1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 /* kernfs_node_depth - compute depth from @from to @to */ 48 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 49 { 50 size_t depth = 0; 51 52 while (to->parent && to != from) { 53 depth++; 54 to = to->parent; 55 } 56 return depth; 57 } 58 59 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 60 struct kernfs_node *b) 61 { 62 size_t da, db; 63 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 64 65 if (ra != rb) 66 return NULL; 67 68 da = kernfs_depth(ra->kn, a); 69 db = kernfs_depth(rb->kn, b); 70 71 while (da > db) { 72 a = a->parent; 73 da--; 74 } 75 while (db > da) { 76 b = b->parent; 77 db--; 78 } 79 80 /* worst case b and a will be the same at root */ 81 while (b != a) { 82 b = b->parent; 83 a = a->parent; 84 } 85 86 return a; 87 } 88 89 /** 90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 91 * where kn_from is treated as root of the path. 92 * @kn_from: kernfs node which should be treated as root for the path 93 * @kn_to: kernfs node to which path is needed 94 * @buf: buffer to copy the path into 95 * @buflen: size of @buf 96 * 97 * We need to handle couple of scenarios here: 98 * [1] when @kn_from is an ancestor of @kn_to at some level 99 * kn_from: /n1/n2/n3 100 * kn_to: /n1/n2/n3/n4/n5 101 * result: /n4/n5 102 * 103 * [2] when @kn_from is on a different hierarchy and we need to find common 104 * ancestor between @kn_from and @kn_to. 105 * kn_from: /n1/n2/n3/n4 106 * kn_to: /n1/n2/n5 107 * result: /../../n5 108 * OR 109 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 110 * kn_to: /n1/n2/n3 [depth=3] 111 * result: /../.. 112 * 113 * return value: length of the string. If greater than buflen, 114 * then contents of buf are undefined. On error, -1 is returned. 115 */ 116 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 117 struct kernfs_node *kn_from, 118 char *buf, size_t buflen) 119 { 120 struct kernfs_node *kn, *common; 121 const char parent_str[] = "/.."; 122 size_t depth_from, depth_to, len = 0, nlen = 0; 123 char *p; 124 int i; 125 126 if (!kn_from) 127 kn_from = kernfs_root(kn_to)->kn; 128 129 if (kn_from == kn_to) 130 return strlcpy(buf, "/", buflen); 131 132 common = kernfs_common_ancestor(kn_from, kn_to); 133 if (WARN_ON(!common)) 134 return -1; 135 136 depth_to = kernfs_depth(common, kn_to); 137 depth_from = kernfs_depth(common, kn_from); 138 139 if (buf) 140 buf[0] = '\0'; 141 142 for (i = 0; i < depth_from; i++) 143 len += strlcpy(buf + len, parent_str, 144 len < buflen ? buflen - len : 0); 145 146 /* Calculate how many bytes we need for the rest */ 147 for (kn = kn_to; kn != common; kn = kn->parent) 148 nlen += strlen(kn->name) + 1; 149 150 if (len + nlen >= buflen) 151 return len + nlen; 152 153 p = buf + len + nlen; 154 *p = '\0'; 155 for (kn = kn_to; kn != common; kn = kn->parent) { 156 size_t tmp = strlen(kn->name); 157 p -= tmp; 158 memcpy(p, kn->name, tmp); 159 *(--p) = '/'; 160 } 161 162 return len + nlen; 163 } 164 165 /** 166 * kernfs_name - obtain the name of a given node 167 * @kn: kernfs_node of interest 168 * @buf: buffer to copy @kn's name into 169 * @buflen: size of @buf 170 * 171 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 172 * similar to strlcpy(). It returns the length of @kn's name and if @buf 173 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 174 * 175 * This function can be called from any context. 176 */ 177 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 178 { 179 unsigned long flags; 180 int ret; 181 182 spin_lock_irqsave(&kernfs_rename_lock, flags); 183 ret = kernfs_name_locked(kn, buf, buflen); 184 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 185 return ret; 186 } 187 188 /** 189 * kernfs_path_len - determine the length of the full path of a given node 190 * @kn: kernfs_node of interest 191 * 192 * The returned length doesn't include the space for the terminating '\0'. 193 */ 194 size_t kernfs_path_len(struct kernfs_node *kn) 195 { 196 size_t len = 0; 197 unsigned long flags; 198 199 spin_lock_irqsave(&kernfs_rename_lock, flags); 200 201 do { 202 len += strlen(kn->name) + 1; 203 kn = kn->parent; 204 } while (kn && kn->parent); 205 206 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 207 208 return len; 209 } 210 211 /** 212 * kernfs_path_from_node - build path of node @to relative to @from. 213 * @from: parent kernfs_node relative to which we need to build the path 214 * @to: kernfs_node of interest 215 * @buf: buffer to copy @to's path into 216 * @buflen: size of @buf 217 * 218 * Builds @to's path relative to @from in @buf. @from and @to must 219 * be on the same kernfs-root. If @from is not parent of @to, then a relative 220 * path (which includes '..'s) as needed to reach from @from to @to is 221 * returned. 222 * 223 * If @buf isn't long enough, the return value will be greater than @buflen 224 * and @buf contents are undefined. 225 */ 226 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 227 char *buf, size_t buflen) 228 { 229 unsigned long flags; 230 int ret; 231 232 spin_lock_irqsave(&kernfs_rename_lock, flags); 233 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 234 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 235 return ret; 236 } 237 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 238 239 /** 240 * kernfs_path - build full path of a given node 241 * @kn: kernfs_node of interest 242 * @buf: buffer to copy @kn's name into 243 * @buflen: size of @buf 244 * 245 * Builds and returns the full path of @kn in @buf of @buflen bytes. The 246 * path is built from the end of @buf so the returned pointer usually 247 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated 248 * and %NULL is returned. 