1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 DECLARE_RWSEM(kernfs_rwsem); 21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_rwsem); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 if (!kn) 45 return strlcpy(buf, "(null)", buflen); 46 47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 48 } 49 50 /* kernfs_node_depth - compute depth from @from to @to */ 51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 52 { 53 size_t depth = 0; 54 55 while (to->parent && to != from) { 56 depth++; 57 to = to->parent; 58 } 59 return depth; 60 } 61 62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 63 struct kernfs_node *b) 64 { 65 size_t da, db; 66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 67 68 if (ra != rb) 69 return NULL; 70 71 da = kernfs_depth(ra->kn, a); 72 db = kernfs_depth(rb->kn, b); 73 74 while (da > db) { 75 a = a->parent; 76 da--; 77 } 78 while (db > da) { 79 b = b->parent; 80 db--; 81 } 82 83 /* worst case b and a will be the same at root */ 84 while (b != a) { 85 b = b->parent; 86 a = a->parent; 87 } 88 89 return a; 90 } 91 92 /** 93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 94 * where kn_from is treated as root of the path. 95 * @kn_from: kernfs node which should be treated as root for the path 96 * @kn_to: kernfs node to which path is needed 97 * @buf: buffer to copy the path into 98 * @buflen: size of @buf 99 * 100 * We need to handle couple of scenarios here: 101 * [1] when @kn_from is an ancestor of @kn_to at some level 102 * kn_from: /n1/n2/n3 103 * kn_to: /n1/n2/n3/n4/n5 104 * result: /n4/n5 105 * 106 * [2] when @kn_from is on a different hierarchy and we need to find common 107 * ancestor between @kn_from and @kn_to. 108 * kn_from: /n1/n2/n3/n4 109 * kn_to: /n1/n2/n5 110 * result: /../../n5 111 * OR 112 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 113 * kn_to: /n1/n2/n3 [depth=3] 114 * result: /../.. 115 * 116 * [3] when @kn_to is NULL result will be "(null)" 117 * 118 * Returns the length of the full path. If the full length is equal to or 119 * greater than @buflen, @buf contains the truncated path with the trailing 120 * '\0'. On error, -errno is returned. 121 */ 122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 123 struct kernfs_node *kn_from, 124 char *buf, size_t buflen) 125 { 126 struct kernfs_node *kn, *common; 127 const char parent_str[] = "/.."; 128 size_t depth_from, depth_to, len = 0; 129 int i, j; 130 131 if (!kn_to) 132 return strlcpy(buf, "(null)", buflen); 133 134 if (!kn_from) 135 kn_from = kernfs_root(kn_to)->kn; 136 137 if (kn_from == kn_to) 138 return strlcpy(buf, "/", buflen); 139 140 if (!buf) 141 return -EINVAL; 142 143 common = kernfs_common_ancestor(kn_from, kn_to); 144 if (WARN_ON(!common)) 145 return -EINVAL; 146 147 depth_to = kernfs_depth(common, kn_to); 148 depth_from = kernfs_depth(common, kn_from); 149 150 buf[0] = '\0'; 151 152 for (i = 0; i < depth_from; i++) 153 len += strlcpy(buf + len, parent_str, 154 len < buflen ? buflen - len : 0); 155 156 /* Calculate how many bytes we need for the rest */ 157 for (i = depth_to - 1; i >= 0; i--) { 158 for (kn = kn_to, j = 0; j < i; j++) 159 kn = kn->parent; 160 len += strlcpy(buf + len, "/", 161 len < buflen ? buflen - len : 0); 162 len += strlcpy(buf + len, kn->name, 163 len < buflen ? buflen - len : 0); 164 } 165 166 return len; 167 } 168 169 /** 170 * kernfs_name - obtain the name of a given node 171 * @kn: kernfs_node of interest 172 * @buf: buffer to copy @kn's name into 173 * @buflen: size of @buf 174 * 175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 176 * similar to strlcpy(). It returns the length of @kn's name and if @buf 177 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 178 * 179 * Fills buffer with "(null)" if @kn is NULL. 180 * 181 * This function can be called from any context. 182 */ 183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 184 { 185 unsigned long flags; 186 int ret; 187 188 spin_lock_irqsave(&kernfs_rename_lock, flags); 189 ret = kernfs_name_locked(kn, buf, buflen); 190 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 191 return ret; 192 } 193 194 /** 195 * kernfs_path_from_node - build path of node @to relative to @from. 196 * @from: parent kernfs_node relative to which we need to build the path 197 * @to: kernfs_node of interest 198 * @buf: buffer to copy @to's path into 199 * @buflen: size of @buf 200 * 201 * Builds @to's path relative to @from in @buf. @from and @to must 202 * be on the same kernfs-root. If @from is not parent of @to, then a relative 203 * path (which includes '..'s) as needed to reach from @from to @to is 204 * returned. 205 * 206 * Returns the length of the full path. If the full length is equal to or 207 * greater than @buflen, @buf contains the truncated path with the trailing 208 * '\0'. On error, -errno is returned. 209 */ 210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 211 char *buf, size_t buflen) 212 { 213 unsigned long flags; 214 int ret; 215 216 spin_lock_irqsave(&kernfs_rename_lock, flags); 217 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 218 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 222 223 /** 224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 225 * @kn: kernfs_node of interest 226 * 227 * This function can be called from any context. 228 */ 229 void pr_cont_kernfs_name(struct kernfs_node *kn) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(&kernfs_rename_lock, flags); 234 235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 236 pr_cont("%s", kernfs_pr_cont_buf); 237 238 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 239 } 240 241 /** 242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 243 * @kn: kernfs_node of interest 244 * 245 * This function can be called from any context. 