xref: /linux/fs/kernfs/dir.c (revision 23c48a124b469cee2eb0c75e6d22d366d1caa118)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
21 /*
22  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24  * will perform wakeups when releasing console_sem. Holding rename_lock
25  * will introduce deadlock if the scheduler reads the kernfs_name in the
26  * wakeup path.
27  */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
31 
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33 
34 static bool kernfs_active(struct kernfs_node *kn)
35 {
36 	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
37 	return atomic_read(&kn->active) >= 0;
38 }
39 
40 static bool kernfs_lockdep(struct kernfs_node *kn)
41 {
42 #ifdef CONFIG_DEBUG_LOCK_ALLOC
43 	return kn->flags & KERNFS_LOCKDEP;
44 #else
45 	return false;
46 #endif
47 }
48 
49 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
50 {
51 	if (!kn)
52 		return strlcpy(buf, "(null)", buflen);
53 
54 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
55 }
56 
57 /* kernfs_node_depth - compute depth from @from to @to */
58 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
59 {
60 	size_t depth = 0;
61 
62 	while (to->parent && to != from) {
63 		depth++;
64 		to = to->parent;
65 	}
66 	return depth;
67 }
68 
69 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
70 						  struct kernfs_node *b)
71 {
72 	size_t da, db;
73 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
74 
75 	if (ra != rb)
76 		return NULL;
77 
78 	da = kernfs_depth(ra->kn, a);
79 	db = kernfs_depth(rb->kn, b);
80 
81 	while (da > db) {
82 		a = a->parent;
83 		da--;
84 	}
85 	while (db > da) {
86 		b = b->parent;
87 		db--;
88 	}
89 
90 	/* worst case b and a will be the same at root */
91 	while (b != a) {
92 		b = b->parent;
93 		a = a->parent;
94 	}
95 
96 	return a;
97 }
98 
99 /**
100  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
101  * where kn_from is treated as root of the path.
102  * @kn_from: kernfs node which should be treated as root for the path
103  * @kn_to: kernfs node to which path is needed
104  * @buf: buffer to copy the path into
105  * @buflen: size of @buf
106  *
107  * We need to handle couple of scenarios here:
108  * [1] when @kn_from is an ancestor of @kn_to at some level
109  * kn_from: /n1/n2/n3
110  * kn_to:   /n1/n2/n3/n4/n5
111  * result:  /n4/n5
112  *
113  * [2] when @kn_from is on a different hierarchy and we need to find common
114  * ancestor between @kn_from and @kn_to.
115  * kn_from: /n1/n2/n3/n4
116  * kn_to:   /n1/n2/n5
117  * result:  /../../n5
118  * OR
119  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
120  * kn_to:   /n1/n2/n3         [depth=3]
121  * result:  /../..
122  *
123  * [3] when @kn_to is NULL result will be "(null)"
124  *
125  * Returns the length of the full path.  If the full length is equal to or
126  * greater than @buflen, @buf contains the truncated path with the trailing
127  * '\0'.  On error, -errno is returned.
128  */
129 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
130 					struct kernfs_node *kn_from,
131 					char *buf, size_t buflen)
132 {
133 	struct kernfs_node *kn, *common;
134 	const char parent_str[] = "/..";
135 	size_t depth_from, depth_to, len = 0;
136 	int i, j;
137 
138 	if (!kn_to)
139 		return strlcpy(buf, "(null)", buflen);
140 
141 	if (!kn_from)
142 		kn_from = kernfs_root(kn_to)->kn;
143 
144 	if (kn_from == kn_to)
145 		return strlcpy(buf, "/", buflen);
146 
147 	if (!buf)
148 		return -EINVAL;
149 
150 	common = kernfs_common_ancestor(kn_from, kn_to);
151 	if (WARN_ON(!common))
152 		return -EINVAL;
153 
154 	depth_to = kernfs_depth(common, kn_to);
155 	depth_from = kernfs_depth(common, kn_from);
156 
157 	buf[0] = '\0';
158 
159 	for (i = 0; i < depth_from; i++)
160 		len += strlcpy(buf + len, parent_str,
161 			       len < buflen ? buflen - len : 0);
162 
163 	/* Calculate how many bytes we need for the rest */
164 	for (i = depth_to - 1; i >= 0; i--) {
165 		for (kn = kn_to, j = 0; j < i; j++)
166 			kn = kn->parent;
167 		len += strlcpy(buf + len, "/",
168 			       len < buflen ? buflen - len : 0);
169 		len += strlcpy(buf + len, kn->name,
170 			       len < buflen ? buflen - len : 0);
171 	}
172 
173 	return len;
174 }
175 
176 /**
177  * kernfs_name - obtain the name of a given node
178  * @kn: kernfs_node of interest
179  * @buf: buffer to copy @kn's name into
180  * @buflen: size of @buf
181  *
182  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
183  * similar to strlcpy().  It returns the length of @kn's name and if @buf
184  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
185  *
186  * Fills buffer with "(null)" if @kn is NULL.