249 */ 250 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) 251 { 252 int ret; 253 254 ret = kernfs_path_from_node(kn, NULL, buf, buflen); 255 if (ret < 0 || ret >= buflen) 256 return NULL; 257 return buf; 258 } 259 EXPORT_SYMBOL_GPL(kernfs_path); 260 261 /** 262 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 263 * @kn: kernfs_node of interest 264 * 265 * This function can be called from any context. 266 */ 267 void pr_cont_kernfs_name(struct kernfs_node *kn) 268 { 269 unsigned long flags; 270 271 spin_lock_irqsave(&kernfs_rename_lock, flags); 272 273 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 274 pr_cont("%s", kernfs_pr_cont_buf); 275 276 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 277 } 278 279 /** 280 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 281 * @kn: kernfs_node of interest 282 * 283 * This function can be called from any context. 284 */ 285 void pr_cont_kernfs_path(struct kernfs_node *kn) 286 { 287 unsigned long flags; 288 int sz; 289 290 spin_lock_irqsave(&kernfs_rename_lock, flags); 291 292 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 293 sizeof(kernfs_pr_cont_buf)); 294 if (sz < 0) { 295 pr_cont("(error)"); 296 goto out; 297 } 298 299 if (sz >= sizeof(kernfs_pr_cont_buf)) { 300 pr_cont("(name too long)"); 301 goto out; 302 } 303 304 pr_cont("%s", kernfs_pr_cont_buf); 305 306 out: 307 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 308 } 309 310 /** 311 * kernfs_get_parent - determine the parent node and pin it 312 * @kn: kernfs_node of interest 313 * 314 * Determines @kn's parent, pins and returns it. This function can be 315 * called from any context. 316 */ 317 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 318 { 319 struct kernfs_node *parent; 320 unsigned long flags; 321 322 spin_lock_irqsave(&kernfs_rename_lock, flags); 323 parent = kn->parent; 324 kernfs_get(parent); 325 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 326 327 return parent; 328 } 329 330 /** 331 * kernfs_name_hash 332 * @name: Null terminated string to hash 333 * @ns: Namespace tag to hash 334 * 335 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 336 */ 337 static unsigned int kernfs_name_hash(const char *name, const void *ns) 338 { 339 unsigned long hash = init_name_hash(ns); 340 unsigned int len = strlen(name); 341 while (len--) 342 hash = partial_name_hash(*name++, hash); 343 hash = end_name_hash(hash); 344 hash &= 0x7fffffffU; 345 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 346 if (hash < 2) 347 hash += 2; 348 if (hash >= INT_MAX) 349 hash = INT_MAX - 1; 350 return hash; 351 } 352 353 static int kernfs_name_compare(unsigned int hash, const char *name, 354 const void *ns, const struct kernfs_node *kn) 355 { 356 if (hash < kn->hash) 357 return -1; 358 if (hash > kn->hash) 359 return 1; 360 if (ns < kn->ns) 361 return -1; 362 if (ns > kn->ns) 363 return 1; 364 return strcmp(name, kn->name); 365 } 366 367 static int kernfs_sd_compare(const struct kernfs_node *left, 368 const struct kernfs_node *right) 369 { 370 return kernfs_name_compare(left->hash, left->name, left->ns, right); 371 } 372 373 /** 374 * kernfs_link_sibling - link kernfs_node into sibling rbtree 375 * @kn: kernfs_node of interest 376 * 377 * Link @kn into its sibling rbtree which starts from 378 * @kn->parent->dir.children. 379 * 380 * Locking: 381 * mutex_lock(kernfs_mutex) 382 * 383 * RETURNS: 384 * 0 on susccess -EEXIST on failure. 385 */ 386 static int kernfs_link_sibling(struct kernfs_node *kn) 387 { 388 struct rb_node **node = &kn->parent->dir.children.rb_node; 389 struct rb_node *parent = NULL; 390 391 while (*node) { 392 struct kernfs_node *pos; 393 int result; 394 395 pos = rb_to_kn(*node); 396 parent = *node; 397 result = kernfs_sd_compare(kn, pos); 398 if (result < 0) 399 node = &pos->rb.rb_left; 400 else if (result > 0) 401 node = &pos->rb.rb_right; 402 else 403 return -EEXIST; 404 } 405 406 /* add new node and rebalance the tree */ 407 rb_link_node(&kn->rb, parent, node); 408 rb_insert_color(&kn->rb, &kn->parent->dir.children); 409 410 /* successfully added, account subdir number */ 411 if (kernfs_type(kn) == KERNFS_DIR) 412 kn->parent->dir.subdirs++; 413 414 return 0; 415 } 416 417 /** 418 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 419 * @kn: kernfs_node of interest 420 * 421 * Try to unlink @kn from its sibling rbtree which starts from 422 * kn->parent->dir.children. Returns %true if @kn was actually 423 * removed, %false if @kn wasn't on the rbtree. 424 * 425 * Locking: 426 * mutex_lock(kernfs_mutex) 427 */ 428 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 429 { 430 if (RB_EMPTY_NODE(&kn->rb)) 431 return false; 432 433 if (kernfs_type(kn) == KERNFS_DIR) 434 kn->parent->dir.subdirs--; 435 436 rb_erase(&kn->rb, &kn->parent->dir.children); 437 RB_CLEAR_NODE(&kn->rb); 438 return true; 439 } 440 441 /** 442 * kernfs_get_active - get an active reference to kernfs_node 443 * @kn: kernfs_node to get an active reference to 444 * 445 * Get an active reference of @kn. This function is noop if @kn 446 * is NULL. 447 * 448 * RETURNS: 449 * Pointer to @kn on success, NULL on failure. 