1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 DEFINE_MUTEX(kernfs_mutex); 21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 if (!kn) 45 return strlcpy(buf, "(null)", buflen); 46 47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 48 } 49 50 /* kernfs_node_depth - compute depth from @from to @to */ 51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 52 { 53 size_t depth = 0; 54 55 while (to->parent && to != from) { 56 depth++; 57 to = to->parent; 58 } 59 return depth; 60 } 61 62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 63 struct kernfs_node *b) 64 { 65 size_t da, db; 66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 67 68 if (ra != rb) 69 return NULL; 70 71 da = kernfs_depth(ra->kn, a); 72 db = kernfs_depth(rb->kn, b); 73 74 while (da > db) { 75 a = a->parent; 76 da--; 77 } 78 while (db > da) { 79 b = b->parent; 80 db--; 81 } 82 83 /* worst case b and a will be the same at root */ 84 while (b != a) { 85 b = b->parent; 86 a = a->parent; 87 } 88 89 return a; 90 } 91 92 /** 93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 94 * where kn_from is treated as root of the path. 95 * @kn_from: kernfs node which should be treated as root for the path 96 * @kn_to: kernfs node to which path is needed 97 * @buf: buffer to copy the path into 98 * @buflen: size of @buf 99 * 100 * We need to handle couple of scenarios here: 101 * [1] when @kn_from is an ancestor of @kn_to at some level 102 * kn_from: /n1/n2/n3 103 * kn_to: /n1/n2/n3/n4/n5 104 * result: /n4/n5 105 * 106 * [2] when @kn_from is on a different hierarchy and we need to find common 107 * ancestor between @kn_from and @kn_to. 108 * kn_from: /n1/n2/n3/n4 109 * kn_to: /n1/n2/n5 110 * result: /../../n5 111 * OR 112 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 113 * kn_to: /n1/n2/n3 [depth=3] 114 * result: /../.. 115 * 116 * [3] when @kn_to is NULL result will be "(null)" 117 * 118 * Returns the length of the full path. If the full length is equal to or 119 * greater than @buflen, @buf contains the truncated path with the trailing 120 * '\0'. On error, -errno is returned. 121 */ 122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 123 struct kernfs_node *kn_from, 124 char *buf, size_t buflen) 125 { 126 struct kernfs_node *kn, *common; 127 const char parent_str[] = "/.."; 128 size_t depth_from, depth_to, len = 0; 129 int i, j; 130 131 if (!kn_to) 132 return strlcpy(buf, "(null)", buflen); 133 134 if (!kn_from) 135 kn_from = kernfs_root(kn_to)->kn; 136 137 if (kn_from == kn_to) 138 return strlcpy(buf, "/", buflen); 139 140 if (!buf) 141 return -EINVAL; 142 143 common = kernfs_common_ancestor(kn_from, kn_to); 144 if (WARN_ON(!common)) 145 return -EINVAL; 146 147 depth_to = kernfs_depth(common, kn_to); 148 depth_from = kernfs_depth(common, kn_from); 149 150 buf[0] = '\0'; 151 152 for (i = 0; i < depth_from; i++) 153 len += strlcpy(buf + len, parent_str, 154 len < buflen ? buflen - len : 0); 155 156 /* Calculate how many bytes we need for the rest */ 157 for (i = depth_to - 1; i >= 0; i--) { 158 for (kn = kn_to, j = 0; j < i; j++) 159 kn = kn->parent; 160 len += strlcpy(buf + len, "/", 161 len < buflen ? buflen - len : 0); 162 len += strlcpy(buf + len, kn->name, 163 len < buflen ? buflen - len : 0); 164 } 165 166 return len; 167 } 168 169 /** 170 * kernfs_name - obtain the name of a given node 171 * @kn: kernfs_node of interest 172 * @buf: buffer to copy @kn's name into 173 * @buflen: size of @buf 174 * 175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 176 * similar to strlcpy(). It returns the length of @kn's name and if @buf 177 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 178 * 179 * Fills buffer with "(null)" if @kn is NULL. 180 * 181 * This function can be called from any context. 182 */ 183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 184 { 185 unsigned long flags; 186 int ret; 187 188 spin_lock_irqsave(&kernfs_rename_lock, flags); 189 ret = kernfs_name_locked(kn, buf, buflen); 190 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 191 return ret; 192 } 193 194 /** 195 * kernfs_path_from_node - build path of node @to relative to @from. 196 * @from: parent kernfs_node relative to which we need to build the path 197 * @to: kernfs_node of interest 198 * @buf: buffer to copy @to's path into 199 * @buflen: size of @buf 200 * 201 * Builds @to's path relative to @from in @buf. @from and @to must 202 * be on the same kernfs-root. If @from is not parent of @to, then a relative 203 * path (which includes '..'s) as needed to reach from @from to @to is 204 * returned. 205 * 206 * Returns the length of the full path. If the full length is equal to or 207 * greater than @buflen, @buf contains the truncated path with the trailing 208 * '\0'. On error, -errno is returned. 209 */ 210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 211 char *buf, size_t buflen) 212 { 213 unsigned long flags; 214 int ret; 215 216 spin_lock_irqsave(&kernfs_rename_lock, flags); 217 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 218 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 222 223 /** 224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 225 * @kn: kernfs_node of interest 226 * 227 * This function can be called from any context. 228 */ 229 void pr_cont_kernfs_name(struct kernfs_node *kn) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(&kernfs_rename_lock, flags); 234 235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 236 pr_cont("%s", kernfs_pr_cont_buf); 237 238 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 239 } 240 241 /** 242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 243 * @kn: kernfs_node of interest 244 * 245 * This function can be called from any context. 