246 */ 247 void pr_cont_kernfs_path(struct kernfs_node *kn) 248 { 249 unsigned long flags; 250 int sz; 251 252 spin_lock_irqsave(&kernfs_rename_lock, flags); 253 254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 255 sizeof(kernfs_pr_cont_buf)); 256 if (sz < 0) { 257 pr_cont("(error)"); 258 goto out; 259 } 260 261 if (sz >= sizeof(kernfs_pr_cont_buf)) { 262 pr_cont("(name too long)"); 263 goto out; 264 } 265 266 pr_cont("%s", kernfs_pr_cont_buf); 267 268 out: 269 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 270 } 271 272 /** 273 * kernfs_get_parent - determine the parent node and pin it 274 * @kn: kernfs_node of interest 275 * 276 * Determines @kn's parent, pins and returns it. This function can be 277 * called from any context. 278 */ 279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 280 { 281 struct kernfs_node *parent; 282 unsigned long flags; 283 284 spin_lock_irqsave(&kernfs_rename_lock, flags); 285 parent = kn->parent; 286 kernfs_get(parent); 287 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 288 289 return parent; 290 } 291 292 /** 293 * kernfs_name_hash 294 * @name: Null terminated string to hash 295 * @ns: Namespace tag to hash 296 * 297 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 298 */ 299 static unsigned int kernfs_name_hash(const char *name, const void *ns) 300 { 301 unsigned long hash = init_name_hash(ns); 302 unsigned int len = strlen(name); 303 while (len--) 304 hash = partial_name_hash(*name++, hash); 305 hash = end_name_hash(hash); 306 hash &= 0x7fffffffU; 307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 308 if (hash < 2) 309 hash += 2; 310 if (hash >= INT_MAX) 311 hash = INT_MAX - 1; 312 return hash; 313 } 314 315 static int kernfs_name_compare(unsigned int hash, const char *name, 316 const void *ns, const struct kernfs_node *kn) 317 { 318 if (hash < kn->hash) 319 return -1; 320 if (hash > kn->hash) 321 return 1; 322 if (ns < kn->ns) 323 return -1; 324 if (ns > kn->ns) 325 return 1; 326 return strcmp(name, kn->name); 327 } 328 329 static int kernfs_sd_compare(const struct kernfs_node *left, 330 const struct kernfs_node *right) 331 { 332 return kernfs_name_compare(left->hash, left->name, left->ns, right); 333 } 334 335 /** 336 * kernfs_link_sibling - link kernfs_node into sibling rbtree 337 * @kn: kernfs_node of interest 338 * 339 * Link @kn into its sibling rbtree which starts from 340 * @kn->parent->dir.children. 341 * 342 * Locking: 343 * kernfs_rwsem held exclusive 344 * 345 * RETURNS: 346 * 0 on susccess -EEXIST on failure. 347 */ 348 static int kernfs_link_sibling(struct kernfs_node *kn) 349 { 350 struct rb_node **node = &kn->parent->dir.children.rb_node; 351 struct rb_node *parent = NULL; 352 353 while (*node) { 354 struct kernfs_node *pos; 355 int result; 356 357 pos = rb_to_kn(*node); 358 parent = *node; 359 result = kernfs_sd_compare(kn, pos); 360 if (result < 0) 361 node = &pos->rb.rb_left; 362 else if (result > 0) 363 node = &pos->rb.rb_right; 364 else 365 return -EEXIST; 366 } 367 368 /* add new node and rebalance the tree */ 369 rb_link_node(&kn->rb, parent, node); 370 rb_insert_color(&kn->rb, &kn->parent->dir.children); 371 372 /* successfully added, account subdir number */ 373 if (kernfs_type(kn) == KERNFS_DIR) 374 kn->parent->dir.subdirs++; 375 kernfs_inc_rev(kn->parent); 376 377 return 0; 378 } 379 380 /** 381 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 382 * @kn: kernfs_node of interest 383 * 384 * Try to unlink @kn from its sibling rbtree which starts from 385 * kn->parent->dir.children. Returns %true if @kn was actually 386 * removed, %false if @kn wasn't on the rbtree. 387 * 388 * Locking: 389 * kernfs_rwsem held exclusive 390 */ 391 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 392 { 393 if (RB_EMPTY_NODE(&kn->rb)) 394 return false; 395 396 if (kernfs_type(kn) == KERNFS_DIR) 397 kn->parent->dir.subdirs--; 398 kernfs_inc_rev(kn->parent); 399 400 rb_erase(&kn->rb, &kn->parent->dir.children); 401 RB_CLEAR_NODE(&kn->rb); 402 return true; 403 } 404 405 /** 406 * kernfs_get_active - get an active reference to kernfs_node 407 * @kn: kernfs_node to get an active reference to 408 * 409 * Get an active reference of @kn. This function is noop if @kn 410 * is NULL. 411 * 412 * RETURNS: 413 * Pointer to @kn on success, NULL on failure. 414 */ 415 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 416 { 417 if (unlikely(!kn)) 418 return NULL; 419 420 if (!atomic_inc_unless_negative(&kn->active)) 421 return NULL; 422 423 if (kernfs_lockdep(kn)) 424 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 425 return kn; 426 } 427 428 /** 429 * kernfs_put_active - put an active reference to kernfs_node 430 * @kn: kernfs_node to put an active reference to 431 * 432 * Put an active reference to @kn. This function is noop if @kn 433 * is NULL. 434 */ 435 void kernfs_put_active(struct kernfs_node *kn) 436 { 437 int v; 438 439 if (unlikely(!kn)) 440 return; 441 442 if (kernfs_lockdep(kn)) 443 rwsem_release(&kn->dep_map, _RET_IP_); 444 v = atomic_dec_return(&kn->active); 445 if (likely(v != KN_DEACTIVATED_BIAS)) 446 return; 447 448 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 449 } 450 451 /** 452 * kernfs_drain - drain kernfs_node 453 * @kn: kernfs_node to drain 454 * 455 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 456 * removers may invoke this function concurrently on @kn and all will 457 * return after draining is complete. 