1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf, 48 size_t buflen) 49 { 50 char *p = buf + buflen; 51 int len; 52 53 *--p = '\0'; 54 55 do { 56 len = strlen(kn->name); 57 if (p - buf < len + 1) { 58 buf[0] = '\0'; 59 p = NULL; 60 break; 61 } 62 p -= len; 63 memcpy(p, kn->name, len); 64 *--p = '/'; 65 kn = kn->parent; 66 } while (kn && kn->parent); 67 68 return p; 69 } 70 71 /** 72 * kernfs_name - obtain the name of a given node 73 * @kn: kernfs_node of interest 74 * @buf: buffer to copy @kn's name into 75 * @buflen: size of @buf 76 * 77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 78 * similar to strlcpy(). It returns the length of @kn's name and if @buf 79 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 80 * 81 * This function can be called from any context. 82 */ 83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 84 { 85 unsigned long flags; 86 int ret; 87 88 spin_lock_irqsave(&kernfs_rename_lock, flags); 89 ret = kernfs_name_locked(kn, buf, buflen); 90 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 91 return ret; 92 } 93 94 /** 95 * kernfs_path - build full path of a given node 96 * @kn: kernfs_node of interest 97 * @buf: buffer to copy @kn's name into 98 * @buflen: size of @buf 99 * 100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The 101 * path is built from the end of @buf so the returned pointer usually 102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated 103 * and %NULL is returned. 104 */ 105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) 106 { 107 unsigned long flags; 108 char *p; 109 110 spin_lock_irqsave(&kernfs_rename_lock, flags); 111 p = kernfs_path_locked(kn, buf, buflen); 112 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 113 return p; 114 } 115 EXPORT_SYMBOL_GPL(kernfs_path); 116 117 /** 118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 119 * @kn: kernfs_node of interest 120 * 121 * This function can be called from any context. 122 */ 123 void pr_cont_kernfs_name(struct kernfs_node *kn) 124 { 125 unsigned long flags; 126 127 spin_lock_irqsave(&kernfs_rename_lock, flags); 128 129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 130 pr_cont("%s", kernfs_pr_cont_buf); 131 132 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 133 } 134 135 /** 136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 137 * @kn: kernfs_node of interest 138 * 139 * This function can be called from any context. 140 */ 141 void pr_cont_kernfs_path(struct kernfs_node *kn) 142 { 143 unsigned long flags; 144 char *p; 145 146 spin_lock_irqsave(&kernfs_rename_lock, flags); 147 148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf, 149 sizeof(kernfs_pr_cont_buf)); 150 if (p) 151 pr_cont("%s", p); 152 else 153 pr_cont("<name too long>"); 154 155 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 156 } 157 158 /** 159 * kernfs_get_parent - determine the parent node and pin it 160 * @kn: kernfs_node of interest 161 * 162 * Determines @kn's parent, pins and returns it. This function can be 163 * called from any context. 164 */ 165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 166 { 167 struct kernfs_node *parent; 168 unsigned long flags; 169 170 spin_lock_irqsave(&kernfs_rename_lock, flags); 171 parent = kn->parent; 172 kernfs_get(parent); 173 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 174 175 return parent; 176 } 177 178 /** 179 * kernfs_name_hash 180 * @name: Null terminated string to hash 181 * @ns: Namespace tag to hash 182 * 183 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 184 */ 185 static unsigned int kernfs_name_hash(const char *name, const void *ns) 186 { 187 unsigned long hash = init_name_hash(); 188 unsigned int len = strlen(name); 189 while (len--) 190 hash = partial_name_hash(*name++, hash); 191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); 192 hash &= 0x7fffffffU; 193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 194 if (hash < 2) 195 hash += 2; 196 if (hash >= INT_MAX) 197 hash = INT_MAX - 1; 198 return hash; 199 } 200 201 static int kernfs_name_compare(unsigned int hash, const char *name, 202 const void *ns, const struct kernfs_node *kn) 203 { 204 if (hash < kn->hash) 205 return -1; 206 if (hash > kn->hash) 207 return 1; 208 if (ns < kn->ns) 209 return -1; 210 if (ns > kn->ns) 211 return 1; 212 return strcmp(name, kn->name); 213 } 214 215 static int kernfs_sd_compare(const struct kernfs_node *left, 216 const struct kernfs_node *right) 217 { 218 return kernfs_name_compare(left->hash, left->name, left->ns, right); 219 } 220 221 /** 222 * kernfs_link_sibling - link kernfs_node into sibling rbtree 223 * @kn: kernfs_node of interest 224 * 225 * Link @kn into its sibling rbtree which starts from 226 * @kn->parent->dir.children. 227 * 228 * Locking: 229 * mutex_lock(kernfs_mutex) 230 * 231 * RETURNS: 232 * 0 on susccess -EEXIST on failure. 