 * being drained and removed. Once kernfs_break_active_protection() is 1591 * invoked, that protection is irreversibly gone for the kernfs operation 1592 * instance. 1593 * 1594 * While this function may be called at any point after 1595 * kernfs_break_active_protection() is invoked, its most useful location 1596 * would be right before the enclosing kernfs operation returns. 1597 */ 1598 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1599 { 1600 /* 1601 * @kn->active could be in any state; however, the increment we do 1602 * here will be undone as soon as the enclosing kernfs operation 1603 * finishes and this temporary bump can't break anything. If @kn 1604 * is alive, nothing changes. If @kn is being deactivated, the 1605 * soon-to-follow put will either finish deactivation or restore 1606 * deactivated state. If @kn is already removed, the temporary 1607 * bump is guaranteed to be gone before @kn is released. 1608 */ 1609 atomic_inc(&kn->active); 1610 if (kernfs_lockdep(kn)) 1611 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1612 } 1613 1614 /** 1615 * kernfs_remove_self - remove a kernfs_node from its own method 1616 * @kn: the self kernfs_node to remove 1617 * 1618 * The caller must be running off of a kernfs operation which is invoked 1619 * with an active reference - e.g. one of kernfs_ops. This can be used to 1620 * implement a file operation which deletes itself. 1621 * 1622 * For example, the "delete" file for a sysfs device directory can be 1623 * implemented by invoking kernfs_remove_self() on the "delete" file 1624 * itself. This function breaks the circular dependency of trying to 1625 * deactivate self while holding an active ref itself. It isn't necessary 1626 * to modify the usual removal path to use kernfs_remove_self(). The 1627 * "delete" implementation can simply invoke kernfs_remove_self() on self 1628 * before proceeding with the usual removal path. kernfs will ignore later 1629 * kernfs_remove() on self. 1630 * 1631 * kernfs_remove_self() can be called multiple times concurrently on the 1632 * same kernfs_node. Only the first one actually performs removal and 1633 * returns %true. All others will wait until the kernfs operation which 1634 * won self-removal finishes and return %false. Note that the losers wait 1635 * for the completion of not only the winning kernfs_remove_self() but also 1636 * the whole kernfs_ops which won the arbitration. This can be used to 1637 * guarantee, for example, all concurrent writes to a "delete" file to 1638 * finish only after the whole operation is complete. 1639 * 1640 * Return: %true if @kn is removed by this call, otherwise %false. 1641 */ 1642 bool kernfs_remove_self(struct kernfs_node *kn) 1643 { 1644 bool ret; 1645 struct kernfs_root *root = kernfs_root(kn); 1646 1647 down_write(&root->kernfs_rwsem); 1648 kernfs_break_active_protection(kn); 1649 1650 /* 1651 * SUICIDAL is used to arbitrate among competing invocations. Only 1652 * the first one will actually perform removal. When the removal 1653 * is complete, SUICIDED is set and the active ref is restored 1654 * while kernfs_rwsem for held exclusive. The ones which lost 1655 * arbitration waits for SUICIDED && drained which can happen only 1656 * after the enclosing kernfs operation which executed the winning 1657 * instance of kernfs_remove_self() finished. 1658 */ 1659 if (!(kn->flags & KERNFS_SUICIDAL)) { 1660 kn->flags |= KERNFS_SUICIDAL; 1661 __kernfs_remove(kn); 1662 kn->flags |= KERNFS_SUICIDED; 1663 ret = true; 1664 } else { 1665 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1666 DEFINE_WAIT(wait); 1667 1668 while (true) { 1669 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1670 1671 if ((kn->flags & KERNFS_SUICIDED) && 1672 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1673 break; 1674 1675 up_write(&root->kernfs_rwsem); 1676 schedule(); 1677 down_write(&root->kernfs_rwsem); 1678 } 1679 finish_wait(waitq, &wait); 1680 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1681 ret = false; 1682 } 1683 1684 /* 1685 * This must be done while kernfs_rwsem held exclusive; otherwise, 1686 * waiting for SUICIDED && deactivated could finish prematurely. 1687 */ 1688 kernfs_unbreak_active_protection(kn); 1689 1690 up_write(&root->kernfs_rwsem); 1691 return ret; 1692 } 1693 1694 /** 1695 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1696 * @parent: parent of the target 1697 * @name: name of the kernfs_node to remove 1698 * @ns: namespace tag of the kernfs_node to remove 1699 * 1700 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1701 * 1702 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1703 */ 1704 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1705 const void *ns) 1706 { 1707 struct kernfs_node *kn; 1708 struct kernfs_root *root; 1709 1710 if (!parent) { 1711 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1712 name); 1713 return -ENOENT; 1714 } 1715 1716 root = kernfs_root(parent); 1717 down_write(&root->kernfs_rwsem); 1718 1719 kn = kernfs_find_ns(parent, name, ns); 1720 if (kn) { 1721 kernfs_get(kn); 1722 __kernfs_remove(kn); 1723 kernfs_put(kn); 1724 } 1725 1726 up_write(&root->kernfs_rwsem); 1727 1728 if (kn) 1729 return 0; 1730 else 1731 return -ENOENT; 1732 } 1733 1734 /** 1735 * kernfs_rename_ns - move and rename a kernfs_node 1736 * @kn: target node 1737 * @new_parent: new parent to put @sd under 1738 * @new_name: new name 1739 * @new_ns: new namespace tag 1740 * 1741 * Return: %0 on success, -errno on failure. 