458 */ 459 static void kernfs_drain(struct kernfs_node *kn) 460 __releases(&kernfs_rwsem) __acquires(&kernfs_rwsem) 461 { 462 struct kernfs_root *root = kernfs_root(kn); 463 464 lockdep_assert_held_write(&kernfs_rwsem); 465 WARN_ON_ONCE(kernfs_active(kn)); 466 467 up_write(&kernfs_rwsem); 468 469 if (kernfs_lockdep(kn)) { 470 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 471 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 472 lock_contended(&kn->dep_map, _RET_IP_); 473 } 474 475 /* but everyone should wait for draining */ 476 wait_event(root->deactivate_waitq, 477 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 478 479 if (kernfs_lockdep(kn)) { 480 lock_acquired(&kn->dep_map, _RET_IP_); 481 rwsem_release(&kn->dep_map, _RET_IP_); 482 } 483 484 kernfs_drain_open_files(kn); 485 486 down_write(&kernfs_rwsem); 487 } 488 489 /** 490 * kernfs_get - get a reference count on a kernfs_node 491 * @kn: the target kernfs_node 492 */ 493 void kernfs_get(struct kernfs_node *kn) 494 { 495 if (kn) { 496 WARN_ON(!atomic_read(&kn->count)); 497 atomic_inc(&kn->count); 498 } 499 } 500 EXPORT_SYMBOL_GPL(kernfs_get); 501 502 /** 503 * kernfs_put - put a reference count on a kernfs_node 504 * @kn: the target kernfs_node 505 * 506 * Put a reference count of @kn and destroy it if it reached zero. 507 */ 508 void kernfs_put(struct kernfs_node *kn) 509 { 510 struct kernfs_node *parent; 511 struct kernfs_root *root; 512 513 if (!kn || !atomic_dec_and_test(&kn->count)) 514 return; 515 root = kernfs_root(kn); 516 repeat: 517 /* 518 * Moving/renaming is always done while holding reference. 519 * kn->parent won't change beneath us. 520 */ 521 parent = kn->parent; 522 523 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 524 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 525 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 526 527 if (kernfs_type(kn) == KERNFS_LINK) 528 kernfs_put(kn->symlink.target_kn); 529 530 kfree_const(kn->name); 531 532 if (kn->iattr) { 533 simple_xattrs_free(&kn->iattr->xattrs); 534 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 535 } 536 spin_lock(&kernfs_idr_lock); 537 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 538 spin_unlock(&kernfs_idr_lock); 539 kmem_cache_free(kernfs_node_cache, kn); 540 541 kn = parent; 542 if (kn) { 543 if (atomic_dec_and_test(&kn->count)) 544 goto repeat; 545 } else { 546 /* just released the root kn, free @root too */ 547 idr_destroy(&root->ino_idr); 548 kfree(root); 549 } 550 } 551 EXPORT_SYMBOL_GPL(kernfs_put); 552 553 /** 554 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 555 * @dentry: the dentry in question 556 * 557 * Return the kernfs_node associated with @dentry. If @dentry is not a 558 * kernfs one, %NULL is returned. 559 * 560 * While the returned kernfs_node will stay accessible as long as @dentry 561 * is accessible, the returned node can be in any state and the caller is 562 * fully responsible for determining what's accessible. 563 */ 564 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 565 { 566 if (dentry->d_sb->s_op == &kernfs_sops) 567 return kernfs_dentry_node(dentry); 568 return NULL; 569 } 570 571 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 572 struct kernfs_node *parent, 573 const char *name, umode_t mode, 574 kuid_t uid, kgid_t gid, 575 unsigned flags) 576 { 577 struct kernfs_node *kn; 578 u32 id_highbits; 579 int ret; 580 581 name = kstrdup_const(name, GFP_KERNEL); 582 if (!name) 583 return NULL; 584 585 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 586 if (!kn) 587 goto err_out1; 588 589 idr_preload(GFP_KERNEL); 590 spin_lock(&kernfs_idr_lock); 591 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 592 if (ret >= 0 && ret < root->last_id_lowbits) 593 root->id_highbits++; 594 id_highbits = root->id_highbits; 595 root->last_id_lowbits = ret; 596 spin_unlock(&kernfs_idr_lock); 597 idr_preload_end(); 598 if (ret < 0) 599 goto err_out2; 600 601 kn->id = (u64)id_highbits << 32 | ret; 602 603 atomic_set(&kn->count, 1); 604 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 605 RB_CLEAR_NODE(&kn->rb); 606 607 kn->name = name; 608 kn->mode = mode; 609 kn->flags = flags; 610 611 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 612 struct iattr iattr = { 613 .ia_valid = ATTR_UID | ATTR_GID, 614 .ia_uid = uid, 615 .ia_gid = gid, 616 }; 617 618 ret = __kernfs_setattr(kn, &iattr); 619 if (ret < 0) 620 goto err_out3; 621 } 622 623 if (parent) { 624 ret = security_kernfs_init_security(parent, kn); 625 if (ret) 626 goto err_out3; 627 } 628 629 return kn; 630 631 err_out3: 632 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 633 err_out2: 634 kmem_cache_free(kernfs_node_cache, kn); 635 err_out1: 636 kfree_const(name); 637 return NULL; 638 } 639 640 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 641 const char *name, umode_t mode, 642 kuid_t uid, kgid_t gid, 643 unsigned flags) 644 { 645 struct kernfs_node *kn; 646 647 kn = __kernfs_new_node(kernfs_root(parent), parent, 648 name, mode, uid, gid, flags); 649 if (kn) { 650 kernfs_get(parent); 651 kn->parent = parent; 652 } 653 return kn; 654 } 655 656 /* 657 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 658 * @root: the kernfs root 659 * @id: the target node id 660 * 661 * @id's lower 32bits encode ino and upper gen. If the gen portion is 662 * zero, all generations are matched. 663 * 664 * RETURNS: 665 * NULL on failure. Return a kernfs node with reference counter incremented 666 */ 667 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 668 u64 id) 669 { 670 struct kernfs_node *kn; 671 ino_t ino = kernfs_id_ino(id); 672 u32 gen = kernfs_id_gen(id); 673 674 spin_lock(&kernfs_idr_lock); 675 676 kn = idr_find(&root->ino_idr, (u32)ino); 677 if (!kn) 678 goto err_unlock; 679 680 if (sizeof(ino_t) >= sizeof(u64)) { 681 /* we looked up with the low 32bits, compare the whole */ 682 if (kernfs_ino(kn) != ino) 683 goto err_unlock; 684 } else { 685 /* 0 matches all generations */ 686 if (unlikely(gen && kernfs_gen(kn) != gen)) 687 goto err_unlock; 688 } 689 690 /* 691 * ACTIVATED is protected with kernfs_mutex but it was clear when 692 * @kn was added to idr and we just wanna see it set. No need to 693 * grab kernfs_mutex. 694 */ 695 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) || 696 !atomic_inc_not_zero(&kn->count))) 697 goto err_unlock; 698 699 spin_unlock(&kernfs_idr_lock); 700 return kn; 701 err_unlock: 702 spin_unlock(&kernfs_idr_lock); 703 return NULL; 704 } 705 706 /** 707 * kernfs_add_one - add kernfs_node to parent without warning 708 * @kn: kernfs_node to be added 709 * 710 * The caller must already have initialized @kn->parent. This 711 * function increments nlink of the parent's inode if @kn is a 712 * directory and link into the children list of the parent. 