450 */ 451 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 452 { 453 if (unlikely(!kn)) 454 return NULL; 455 456 if (!atomic_inc_unless_negative(&kn->active)) 457 return NULL; 458 459 if (kernfs_lockdep(kn)) 460 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 461 return kn; 462 } 463 464 /** 465 * kernfs_put_active - put an active reference to kernfs_node 466 * @kn: kernfs_node to put an active reference to 467 * 468 * Put an active reference to @kn. This function is noop if @kn 469 * is NULL. 470 */ 471 void kernfs_put_active(struct kernfs_node *kn) 472 { 473 struct kernfs_root *root = kernfs_root(kn); 474 int v; 475 476 if (unlikely(!kn)) 477 return; 478 479 if (kernfs_lockdep(kn)) 480 rwsem_release(&kn->dep_map, 1, _RET_IP_); 481 v = atomic_dec_return(&kn->active); 482 if (likely(v != KN_DEACTIVATED_BIAS)) 483 return; 484 485 wake_up_all(&root->deactivate_waitq); 486 } 487 488 /** 489 * kernfs_drain - drain kernfs_node 490 * @kn: kernfs_node to drain 491 * 492 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 493 * removers may invoke this function concurrently on @kn and all will 494 * return after draining is complete. 495 */ 496 static void kernfs_drain(struct kernfs_node *kn) 497 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 498 { 499 struct kernfs_root *root = kernfs_root(kn); 500 501 lockdep_assert_held(&kernfs_mutex); 502 WARN_ON_ONCE(kernfs_active(kn)); 503 504 mutex_unlock(&kernfs_mutex); 505 506 if (kernfs_lockdep(kn)) { 507 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 508 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 509 lock_contended(&kn->dep_map, _RET_IP_); 510 } 511 512 /* but everyone should wait for draining */ 513 wait_event(root->deactivate_waitq, 514 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 515 516 if (kernfs_lockdep(kn)) { 517 lock_acquired(&kn->dep_map, _RET_IP_); 518 rwsem_release(&kn->dep_map, 1, _RET_IP_); 519 } 520 521 kernfs_unmap_bin_file(kn); 522 523 mutex_lock(&kernfs_mutex); 524 } 525 526 /** 527 * kernfs_get - get a reference count on a kernfs_node 528 * @kn: the target kernfs_node 529 */ 530 void kernfs_get(struct kernfs_node *kn) 531 { 532 if (kn) { 533 WARN_ON(!atomic_read(&kn->count)); 534 atomic_inc(&kn->count); 535 } 536 } 537 EXPORT_SYMBOL_GPL(kernfs_get); 538 539 /** 540 * kernfs_put - put a reference count on a kernfs_node 541 * @kn: the target kernfs_node 542 * 543 * Put a reference count of @kn and destroy it if it reached zero. 544 */ 545 void kernfs_put(struct kernfs_node *kn) 546 { 547 struct kernfs_node *parent; 548 struct kernfs_root *root; 549 550 if (!kn || !atomic_dec_and_test(&kn->count)) 551 return; 552 root = kernfs_root(kn); 553 repeat: 554 /* 555 * Moving/renaming is always done while holding reference. 556 * kn->parent won't change beneath us. 557 */ 558 parent = kn->parent; 559 560 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 561 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 562 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 563 564 if (kernfs_type(kn) == KERNFS_LINK) 565 kernfs_put(kn->symlink.target_kn); 566 567 kfree_const(kn->name); 568 569 if (kn->iattr) { 570 if (kn->iattr->ia_secdata) 571 security_release_secctx(kn->iattr->ia_secdata, 572 kn->iattr->ia_secdata_len); 573 simple_xattrs_free(&kn->iattr->xattrs); 574 } 575 kfree(kn->iattr); 576 ida_simple_remove(&root->ino_ida, kn->ino); 577 kmem_cache_free(kernfs_node_cache, kn); 578 579 kn = parent; 580 if (kn) { 581 if (atomic_dec_and_test(&kn->count)) 582 goto repeat; 583 } else { 584 /* just released the root kn, free @root too */ 585 ida_destroy(&root->ino_ida); 586 kfree(root); 587 } 588 } 589 EXPORT_SYMBOL_GPL(kernfs_put); 590 591 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 592 { 593 struct kernfs_node *kn; 594 595 if (flags & LOOKUP_RCU) 596 return -ECHILD; 597 598 /* Always perform fresh lookup for negatives */ 599 if (d_really_is_negative(dentry)) 600 goto out_bad_unlocked; 601 602 kn = dentry->d_fsdata; 603 mutex_lock(&kernfs_mutex); 604 605 /* The kernfs node has been deactivated */ 606 if (!kernfs_active(kn)) 607 goto out_bad; 608 609 /* The kernfs node has been moved? */ 610 if (dentry->d_parent->d_fsdata != kn->parent) 611 goto out_bad; 612 613 /* The kernfs node has been renamed */ 614 if (strcmp(dentry->d_name.name, kn->name) != 0) 615 goto out_bad; 616 617 /* The kernfs node has been moved to a different namespace */ 618 if (kn->parent && kernfs_ns_enabled(kn->parent) && 619 kernfs_info(dentry->d_sb)->ns != kn->ns) 620 goto out_bad; 621 622 mutex_unlock(&kernfs_mutex); 623 return 1; 624 out_bad: 625 mutex_unlock(&kernfs_mutex); 626 out_bad_unlocked: 627 return 0; 628 } 629 630 static void kernfs_dop_release(struct dentry *dentry) 631 { 632 kernfs_put(dentry->d_fsdata); 633 } 634 635 const struct dentry_operations kernfs_dops = { 636 .d_revalidate = kernfs_dop_revalidate, 637 .d_release = kernfs_dop_release, 638 }; 639 640 /** 641 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 642 * @dentry: the dentry in question 643 * 644 * Return the kernfs_node associated with @dentry. If @dentry is not a 645 * kernfs one, %NULL is returned. 646 * 647 * While the returned kernfs_node will stay accessible as long as @dentry 648 * is accessible, the returned node can be in any state and the caller is 649 * fully responsible for determining what's accessible. 