233 */ 234 static int kernfs_link_sibling(struct kernfs_node *kn) 235 { 236 struct rb_node **node = &kn->parent->dir.children.rb_node; 237 struct rb_node *parent = NULL; 238 239 while (*node) { 240 struct kernfs_node *pos; 241 int result; 242 243 pos = rb_to_kn(*node); 244 parent = *node; 245 result = kernfs_sd_compare(kn, pos); 246 if (result < 0) 247 node = &pos->rb.rb_left; 248 else if (result > 0) 249 node = &pos->rb.rb_right; 250 else 251 return -EEXIST; 252 } 253 254 /* add new node and rebalance the tree */ 255 rb_link_node(&kn->rb, parent, node); 256 rb_insert_color(&kn->rb, &kn->parent->dir.children); 257 258 /* successfully added, account subdir number */ 259 if (kernfs_type(kn) == KERNFS_DIR) 260 kn->parent->dir.subdirs++; 261 262 return 0; 263 } 264 265 /** 266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 267 * @kn: kernfs_node of interest 268 * 269 * Try to unlink @kn from its sibling rbtree which starts from 270 * kn->parent->dir.children. Returns %true if @kn was actually 271 * removed, %false if @kn wasn't on the rbtree. 272 * 273 * Locking: 274 * mutex_lock(kernfs_mutex) 275 */ 276 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 277 { 278 if (RB_EMPTY_NODE(&kn->rb)) 279 return false; 280 281 if (kernfs_type(kn) == KERNFS_DIR) 282 kn->parent->dir.subdirs--; 283 284 rb_erase(&kn->rb, &kn->parent->dir.children); 285 RB_CLEAR_NODE(&kn->rb); 286 return true; 287 } 288 289 /** 290 * kernfs_get_active - get an active reference to kernfs_node 291 * @kn: kernfs_node to get an active reference to 292 * 293 * Get an active reference of @kn. This function is noop if @kn 294 * is NULL. 295 * 296 * RETURNS: 297 * Pointer to @kn on success, NULL on failure. 298 */ 299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 300 { 301 if (unlikely(!kn)) 302 return NULL; 303 304 if (!atomic_inc_unless_negative(&kn->active)) 305 return NULL; 306 307 if (kernfs_lockdep(kn)) 308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 309 return kn; 310 } 311 312 /** 313 * kernfs_put_active - put an active reference to kernfs_node 314 * @kn: kernfs_node to put an active reference to 315 * 316 * Put an active reference to @kn. This function is noop if @kn 317 * is NULL. 318 */ 319 void kernfs_put_active(struct kernfs_node *kn) 320 { 321 struct kernfs_root *root = kernfs_root(kn); 322 int v; 323 324 if (unlikely(!kn)) 325 return; 326 327 if (kernfs_lockdep(kn)) 328 rwsem_release(&kn->dep_map, 1, _RET_IP_); 329 v = atomic_dec_return(&kn->active); 330 if (likely(v != KN_DEACTIVATED_BIAS)) 331 return; 332 333 wake_up_all(&root->deactivate_waitq); 334 } 335 336 /** 337 * kernfs_drain - drain kernfs_node 338 * @kn: kernfs_node to drain 339 * 340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 341 * removers may invoke this function concurrently on @kn and all will 342 * return after draining is complete. 343 */ 344 static void kernfs_drain(struct kernfs_node *kn) 345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 346 { 347 struct kernfs_root *root = kernfs_root(kn); 348 349 lockdep_assert_held(&kernfs_mutex); 350 WARN_ON_ONCE(kernfs_active(kn)); 351 352 mutex_unlock(&kernfs_mutex); 353 354 if (kernfs_lockdep(kn)) { 355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 357 lock_contended(&kn->dep_map, _RET_IP_); 358 } 359 360 /* but everyone should wait for draining */ 361 wait_event(root->deactivate_waitq, 362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 363 364 if (kernfs_lockdep(kn)) { 365 lock_acquired(&kn->dep_map, _RET_IP_); 366 rwsem_release(&kn->dep_map, 1, _RET_IP_); 367 } 368 369 kernfs_unmap_bin_file(kn); 370 371 mutex_lock(&kernfs_mutex); 372 } 373 374 /** 375 * kernfs_get - get a reference count on a kernfs_node 376 * @kn: the target kernfs_node 377 */ 378 void kernfs_get(struct kernfs_node *kn) 379 { 380 if (kn) { 381 WARN_ON(!atomic_read(&kn->count)); 382 atomic_inc(&kn->count); 383 } 384 } 385 EXPORT_SYMBOL_GPL(kernfs_get); 386 387 /** 388 * kernfs_put - put a reference count on a kernfs_node 389 * @kn: the target kernfs_node 390 * 391 * Put a reference count of @kn and destroy it if it reached zero. 392 */ 393 void kernfs_put(struct kernfs_node *kn) 394 { 395 struct kernfs_node *parent; 396 struct kernfs_root *root; 397 398 if (!kn || !atomic_dec_and_test(&kn->count)) 399 return; 400 root = kernfs_root(kn); 401 repeat: 402 /* 403 * Moving/renaming is always done while holding reference. 404 * kn->parent won't change beneath us. 405 */ 406 parent = kn->parent; 407 408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 410 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 411 412 if (kernfs_type(kn) == KERNFS_LINK) 413 kernfs_put(kn->symlink.target_kn); 414 if (!