1742 */ 1743 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1744 const char *new_name, const void *new_ns) 1745 { 1746 struct kernfs_node *old_parent; 1747 struct kernfs_root *root; 1748 const char *old_name; 1749 int error; 1750 1751 /* can't move or rename root */ 1752 if (!rcu_access_pointer(kn->__parent)) 1753 return -EINVAL; 1754 1755 root = kernfs_root(kn); 1756 down_write(&root->kernfs_rwsem); 1757 1758 error = -ENOENT; 1759 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1760 (new_parent->flags & KERNFS_EMPTY_DIR)) 1761 goto out; 1762 1763 old_parent = kernfs_parent(kn); 1764 if (root->flags & KERNFS_ROOT_INVARIANT_PARENT) { 1765 error = -EINVAL; 1766 if (WARN_ON_ONCE(old_parent != new_parent)) 1767 goto out; 1768 } 1769 1770 error = 0; 1771 old_name = kernfs_rcu_name(kn); 1772 if (!new_name) 1773 new_name = old_name; 1774 if ((old_parent == new_parent) && (kn->ns == new_ns) && 1775 (strcmp(old_name, new_name) == 0)) 1776 goto out; /* nothing to rename */ 1777 1778 error = -EEXIST; 1779 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1780 goto out; 1781 1782 /* rename kernfs_node */ 1783 if (strcmp(old_name, new_name) != 0) { 1784 error = -ENOMEM; 1785 new_name = kstrdup_const(new_name, GFP_KERNEL); 1786 if (!new_name) 1787 goto out; 1788 } else { 1789 new_name = NULL; 1790 } 1791 1792 /* 1793 * Move to the appropriate place in the appropriate directories rbtree. 1794 */ 1795 kernfs_unlink_sibling(kn); 1796 1797 /* rename_lock protects ->parent accessors */ 1798 if (old_parent != new_parent) { 1799 kernfs_get(new_parent); 1800 write_lock_irq(&root->kernfs_rename_lock); 1801 1802 rcu_assign_pointer(kn->__parent, new_parent); 1803 1804 kn->ns = new_ns; 1805 if (new_name) 1806 rcu_assign_pointer(kn->name, new_name); 1807 1808 write_unlock_irq(&root->kernfs_rename_lock); 1809 kernfs_put(old_parent); 1810 } else { 1811 /* name assignment is RCU protected, parent is the same */ 1812 kn->ns = new_ns; 1813 if (new_name) 1814 rcu_assign_pointer(kn->name, new_name); 1815 } 1816 1817 kn->hash = kernfs_name_hash(new_name ?: old_name, kn->ns); 1818 kernfs_link_sibling(kn); 1819 1820 if (new_name && !is_kernel_rodata((unsigned long)old_name)) 1821 kfree_rcu_mightsleep(old_name); 1822 1823 error = 0; 1824 out: 1825 up_write(&root->kernfs_rwsem); 1826 return error; 1827 } 1828 1829 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1830 { 1831 kernfs_put(filp->private_data); 1832 return 0; 1833 } 1834 1835 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1836 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1837 { 1838 if (pos) { 1839 int valid = kernfs_active(pos) && 1840 rcu_access_pointer(pos->__parent) == parent && 1841 hash == pos->hash; 1842 kernfs_put(pos); 1843 if (!valid) 1844 pos = NULL; 1845 } 1846 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1847 struct rb_node *node = parent->dir.children.rb_node; 1848 while (node) { 1849 pos = rb_to_kn(node); 1850 1851 if (hash < pos->hash) 1852 node = node->rb_left; 1853 else if (hash > pos->hash) 1854 node = node->rb_right; 1855 else 1856 break; 1857 } 1858 } 1859 /* Skip over entries which are dying/dead or in the wrong namespace */ 1860 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1861 struct rb_node *node = rb_next(&pos->rb); 1862 if (!node) 1863 pos = NULL; 1864 else 1865 pos = rb_to_kn(node); 1866 } 1867 return pos; 1868 } 1869 1870 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1871 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1872 { 1873 pos = kernfs_dir_pos(ns, parent, ino, pos); 1874 if (pos) { 1875 do { 1876 struct rb_node *node = rb_next(&pos->rb); 1877 if (!node) 1878 pos = NULL; 1879 else 1880 pos = rb_to_kn(node); 1881 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1882 } 1883 return pos; 1884 } 1885 1886 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1887 { 1888 struct dentry *dentry = file->f_path.dentry; 1889 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1890 struct kernfs_node *pos = file->private_data; 1891 struct kernfs_root *root; 1892 const void *ns = NULL; 1893 1894 if (!dir_emit_dots(file, ctx)) 1895 return 0; 1896 1897 root = kernfs_root(parent); 1898 down_read(&root->kernfs_rwsem); 1899 1900 if (kernfs_ns_enabled(parent)) 1901 ns = kernfs_info(dentry->d_sb)->ns; 1902 1903 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1904 pos; 1905 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1906 const char *name = kernfs_rcu_name(pos); 1907 unsigned int type = fs_umode_to_dtype(pos->mode); 1908 int len = strlen(name); 1909 ino_t ino = kernfs_ino(pos); 1910 1911 ctx->pos = pos->hash; 1912 file->private_data = pos; 1913 kernfs_get(pos); 1914 1915 if (!dir_emit(ctx, name, len, ino, type)) { 1916 up_read(&root->kernfs_rwsem); 1917 return 0; 1918 } 1919 } 1920 up_read(&root->kernfs_rwsem); 1921 file->private_data = NULL; 1922 ctx->pos = INT_MAX; 1923 return 0; 1924 } 1925 1926 const struct file_operations kernfs_dir_fops = { 1927 .read = generic_read_dir, 1928 .iterate_shared = kernfs_fop_readdir, 1929 .release = kernfs_dir_fop_release, 1930 .llseek = generic_file_llseek, 1931 }; 1932