650 */ 651 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 652 { 653 if (dentry->d_sb->s_op == &kernfs_sops) 654 return dentry->d_fsdata; 655 return NULL; 656 } 657 658 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 659 const char *name, umode_t mode, 660 unsigned flags) 661 { 662 struct kernfs_node *kn; 663 int ret; 664 665 name = kstrdup_const(name, GFP_KERNEL); 666 if (!name) 667 return NULL; 668 669 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 670 if (!kn) 671 goto err_out1; 672 673 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 674 if (ret < 0) 675 goto err_out2; 676 kn->ino = ret; 677 678 atomic_set(&kn->count, 1); 679 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 680 RB_CLEAR_NODE(&kn->rb); 681 682 kn->name = name; 683 kn->mode = mode; 684 kn->flags = flags; 685 686 return kn; 687 688 err_out2: 689 kmem_cache_free(kernfs_node_cache, kn); 690 err_out1: 691 kfree_const(name); 692 return NULL; 693 } 694 695 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 696 const char *name, umode_t mode, 697 unsigned flags) 698 { 699 struct kernfs_node *kn; 700 701 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 702 if (kn) { 703 kernfs_get(parent); 704 kn->parent = parent; 705 } 706 return kn; 707 } 708 709 /** 710 * kernfs_add_one - add kernfs_node to parent without warning 711 * @kn: kernfs_node to be added 712 * 713 * The caller must already have initialized @kn->parent. This 714 * function increments nlink of the parent's inode if @kn is a 715 * directory and link into the children list of the parent. 716 * 717 * RETURNS: 718 * 0 on success, -EEXIST if entry with the given name already 719 * exists. 720 */ 721 int kernfs_add_one(struct kernfs_node *kn) 722 { 723 struct kernfs_node *parent = kn->parent; 724 struct kernfs_iattrs *ps_iattr; 725 bool has_ns; 726 int ret; 727 728 mutex_lock(&kernfs_mutex); 729 730 ret = -EINVAL; 731 has_ns = kernfs_ns_enabled(parent); 732 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 733 has_ns ? "required" : "invalid", parent->name, kn->name)) 734 goto out_unlock; 735 736 if (kernfs_type(parent) != KERNFS_DIR) 737 goto out_unlock; 738 739 ret = -ENOENT; 740 if (parent->flags & KERNFS_EMPTY_DIR) 741 goto out_unlock; 742 743 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 744 goto out_unlock; 745 746 kn->hash = kernfs_name_hash(kn->name, kn->ns); 747 748 ret = kernfs_link_sibling(kn); 749 if (ret) 750 goto out_unlock; 751 752 /* Update timestamps on the parent */ 753 ps_iattr = parent->iattr; 754 if (ps_iattr) { 755 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 756 ktime_get_real_ts(&ps_iattrs->ia_ctime); 757 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime; 758 } 759 760 mutex_unlock(&kernfs_mutex); 761 762 /* 763 * Activate the new node unless CREATE_DEACTIVATED is requested. 764 * If not activated here, the kernfs user is responsible for 765 * activating the node with kernfs_activate(). A node which hasn't 766 * been activated is not visible to userland and its removal won't 767 * trigger deactivation. 768 */ 769 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 770 kernfs_activate(kn); 771 return 0; 772 773 out_unlock: 774 mutex_unlock(&kernfs_mutex); 775 return ret; 776 } 777 778 /** 779 * kernfs_find_ns - find kernfs_node with the given name 780 * @parent: kernfs_node to search under 781 * @name: name to look for 782 * @ns: the namespace tag to use 783 * 784 * Look for kernfs_node with name @name under @parent. Returns pointer to 785 * the found kernfs_node on success, %NULL on failure. 786 */ 787 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 788 const unsigned char *name, 789 const void *ns) 790 { 791 struct rb_node *node = parent->dir.children.rb_node; 792 bool has_ns = kernfs_ns_enabled(parent); 793 unsigned int hash; 794 795 lockdep_assert_held(&kernfs_mutex); 796 797 if (has_ns != (bool)ns) { 798 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 799 has_ns ? "required" : "invalid", parent->name, name); 800 return NULL; 801 } 802 803 hash = kernfs_name_hash(name, ns); 804 while (node) { 805 struct kernfs_node *kn; 806 int result; 807 808 kn = rb_to_kn(node); 809 result = kernfs_name_compare(hash, name, ns, kn); 810 if (result < 0) 811 node = node->rb_left; 812 else if (result > 0) 813 node = node->rb_right; 814 else 815 return kn; 816 } 817 return NULL; 818 } 819 820 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 821 const unsigned char *path, 822 const void *ns) 823 { 824 size_t len; 825 char *p, *name; 826 827 lockdep_assert_held(&kernfs_mutex); 828 829 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 830 spin_lock_irq(&kernfs_rename_lock); 831 832 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 833 834 if (len >= sizeof(kernfs_pr_cont_buf)) { 835 spin_unlock_irq(&kernfs_rename_lock); 836 return NULL; 837 } 838 839 p = kernfs_pr_cont_buf; 840 841 while ((name = strsep(&p, "/")) && parent) { 842 if (*name == '\0') 843 continue; 844 parent = kernfs_find_ns(parent, name, ns); 845 } 846 847 spin_unlock_irq(&kernfs_rename_lock); 848 849 return parent; 850 } 851 852 /** 853 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 854 * @parent: kernfs_node to search under 855 * @name: name to look for 856 * @ns: the namespace tag to use 857 * 858 * Look for kernfs_node with name @name under @parent and get a reference 859 * if found. This function may sleep and returns pointer to the found 860 * kernfs_node on success, %NULL on failure. 861 */ 862 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 863 const char *name, const void *ns) 864 { 865 struct kernfs_node *kn; 866 867 mutex_lock(&kernfs_mutex); 868 kn = kernfs_find_ns(parent, name, ns); 869 kernfs_get(kn); 870 mutex_unlock(&kernfs_mutex); 871 872 return kn; 873 } 874 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 875 876 /** 877 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 878 * @parent: kernfs_node to search under 879 * @path: path to look for 880 * @ns: the namespace tag to use 881 * 882 * Look for kernfs_node with path @path under @parent and get a reference 883 * if found. This function may sleep and returns pointer to the found 884 * kernfs_node on success, %NULL on failure. 