246 */ 247 void pr_cont_kernfs_path(struct kernfs_node *kn) 248 { 249 unsigned long flags; 250 int sz; 251 252 spin_lock_irqsave(&kernfs_rename_lock, flags); 253 254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 255 sizeof(kernfs_pr_cont_buf)); 256 if (sz < 0) { 257 pr_cont("(error)"); 258 goto out; 259 } 260 261 if (sz >= sizeof(kernfs_pr_cont_buf)) { 262 pr_cont("(name too long)"); 263 goto out; 264 } 265 266 pr_cont("%s", kernfs_pr_cont_buf); 267 268 out: 269 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 270 } 271 272 /** 273 * kernfs_get_parent - determine the parent node and pin it 274 * @kn: kernfs_node of interest 275 * 276 * Determines @kn's parent, pins and returns it. This function can be 277 * called from any context. 278 */ 279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 280 { 281 struct kernfs_node *parent; 282 unsigned long flags; 283 284 spin_lock_irqsave(&kernfs_rename_lock, flags); 285 parent = kn->parent; 286 kernfs_get(parent); 287 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 288 289 return parent; 290 } 291 292 /** 293 * kernfs_name_hash 294 * @name: Null terminated string to hash 295 * @ns: Namespace tag to hash 296 * 297 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 298 */ 299 static unsigned int kernfs_name_hash(const char *name, const void *ns) 300 { 301 unsigned long hash = init_name_hash(ns); 302 unsigned int len = strlen(name); 303 while (len--) 304 hash = partial_name_hash(*name++, hash); 305 hash = end_name_hash(hash); 306 hash &= 0x7fffffffU; 307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 308 if (hash < 2) 309 hash += 2; 310 if (hash >= INT_MAX) 311 hash = INT_MAX - 1; 312 return hash; 313 } 314 315 static int kernfs_name_compare(unsigned int hash, const char *name, 316 const void *ns, const struct kernfs_node *kn) 317 { 318 if (hash < kn->hash) 319 return -1; 320 if (hash > kn->hash) 321 return 1; 322 if (ns < kn->ns) 323 return -1; 324 if (ns > kn->ns) 325 return 1; 326 return strcmp(name, kn->name); 327 } 328 329 static int kernfs_sd_compare(const struct kernfs_node *left, 330 const struct kernfs_node *right) 331 { 332 return kernfs_name_compare(left->hash, left->name, left->ns, right); 333 } 334 335 /** 336 * kernfs_link_sibling - link kernfs_node into sibling rbtree 337 * @kn: kernfs_node of interest 338 * 339 * Link @kn into its sibling rbtree which starts from 340 * @kn->parent->dir.children. 341 * 342 * Locking: 343 * mutex_lock(kernfs_mutex) 344 * 345 * RETURNS: 346 * 0 on susccess -EEXIST on failure. 347 */ 348 static int kernfs_link_sibling(struct kernfs_node *kn) 349 { 350 struct rb_node **node = &kn->parent->dir.children.rb_node; 351 struct rb_node *parent = NULL; 352 353 while (*node) { 354 struct kernfs_node *pos; 355 int result; 356 357 pos = rb_to_kn(*node); 358 parent = *node; 359 result = kernfs_sd_compare(kn, pos); 360 if (result < 0) 361 node = &pos->rb.rb_left; 362 else if (result > 0) 363 node = &pos->rb.rb_right; 364 else 365 return -EEXIST; 366 } 367 368 /* add new node and rebalance the tree */ 369 rb_link_node(&kn->rb, parent, node); 370 rb_insert_color(&kn->rb, &kn->parent->dir.children); 371 372 /* successfully added, account subdir number */ 373 if (kernfs_type(kn) == KERNFS_DIR) 374 kn->parent->dir.subdirs++; 375 376 return 0; 377 } 378 379 /** 380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 381 * @kn: kernfs_node of interest 382 * 383 * Try to unlink @kn from its sibling rbtree which starts from 384 * kn->parent->dir.children. Returns %true if @kn was actually 385 * removed, %false if @kn wasn't on the rbtree. 386 * 387 * Locking: 388 * mutex_lock(kernfs_mutex) 389 */ 390 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 391 { 392 if (RB_EMPTY_NODE(&kn->rb)) 393 return false; 394 395 if (kernfs_type(kn) == KERNFS_DIR) 396 kn->parent->dir.subdirs--; 397 398 rb_erase(&kn->rb, &kn->parent->dir.children); 399 RB_CLEAR_NODE(&kn->rb); 400 return true; 401 } 402 403 /** 404 * kernfs_get_active - get an active reference to kernfs_node 405 * @kn: kernfs_node to get an active reference to 406 * 407 * Get an active reference of @kn. This function is noop if @kn 408 * is NULL. 409 * 410 * RETURNS: 411 * Pointer to @kn on success, NULL on failure. 412 */ 413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 414 { 415 if (unlikely(!kn)) 416 return NULL; 417 418 if (!atomic_inc_unless_negative(&kn->active)) 419 return NULL; 420 421 if (kernfs_lockdep(kn)) 422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 423 return kn; 424 } 425 426 /** 427 * kernfs_put_active - put an active reference to kernfs_node 428 * @kn: kernfs_node to put an active reference to 429 * 430 * Put an active reference to @kn. This function is noop if @kn 431 * is NULL. 432 */ 433 void kernfs_put_active(struct kernfs_node *kn) 434 { 435 int v; 436 437 if (unlikely(!kn)) 438 return; 439 440 if (kernfs_lockdep(kn)) 441 rwsem_release(&kn->dep_map, _RET_IP_); 442 v = atomic_dec_return(&kn->active); 443 if (likely(v != KN_DEACTIVATED_BIAS)) 444 return; 445 446 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 447 } 448 449 /** 450 * kernfs_drain - drain kernfs_node 451 * @kn: kernfs_node to drain 452 * 453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 454 * removers may invoke this function concurrently on @kn and all will 455 * return after draining is complete. 