713 * 714 * RETURNS: 715 * 0 on success, -EEXIST if entry with the given name already 716 * exists. 717 */ 718 int kernfs_add_one(struct kernfs_node *kn) 719 { 720 struct kernfs_node *parent = kn->parent; 721 struct kernfs_iattrs *ps_iattr; 722 bool has_ns; 723 int ret; 724 725 down_write(&kernfs_rwsem); 726 727 ret = -EINVAL; 728 has_ns = kernfs_ns_enabled(parent); 729 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 730 has_ns ? "required" : "invalid", parent->name, kn->name)) 731 goto out_unlock; 732 733 if (kernfs_type(parent) != KERNFS_DIR) 734 goto out_unlock; 735 736 ret = -ENOENT; 737 if (parent->flags & KERNFS_EMPTY_DIR) 738 goto out_unlock; 739 740 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 741 goto out_unlock; 742 743 kn->hash = kernfs_name_hash(kn->name, kn->ns); 744 745 ret = kernfs_link_sibling(kn); 746 if (ret) 747 goto out_unlock; 748 749 /* Update timestamps on the parent */ 750 ps_iattr = parent->iattr; 751 if (ps_iattr) { 752 ktime_get_real_ts64(&ps_iattr->ia_ctime); 753 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 754 } 755 756 up_write(&kernfs_rwsem); 757 758 /* 759 * Activate the new node unless CREATE_DEACTIVATED is requested. 760 * If not activated here, the kernfs user is responsible for 761 * activating the node with kernfs_activate(). A node which hasn't 762 * been activated is not visible to userland and its removal won't 763 * trigger deactivation. 764 */ 765 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 766 kernfs_activate(kn); 767 return 0; 768 769 out_unlock: 770 up_write(&kernfs_rwsem); 771 return ret; 772 } 773 774 /** 775 * kernfs_find_ns - find kernfs_node with the given name 776 * @parent: kernfs_node to search under 777 * @name: name to look for 778 * @ns: the namespace tag to use 779 * 780 * Look for kernfs_node with name @name under @parent. Returns pointer to 781 * the found kernfs_node on success, %NULL on failure. 782 */ 783 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 784 const unsigned char *name, 785 const void *ns) 786 { 787 struct rb_node *node = parent->dir.children.rb_node; 788 bool has_ns = kernfs_ns_enabled(parent); 789 unsigned int hash; 790 791 lockdep_assert_held(&kernfs_rwsem); 792 793 if (has_ns != (bool)ns) { 794 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 795 has_ns ? "required" : "invalid", parent->name, name); 796 return NULL; 797 } 798 799 hash = kernfs_name_hash(name, ns); 800 while (node) { 801 struct kernfs_node *kn; 802 int result; 803 804 kn = rb_to_kn(node); 805 result = kernfs_name_compare(hash, name, ns, kn); 806 if (result < 0) 807 node = node->rb_left; 808 else if (result > 0) 809 node = node->rb_right; 810 else 811 return kn; 812 } 813 return NULL; 814 } 815 816 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 817 const unsigned char *path, 818 const void *ns) 819 { 820 size_t len; 821 char *p, *name; 822 823 lockdep_assert_held_read(&kernfs_rwsem); 824 825 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 826 spin_lock_irq(&kernfs_rename_lock); 827 828 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 829 830 if (len >= sizeof(kernfs_pr_cont_buf)) { 831 spin_unlock_irq(&kernfs_rename_lock); 832 return NULL; 833 } 834 835 p = kernfs_pr_cont_buf; 836 837 while ((name = strsep(&p, "/")) && parent) { 838 if (*name == '\0') 839 continue; 840 parent = kernfs_find_ns(parent, name, ns); 841 } 842 843 spin_unlock_irq(&kernfs_rename_lock); 844 845 return parent; 846 } 847 848 /** 849 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 850 * @parent: kernfs_node to search under 851 * @name: name to look for 852 * @ns: the namespace tag to use 853 * 854 * Look for kernfs_node with name @name under @parent and get a reference 855 * if found. This function may sleep and returns pointer to the found 856 * kernfs_node on success, %NULL on failure. 857 */ 858 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 859 const char *name, const void *ns) 860 { 861 struct kernfs_node *kn; 862 863 down_read(&kernfs_rwsem); 864 kn = kernfs_find_ns(parent, name, ns); 865 kernfs_get(kn); 866 up_read(&kernfs_rwsem); 867 868 return kn; 869 } 870 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 871 872 /** 873 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 874 * @parent: kernfs_node to search under 875 * @path: path to look for 876 * @ns: the namespace tag to use 877 * 878 * Look for kernfs_node with path @path under @parent and get a reference 879 * if found. This function may sleep and returns pointer to the found 880 * kernfs_node on success, %NULL on failure. 881 */ 882 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 883 const char *path, const void *ns) 884 { 885 struct kernfs_node *kn; 886 887 down_read(&kernfs_rwsem); 888 kn = kernfs_walk_ns(parent, path, ns); 889 kernfs_get(kn); 890 up_read(&kernfs_rwsem); 891 892 return kn; 893 } 894 895 /** 896 * kernfs_create_root - create a new kernfs hierarchy 897 * @scops: optional syscall operations for the hierarchy 898 * @flags: KERNFS_ROOT_* flags 899 * @priv: opaque data associated with the new directory 900 * 901 * Returns the root of the new hierarchy on success, ERR_PTR() value on 902 * failure. 903 */ 904 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 905 unsigned int flags, void *priv) 906 { 907 struct kernfs_root *root; 908 struct kernfs_node *kn; 909 910 root = kzalloc(sizeof(*root), GFP_KERNEL); 911 if (!root) 912 return ERR_PTR(-ENOMEM); 913 914 idr_init(&root->ino_idr); 915 INIT_LIST_HEAD(&root->supers); 916 917 /* 918 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 919 * High bits generation. The starting value for both ino and 920 * genenration is 1. Initialize upper 32bit allocation 921 * accordingly. 