885 */ 886 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 887 const char *path, const void *ns) 888 { 889 struct kernfs_node *kn; 890 891 mutex_lock(&kernfs_mutex); 892 kn = kernfs_walk_ns(parent, path, ns); 893 kernfs_get(kn); 894 mutex_unlock(&kernfs_mutex); 895 896 return kn; 897 } 898 899 /** 900 * kernfs_create_root - create a new kernfs hierarchy 901 * @scops: optional syscall operations for the hierarchy 902 * @flags: KERNFS_ROOT_* flags 903 * @priv: opaque data associated with the new directory 904 * 905 * Returns the root of the new hierarchy on success, ERR_PTR() value on 906 * failure. 907 */ 908 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 909 unsigned int flags, void *priv) 910 { 911 struct kernfs_root *root; 912 struct kernfs_node *kn; 913 914 root = kzalloc(sizeof(*root), GFP_KERNEL); 915 if (!root) 916 return ERR_PTR(-ENOMEM); 917 918 ida_init(&root->ino_ida); 919 INIT_LIST_HEAD(&root->supers); 920 921 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 922 KERNFS_DIR); 923 if (!kn) { 924 ida_destroy(&root->ino_ida); 925 kfree(root); 926 return ERR_PTR(-ENOMEM); 927 } 928 929 kn->priv = priv; 930 kn->dir.root = root; 931 932 root->syscall_ops = scops; 933 root->flags = flags; 934 root->kn = kn; 935 init_waitqueue_head(&root->deactivate_waitq); 936 937 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 938 kernfs_activate(kn); 939 940 return root; 941 } 942 943 /** 944 * kernfs_destroy_root - destroy a kernfs hierarchy 945 * @root: root of the hierarchy to destroy 946 * 947 * Destroy the hierarchy anchored at @root by removing all existing 948 * directories and destroying @root. 949 */ 950 void kernfs_destroy_root(struct kernfs_root *root) 951 { 952 kernfs_remove(root->kn); /* will also free @root */ 953 } 954 955 /** 956 * kernfs_create_dir_ns - create a directory 957 * @parent: parent in which to create a new directory 958 * @name: name of the new directory 959 * @mode: mode of the new directory 960 * @priv: opaque data associated with the new directory 961 * @ns: optional namespace tag of the directory 962 * 963 * Returns the created node on success, ERR_PTR() value on failure. 964 */ 965 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 966 const char *name, umode_t mode, 967 void *priv, const void *ns) 968 { 969 struct kernfs_node *kn; 970 int rc; 971 972 /* allocate */ 973 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 974 if (!kn) 975 return ERR_PTR(-ENOMEM); 976 977 kn->dir.root = parent->dir.root; 978 kn->ns = ns; 979 kn->priv = priv; 980 981 /* link in */ 982 rc = kernfs_add_one(kn); 983 if (!rc) 984 return kn; 985 986 kernfs_put(kn); 987 return ERR_PTR(rc); 988 } 989 990 /** 991 * kernfs_create_empty_dir - create an always empty directory 992 * @parent: parent in which to create a new directory 993 * @name: name of the new directory 994 * 995 * Returns the created node on success, ERR_PTR() value on failure. 996 */ 997 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 998 const char *name) 999 { 1000 struct kernfs_node *kn; 1001 int rc; 1002 1003 /* allocate */ 1004 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR); 1005 if (!kn) 1006 return ERR_PTR(-ENOMEM); 1007 1008 kn->flags |= KERNFS_EMPTY_DIR; 1009 kn->dir.root = parent->dir.root; 1010 kn->ns = NULL; 1011 kn->priv = NULL; 1012 1013 /* link in */ 1014 rc = kernfs_add_one(kn); 1015 if (!rc) 1016 return kn; 1017 1018 kernfs_put(kn); 1019 return ERR_PTR(rc); 1020 } 1021 1022 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1023 struct dentry *dentry, 1024 unsigned int flags) 1025 { 1026 struct dentry *ret; 1027 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 1028 struct kernfs_node *kn; 1029 struct inode *inode; 1030 const void *ns = NULL; 1031 1032 mutex_lock(&kernfs_mutex); 1033 1034 if (kernfs_ns_enabled(parent)) 1035 ns = kernfs_info(dir->i_sb)->ns; 1036 1037 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1038 1039 /* no such entry */ 1040 if (!kn || !kernfs_active(kn)) { 1041 ret = NULL; 1042 goto out_unlock; 1043 } 1044 kernfs_get(kn); 1045 dentry->d_fsdata = kn; 1046 1047 /* attach dentry and inode */ 1048 inode = kernfs_get_inode(dir->i_sb, kn); 1049 if (!inode) { 1050 ret = ERR_PTR(-ENOMEM); 1051 goto out_unlock; 1052 } 1053 1054 /* instantiate and hash dentry */ 1055 ret = d_splice_alias(inode, dentry); 1056 out_unlock: 1057 mutex_unlock(&kernfs_mutex); 1058 return ret; 1059 } 1060 1061 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1062 umode_t mode) 1063 { 1064 struct kernfs_node *parent = dir->i_private; 1065 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1066 int ret; 1067 1068 if (!scops || !scops->mkdir) 1069 return -EPERM; 1070 1071 if (!kernfs_get_active(parent)) 1072 return -ENODEV; 1073 1074 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1075 1076 kernfs_put_active(parent); 1077 return ret; 1078 } 1079 1080 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1081 { 1082 struct kernfs_node *kn = dentry->d_fsdata; 1083 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1084 int ret; 1085 1086 if (!scops || !scops->rmdir) 1087 return -EPERM; 1088 1089 if (!kernfs_get_active(kn)) 1090 return -ENODEV; 1091 1092 ret = scops->rmdir(kn); 1093 1094 kernfs_put_active(kn); 1095 return ret; 1096 } 1097 1098 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1099 struct inode *new_dir, struct dentry *new_dentry, 1100 unsigned int flags) 1101 { 1102 struct kernfs_node *kn = old_dentry->d_fsdata; 1103 struct kernfs_node *new_parent = new_dir->i_private; 1104 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1105 