(kn->flags & KERNFS_STATIC_NAME)) 415 kfree(kn->name); 416 if (kn->iattr) { 417 if (kn->iattr->ia_secdata) 418 security_release_secctx(kn->iattr->ia_secdata, 419 kn->iattr->ia_secdata_len); 420 simple_xattrs_free(&kn->iattr->xattrs); 421 } 422 kfree(kn->iattr); 423 ida_simple_remove(&root->ino_ida, kn->ino); 424 kmem_cache_free(kernfs_node_cache, kn); 425 426 kn = parent; 427 if (kn) { 428 if (atomic_dec_and_test(&kn->count)) 429 goto repeat; 430 } else { 431 /* just released the root kn, free @root too */ 432 ida_destroy(&root->ino_ida); 433 kfree(root); 434 } 435 } 436 EXPORT_SYMBOL_GPL(kernfs_put); 437 438 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 439 { 440 struct kernfs_node *kn; 441 442 if (flags & LOOKUP_RCU) 443 return -ECHILD; 444 445 /* Always perform fresh lookup for negatives */ 446 if (!dentry->d_inode) 447 goto out_bad_unlocked; 448 449 kn = dentry->d_fsdata; 450 mutex_lock(&kernfs_mutex); 451 452 /* The kernfs node has been deactivated */ 453 if (!kernfs_active(kn)) 454 goto out_bad; 455 456 /* The kernfs node has been moved? */ 457 if (dentry->d_parent->d_fsdata != kn->parent) 458 goto out_bad; 459 460 /* The kernfs node has been renamed */ 461 if (strcmp(dentry->d_name.name, kn->name) != 0) 462 goto out_bad; 463 464 /* The kernfs node has been moved to a different namespace */ 465 if (kn->parent && kernfs_ns_enabled(kn->parent) && 466 kernfs_info(dentry->d_sb)->ns != kn->ns) 467 goto out_bad; 468 469 mutex_unlock(&kernfs_mutex); 470 return 1; 471 out_bad: 472 mutex_unlock(&kernfs_mutex); 473 out_bad_unlocked: 474 return 0; 475 } 476 477 static void kernfs_dop_release(struct dentry *dentry) 478 { 479 kernfs_put(dentry->d_fsdata); 480 } 481 482 const struct dentry_operations kernfs_dops = { 483 .d_revalidate = kernfs_dop_revalidate, 484 .d_release = kernfs_dop_release, 485 }; 486 487 /** 488 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 489 * @dentry: the dentry in question 490 * 491 * Return the kernfs_node associated with @dentry. If @dentry is not a 492 * kernfs one, %NULL is returned. 493 * 494 * While the returned kernfs_node will stay accessible as long as @dentry 495 * is accessible, the returned node can be in any state and the caller is 496 * fully responsible for determining what's accessible. 497 */ 498 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 499 { 500 if (dentry->d_sb->s_op == &kernfs_sops) 501 return dentry->d_fsdata; 502 return NULL; 503 } 504 505 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 506 const char *name, umode_t mode, 507 unsigned flags) 508 { 509 char *dup_name = NULL; 510 struct kernfs_node *kn; 511 int ret; 512 513 if (!(flags & KERNFS_STATIC_NAME)) { 514 name = dup_name = kstrdup(name, GFP_KERNEL); 515 if (!name) 516 return NULL; 517 } 518 519 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 520 if (!kn) 521 goto err_out1; 522 523 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 524 if (ret < 0) 525 goto err_out2; 526 kn->ino = ret; 527 528 atomic_set(&kn->count, 1); 529 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 530 RB_CLEAR_NODE(&kn->rb); 531 532 kn->name = name; 533 kn->mode = mode; 534 kn->flags = flags; 535 536 return kn; 537 538 err_out2: 539 kmem_cache_free(kernfs_node_cache, kn); 540 err_out1: 541 kfree(dup_name); 542 return NULL; 543 } 544 545 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 546 const char *name, umode_t mode, 547 unsigned flags) 548 { 549 struct kernfs_node *kn; 550 551 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 552 if (kn) { 553 kernfs_get(parent); 554 kn->parent = parent; 555 } 556 return kn; 557 } 558 559 /** 560 * kernfs_add_one - add kernfs_node to parent without warning 561 * @kn: kernfs_node to be added 562 * 563 * The caller must already have initialized @kn->parent. This 564 * function increments nlink of the parent's inode if @kn is a 565 * directory and link into the children list of the parent. 566 * 567 * RETURNS: 568 * 0 on success, -EEXIST if entry with the given name already 569 * exists. 570 */ 571 int kernfs_add_one(struct kernfs_node *kn) 572 { 573 struct kernfs_node *parent = kn->parent; 574 struct kernfs_iattrs *ps_iattr; 575 bool has_ns; 576 int ret; 577 578 mutex_lock(&kernfs_mutex); 579 580 ret = -EINVAL; 581 has_ns = kernfs_ns_enabled(parent); 582 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 583 has_ns ? "required" : "invalid", parent->name, kn->name)) 584 goto out_unlock; 585 586 if (kernfs_type(parent) != KERNFS_DIR) 587 goto out_unlock; 588 589 ret = -ENOENT; 590 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 591 goto out_unlock; 592 593 kn->hash = kernfs_name_hash(kn->name, kn->ns); 594 595 ret = kernfs_link_sibling(kn); 596 if (ret) 597 goto out_unlock; 598 599 /* Update timestamps on the parent */ 600 ps_iattr = parent->iattr; 601 if (ps_iattr) { 602 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 603 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; 604 } 605 606 mutex_unlock(&kernfs_mutex); 607 608 /* 609 * Activate the new node unless CREATE_DEACTIVATED is requested. 