922 */ 923 if (sizeof(ino_t) >= sizeof(u64)) 924 root->id_highbits = 0; 925 else 926 root->id_highbits = 1; 927 928 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 929 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 930 KERNFS_DIR); 931 if (!kn) { 932 idr_destroy(&root->ino_idr); 933 kfree(root); 934 return ERR_PTR(-ENOMEM); 935 } 936 937 kn->priv = priv; 938 kn->dir.root = root; 939 940 root->syscall_ops = scops; 941 root->flags = flags; 942 root->kn = kn; 943 init_waitqueue_head(&root->deactivate_waitq); 944 945 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 946 kernfs_activate(kn); 947 948 return root; 949 } 950 951 /** 952 * kernfs_destroy_root - destroy a kernfs hierarchy 953 * @root: root of the hierarchy to destroy 954 * 955 * Destroy the hierarchy anchored at @root by removing all existing 956 * directories and destroying @root. 957 */ 958 void kernfs_destroy_root(struct kernfs_root *root) 959 { 960 kernfs_remove(root->kn); /* will also free @root */ 961 } 962 963 /** 964 * kernfs_create_dir_ns - create a directory 965 * @parent: parent in which to create a new directory 966 * @name: name of the new directory 967 * @mode: mode of the new directory 968 * @uid: uid of the new directory 969 * @gid: gid of the new directory 970 * @priv: opaque data associated with the new directory 971 * @ns: optional namespace tag of the directory 972 * 973 * Returns the created node on success, ERR_PTR() value on failure. 974 */ 975 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 976 const char *name, umode_t mode, 977 kuid_t uid, kgid_t gid, 978 void *priv, const void *ns) 979 { 980 struct kernfs_node *kn; 981 int rc; 982 983 /* allocate */ 984 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 985 uid, gid, KERNFS_DIR); 986 if (!kn) 987 return ERR_PTR(-ENOMEM); 988 989 kn->dir.root = parent->dir.root; 990 kn->ns = ns; 991 kn->priv = priv; 992 993 /* link in */ 994 rc = kernfs_add_one(kn); 995 if (!rc) 996 return kn; 997 998 kernfs_put(kn); 999 return ERR_PTR(rc); 1000 } 1001 1002 /** 1003 * kernfs_create_empty_dir - create an always empty directory 1004 * @parent: parent in which to create a new directory 1005 * @name: name of the new directory 1006 * 1007 * Returns the created node on success, ERR_PTR() value on failure. 1008 */ 1009 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1010 const char *name) 1011 { 1012 struct kernfs_node *kn; 1013 int rc; 1014 1015 /* allocate */ 1016 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1017 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1018 if (!kn) 1019 return ERR_PTR(-ENOMEM); 1020 1021 kn->flags |= KERNFS_EMPTY_DIR; 1022 kn->dir.root = parent->dir.root; 1023 kn->ns = NULL; 1024 kn->priv = NULL; 1025 1026 /* link in */ 1027 rc = kernfs_add_one(kn); 1028 if (!rc) 1029 return kn; 1030 1031 kernfs_put(kn); 1032 return ERR_PTR(rc); 1033 } 1034 1035 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1036 { 1037 struct kernfs_node *kn; 1038 1039 if (flags & LOOKUP_RCU) 1040 return -ECHILD; 1041 1042 /* Negative hashed dentry? */ 1043 if (d_really_is_negative(dentry)) { 1044 struct kernfs_node *parent; 1045 1046 /* If the kernfs parent node has changed discard and 1047 * proceed to ->lookup. 1048 */ 1049 down_read(&kernfs_rwsem); 1050 spin_lock(&dentry->d_lock); 1051 parent = kernfs_dentry_node(dentry->d_parent); 1052 if (parent) { 1053 if (kernfs_dir_changed(parent, dentry)) { 1054 spin_unlock(&dentry->d_lock); 1055 up_read(&kernfs_rwsem); 1056 return 0; 1057 } 1058 } 1059 spin_unlock(&dentry->d_lock); 1060 up_read(&kernfs_rwsem); 1061 1062 /* The kernfs parent node hasn't changed, leave the 1063 * dentry negative and return success. 1064 */ 1065 return 1; 1066 } 1067 1068 kn = kernfs_dentry_node(dentry); 1069 down_read(&kernfs_rwsem); 1070 1071 /* The kernfs node has been deactivated */ 1072 if (!kernfs_active(kn)) 1073 goto out_bad; 1074 1075 /* The kernfs node has been moved? */ 1076 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1077 goto out_bad; 1078 1079 /* The kernfs node has been renamed */ 1080 if (strcmp(dentry->d_name.name, kn->name) != 0) 1081 goto out_bad; 1082 1083 /* The kernfs node has been moved to a different namespace */ 1084 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1085 kernfs_info(dentry->d_sb)->ns != kn->ns) 1086 goto out_bad; 1087 1088 up_read(&kernfs_rwsem); 1089 return 1; 1090 out_bad: 1091 up_read(&kernfs_rwsem); 1092 return 0; 1093 } 1094 1095 const struct dentry_operations kernfs_dops = { 1096 .d_revalidate = kernfs_dop_revalidate, 1097 }; 1098 1099 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1100 struct dentry *dentry, 1101 unsigned int flags) 1102 { 1103 struct kernfs_node *parent = dir->i_private; 1104 struct kernfs_node *kn; 1105 struct inode *inode = NULL; 1106 const void *ns = NULL; 1107 1108 down_read(&kernfs_rwsem); 1109 if (kernfs_ns_enabled(parent)) 1110 ns = kernfs_info(dir->i_sb)->ns; 1111 1112 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1113 /* attach dentry and inode */ 1114 if (kn) { 1115 /* Inactive nodes are invisible to the VFS so don't 1116 * create a negative. 1117 */ 1118 if (!kernfs_active(kn)) { 1119 up_read(&kernfs_rwsem); 1120 return NULL; 1121 } 1122 inode = kernfs_get_inode(dir->i_sb, kn); 1123 if (!inode) 1124 inode = ERR_PTR(-ENOMEM); 1125 } 1126 /* 1127 * Needed for negative dentry validation. 1128 * The negative dentry can be created in kernfs_iop_lookup() 1129 * or transforms from positive dentry in dentry_unlink_inode() 1130 * called from vfs_rmdir(). 