456 */ 457 static void kernfs_drain(struct kernfs_node *kn) 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 459 { 460 struct kernfs_root *root = kernfs_root(kn); 461 462 lockdep_assert_held(&kernfs_mutex); 463 WARN_ON_ONCE(kernfs_active(kn)); 464 465 mutex_unlock(&kernfs_mutex); 466 467 if (kernfs_lockdep(kn)) { 468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 470 lock_contended(&kn->dep_map, _RET_IP_); 471 } 472 473 /* but everyone should wait for draining */ 474 wait_event(root->deactivate_waitq, 475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 476 477 if (kernfs_lockdep(kn)) { 478 lock_acquired(&kn->dep_map, _RET_IP_); 479 rwsem_release(&kn->dep_map, _RET_IP_); 480 } 481 482 kernfs_drain_open_files(kn); 483 484 mutex_lock(&kernfs_mutex); 485 } 486 487 /** 488 * kernfs_get - get a reference count on a kernfs_node 489 * @kn: the target kernfs_node 490 */ 491 void kernfs_get(struct kernfs_node *kn) 492 { 493 if (kn) { 494 WARN_ON(!atomic_read(&kn->count)); 495 atomic_inc(&kn->count); 496 } 497 } 498 EXPORT_SYMBOL_GPL(kernfs_get); 499 500 /** 501 * kernfs_put - put a reference count on a kernfs_node 502 * @kn: the target kernfs_node 503 * 504 * Put a reference count of @kn and destroy it if it reached zero. 505 */ 506 void kernfs_put(struct kernfs_node *kn) 507 { 508 struct kernfs_node *parent; 509 struct kernfs_root *root; 510 511 if (!kn || !atomic_dec_and_test(&kn->count)) 512 return; 513 root = kernfs_root(kn); 514 repeat: 515 /* 516 * Moving/renaming is always done while holding reference. 517 * kn->parent won't change beneath us. 518 */ 519 parent = kn->parent; 520 521 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 523 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 524 525 if (kernfs_type(kn) == KERNFS_LINK) 526 kernfs_put(kn->symlink.target_kn); 527 528 kfree_const(kn->name); 529 530 if (kn->iattr) { 531 simple_xattrs_free(&kn->iattr->xattrs); 532 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 533 } 534 spin_lock(&kernfs_idr_lock); 535 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 536 spin_unlock(&kernfs_idr_lock); 537 kmem_cache_free(kernfs_node_cache, kn); 538 539 kn = parent; 540 if (kn) { 541 if (atomic_dec_and_test(&kn->count)) 542 goto repeat; 543 } else { 544 /* just released the root kn, free @root too */ 545 idr_destroy(&root->ino_idr); 546 kfree(root); 547 } 548 } 549 EXPORT_SYMBOL_GPL(kernfs_put); 550 551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 552 { 553 struct kernfs_node *kn; 554 555 if (flags & LOOKUP_RCU) 556 return -ECHILD; 557 558 /* Always perform fresh lookup for negatives */ 559 if (d_really_is_negative(dentry)) 560 goto out_bad_unlocked; 561 562 kn = kernfs_dentry_node(dentry); 563 mutex_lock(&kernfs_mutex); 564 565 /* The kernfs node has been deactivated */ 566 if (!kernfs_active(kn)) 567 goto out_bad; 568 569 /* The kernfs node has been moved? */ 570 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 571 goto out_bad; 572 573 /* The kernfs node has been renamed */ 574 if (strcmp(dentry->d_name.name, kn->name) != 0) 575 goto out_bad; 576 577 /* The kernfs node has been moved to a different namespace */ 578 if (kn->parent && kernfs_ns_enabled(kn->parent) && 579 kernfs_info(dentry->d_sb)->ns != kn->ns) 580 goto out_bad; 581 582 mutex_unlock(&kernfs_mutex); 583 return 1; 584 out_bad: 585 mutex_unlock(&kernfs_mutex); 586 out_bad_unlocked: 587 return 0; 588 } 589 590 const struct dentry_operations kernfs_dops = { 591 .d_revalidate = kernfs_dop_revalidate, 592 }; 593 594 /** 595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 596 * @dentry: the dentry in question 597 * 598 * Return the kernfs_node associated with @dentry. If @dentry is not a 599 * kernfs one, %NULL is returned. 600 * 601 * While the returned kernfs_node will stay accessible as long as @dentry 602 * is accessible, the returned node can be in any state and the caller is 603 * fully responsible for determining what's accessible. 604 */ 605 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 606 { 607 if (dentry->d_sb->s_op == &kernfs_sops && 608 !d_really_is_negative(dentry)) 609 return kernfs_dentry_node(dentry); 610 return NULL; 611 } 612 613 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 614 struct kernfs_node *parent, 615 const char *name, umode_t mode, 616 kuid_t uid, kgid_t gid, 617 unsigned flags) 618 { 619 struct kernfs_node *kn; 620 u32 id_highbits; 621 int ret; 622 623 name = kstrdup_const(name, GFP_KERNEL); 624 if (!name) 625 return NULL; 626 627 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 628 if (!kn) 629 goto err_out1; 630 631 idr_preload(GFP_KERNEL); 632 spin_lock(&kernfs_idr_lock); 633 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 634 if (ret >= 0 && ret < root->last_id_lowbits) 635 root->id_highbits++; 636 id_highbits = root->id_highbits; 637 root->last_id_lowbits = ret; 638 spin_unlock(&kernfs_idr_lock); 639 idr_preload_end(); 640 if (ret < 0) 641 goto err_out2; 642 643 kn->id = (u64)id_highbits << 32 | ret; 644 645 atomic_set(&kn->count, 1); 646 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 647 RB_CLEAR_NODE(&kn->rb); 648 649 kn->name = name; 650 kn->mode = mode; 651 kn->flags = flags; 652 653 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 654 struct iattr iattr = { 655 .ia_valid = ATTR_UID | ATTR_GID, 656 .ia_uid = uid, 657 .ia_gid = gid, 658 }; 659 660 ret = __kernfs_setattr(kn, &iattr); 661 if (ret < 0) 662 goto err_out3; 663 } 664 665 if (parent) { 666 ret = security_kernfs_init_security(parent, kn); 667 if (ret) 668 goto err_out3; 669 } 670 671 return kn; 672 673 err_out3: 674 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 675 err_out2: 676 kmem_cache_free(kernfs_node_cache, kn); 677 err_out1: 678 kfree_const(name); 679 return NULL; 680 } 681 682 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 683 const char *name, umode_t mode, 684 kuid_t uid, kgid_t gid, 685 unsigned flags) 686 { 687 struct kernfs_node *kn; 688 689 kn = __kernfs_new_node(kernfs_root(parent), parent, 690 name, mode, uid, gid, flags); 691 if (kn) { 692 kernfs_get(parent); 693 kn->parent = parent; 694 } 695 return kn; 696 } 697 698 /* 699 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 700 * @root: the kernfs root 701 * @id: the target node id 702 * 703 * @id's lower 32bits encode ino and upper gen. If the gen portion is 704 * zero, all generations are matched. 