610 * If not activated here, the kernfs user is responsible for 611 * activating the node with kernfs_activate(). A node which hasn't 612 * been activated is not visible to userland and its removal won't 613 * trigger deactivation. 614 */ 615 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 616 kernfs_activate(kn); 617 return 0; 618 619 out_unlock: 620 mutex_unlock(&kernfs_mutex); 621 return ret; 622 } 623 624 /** 625 * kernfs_find_ns - find kernfs_node with the given name 626 * @parent: kernfs_node to search under 627 * @name: name to look for 628 * @ns: the namespace tag to use 629 * 630 * Look for kernfs_node with name @name under @parent. Returns pointer to 631 * the found kernfs_node on success, %NULL on failure. 632 */ 633 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 634 const unsigned char *name, 635 const void *ns) 636 { 637 struct rb_node *node = parent->dir.children.rb_node; 638 bool has_ns = kernfs_ns_enabled(parent); 639 unsigned int hash; 640 641 lockdep_assert_held(&kernfs_mutex); 642 643 if (has_ns != (bool)ns) { 644 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 645 has_ns ? "required" : "invalid", parent->name, name); 646 return NULL; 647 } 648 649 hash = kernfs_name_hash(name, ns); 650 while (node) { 651 struct kernfs_node *kn; 652 int result; 653 654 kn = rb_to_kn(node); 655 result = kernfs_name_compare(hash, name, ns, kn); 656 if (result < 0) 657 node = node->rb_left; 658 else if (result > 0) 659 node = node->rb_right; 660 else 661 return kn; 662 } 663 return NULL; 664 } 665 666 /** 667 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 668 * @parent: kernfs_node to search under 669 * @name: name to look for 670 * @ns: the namespace tag to use 671 * 672 * Look for kernfs_node with name @name under @parent and get a reference 673 * if found. This function may sleep and returns pointer to the found 674 * kernfs_node on success, %NULL on failure. 675 */ 676 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 677 const char *name, const void *ns) 678 { 679 struct kernfs_node *kn; 680 681 mutex_lock(&kernfs_mutex); 682 kn = kernfs_find_ns(parent, name, ns); 683 kernfs_get(kn); 684 mutex_unlock(&kernfs_mutex); 685 686 return kn; 687 } 688 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 689 690 /** 691 * kernfs_create_root - create a new kernfs hierarchy 692 * @scops: optional syscall operations for the hierarchy 693 * @flags: KERNFS_ROOT_* flags 694 * @priv: opaque data associated with the new directory 695 * 696 * Returns the root of the new hierarchy on success, ERR_PTR() value on 697 * failure. 698 */ 699 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 700 unsigned int flags, void *priv) 701 { 702 struct kernfs_root *root; 703 struct kernfs_node *kn; 704 705 root = kzalloc(sizeof(*root), GFP_KERNEL); 706 if (!root) 707 return ERR_PTR(-ENOMEM); 708 709 ida_init(&root->ino_ida); 710 INIT_LIST_HEAD(&root->supers); 711 712 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 713 KERNFS_DIR); 714 if (!kn) { 715 ida_destroy(&root->ino_ida); 716 kfree(root); 717 return ERR_PTR(-ENOMEM); 718 } 719 720 kn->priv = priv; 721 kn->dir.root = root; 722 723 root->syscall_ops = scops; 724 root->flags = flags; 725 root->kn = kn; 726 init_waitqueue_head(&root->deactivate_waitq); 727 728 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 729 kernfs_activate(kn); 730 731 return root; 732 } 733 734 /** 735 * kernfs_destroy_root - destroy a kernfs hierarchy 736 * @root: root of the hierarchy to destroy 737 * 738 * Destroy the hierarchy anchored at @root by removing all existing 739 * directories and destroying @root. 740 */ 741 void kernfs_destroy_root(struct kernfs_root *root) 742 { 743 kernfs_remove(root->kn); /* will also free @root */ 744 } 745 746 /** 747 * kernfs_create_dir_ns - create a directory 748 * @parent: parent in which to create a new directory 749 * @name: name of the new directory 750 * @mode: mode of the new directory 751 * @priv: opaque data associated with the new directory 752 * @ns: optional namespace tag of the directory 753 * 754 * Returns the created node on success, ERR_PTR() value on failure. 