1131 */ 1132 if (!IS_ERR(inode)) 1133 kernfs_set_rev(parent, dentry); 1134 up_read(&kernfs_rwsem); 1135 1136 /* instantiate and hash (possibly negative) dentry */ 1137 return d_splice_alias(inode, dentry); 1138 } 1139 1140 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns, 1141 struct inode *dir, struct dentry *dentry, 1142 umode_t mode) 1143 { 1144 struct kernfs_node *parent = dir->i_private; 1145 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1146 int ret; 1147 1148 if (!scops || !scops->mkdir) 1149 return -EPERM; 1150 1151 if (!kernfs_get_active(parent)) 1152 return -ENODEV; 1153 1154 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1155 1156 kernfs_put_active(parent); 1157 return ret; 1158 } 1159 1160 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1161 { 1162 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1163 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1164 int ret; 1165 1166 if (!scops || !scops->rmdir) 1167 return -EPERM; 1168 1169 if (!kernfs_get_active(kn)) 1170 return -ENODEV; 1171 1172 ret = scops->rmdir(kn); 1173 1174 kernfs_put_active(kn); 1175 return ret; 1176 } 1177 1178 static int kernfs_iop_rename(struct user_namespace *mnt_userns, 1179 struct inode *old_dir, struct dentry *old_dentry, 1180 struct inode *new_dir, struct dentry *new_dentry, 1181 unsigned int flags) 1182 { 1183 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1184 struct kernfs_node *new_parent = new_dir->i_private; 1185 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1186 int ret; 1187 1188 if (flags) 1189 return -EINVAL; 1190 1191 if (!scops || !scops->rename) 1192 return -EPERM; 1193 1194 if (!kernfs_get_active(kn)) 1195 return -ENODEV; 1196 1197 if (!kernfs_get_active(new_parent)) { 1198 kernfs_put_active(kn); 1199 return -ENODEV; 1200 } 1201 1202 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1203 1204 kernfs_put_active(new_parent); 1205 kernfs_put_active(kn); 1206 return ret; 1207 } 1208 1209 const struct inode_operations kernfs_dir_iops = { 1210 .lookup = kernfs_iop_lookup, 1211 .permission = kernfs_iop_permission, 1212 .setattr = kernfs_iop_setattr, 1213 .getattr = kernfs_iop_getattr, 1214 .listxattr = kernfs_iop_listxattr, 1215 1216 .mkdir = kernfs_iop_mkdir, 1217 .rmdir = kernfs_iop_rmdir, 1218 .rename = kernfs_iop_rename, 1219 }; 1220 1221 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1222 { 1223 struct kernfs_node *last; 1224 1225 while (true) { 1226 struct rb_node *rbn; 1227 1228 last = pos; 1229 1230 if (kernfs_type(pos) != KERNFS_DIR) 1231 break; 1232 1233 rbn = rb_first(&pos->dir.children); 1234 if (!rbn) 1235 break; 1236 1237 pos = rb_to_kn(rbn); 1238 } 1239 1240 return last; 1241 } 1242 1243 /** 1244 * kernfs_next_descendant_post - find the next descendant for post-order walk 1245 * @pos: the current position (%NULL to initiate traversal) 1246 * @root: kernfs_node whose descendants to walk 1247 * 1248 * Find the next descendant to visit for post-order traversal of @root's 1249 * descendants. @root is included in the iteration and the last node to be 1250 * visited. 1251 */ 1252 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1253 struct kernfs_node *root) 1254 { 1255 struct rb_node *rbn; 1256 1257 lockdep_assert_held_write(&kernfs_rwsem); 1258 1259 /* if first iteration, visit leftmost descendant which may be root */ 1260 if (!pos) 1261 return kernfs_leftmost_descendant(root); 1262 1263 /* if we visited @root, we're done */ 1264 if (pos == root) 1265 return NULL; 1266 1267 /* if there's an unvisited sibling, visit its leftmost descendant */ 1268 rbn = rb_next(&pos->rb); 1269 if (rbn) 1270 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1271 1272 /* no sibling left, visit parent */ 1273 return pos->parent; 1274 } 1275 1276 /** 1277 * kernfs_activate - activate a node which started deactivated 1278 * @kn: kernfs_node whose subtree is to be activated 1279 * 1280 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1281 * needs to be explicitly activated. A node which hasn't been activated 1282 * isn't visible to userland and deactivation is skipped during its 1283 * removal. This is useful to construct atomic init sequences where 1284 * creation of multiple nodes should either succeed or fail atomically. 1285 * 1286 * The caller is responsible for ensuring that this function is not called 1287 * after kernfs_remove*() is invoked on @kn. 1288 */ 1289 void kernfs_activate(struct kernfs_node *kn) 1290 { 1291 struct kernfs_node *pos; 1292 1293 down_write(&kernfs_rwsem); 1294 1295 pos = NULL; 1296 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1297 if (pos->flags & KERNFS_ACTIVATED) 1298 continue; 1299 1300 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1301 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1302 1303 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1304 pos->flags |= KERNFS_ACTIVATED; 1305 } 1306 1307 up_write(&kernfs_rwsem); 1308 } 1309 1310 static void __kernfs_remove(struct kernfs_node *kn) 1311 { 1312 struct kernfs_node *pos; 1313 1314 lockdep_assert_held_write(&kernfs_rwsem); 1315 1316 /* 1317 * Short-circuit if non-root @kn has already finished removal. 1318 * This is for kernfs_remove_self() which plays with active ref 1319 * after removal. 1320 */ 1321 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1322 return; 1323 1324 pr_debug("kernfs %s: removing\n", kn->name); 1325 1326 /* prevent any new usage under @kn by deactivating all nodes */ 1327 pos = NULL; 1328 while ((pos = kernfs_next_descendant_post(pos, kn))) 1329 if (kernfs_active(pos)) 1330 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1331 1332 /* deactivate and unlink the subtree node-by-node */ 1333 do { 1334 pos = kernfs_leftmost_descendant(kn); 1335 1336 /* 1337 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's 1338 * base ref could have been put by someone else by the time 1339 * the function returns. Make sure it doesn't go away 1340 * underneath us. 1341 */ 1342 kernfs_get(pos); 1343 1344 /* 1345 * Drain iff @kn was activated. This avoids draining and 1346 * its lockdep annotations for nodes which have never been 1347 * activated and allows embedding kernfs_remove() in create 1348 * error paths without worrying about draining. 1349 */ 1350 if (kn->flags & KERNFS_ACTIVATED) 1351 kernfs_drain(pos); 1352 else 1353 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1354 1355 /* 1356 * kernfs_unlink_sibling() succeeds once per node. Use it 1357 * to decide who's responsible for cleanups. 