705 * 706 * RETURNS: 707 * NULL on failure. Return a kernfs node with reference counter incremented 708 */ 709 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 710 u64 id) 711 { 712 struct kernfs_node *kn; 713 ino_t ino = kernfs_id_ino(id); 714 u32 gen = kernfs_id_gen(id); 715 716 spin_lock(&kernfs_idr_lock); 717 718 kn = idr_find(&root->ino_idr, (u32)ino); 719 if (!kn) 720 goto err_unlock; 721 722 if (sizeof(ino_t) >= sizeof(u64)) { 723 /* we looked up with the low 32bits, compare the whole */ 724 if (kernfs_ino(kn) != ino) 725 goto err_unlock; 726 } else { 727 /* 0 matches all generations */ 728 if (unlikely(gen && kernfs_gen(kn) != gen)) 729 goto err_unlock; 730 } 731 732 /* 733 * ACTIVATED is protected with kernfs_mutex but it was clear when 734 * @kn was added to idr and we just wanna see it set. No need to 735 * grab kernfs_mutex. 736 */ 737 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) || 738 !atomic_inc_not_zero(&kn->count))) 739 goto err_unlock; 740 741 spin_unlock(&kernfs_idr_lock); 742 return kn; 743 err_unlock: 744 spin_unlock(&kernfs_idr_lock); 745 return NULL; 746 } 747 748 /** 749 * kernfs_add_one - add kernfs_node to parent without warning 750 * @kn: kernfs_node to be added 751 * 752 * The caller must already have initialized @kn->parent. This 753 * function increments nlink of the parent's inode if @kn is a 754 * directory and link into the children list of the parent. 755 * 756 * RETURNS: 757 * 0 on success, -EEXIST if entry with the given name already 758 * exists. 759 */ 760 int kernfs_add_one(struct kernfs_node *kn) 761 { 762 struct kernfs_node *parent = kn->parent; 763 struct kernfs_iattrs *ps_iattr; 764 bool has_ns; 765 int ret; 766 767 mutex_lock(&kernfs_mutex); 768 769 ret = -EINVAL; 770 has_ns = kernfs_ns_enabled(parent); 771 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 772 has_ns ? "required" : "invalid", parent->name, kn->name)) 773 goto out_unlock; 774 775 if (kernfs_type(parent) != KERNFS_DIR) 776 goto out_unlock; 777 778 ret = -ENOENT; 779 if (parent->flags & KERNFS_EMPTY_DIR) 780 goto out_unlock; 781 782 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 783 goto out_unlock; 784 785 kn->hash = kernfs_name_hash(kn->name, kn->ns); 786 787 ret = kernfs_link_sibling(kn); 788 if (ret) 789 goto out_unlock; 790 791 /* Update timestamps on the parent */ 792 ps_iattr = parent->iattr; 793 if (ps_iattr) { 794 ktime_get_real_ts64(&ps_iattr->ia_ctime); 795 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 796 } 797 798 mutex_unlock(&kernfs_mutex); 799 800 /* 801 * Activate the new node unless CREATE_DEACTIVATED is requested. 802 * If not activated here, the kernfs user is responsible for 803 * activating the node with kernfs_activate(). A node which hasn't 804 * been activated is not visible to userland and its removal won't 805 * trigger deactivation. 806 */ 807 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 808 kernfs_activate(kn); 809 return 0; 810 811 out_unlock: 812 mutex_unlock(&kernfs_mutex); 813 return ret; 814 } 815 816 /** 817 * kernfs_find_ns - find kernfs_node with the given name 818 * @parent: kernfs_node to search under 819 * @name: name to look for 820 * @ns: the namespace tag to use 821 * 822 * Look for kernfs_node with name @name under @parent. Returns pointer to 823 * the found kernfs_node on success, %NULL on failure. 824 */ 825 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 826 const unsigned char *name, 827 const void *ns) 828 { 829 struct rb_node *node = parent->dir.children.rb_node; 830 bool has_ns = kernfs_ns_enabled(parent); 831 unsigned int hash; 832 833 lockdep_assert_held(&kernfs_mutex); 834 835 if (has_ns != (bool)ns) { 836 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 837 has_ns ? "required" : "invalid", parent->name, name); 838 return NULL; 839 } 840 841 hash = kernfs_name_hash(name, ns); 842 while (node) { 843 struct kernfs_node *kn; 844 int result; 845 846 kn = rb_to_kn(node); 847 result = kernfs_name_compare(hash, name, ns, kn); 848 if (result < 0) 849 node = node->rb_left; 850 else if (result > 0) 851 node = node->rb_right; 852 else 853 return kn; 854 } 855 return NULL; 856 } 857 858 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 859 const unsigned char *path, 860 const void *ns) 861 { 862 size_t len; 863 char *p, *name; 864 865 lockdep_assert_held(&kernfs_mutex); 866 867 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 868 spin_lock_irq(&kernfs_rename_lock); 869 870 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 871 872 if (len >= sizeof(kernfs_pr_cont_buf)) { 873 spin_unlock_irq(&kernfs_rename_lock); 874 return NULL; 875 } 876 877 p = kernfs_pr_cont_buf; 878 879 while ((name = strsep(&p, "/")) && parent) { 880 if (*name == '\0') 881 continue; 882 parent = kernfs_find_ns(parent, name, ns); 883 } 884 885 spin_unlock_irq(&kernfs_rename_lock); 886 887 return parent; 888 } 889 890 /** 891 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 892 * @parent: kernfs_node to search under 893 * @name: name to look for 894 * @ns: the namespace tag to use 895 * 896 * Look for kernfs_node with name @name under @parent and get a reference 897 * if found. This function may sleep and returns pointer to the found 898 * kernfs_node on success, %NULL on failure. 899 */ 900 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 901 const char *name, const void *ns) 902 { 903 struct kernfs_node *kn; 904 905 mutex_lock(&kernfs_mutex); 906 kn = kernfs_find_ns(parent, name, ns); 907 kernfs_get(kn); 908 mutex_unlock(&kernfs_mutex); 909 910 return kn; 911 } 912 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 913 914 /** 915 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 916 * @parent: kernfs_node to search under 917 * @path: path to look for 918 * @ns: the namespace tag to use 919 * 920 * Look for kernfs_node with path @path under @parent and get a reference 921 * if found. This function may sleep and returns pointer to the found 922 * kernfs_node on success, %NULL on failure. 