int ret; 1106 1107 if (flags) 1108 return -EINVAL; 1109 1110 if (!scops || !scops->rename) 1111 return -EPERM; 1112 1113 if (!kernfs_get_active(kn)) 1114 return -ENODEV; 1115 1116 if (!kernfs_get_active(new_parent)) { 1117 kernfs_put_active(kn); 1118 return -ENODEV; 1119 } 1120 1121 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1122 1123 kernfs_put_active(new_parent); 1124 kernfs_put_active(kn); 1125 return ret; 1126 } 1127 1128 const struct inode_operations kernfs_dir_iops = { 1129 .lookup = kernfs_iop_lookup, 1130 .permission = kernfs_iop_permission, 1131 .setattr = kernfs_iop_setattr, 1132 .getattr = kernfs_iop_getattr, 1133 .listxattr = kernfs_iop_listxattr, 1134 1135 .mkdir = kernfs_iop_mkdir, 1136 .rmdir = kernfs_iop_rmdir, 1137 .rename = kernfs_iop_rename, 1138 }; 1139 1140 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1141 { 1142 struct kernfs_node *last; 1143 1144 while (true) { 1145 struct rb_node *rbn; 1146 1147 last = pos; 1148 1149 if (kernfs_type(pos) != KERNFS_DIR) 1150 break; 1151 1152 rbn = rb_first(&pos->dir.children); 1153 if (!rbn) 1154 break; 1155 1156 pos = rb_to_kn(rbn); 1157 } 1158 1159 return last; 1160 } 1161 1162 /** 1163 * kernfs_next_descendant_post - find the next descendant for post-order walk 1164 * @pos: the current position (%NULL to initiate traversal) 1165 * @root: kernfs_node whose descendants to walk 1166 * 1167 * Find the next descendant to visit for post-order traversal of @root's 1168 * descendants. @root is included in the iteration and the last node to be 1169 * visited. 1170 */ 1171 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1172 struct kernfs_node *root) 1173 { 1174 struct rb_node *rbn; 1175 1176 lockdep_assert_held(&kernfs_mutex); 1177 1178 /* if first iteration, visit leftmost descendant which may be root */ 1179 if (!pos) 1180 return kernfs_leftmost_descendant(root); 1181 1182 /* if we visited @root, we're done */ 1183 if (pos == root) 1184 return NULL; 1185 1186 /* if there's an unvisited sibling, visit its leftmost descendant */ 1187 rbn = rb_next(&pos->rb); 1188 if (rbn) 1189 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1190 1191 /* no sibling left, visit parent */ 1192 return pos->parent; 1193 } 1194 1195 /** 1196 * kernfs_activate - activate a node which started deactivated 1197 * @kn: kernfs_node whose subtree is to be activated 1198 * 1199 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1200 * needs to be explicitly activated. A node which hasn't been activated 1201 * isn't visible to userland and deactivation is skipped during its 1202 * removal. This is useful to construct atomic init sequences where 1203 * creation of multiple nodes should either succeed or fail atomically. 1204 * 1205 * The caller is responsible for ensuring that this function is not called 1206 * after kernfs_remove*() is invoked on @kn. 1207 */ 1208 void kernfs_activate(struct kernfs_node *kn) 1209 { 1210 struct kernfs_node *pos; 1211 1212 mutex_lock(&kernfs_mutex); 1213 1214 pos = NULL; 1215 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1216 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1217 continue; 1218 1219 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1220 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1221 1222 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1223 pos->flags |= KERNFS_ACTIVATED; 1224 } 1225 1226 mutex_unlock(&kernfs_mutex); 1227 } 1228 1229 static void __kernfs_remove(struct kernfs_node *kn) 1230 { 1231 struct kernfs_node *pos; 1232 1233 lockdep_assert_held(&kernfs_mutex); 1234 1235 /* 1236 * Short-circuit if non-root @kn has already finished removal. 1237 * This is for kernfs_remove_self() which plays with active ref 1238 * after removal. 1239 */ 1240 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1241 return; 1242 1243 pr_debug("kernfs %s: removing\n", kn->name); 1244 1245 /* prevent any new usage under @kn by deactivating all nodes */ 1246 pos = NULL; 1247 while ((pos = kernfs_next_descendant_post(pos, kn))) 1248 if (kernfs_active(pos)) 1249 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1250 1251 /* deactivate and unlink the subtree node-by-node */ 1252 do { 1253 pos = kernfs_leftmost_descendant(kn); 1254 1255 /* 1256 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1257 * base ref could have been put by someone else by the time 1258 * the function returns. Make sure it doesn't go away 1259 * underneath us. 1260 */ 1261 kernfs_get(pos); 1262 1263 /* 1264 * Drain iff @kn was activated. This avoids draining and 1265 * its lockdep annotations for nodes which have never been 1266 * activated and allows embedding kernfs_remove() in create 1267 * error paths without worrying about draining. 1268 */ 1269 if (kn->flags & KERNFS_ACTIVATED) 1270 kernfs_drain(pos); 1271 else 1272 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1273 1274 /* 1275 * kernfs_unlink_sibling() succeeds once per node. Use it 1276 * to decide who's responsible for cleanups. 1277 */ 1278 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1279 struct kernfs_iattrs *ps_iattr = 1280 pos->parent ? pos->parent->iattr : NULL; 1281 1282 /* update timestamps on the parent */ 1283 if (ps_iattr) { 1284 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime); 1285 ps_iattr->ia_iattr.ia_mtime = 1286 ps_iattr->ia_iattr.ia_ctime; 1287 } 1288 1289 kernfs_put(pos); 1290 } 1291 1292 kernfs_put(pos); 1293 } while (pos != kn); 1294 } 1295 1296 /** 1297 * kernfs_remove - remove a kernfs_node recursively 1298 * @kn: the kernfs_node to remove 1299 * 1300 * Remove @kn along with all its subdirectories and files. 