1358 */ 1359 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1360 struct kernfs_iattrs *ps_iattr = 1361 pos->parent ? pos->parent->iattr : NULL; 1362 1363 /* update timestamps on the parent */ 1364 if (ps_iattr) { 1365 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1366 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1367 } 1368 1369 kernfs_put(pos); 1370 } 1371 1372 kernfs_put(pos); 1373 } while (pos != kn); 1374 } 1375 1376 /** 1377 * kernfs_remove - remove a kernfs_node recursively 1378 * @kn: the kernfs_node to remove 1379 * 1380 * Remove @kn along with all its subdirectories and files. 1381 */ 1382 void kernfs_remove(struct kernfs_node *kn) 1383 { 1384 down_write(&kernfs_rwsem); 1385 __kernfs_remove(kn); 1386 up_write(&kernfs_rwsem); 1387 } 1388 1389 /** 1390 * kernfs_break_active_protection - break out of active protection 1391 * @kn: the self kernfs_node 1392 * 1393 * The caller must be running off of a kernfs operation which is invoked 1394 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1395 * this function must also be matched with an invocation of 1396 * kernfs_unbreak_active_protection(). 1397 * 1398 * This function releases the active reference of @kn the caller is 1399 * holding. Once this function is called, @kn may be removed at any point 1400 * and the caller is solely responsible for ensuring that the objects it 1401 * dereferences are accessible. 1402 */ 1403 void kernfs_break_active_protection(struct kernfs_node *kn) 1404 { 1405 /* 1406 * Take out ourself out of the active ref dependency chain. If 1407 * we're called without an active ref, lockdep will complain. 1408 */ 1409 kernfs_put_active(kn); 1410 } 1411 1412 /** 1413 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1414 * @kn: the self kernfs_node 1415 * 1416 * If kernfs_break_active_protection() was called, this function must be 1417 * invoked before finishing the kernfs operation. Note that while this 1418 * function restores the active reference, it doesn't and can't actually 1419 * restore the active protection - @kn may already or be in the process of 1420 * being removed. Once kernfs_break_active_protection() is invoked, that 1421 * protection is irreversibly gone for the kernfs operation instance. 1422 * 1423 * While this function may be called at any point after 1424 * kernfs_break_active_protection() is invoked, its most useful location 1425 * would be right before the enclosing kernfs operation returns. 1426 */ 1427 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1428 { 1429 /* 1430 * @kn->active could be in any state; however, the increment we do 1431 * here will be undone as soon as the enclosing kernfs operation 1432 * finishes and this temporary bump can't break anything. If @kn 1433 * is alive, nothing changes. If @kn is being deactivated, the 1434 * soon-to-follow put will either finish deactivation or restore 1435 * deactivated state. If @kn is already removed, the temporary 1436 * bump is guaranteed to be gone before @kn is released. 1437 */ 1438 atomic_inc(&kn->active); 1439 if (kernfs_lockdep(kn)) 1440 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1441 } 1442 1443 /** 1444 * kernfs_remove_self - remove a kernfs_node from its own method 1445 * @kn: the self kernfs_node to remove 1446 * 1447 * The caller must be running off of a kernfs operation which is invoked 1448 * with an active reference - e.g. one of kernfs_ops. This can be used to 1449 * implement a file operation which deletes itself. 1450 * 1451 * For example, the "delete" file for a sysfs device directory can be 1452 * implemented by invoking kernfs_remove_self() on the "delete" file 1453 * itself. This function breaks the circular dependency of trying to 1454 * deactivate self while holding an active ref itself. It isn't necessary 1455 * to modify the usual removal path to use kernfs_remove_self(). The 1456 * "delete" implementation can simply invoke kernfs_remove_self() on self 1457 * before proceeding with the usual removal path. kernfs will ignore later 1458 * kernfs_remove() on self. 1459 * 1460 * kernfs_remove_self() can be called multiple times concurrently on the 1461 * same kernfs_node. Only the first one actually performs removal and 1462 * returns %true. All others will wait until the kernfs operation which 1463 * won self-removal finishes and return %false. Note that the losers wait 1464 * for the completion of not only the winning kernfs_remove_self() but also 1465 * the whole kernfs_ops which won the arbitration. This can be used to 1466 * guarantee, for example, all concurrent writes to a "delete" file to 1467 * finish only after the whole operation is complete. 1468 */ 1469 bool kernfs_remove_self(struct kernfs_node *kn) 1470 { 1471 bool ret; 1472 1473 down_write(&kernfs_rwsem); 1474 kernfs_break_active_protection(kn); 1475 1476 /* 1477 * SUICIDAL is used to arbitrate among competing invocations. Only 1478 * the first one will actually perform removal. When the removal 1479 * is complete, SUICIDED is set and the active ref is restored 1480 * while kernfs_rwsem for held exclusive. The ones which lost 1481 * arbitration waits for SUICIDED && drained which can happen only 1482 * after the enclosing kernfs operation which executed the winning 1483 * instance of kernfs_remove_self() finished. 1484 */ 1485 if (!(kn->flags & KERNFS_SUICIDAL)) { 1486 kn->flags |= KERNFS_SUICIDAL; 1487 __kernfs_remove(kn); 1488 kn->flags |= KERNFS_SUICIDED; 1489 ret = true; 1490 } else { 1491 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1492 DEFINE_WAIT(wait); 1493 1494 while (true) { 1495 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1496 1497 if ((kn->flags & KERNFS_SUICIDED) && 1498 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1499 break; 1500 1501 up_write(&kernfs_rwsem); 1502 schedule(); 1503 down_write(&kernfs_rwsem); 1504 } 1505 finish_wait(waitq, &wait); 1506 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1507 ret = false; 1508 } 1509 1510 /* 1511 * This must be done while kernfs_rwsem held exclusive; otherwise, 1512 * waiting for SUICIDED && deactivated could finish prematurely. 