923 */ 924 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 925 const char *path, const void *ns) 926 { 927 struct kernfs_node *kn; 928 929 mutex_lock(&kernfs_mutex); 930 kn = kernfs_walk_ns(parent, path, ns); 931 kernfs_get(kn); 932 mutex_unlock(&kernfs_mutex); 933 934 return kn; 935 } 936 937 /** 938 * kernfs_create_root - create a new kernfs hierarchy 939 * @scops: optional syscall operations for the hierarchy 940 * @flags: KERNFS_ROOT_* flags 941 * @priv: opaque data associated with the new directory 942 * 943 * Returns the root of the new hierarchy on success, ERR_PTR() value on 944 * failure. 945 */ 946 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 947 unsigned int flags, void *priv) 948 { 949 struct kernfs_root *root; 950 struct kernfs_node *kn; 951 952 root = kzalloc(sizeof(*root), GFP_KERNEL); 953 if (!root) 954 return ERR_PTR(-ENOMEM); 955 956 idr_init(&root->ino_idr); 957 INIT_LIST_HEAD(&root->supers); 958 959 /* 960 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 961 * High bits generation. The starting value for both ino and 962 * genenration is 1. Initialize upper 32bit allocation 963 * accordingly. 964 */ 965 if (sizeof(ino_t) >= sizeof(u64)) 966 root->id_highbits = 0; 967 else 968 root->id_highbits = 1; 969 970 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 971 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 972 KERNFS_DIR); 973 if (!kn) { 974 idr_destroy(&root->ino_idr); 975 kfree(root); 976 return ERR_PTR(-ENOMEM); 977 } 978 979 kn->priv = priv; 980 kn->dir.root = root; 981 982 root->syscall_ops = scops; 983 root->flags = flags; 984 root->kn = kn; 985 init_waitqueue_head(&root->deactivate_waitq); 986 987 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 988 kernfs_activate(kn); 989 990 return root; 991 } 992 993 /** 994 * kernfs_destroy_root - destroy a kernfs hierarchy 995 * @root: root of the hierarchy to destroy 996 * 997 * Destroy the hierarchy anchored at @root by removing all existing 998 * directories and destroying @root. 999 */ 1000 void kernfs_destroy_root(struct kernfs_root *root) 1001 { 1002 kernfs_remove(root->kn); /* will also free @root */ 1003 } 1004 1005 /** 1006 * kernfs_create_dir_ns - create a directory 1007 * @parent: parent in which to create a new directory 1008 * @name: name of the new directory 1009 * @mode: mode of the new directory 1010 * @uid: uid of the new directory 1011 * @gid: gid of the new directory 1012 * @priv: opaque data associated with the new directory 1013 * @ns: optional namespace tag of the directory 1014 * 1015 * Returns the created node on success, ERR_PTR() value on failure. 1016 */ 1017 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1018 const char *name, umode_t mode, 1019 kuid_t uid, kgid_t gid, 1020 void *priv, const void *ns) 1021 { 1022 struct kernfs_node *kn; 1023 int rc; 1024 1025 /* allocate */ 1026 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1027 uid, gid, KERNFS_DIR); 1028 if (!kn) 1029 return ERR_PTR(-ENOMEM); 1030 1031 kn->dir.root = parent->dir.root; 1032 kn->ns = ns; 1033 kn->priv = priv; 1034 1035 /* link in */ 1036 rc = kernfs_add_one(kn); 1037 if (!rc) 1038 return kn; 1039 1040 kernfs_put(kn); 1041 return ERR_PTR(rc); 1042 } 1043 1044 /** 1045 * kernfs_create_empty_dir - create an always empty directory 1046 * @parent: parent in which to create a new directory 1047 * @name: name of the new directory 1048 * 1049 * Returns the created node on success, ERR_PTR() value on failure. 1050 */ 1051 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1052 const char *name) 1053 { 1054 struct kernfs_node *kn; 1055 int rc; 1056 1057 /* allocate */ 1058 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1059 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1060 if (!kn) 1061 return ERR_PTR(-ENOMEM); 1062 1063 kn->flags |= KERNFS_EMPTY_DIR; 1064 kn->dir.root = parent->dir.root; 1065 kn->ns = NULL; 1066 kn->priv = NULL; 1067 1068 /* link in */ 1069 rc = kernfs_add_one(kn); 1070 if (!rc) 1071 return kn; 1072 1073 kernfs_put(kn); 1074 return ERR_PTR(rc); 1075 } 1076 1077 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1078 struct dentry *dentry, 1079 unsigned int flags) 1080 { 1081 struct dentry *ret; 1082 struct kernfs_node *parent = dir->i_private; 1083 struct kernfs_node *kn; 1084 struct inode *inode; 1085 const void *ns = NULL; 1086 1087 mutex_lock(&kernfs_mutex); 1088 1089 if (kernfs_ns_enabled(parent)) 1090 ns = kernfs_info(dir->i_sb)->ns; 1091 1092 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1093 1094 /* no such entry */ 1095 if (!kn || !kernfs_active(kn)) { 1096 ret = NULL; 1097 goto out_unlock; 1098 } 1099 1100 /* attach dentry and inode */ 1101 inode = kernfs_get_inode(dir->i_sb, kn); 1102 if (!inode) { 1103 ret = ERR_PTR(-ENOMEM); 1104 goto out_unlock; 1105 } 1106 1107 /* instantiate and hash dentry */ 1108 ret = d_splice_alias(inode, dentry); 1109 out_unlock: 1110 mutex_unlock(&kernfs_mutex); 1111 return ret; 1112 } 1113 1114 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1115 umode_t mode) 1116 { 1117 struct kernfs_node *parent = dir->i_private; 1118 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1119 int ret; 1120 1121 if (!scops || !scops->mkdir) 1122 return -EPERM; 1123 1124 if (!kernfs_get_active(parent)) 1125 return -ENODEV; 1126 1127 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1128 1129 kernfs_put_active(parent); 1130 return ret; 1131 } 1132 1133 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1134 { 1135 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1136 