755 */ 756 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 757 const char *name, umode_t mode, 758 void *priv, const void *ns) 759 { 760 struct kernfs_node *kn; 761 int rc; 762 763 /* allocate */ 764 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 765 if (!kn) 766 return ERR_PTR(-ENOMEM); 767 768 kn->dir.root = parent->dir.root; 769 kn->ns = ns; 770 kn->priv = priv; 771 772 /* link in */ 773 rc = kernfs_add_one(kn); 774 if (!rc) 775 return kn; 776 777 kernfs_put(kn); 778 return ERR_PTR(rc); 779 } 780 781 static struct dentry *kernfs_iop_lookup(struct inode *dir, 782 struct dentry *dentry, 783 unsigned int flags) 784 { 785 struct dentry *ret; 786 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 787 struct kernfs_node *kn; 788 struct inode *inode; 789 const void *ns = NULL; 790 791 mutex_lock(&kernfs_mutex); 792 793 if (kernfs_ns_enabled(parent)) 794 ns = kernfs_info(dir->i_sb)->ns; 795 796 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 797 798 /* no such entry */ 799 if (!kn || !kernfs_active(kn)) { 800 ret = NULL; 801 goto out_unlock; 802 } 803 kernfs_get(kn); 804 dentry->d_fsdata = kn; 805 806 /* attach dentry and inode */ 807 inode = kernfs_get_inode(dir->i_sb, kn); 808 if (!inode) { 809 ret = ERR_PTR(-ENOMEM); 810 goto out_unlock; 811 } 812 813 /* instantiate and hash dentry */ 814 ret = d_splice_alias(inode, dentry); 815 out_unlock: 816 mutex_unlock(&kernfs_mutex); 817 return ret; 818 } 819 820 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 821 umode_t mode) 822 { 823 struct kernfs_node *parent = dir->i_private; 824 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 825 int ret; 826 827 if (!scops || !scops->mkdir) 828 return -EPERM; 829 830 if (!kernfs_get_active(parent)) 831 return -ENODEV; 832 833 ret = scops->mkdir(parent, dentry->d_name.name, mode); 834 835 kernfs_put_active(parent); 836 return ret; 837 } 838 839 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 840 { 841 struct kernfs_node *kn = dentry->d_fsdata; 842 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 843 int ret; 844 845 if (!scops || !scops->rmdir) 846 return -EPERM; 847 848 if (!kernfs_get_active(kn)) 849 return -ENODEV; 850 851 ret = scops->rmdir(kn); 852 853 kernfs_put_active(kn); 854 return ret; 855 } 856 857 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 858 struct inode *new_dir, struct dentry *new_dentry) 859 { 860 struct kernfs_node *kn = old_dentry->d_fsdata; 861 struct kernfs_node *new_parent = new_dir->i_private; 862 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 863 int ret; 864 865 if (!scops || !scops->rename) 866 return -EPERM; 867 868 if (!kernfs_get_active(kn)) 869 return -ENODEV; 870 871 if (!kernfs_get_active(new_parent)) { 872 kernfs_put_active(kn); 873 return -ENODEV; 874 } 875 876 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 877 878 kernfs_put_active(new_parent); 879 kernfs_put_active(kn); 880 return ret; 881 } 882 883 const struct inode_operations kernfs_dir_iops = { 884 .lookup = kernfs_iop_lookup, 885 .permission = kernfs_iop_permission, 886 .setattr = kernfs_iop_setattr, 887 .getattr = kernfs_iop_getattr, 888 .setxattr = kernfs_iop_setxattr, 889 .removexattr = kernfs_iop_removexattr, 890 .getxattr = kernfs_iop_getxattr, 891 .listxattr = kernfs_iop_listxattr, 892 893 .mkdir = kernfs_iop_mkdir, 894 .rmdir = kernfs_iop_rmdir, 895 .rename = kernfs_iop_rename, 896 }; 897 898 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 899 { 900 struct kernfs_node *last; 901 902 while (true) { 903 struct rb_node *rbn; 904 905 last = pos; 906 907 if (kernfs_type(pos) != KERNFS_DIR) 908 break; 909 910 rbn = rb_first(&pos->dir.children); 911 if (!rbn) 912 break; 913 914 pos = rb_to_kn(rbn); 915 } 916 917 return last; 918 } 919 920 /** 921 * kernfs_next_descendant_post - find the next descendant for post-order walk 922 * @pos: the current position (%NULL to initiate traversal) 923 * @root: kernfs_node whose descendants to walk 924 * 925 * Find the next descendant to visit for post-order traversal of @root's 926 * descendants. @root is included in the iteration and the last node to be 927 * visited. 928 */ 929 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 930 struct kernfs_node *root) 931 { 932 struct rb_node *rbn; 933 934 lockdep_assert_held(&kernfs_mutex); 935 936 /* if first iteration, visit leftmost descendant which may be root */ 937 if (!pos) 938 return kernfs_leftmost_descendant(root); 939 940 /* if we visited @root, we're done */ 941 if (pos == root) 942 return NULL; 943 944 /* if there's an unvisited sibling, visit its leftmost descendant */ 945 rbn = rb_next(&pos->rb); 946 if (rbn) 947 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 948 949 /* no sibling left, visit parent */ 950 return pos->parent; 951 } 952 953 /** 954 * kernfs_activate - activate a node which started deactivated 955 * @kn: kernfs_node whose subtree is to be activated 956 * 957 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 958 * needs to be explicitly activated. A node which hasn't been activated 959 * isn't visible to userland and deactivation is skipped during its 960 * removal. This is useful to construct atomic init sequences where 961 * creation of multiple nodes should either succeed or fail atomically. 