1513 */ 1514 kernfs_unbreak_active_protection(kn); 1515 1516 up_write(&kernfs_rwsem); 1517 return ret; 1518 } 1519 1520 /** 1521 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1522 * @parent: parent of the target 1523 * @name: name of the kernfs_node to remove 1524 * @ns: namespace tag of the kernfs_node to remove 1525 * 1526 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1527 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1528 */ 1529 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1530 const void *ns) 1531 { 1532 struct kernfs_node *kn; 1533 1534 if (!parent) { 1535 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1536 name); 1537 return -ENOENT; 1538 } 1539 1540 down_write(&kernfs_rwsem); 1541 1542 kn = kernfs_find_ns(parent, name, ns); 1543 if (kn) 1544 __kernfs_remove(kn); 1545 1546 up_write(&kernfs_rwsem); 1547 1548 if (kn) 1549 return 0; 1550 else 1551 return -ENOENT; 1552 } 1553 1554 /** 1555 * kernfs_rename_ns - move and rename a kernfs_node 1556 * @kn: target node 1557 * @new_parent: new parent to put @sd under 1558 * @new_name: new name 1559 * @new_ns: new namespace tag 1560 */ 1561 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1562 const char *new_name, const void *new_ns) 1563 { 1564 struct kernfs_node *old_parent; 1565 const char *old_name = NULL; 1566 int error; 1567 1568 /* can't move or rename root */ 1569 if (!kn->parent) 1570 return -EINVAL; 1571 1572 down_write(&kernfs_rwsem); 1573 1574 error = -ENOENT; 1575 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1576 (new_parent->flags & KERNFS_EMPTY_DIR)) 1577 goto out; 1578 1579 error = 0; 1580 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1581 (strcmp(kn->name, new_name) == 0)) 1582 goto out; /* nothing to rename */ 1583 1584 error = -EEXIST; 1585 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1586 goto out; 1587 1588 /* rename kernfs_node */ 1589 if (strcmp(kn->name, new_name) != 0) { 1590 error = -ENOMEM; 1591 new_name = kstrdup_const(new_name, GFP_KERNEL); 1592 if (!new_name) 1593 goto out; 1594 } else { 1595 new_name = NULL; 1596 } 1597 1598 /* 1599 * Move to the appropriate place in the appropriate directories rbtree. 1600 */ 1601 kernfs_unlink_sibling(kn); 1602 kernfs_get(new_parent); 1603 1604 /* rename_lock protects ->parent and ->name accessors */ 1605 spin_lock_irq(&kernfs_rename_lock); 1606 1607 old_parent = kn->parent; 1608 kn->parent = new_parent; 1609 1610 kn->ns = new_ns; 1611 if (new_name) { 1612 old_name = kn->name; 1613 kn->name = new_name; 1614 } 1615 1616 spin_unlock_irq(&kernfs_rename_lock); 1617 1618 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1619 kernfs_link_sibling(kn); 1620 1621 kernfs_put(old_parent); 1622 kfree_const(old_name); 1623 1624 error = 0; 1625 out: 1626 up_write(&kernfs_rwsem); 1627 return error; 1628 } 1629 1630 /* Relationship between mode and the DT_xxx types */ 1631 static inline unsigned char dt_type(struct kernfs_node *kn) 1632 { 1633 return (kn->mode >> 12) & 15; 1634 } 1635 1636 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1637 { 1638 kernfs_put(filp->private_data); 1639 return 0; 1640 } 1641 1642 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1643 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1644 { 1645 if (pos) { 1646 int valid = kernfs_active(pos) && 1647 pos->parent == parent && hash == pos->hash; 1648 kernfs_put(pos); 1649 if (!valid) 1650 pos = NULL; 1651 } 1652 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1653 struct rb_node *node = parent->dir.children.rb_node; 1654 while (node) { 1655 pos = rb_to_kn(node); 1656 1657 if (hash < pos->hash) 1658 node = node->rb_left; 1659 else if (hash > pos->hash) 1660 node = node->rb_right; 1661 else 1662 break; 1663 } 1664 } 1665 /* Skip over entries which are dying/dead or in the wrong namespace */ 1666 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1667 struct rb_node *node = rb_next(&pos->rb); 1668 if (!node) 1669 pos = NULL; 1670 else 1671 pos = rb_to_kn(node); 1672 } 1673 return pos; 1674 } 1675 1676 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1677 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1678 { 1679 pos = kernfs_dir_pos(ns, parent, ino, pos); 1680 if (pos) { 1681 do { 1682 struct rb_node *node = rb_next(&pos->rb); 1683 if (!node) 1684 pos = NULL; 1685 else 1686 pos = rb_to_kn(node); 1687 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1688 } 1689 return pos; 1690 } 1691 1692 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1693 { 1694 struct dentry *dentry = file->f_path.dentry; 1695 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1696 struct kernfs_node *pos = file->private_data; 1697 const void *ns = NULL; 1698 1699 if (!dir_emit_dots(file, ctx)) 1700 return 0; 1701 down_read(&kernfs_rwsem); 1702 1703 if (kernfs_ns_enabled(parent)) 1704 ns = kernfs_info(dentry->d_sb)->ns; 1705 1706 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1707 pos; 1708 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1709 const char *name = pos->name; 1710 unsigned int type = dt_type(pos); 1711 int len = strlen(name); 1712 ino_t ino = kernfs_ino(pos); 1713 1714 ctx->pos = pos->hash; 1715 file->private_data = pos; 1716 kernfs_get(pos); 1717 1718 up_read(&kernfs_rwsem); 1719 if (!dir_emit(ctx, name, len, ino, type)) 1720 return 0; 1721 down_read(&kernfs_rwsem); 1722 } 1723 up_read(&kernfs_rwsem); 1724 file->private_data = NULL; 1725 ctx->pos = INT_MAX; 1726 return 0; 1727 } 1728 1729 const struct file_operations kernfs_dir_fops = { 1730 .read = generic_read_dir, 1731 .iterate_shared = kernfs_fop_readdir, 1732 .release = kernfs_dir_fop_release, 1733 .llseek = generic_file_llseek, 1734 }; 1735