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1137 int ret; 1138 1139 if (!scops || !scops->rmdir) 1140 return -EPERM; 1141 1142 if (!kernfs_get_active(kn)) 1143 return -ENODEV; 1144 1145 ret = scops->rmdir(kn); 1146 1147 kernfs_put_active(kn); 1148 return ret; 1149 } 1150 1151 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1152 struct inode *new_dir, struct dentry *new_dentry, 1153 unsigned int flags) 1154 { 1155 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1156 struct kernfs_node *new_parent = new_dir->i_private; 1157 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1158 int ret; 1159 1160 if (flags) 1161 return -EINVAL; 1162 1163 if (!scops || !scops->rename) 1164 return -EPERM; 1165 1166 if (!kernfs_get_active(kn)) 1167 return -ENODEV; 1168 1169 if (!kernfs_get_active(new_parent)) { 1170 kernfs_put_active(kn); 1171 return -ENODEV; 1172 } 1173 1174 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1175 1176 kernfs_put_active(new_parent); 1177 kernfs_put_active(kn); 1178 return ret; 1179 } 1180 1181 const struct inode_operations kernfs_dir_iops = { 1182 .lookup = kernfs_iop_lookup, 1183 .permission = kernfs_iop_permission, 1184 .setattr = kernfs_iop_setattr, 1185 .getattr = kernfs_iop_getattr, 1186 .listxattr = kernfs_iop_listxattr, 1187 1188 .mkdir = kernfs_iop_mkdir, 1189 .rmdir = kernfs_iop_rmdir, 1190 .rename = kernfs_iop_rename, 1191 }; 1192 1193 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1194 { 1195 struct kernfs_node *last; 1196 1197 while (true) { 1198 struct rb_node *rbn; 1199 1200 last = pos; 1201 1202 if (kernfs_type(pos) != KERNFS_DIR) 1203 break; 1204 1205 rbn = rb_first(&pos->dir.children); 1206 if (!rbn) 1207 break; 1208 1209 pos = rb_to_kn(rbn); 1210 } 1211 1212 return last; 1213 } 1214 1215 /** 1216 * kernfs_next_descendant_post - find the next descendant for post-order walk 1217 * @pos: the current position (%NULL to initiate traversal) 1218 * @root: kernfs_node whose descendants to walk 1219 * 1220 * Find the next descendant to visit for post-order traversal of @root's 1221 * descendants. @root is included in the iteration and the last node to be 1222 * visited. 1223 */ 1224 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1225 struct kernfs_node *root) 1226 { 1227 struct rb_node *rbn; 1228 1229 lockdep_assert_held(&kernfs_mutex); 1230 1231 /* if first iteration, visit leftmost descendant which may be root */ 1232 if (!pos) 1233 return kernfs_leftmost_descendant(root); 1234 1235 /* if we visited @root, we're done */ 1236 if (pos == root) 1237 return NULL; 1238 1239 /* if there's an unvisited sibling, visit its leftmost descendant */ 1240 rbn = rb_next(&pos->rb); 1241 if (rbn) 1242 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1243 1244 /* no sibling left, visit parent */ 1245 return pos->parent; 1246 } 1247 1248 /** 1249 * kernfs_activate - activate a node which started deactivated 1250 * @kn: kernfs_node whose subtree is to be activated 1251 * 1252 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1253 * needs to be explicitly activated. A node which hasn't been activated 1254 * isn't visible to userland and deactivation is skipped during its 1255 * removal. This is useful to construct atomic init sequences where 1256 * creation of multiple nodes should either succeed or fail atomically. 1257 * 1258 * The caller is responsible for ensuring that this function is not called 1259 * after kernfs_remove*() is invoked on @kn. 1260 */ 1261 void kernfs_activate(struct kernfs_node *kn) 1262 { 1263 struct kernfs_node *pos; 1264 1265 mutex_lock(&kernfs_mutex); 1266 1267 pos = NULL; 1268 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1269 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1270 continue; 1271 1272 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1273 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1274 1275 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1276 pos->flags |= KERNFS_ACTIVATED; 1277 } 1278 1279 mutex_unlock(&kernfs_mutex); 1280 } 1281 1282 static void __kernfs_remove(struct kernfs_node *kn) 1283 { 1284 struct kernfs_node *pos; 1285 1286 lockdep_assert_held(&kernfs_mutex); 1287 1288 /* 1289 * Short-circuit if non-root @kn has already finished removal. 1290 * This is for kernfs_remove_self() which plays with active ref 1291 * after removal. 1292 */ 1293 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1294 return; 1295 1296 pr_debug("kernfs %s: removing\n", kn->name); 1297 1298 /* prevent any new usage under @kn by deactivating all nodes */ 1299 pos = NULL; 1300 while ((pos = kernfs_next_descendant_post(pos, kn))) 1301 if (kernfs_active(pos)) 1302 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1303 1304 /* deactivate and unlink the subtree node-by-node */ 1305 do { 1306 pos = kernfs_leftmost_descendant(kn); 1307 1308 /* 1309 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1310 * base ref could have been put by someone else by the time 1311 * the function returns. Make sure it doesn't go away 1312 * underneath us. 1313 */ 1314 kernfs_get(pos); 1315 1316 /* 1317 * Drain iff @kn was activated. This avoids draining and 1318 * its lockdep annotations for nodes which have never been 1319 * activated and allows embedding kernfs_remove() in create 1320 * error paths without worrying about draining. 1321 */ 1322 if (kn->flags & KERNFS_ACTIVATED) 1323 kernfs_drain(pos); 1324 else 1325 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1326 1327 /* 1328 * kernfs_unlink_sibling() succeeds once per node. Use it 1329 * to decide who's responsible for cleanups. 