962 * 963 * The caller is responsible for ensuring that this function is not called 964 * after kernfs_remove*() is invoked on @kn. 965 */ 966 void kernfs_activate(struct kernfs_node *kn) 967 { 968 struct kernfs_node *pos; 969 970 mutex_lock(&kernfs_mutex); 971 972 pos = NULL; 973 while ((pos = kernfs_next_descendant_post(pos, kn))) { 974 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 975 continue; 976 977 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 978 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 979 980 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 981 pos->flags |= KERNFS_ACTIVATED; 982 } 983 984 mutex_unlock(&kernfs_mutex); 985 } 986 987 static void __kernfs_remove(struct kernfs_node *kn) 988 { 989 struct kernfs_node *pos; 990 991 lockdep_assert_held(&kernfs_mutex); 992 993 /* 994 * Short-circuit if non-root @kn has already finished removal. 995 * This is for kernfs_remove_self() which plays with active ref 996 * after removal. 997 */ 998 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 999 return; 1000 1001 pr_debug("kernfs %s: removing\n", kn->name); 1002 1003 /* prevent any new usage under @kn by deactivating all nodes */ 1004 pos = NULL; 1005 while ((pos = kernfs_next_descendant_post(pos, kn))) 1006 if (kernfs_active(pos)) 1007 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1008 1009 /* deactivate and unlink the subtree node-by-node */ 1010 do { 1011 pos = kernfs_leftmost_descendant(kn); 1012 1013 /* 1014 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1015 * base ref could have been put by someone else by the time 1016 * the function returns. Make sure it doesn't go away 1017 * underneath us. 1018 */ 1019 kernfs_get(pos); 1020 1021 /* 1022 * Drain iff @kn was activated. This avoids draining and 1023 * its lockdep annotations for nodes which have never been 1024 * activated and allows embedding kernfs_remove() in create 1025 * error paths without worrying about draining. 1026 */ 1027 if (kn->flags & KERNFS_ACTIVATED) 1028 kernfs_drain(pos); 1029 else 1030 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1031 1032 /* 1033 * kernfs_unlink_sibling() succeeds once per node. Use it 1034 * to decide who's responsible for cleanups. 1035 */ 1036 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1037 struct kernfs_iattrs *ps_iattr = 1038 pos->parent ? pos->parent->iattr : NULL; 1039 1040 /* update timestamps on the parent */ 1041 if (ps_iattr) { 1042 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; 1043 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; 1044 } 1045 1046 kernfs_put(pos); 1047 } 1048 1049 kernfs_put(pos); 1050 } while (pos != kn); 1051 } 1052 1053 /** 1054 * kernfs_remove - remove a kernfs_node recursively 1055 * @kn: the kernfs_node to remove 1056 * 1057 * Remove @kn along with all its subdirectories and files. 1058 */ 1059 void kernfs_remove(struct kernfs_node *kn) 1060 { 1061 mutex_lock(&kernfs_mutex); 1062 __kernfs_remove(kn); 1063 mutex_unlock(&kernfs_mutex); 1064 } 1065 1066 /** 1067 * kernfs_break_active_protection - break out of active protection 1068 * @kn: the self kernfs_node 1069 * 1070 * The caller must be running off of a kernfs operation which is invoked 1071 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1072 * this function must also be matched with an invocation of 1073 * kernfs_unbreak_active_protection(). 1074 * 1075 * This function releases the active reference of @kn the caller is 1076 * holding. Once this function is called, @kn may be removed at any point 1077 * and the caller is solely responsible for ensuring that the objects it 1078 * dereferences are accessible. 1079 */ 1080 void kernfs_break_active_protection(struct kernfs_node *kn) 1081 { 1082 /* 1083 * Take out ourself out of the active ref dependency chain. If 1084 * we're called without an active ref, lockdep will complain. 1085 */ 1086 kernfs_put_active(kn); 1087 } 1088 1089 /** 1090 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1091 * @kn: the self kernfs_node 1092 * 1093 * If kernfs_break_active_protection() was called, this function must be 1094 * invoked before finishing the kernfs operation. Note that while this 1095 * function restores the active reference, it doesn't and can't actually 1096 * restore the active protection - @kn may already or be in the process of 1097 * being removed. Once kernfs_break_active_protection() is invoked, that 1098 * protection is irreversibly gone for the kernfs operation instance. 1099 * 1100 * While this function may be called at any point after 1101 * kernfs_break_active_protection() is invoked, its most useful location 1102 * would be right before the enclosing kernfs operation returns. 