1301 */ 1302 void kernfs_remove(struct kernfs_node *kn) 1303 { 1304 mutex_lock(&kernfs_mutex); 1305 __kernfs_remove(kn); 1306 mutex_unlock(&kernfs_mutex); 1307 } 1308 1309 /** 1310 * kernfs_break_active_protection - break out of active protection 1311 * @kn: the self kernfs_node 1312 * 1313 * The caller must be running off of a kernfs operation which is invoked 1314 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1315 * this function must also be matched with an invocation of 1316 * kernfs_unbreak_active_protection(). 1317 * 1318 * This function releases the active reference of @kn the caller is 1319 * holding. Once this function is called, @kn may be removed at any point 1320 * and the caller is solely responsible for ensuring that the objects it 1321 * dereferences are accessible. 1322 */ 1323 void kernfs_break_active_protection(struct kernfs_node *kn) 1324 { 1325 /* 1326 * Take out ourself out of the active ref dependency chain. If 1327 * we're called without an active ref, lockdep will complain. 1328 */ 1329 kernfs_put_active(kn); 1330 } 1331 1332 /** 1333 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1334 * @kn: the self kernfs_node 1335 * 1336 * If kernfs_break_active_protection() was called, this function must be 1337 * invoked before finishing the kernfs operation. Note that while this 1338 * function restores the active reference, it doesn't and can't actually 1339 * restore the active protection - @kn may already or be in the process of 1340 * being removed. Once kernfs_break_active_protection() is invoked, that 1341 * protection is irreversibly gone for the kernfs operation instance. 1342 * 1343 * While this function may be called at any point after 1344 * kernfs_break_active_protection() is invoked, its most useful location 1345 * would be right before the enclosing kernfs operation returns. 1346 */ 1347 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1348 { 1349 /* 1350 * @kn->active could be in any state; however, the increment we do 1351 * here will be undone as soon as the enclosing kernfs operation 1352 * finishes and this temporary bump can't break anything. If @kn 1353 * is alive, nothing changes. If @kn is being deactivated, the 1354 * soon-to-follow put will either finish deactivation or restore 1355 * deactivated state. If @kn is already removed, the temporary 1356 * bump is guaranteed to be gone before @kn is released. 1357 */ 1358 atomic_inc(&kn->active); 1359 if (kernfs_lockdep(kn)) 1360 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1361 } 1362 1363 /** 1364 * kernfs_remove_self - remove a kernfs_node from its own method 1365 * @kn: the self kernfs_node to remove 1366 * 1367 * The caller must be running off of a kernfs operation which is invoked 1368 * with an active reference - e.g. one of kernfs_ops. This can be used to 1369 * implement a file operation which deletes itself. 1370 * 1371 * For example, the "delete" file for a sysfs device directory can be 1372 * implemented by invoking kernfs_remove_self() on the "delete" file 1373 * itself. This function breaks the circular dependency of trying to 1374 * deactivate self while holding an active ref itself. It isn't necessary 1375 * to modify the usual removal path to use kernfs_remove_self(). The 1376 * "delete" implementation can simply invoke kernfs_remove_self() on self 1377 * before proceeding with the usual removal path. kernfs will ignore later 1378 * kernfs_remove() on self. 1379 * 1380 * kernfs_remove_self() can be called multiple times concurrently on the 1381 * same kernfs_node. Only the first one actually performs removal and 1382 * returns %true. All others will wait until the kernfs operation which 1383 * won self-removal finishes and return %false. Note that the losers wait 1384 * for the completion of not only the winning kernfs_remove_self() but also 1385 * the whole kernfs_ops which won the arbitration. This can be used to 1386 * guarantee, for example, all concurrent writes to a "delete" file to 1387 * finish only after the whole operation is complete. 1388 */ 1389 bool kernfs_remove_self(struct kernfs_node *kn) 1390 { 1391 bool ret; 1392 1393 mutex_lock(&kernfs_mutex); 1394 kernfs_break_active_protection(kn); 1395 1396 /* 1397 * SUICIDAL is used to arbitrate among competing invocations. Only 1398 * the first one will actually perform removal. When the removal 1399 * is complete, SUICIDED is set and the active ref is restored 1400 * while holding kernfs_mutex. The ones which lost arbitration 1401 * waits for SUICDED && drained which can happen only after the 1402 * enclosing kernfs operation which executed the winning instance 1403 * of kernfs_remove_self() finished. 1404 */ 1405 if (!(kn->flags & KERNFS_SUICIDAL)) { 1406 kn->flags |= KERNFS_SUICIDAL; 1407 __kernfs_remove(kn); 1408 kn->flags |= KERNFS_SUICIDED; 1409 ret = true; 1410 } else { 1411 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1412 DEFINE_WAIT(wait); 1413 1414 while (true) { 1415 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1416 1417 if ((kn->flags & KERNFS_SUICIDED) && 1418 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1419 break; 1420 1421 mutex_unlock(&kernfs_mutex); 1422 schedule(); 1423 mutex_lock(&kernfs_mutex); 1424 } 1425 finish_wait(waitq, &wait); 1426 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1427 ret = false; 1428 } 1429 1430 /* 1431 * This must be done while holding kernfs_mutex; otherwise, waiting 1432 * for SUICIDED && deactivated could finish prematurely. 