1330 */ 1331 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1332 struct kernfs_iattrs *ps_iattr = 1333 pos->parent ? pos->parent->iattr : NULL; 1334 1335 /* update timestamps on the parent */ 1336 if (ps_iattr) { 1337 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1338 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1339 } 1340 1341 kernfs_put(pos); 1342 } 1343 1344 kernfs_put(pos); 1345 } while (pos != kn); 1346 } 1347 1348 /** 1349 * kernfs_remove - remove a kernfs_node recursively 1350 * @kn: the kernfs_node to remove 1351 * 1352 * Remove @kn along with all its subdirectories and files. 1353 */ 1354 void kernfs_remove(struct kernfs_node *kn) 1355 { 1356 mutex_lock(&kernfs_mutex); 1357 __kernfs_remove(kn); 1358 mutex_unlock(&kernfs_mutex); 1359 } 1360 1361 /** 1362 * kernfs_break_active_protection - break out of active protection 1363 * @kn: the self kernfs_node 1364 * 1365 * The caller must be running off of a kernfs operation which is invoked 1366 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1367 * this function must also be matched with an invocation of 1368 * kernfs_unbreak_active_protection(). 1369 * 1370 * This function releases the active reference of @kn the caller is 1371 * holding. Once this function is called, @kn may be removed at any point 1372 * and the caller is solely responsible for ensuring that the objects it 1373 * dereferences are accessible. 1374 */ 1375 void kernfs_break_active_protection(struct kernfs_node *kn) 1376 { 1377 /* 1378 * Take out ourself out of the active ref dependency chain. If 1379 * we're called without an active ref, lockdep will complain. 1380 */ 1381 kernfs_put_active(kn); 1382 } 1383 1384 /** 1385 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1386 * @kn: the self kernfs_node 1387 * 1388 * If kernfs_break_active_protection() was called, this function must be 1389 * invoked before finishing the kernfs operation. Note that while this 1390 * function restores the active reference, it doesn't and can't actually 1391 * restore the active protection - @kn may already or be in the process of 1392 * being removed. Once kernfs_break_active_protection() is invoked, that 1393 * protection is irreversibly gone for the kernfs operation instance. 1394 * 1395 * While this function may be called at any point after 1396 * kernfs_break_active_protection() is invoked, its most useful location 1397 * would be right before the enclosing kernfs operation returns. 1398 */ 1399 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1400 { 1401 /* 1402 * @kn->active could be in any state; however, the increment we do 1403 * here will be undone as soon as the enclosing kernfs operation 1404 * finishes and this temporary bump can't break anything. If @kn 1405 * is alive, nothing changes. If @kn is being deactivated, the 1406 * soon-to-follow put will either finish deactivation or restore 1407 * deactivated state. If @kn is already removed, the temporary 1408 * bump is guaranteed to be gone before @kn is released. 1409 */ 1410 atomic_inc(&kn->active); 1411 if (kernfs_lockdep(kn)) 1412 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1413 } 1414 1415 /** 1416 * kernfs_remove_self - remove a kernfs_node from its own method 1417 * @kn: the self kernfs_node to remove 1418 * 1419 * The caller must be running off of a kernfs operation which is invoked 1420 * with an active reference - e.g. one of kernfs_ops. This can be used to 1421 * implement a file operation which deletes itself. 1422 * 1423 * For example, the "delete" file for a sysfs device directory can be 1424 * implemented by invoking kernfs_remove_self() on the "delete" file 1425 * itself. This function breaks the circular dependency of trying to 1426 * deactivate self while holding an active ref itself. It isn't necessary 1427 * to modify the usual removal path to use kernfs_remove_self(). The 1428 * "delete" implementation can simply invoke kernfs_remove_self() on self 1429 * before proceeding with the usual removal path. kernfs will ignore later 1430 * kernfs_remove() on self. 1431 * 1432 * kernfs_remove_self() can be called multiple times concurrently on the 1433 * same kernfs_node. Only the first one actually performs removal and 1434 * returns %true. All others will wait until the kernfs operation which 1435 * won self-removal finishes and return %false. Note that the losers wait 1436 * for the completion of not only the winning kernfs_remove_self() but also 1437 * the whole kernfs_ops which won the arbitration. This can be used to 1438 * guarantee, for example, all concurrent writes to a "delete" file to 1439 * finish only after the whole operation is complete. 1440 */ 1441 bool kernfs_remove_self(struct kernfs_node *kn) 1442 { 1443 bool ret; 1444 1445 mutex_lock(&kernfs_mutex); 1446 kernfs_break_active_protection(kn); 1447 1448 /* 1449 * SUICIDAL is used to arbitrate among competing invocations. Only 1450 * the first one will actually perform removal. When the removal 1451 * is complete, SUICIDED is set and the active ref is restored 1452 * while holding kernfs_mutex. The ones which lost arbitration 1453 * waits for SUICDED && drained which can happen only after the 1454 * enclosing kernfs operation which executed the winning instance 1455 * of kernfs_remove_self() finished. 1456 */ 1457 if (!(kn->flags & KERNFS_SUICIDAL)) { 1458 kn->flags |= KERNFS_SUICIDAL; 1459 __kernfs_remove(kn); 1460 kn->flags |= KERNFS_SUICIDED; 1461 ret = true; 1462 } else { 1463 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1464 DEFINE_WAIT(wait); 1465 1466 while (true) { 1467 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1468 1469 if ((kn->flags & KERNFS_SUICIDED) && 1470 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1471 break; 1472 1473 mutex_unlock(&kernfs_mutex); 1474 schedule(); 1475 mutex_lock(&kernfs_mutex); 1476 } 1477 finish_wait(waitq, &wait); 1478 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1479 ret = false; 1480 } 1481 1482 /* 1483 * This must be done while holding kernfs_mutex; otherwise, waiting 1484 * for SUICIDED && deactivated could finish prematurely. 