1103 */ 1104 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1105 { 1106 /* 1107 * @kn->active could be in any state; however, the increment we do 1108 * here will be undone as soon as the enclosing kernfs operation 1109 * finishes and this temporary bump can't break anything. If @kn 1110 * is alive, nothing changes. If @kn is being deactivated, the 1111 * soon-to-follow put will either finish deactivation or restore 1112 * deactivated state. If @kn is already removed, the temporary 1113 * bump is guaranteed to be gone before @kn is released. 1114 */ 1115 atomic_inc(&kn->active); 1116 if (kernfs_lockdep(kn)) 1117 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1118 } 1119 1120 /** 1121 * kernfs_remove_self - remove a kernfs_node from its own method 1122 * @kn: the self kernfs_node to remove 1123 * 1124 * The caller must be running off of a kernfs operation which is invoked 1125 * with an active reference - e.g. one of kernfs_ops. This can be used to 1126 * implement a file operation which deletes itself. 1127 * 1128 * For example, the "delete" file for a sysfs device directory can be 1129 * implemented by invoking kernfs_remove_self() on the "delete" file 1130 * itself. This function breaks the circular dependency of trying to 1131 * deactivate self while holding an active ref itself. It isn't necessary 1132 * to modify the usual removal path to use kernfs_remove_self(). The 1133 * "delete" implementation can simply invoke kernfs_remove_self() on self 1134 * before proceeding with the usual removal path. kernfs will ignore later 1135 * kernfs_remove() on self. 1136 * 1137 * kernfs_remove_self() can be called multiple times concurrently on the 1138 * same kernfs_node. Only the first one actually performs removal and 1139 * returns %true. All others will wait until the kernfs operation which 1140 * won self-removal finishes and return %false. Note that the losers wait 1141 * for the completion of not only the winning kernfs_remove_self() but also 1142 * the whole kernfs_ops which won the arbitration. This can be used to 1143 * guarantee, for example, all concurrent writes to a "delete" file to 1144 * finish only after the whole operation is complete. 1145 */ 1146 bool kernfs_remove_self(struct kernfs_node *kn) 1147 { 1148 bool ret; 1149 1150 mutex_lock(&kernfs_mutex); 1151 kernfs_break_active_protection(kn); 1152 1153 /* 1154 * SUICIDAL is used to arbitrate among competing invocations. Only 1155 * the first one will actually perform removal. When the removal 1156 * is complete, SUICIDED is set and the active ref is restored 1157 * while holding kernfs_mutex. The ones which lost arbitration 1158 * waits for SUICDED && drained which can happen only after the 1159 * enclosing kernfs operation which executed the winning instance 1160 * of kernfs_remove_self() finished. 1161 */ 1162 if (!(kn->flags & KERNFS_SUICIDAL)) { 1163 kn->flags |= KERNFS_SUICIDAL; 1164 __kernfs_remove(kn); 1165 kn->flags |= KERNFS_SUICIDED; 1166 ret = true; 1167 } else { 1168 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1169 DEFINE_WAIT(wait); 1170 1171 while (true) { 1172 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1173 1174 if ((kn->flags & KERNFS_SUICIDED) && 1175 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1176 break; 1177 1178 mutex_unlock(&kernfs_mutex); 1179 schedule(); 1180 mutex_lock(&kernfs_mutex); 1181 } 1182 finish_wait(waitq, &wait); 1183 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1184 ret = false; 1185 } 1186 1187 /* 1188 * This must be done while holding kernfs_mutex; otherwise, waiting 1189 * for SUICIDED && deactivated could finish prematurely. 1190 */ 1191 kernfs_unbreak_active_protection(kn); 1192 1193 mutex_unlock(&kernfs_mutex); 1194 return ret; 1195 } 1196 1197 /** 1198 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1199 * @parent: parent of the target 1200 * @name: name of the kernfs_node to remove 1201 * @ns: namespace tag of the kernfs_node to remove 1202 * 1203 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1204 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1205 */ 1206 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1207 const void *ns) 1208 { 1209 struct kernfs_node *kn; 1210 1211 if (!parent) { 1212 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1213 name); 1214 return -ENOENT; 1215 } 1216 1217 mutex_lock(&kernfs_mutex); 1218 1219 kn = kernfs_find_ns(parent, name, ns); 1220 if (kn) 1221 __kernfs_remove(kn); 1222 1223 mutex_unlock(&kernfs_mutex); 1224 1225 if (kn) 1226 return 0; 1227 else 1228 return -ENOENT; 1229 } 1230 1231 /** 1232 * kernfs_rename_ns - move and rename a kernfs_node 1233 * @kn: target node 1234 * @new_parent: new parent to put @sd under 1235 * @new_name: new name 1236 * @new_ns: new namespace tag 1237 */ 1238 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1239 const char *new_name, const