1433 */ 1434 kernfs_unbreak_active_protection(kn); 1435 1436 mutex_unlock(&kernfs_mutex); 1437 return ret; 1438 } 1439 1440 /** 1441 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1442 * @parent: parent of the target 1443 * @name: name of the kernfs_node to remove 1444 * @ns: namespace tag of the kernfs_node to remove 1445 * 1446 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1447 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1448 */ 1449 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1450 const void *ns) 1451 { 1452 struct kernfs_node *kn; 1453 1454 if (!parent) { 1455 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1456 name); 1457 return -ENOENT; 1458 } 1459 1460 mutex_lock(&kernfs_mutex); 1461 1462 kn = kernfs_find_ns(parent, name, ns); 1463 if (kn) 1464 __kernfs_remove(kn); 1465 1466 mutex_unlock(&kernfs_mutex); 1467 1468 if (kn) 1469 return 0; 1470 else 1471 return -ENOENT; 1472 } 1473 1474 /** 1475 * kernfs_rename_ns - move and rename a kernfs_node 1476 * @kn: target node 1477 * @new_parent: new parent to put @sd under 1478 * @new_name: new name 1479 * @new_ns: new namespace tag 1480 */ 1481 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1482 const char *new_name, const void *new_ns) 1483 { 1484 struct kernfs_node *old_parent; 1485 const char *old_name = NULL; 1486 int error; 1487 1488 /* can't move or rename root */ 1489 if (!kn->parent) 1490 return -EINVAL; 1491 1492 mutex_lock(&kernfs_mutex); 1493 1494 error = -ENOENT; 1495 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1496 (new_parent->flags & KERNFS_EMPTY_DIR)) 1497 goto out; 1498 1499 error = 0; 1500 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1501 (strcmp(kn->name, new_name) == 0)) 1502 goto out; /* nothing to rename */ 1503 1504 error = -EEXIST; 1505 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1506 goto out; 1507 1508 /* rename kernfs_node */ 1509 if (strcmp(kn->name, new_name) != 0) { 1510 error = -ENOMEM; 1511 new_name = kstrdup_const(new_name, GFP_KERNEL); 1512 if (!new_name) 1513 goto out; 1514 } else { 1515 new_name = NULL; 1516 } 1517 1518 /* 1519 * Move to the appropriate place in the appropriate directories rbtree. 1520 */ 1521 kernfs_unlink_sibling(kn); 1522 kernfs_get(new_parent); 1523 1524 /* rename_lock protects ->parent and ->name accessors */ 1525 spin_lock_irq(&kernfs_rename_lock); 1526 1527 old_parent = kn->parent; 1528 kn->parent = new_parent; 1529 1530 kn->ns = new_ns; 1531 if (new_name) { 1532 old_name = kn->name; 1533 kn->name = new_name; 1534 } 1535 1536 spin_unlock_irq(&kernfs_rename_lock); 1537 1538 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1539 kernfs_link_sibling(kn); 1540 1541 kernfs_put(old_parent); 1542 kfree_const(old_name); 1543 1544 error = 0; 1545 out: 1546 mutex_unlock(&kernfs_mutex); 1547 return error; 1548 } 1549 1550 /* Relationship between s_mode and the DT_xxx types */ 1551 static inline unsigned char dt_type(struct kernfs_node *kn) 1552 { 1553 return (kn->mode >> 12) & 15; 1554 } 1555 1556 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1557 { 1558 kernfs_put(filp->private_data); 1559 return 0; 1560 } 1561 1562 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1563 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1564 { 1565 if (pos) { 1566 int valid = kernfs_active(pos) && 1567 pos->parent == parent && hash == pos->hash; 1568 kernfs_put(pos); 1569 if (!valid) 1570 pos = NULL; 1571 } 1572 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1573 struct rb_node *node = parent->dir.children.rb_node; 1574 while (node) { 1575 pos = rb_to_kn(node); 1576 1577 if (hash < pos->hash) 1578 node = node->rb_left; 1579 else if (hash > pos->hash) 1580 node = node->rb_right; 1581 else 1582 break; 1583 } 1584 } 1585 /* Skip over entries which are dying/dead or in the wrong namespace */ 1586 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1587 struct rb_node *node = rb_next(&pos->rb); 1588 if (!node) 1589 pos = NULL; 1590 else 1591 pos = rb_to_kn(node); 1592 } 1593 return pos; 1594 } 1595 1596 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1597 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1598 { 1599 pos = kernfs_dir_pos(ns, parent, ino, pos); 1600 if (pos) { 1601 do { 1602 struct rb_node *node = rb_next(&pos->rb); 1603 if (!node) 1604 pos = NULL; 1605 else 1606 pos = rb_to_kn(node); 1607 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1608 } 1609 return pos; 1610 } 1611 1612 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1613 { 1614 struct dentry *dentry = file->f_path.dentry; 1615 struct kernfs_node *parent = dentry->d_fsdata; 1616 struct kernfs_node *pos = file->private_data; 1617 const void *ns = NULL; 1618 1619 if (!dir_emit_dots(file, ctx)) 1620 return 0; 1621 mutex_lock(&kernfs_mutex); 1622 1623 if (kernfs_ns_enabled(parent)) 1624 ns = kernfs_info(dentry->d_sb)->ns; 1625 1626 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1627 pos; 1628 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1629 const char *name = pos->name; 1630 unsigned int type = dt_type(pos); 1631 int len = strlen(name); 1632 ino_t ino = pos->ino; 1633 1634 ctx->pos = pos->hash; 1635 file->private_data = pos; 1636 kernfs_get(pos); 1637 1638 mutex_unlock(&kernfs_mutex); 1639 if (!dir_emit(ctx, name, len, ino, type)) 1640 return 0; 1641 mutex_lock(&kernfs_mutex); 1642 } 1643 mutex_unlock(&kernfs_mutex); 1644 file->private_data = NULL; 1645 ctx->pos = INT_MAX; 1646 return 0; 1647 } 1648 1649 const struct file_operations kernfs_dir_fops = { 1650 .read = generic_read_dir, 1651 .iterate_shared = kernfs_fop_readdir, 1652 .release = kernfs_dir_fop_release, 1653 .llseek = generic_file_llseek, 1654 }; 1655