1485 */ 1486 kernfs_unbreak_active_protection(kn); 1487 1488 mutex_unlock(&kernfs_mutex); 1489 return ret; 1490 } 1491 1492 /** 1493 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1494 * @parent: parent of the target 1495 * @name: name of the kernfs_node to remove 1496 * @ns: namespace tag of the kernfs_node to remove 1497 * 1498 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1499 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1500 */ 1501 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1502 const void *ns) 1503 { 1504 struct kernfs_node *kn; 1505 1506 if (!parent) { 1507 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1508 name); 1509 return -ENOENT; 1510 } 1511 1512 mutex_lock(&kernfs_mutex); 1513 1514 kn = kernfs_find_ns(parent, name, ns); 1515 if (kn) 1516 __kernfs_remove(kn); 1517 1518 mutex_unlock(&kernfs_mutex); 1519 1520 if (kn) 1521 return 0; 1522 else 1523 return -ENOENT; 1524 } 1525 1526 /** 1527 * kernfs_rename_ns - move and rename a kernfs_node 1528 * @kn: target node 1529 * @new_parent: new parent to put @sd under 1530 * @new_name: new name 1531 * @new_ns: new namespace tag 1532 */ 1533 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1534 const char *new_name, const void *new_ns) 1535 { 1536 struct kernfs_node *old_parent; 1537 const char *old_name = NULL; 1538 int error; 1539 1540 /* can't move or rename root */ 1541 if (!kn->parent) 1542 return -EINVAL; 1543 1544 mutex_lock(&kernfs_mutex); 1545 1546 error = -ENOENT; 1547 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1548 (new_parent->flags & KERNFS_EMPTY_DIR)) 1549 goto out; 1550 1551 error = 0; 1552 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1553 (strcmp(kn->name, new_name) == 0)) 1554 goto out; /* nothing to rename */ 1555 1556 error = -EEXIST; 1557 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1558 goto out; 1559 1560 /* rename kernfs_node */ 1561 if (strcmp(kn->name, new_name) != 0) { 1562 error = -ENOMEM; 1563 new_name = kstrdup_const(new_name, GFP_KERNEL); 1564 if (!new_name) 1565 goto out; 1566 } else { 1567 new_name = NULL; 1568 } 1569 1570 /* 1571 * Move to the appropriate place in the appropriate directories rbtree. 1572 */ 1573 kernfs_unlink_sibling(kn); 1574 kernfs_get(new_parent); 1575 1576 /* rename_lock protects ->parent and ->name accessors */ 1577 spin_lock_irq(&kernfs_rename_lock); 1578 1579 old_parent = kn->parent; 1580 kn->parent = new_parent; 1581 1582 kn->ns = new_ns; 1583 if (new_name) { 1584 old_name = kn->name; 1585 kn->name = new_name; 1586 } 1587 1588 spin_unlock_irq(&kernfs_rename_lock); 1589 1590 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1591 kernfs_link_sibling(kn); 1592 1593 kernfs_put(old_parent); 1594 kfree_const(old_name); 1595 1596 error = 0; 1597 out: 1598 mutex_unlock(&kernfs_mutex); 1599 return error; 1600 } 1601 1602 /* Relationship between s_mode and the DT_xxx types */ 1603 static inline unsigned char dt_type(struct kernfs_node *kn) 1604 { 1605 return (kn->mode >> 12) & 15; 1606 } 1607 1608 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1609 { 1610 kernfs_put(filp->private_data); 1611 return 0; 1612 } 1613 1614 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1615 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1616 { 1617 if (pos) { 1618 int valid = kernfs_active(pos) && 1619 pos->parent == parent && hash == pos->hash; 1620 kernfs_put(pos); 1621 if (!valid) 1622 pos = NULL; 1623 } 1624 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1625 struct rb_node *node = parent->dir.children.rb_node; 1626 while (node) { 1627 pos = rb_to_kn(node); 1628 1629 if (hash < pos->hash) 1630 node = node->rb_left; 1631 else if (hash > pos->hash) 1632 node = node->rb_right; 1633 else 1634 break; 1635 } 1636 } 1637 /* Skip over entries which are dying/dead or in the wrong namespace */ 1638 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1639 struct rb_node *node = rb_next(&pos->rb); 1640 if (!node) 1641 pos = NULL; 1642 else 1643 pos = rb_to_kn(node); 1644 } 1645 return pos; 1646 } 1647 1648 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1649 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1650 { 1651 pos = kernfs_dir_pos(ns, parent, ino, pos); 1652 if (pos) { 1653 do { 1654 struct rb_node *node = rb_next(&pos->rb); 1655 if (!node) 1656 pos = NULL; 1657 else 1658 pos = rb_to_kn(node); 1659 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1660 } 1661 return pos; 1662 } 1663 1664 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1665 { 1666 struct dentry *dentry = file->f_path.dentry; 1667 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1668 struct kernfs_node *pos = file->private_data; 1669 const void *ns = NULL; 1670 1671 if (!dir_emit_dots(file, ctx)) 1672 return 0; 1673 mutex_lock(&kernfs_mutex); 1674 1675 if (kernfs_ns_enabled(parent)) 1676 ns = kernfs_info(dentry->d_sb)->ns; 1677 1678 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1679 pos; 1680 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1681 const char *name = pos->name; 1682 unsigned int type = dt_type(pos); 1683 int len = strlen(name); 1684 ino_t ino = kernfs_ino(pos); 1685 1686 ctx->pos = pos->hash; 1687 file->private_data = pos; 1688 kernfs_get(pos); 1689 1690 mutex_unlock(&kernfs_mutex); 1691 if (!dir_emit(ctx, name, len, ino, type)) 1692 return 0; 1693 mutex_lock(&kernfs_mutex); 1694 } 1695 mutex_unlock(&kernfs_mutex); 1696 file->private_data = NULL; 1697 ctx->pos = INT_MAX; 1698 return 0; 1699 } 1700 1701 const struct file_operations kernfs_dir_fops = { 1702 .read = generic_read_dir, 1703 .iterate_shared = kernfs_fop_readdir, 1704 .release = kernfs_dir_fop_release, 1705 .llseek = generic_file_llseek, 1706 }; 1707