void *new_ns) 1240 { 1241 struct kernfs_node *old_parent; 1242 const char *old_name = NULL; 1243 int error; 1244 1245 /* can't move or rename root */ 1246 if (!kn->parent) 1247 return -EINVAL; 1248 1249 mutex_lock(&kernfs_mutex); 1250 1251 error = -ENOENT; 1252 if (!kernfs_active(kn) || !kernfs_active(new_parent)) 1253 goto out; 1254 1255 error = 0; 1256 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1257 (strcmp(kn->name, new_name) == 0)) 1258 goto out; /* nothing to rename */ 1259 1260 error = -EEXIST; 1261 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1262 goto out; 1263 1264 /* rename kernfs_node */ 1265 if (strcmp(kn->name, new_name) != 0) { 1266 error = -ENOMEM; 1267 new_name = kstrdup(new_name, GFP_KERNEL); 1268 if (!new_name) 1269 goto out; 1270 } else { 1271 new_name = NULL; 1272 } 1273 1274 /* 1275 * Move to the appropriate place in the appropriate directories rbtree. 1276 */ 1277 kernfs_unlink_sibling(kn); 1278 kernfs_get(new_parent); 1279 1280 /* rename_lock protects ->parent and ->name accessors */ 1281 spin_lock_irq(&kernfs_rename_lock); 1282 1283 old_parent = kn->parent; 1284 kn->parent = new_parent; 1285 1286 kn->ns = new_ns; 1287 if (new_name) { 1288 if (!(kn->flags & KERNFS_STATIC_NAME)) 1289 old_name = kn->name; 1290 kn->flags &= ~KERNFS_STATIC_NAME; 1291 kn->name = new_name; 1292 } 1293 1294 spin_unlock_irq(&kernfs_rename_lock); 1295 1296 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1297 kernfs_link_sibling(kn); 1298 1299 kernfs_put(old_parent); 1300 kfree(old_name); 1301 1302 error = 0; 1303 out: 1304 mutex_unlock(&kernfs_mutex); 1305 return error; 1306 } 1307 1308 /* Relationship between s_mode and the DT_xxx types */ 1309 static inline unsigned char dt_type(struct kernfs_node *kn) 1310 { 1311 return (kn->mode >> 12) & 15; 1312 } 1313 1314 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1315 { 1316 kernfs_put(filp->private_data); 1317 return 0; 1318 } 1319 1320 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1321 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1322 { 1323 if (pos) { 1324 int valid = kernfs_active(pos) && 1325 pos->parent == parent && hash == pos->hash; 1326 kernfs_put(pos); 1327 if (!valid) 1328 pos = NULL; 1329 } 1330 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1331 struct rb_node *node = parent->dir.children.rb_node; 1332 while (node) { 1333 pos = rb_to_kn(node); 1334 1335 if (hash < pos->hash) 1336 node = node->rb_left; 1337 else if (hash > pos->hash) 1338 node = node->rb_right; 1339 else 1340 break; 1341 } 1342 } 1343 /* Skip over entries which are dying/dead or in the wrong namespace */ 1344 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1345 struct rb_node *node = rb_next(&pos->rb); 1346 if (!node) 1347 pos = NULL; 1348 else 1349 pos = rb_to_kn(node); 1350 } 1351 return pos; 1352 } 1353 1354 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1355 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1356 { 1357 pos = kernfs_dir_pos(ns, parent, ino, pos); 1358 if (pos) { 1359 do { 1360 struct rb_node *node = rb_next(&pos->rb); 1361 if (!node) 1362 pos = NULL; 1363 else 1364 pos = rb_to_kn(node); 1365 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1366 } 1367 return pos; 1368 } 1369 1370 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1371 { 1372 struct dentry *dentry = file->f_path.dentry; 1373 struct kernfs_node *parent = dentry->d_fsdata; 1374 struct kernfs_node *pos = file->private_data; 1375 const void *ns = NULL; 1376 1377 if (!dir_emit_dots(file, ctx)) 1378 return 0; 1379 mutex_lock(&kernfs_mutex); 1380 1381 if (kernfs_ns_enabled(parent)) 1382 ns = kernfs_info(dentry->d_sb)->ns; 1383 1384 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1385 pos; 1386 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1387 const char *name = pos->name; 1388 unsigned int type = dt_type(pos); 1389 int len = strlen(name); 1390 ino_t ino = pos->ino; 1391 1392 ctx->pos = pos->hash; 1393 file->private_data = pos; 1394 kernfs_get(pos); 1395 1396 mutex_unlock(&kernfs_mutex); 1397 if (!dir_emit(ctx, name, len, ino, type)) 1398 return 0; 1399 mutex_lock(&kernfs_mutex); 1400 } 1401 mutex_unlock(&kernfs_mutex); 1402 file->private_data = NULL; 1403 ctx->pos = INT_MAX; 1404 return 0; 1405 } 1406 1407 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset, 1408 int whence) 1409 { 1410 struct inode *inode = file_inode(file); 1411 loff_t ret; 1412 1413 mutex_lock(&inode->i_mutex); 1414 ret = generic_file_llseek(file, offset, whence); 1415 mutex_unlock(&inode->i_mutex); 1416 1417 return ret; 1418 } 1419 1420 const struct file_operations kernfs_dir_fops = { 1421 .read = generic_read_dir, 1422 .iterate = kernfs_fop_readdir, 1423 .release = kernfs_dir_fop_release, 1424 .llseek = kernfs_dir_fop_llseek, 1425 }; 1426