187  *
188  * This function can be called from any context.
189  */
190 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
191 {
192 	unsigned long flags;
193 	int ret;
194 
195 	spin_lock_irqsave(&kernfs_rename_lock, flags);
196 	ret = kernfs_name_locked(kn, buf, buflen);
197 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
198 	return ret;
199 }
200 
201 /**
202  * kernfs_path_from_node - build path of node @to relative to @from.
203  * @from: parent kernfs_node relative to which we need to build the path
204  * @to: kernfs_node of interest
205  * @buf: buffer to copy @to's path into
206  * @buflen: size of @buf
207  *
208  * Builds @to's path relative to @from in @buf. @from and @to must
209  * be on the same kernfs-root. If @from is not parent of @to, then a relative
210  * path (which includes '..'s) as needed to reach from @from to @to is
211  * returned.
212  *
213  * Returns the length of the full path.  If the full length is equal to or
214  * greater than @buflen, @buf contains the truncated path with the trailing
215  * '\0'.  On error, -errno is returned.
216  */
217 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
218 			  char *buf, size_t buflen)
219 {
220 	unsigned long flags;
221 	int ret;
222 
223 	spin_lock_irqsave(&kernfs_rename_lock, flags);
224 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
225 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
226 	return ret;
227 }
228 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
229 
230 /**
231  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
232  * @kn: kernfs_node of interest
233  *
234  * This function can be called from any context.
235  */
236 void pr_cont_kernfs_name(struct kernfs_node *kn)
237 {
238 	unsigned long flags;
239 
240 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
241 
242 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
243 	pr_cont("%s", kernfs_pr_cont_buf);
244 
245 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
246 }
247 
248 /**
249  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
250  * @kn: kernfs_node of interest
251  *
252  * This function can be called from any context.
253  */
254 void pr_cont_kernfs_path(struct kernfs_node *kn)
255 {
256 	unsigned long flags;
257 	int sz;
258 
259 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
260 
261 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
262 				   sizeof(kernfs_pr_cont_buf));
263 	if (sz < 0) {
264 		pr_cont("(error)");
265 		goto out;
266 	}
267 
268 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
269 		pr_cont("(name too long)");
270 		goto out;
271 	}
272 
273 	pr_cont("%s", kernfs_pr_cont_buf);
274 
275 out:
276 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
277 }
278 
279 /**
280  * kernfs_get_parent - determine the parent node and pin it
281  * @kn: kernfs_node of interest
282  *
283  * Determines @kn's parent, pins and returns it.  This function can be
284  * called from any context.
285  */
286 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
287 {
288 	struct kernfs_node *parent;
289 	unsigned long flags;
290 
291 	spin_lock_irqsave(&kernfs_rename_lock, flags);
292 	parent = kn->parent;
293 	kernfs_get(parent);
294 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
295 
296 	return parent;
297 }
298 
299 /**
300  *	kernfs_name_hash
301  *	@name: Null terminated string to hash
302  *	@ns:   Namespace tag to hash
303  *
304  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
305  */
306 static unsigned int kernfs_name_hash(const char *name, const void *ns)
307 {
308 	unsigned long hash = init_name_hash(ns);
309 	unsigned int len = strlen(name);
310 	while (len--)
311 		hash = partial_name_hash(*name++, hash);
312 	hash = end_name_hash(hash);
313 	hash &= 0x7fffffffU;
314 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
315 	if (hash < 2)
316 		hash += 2;
317 	if (hash >= INT_MAX)
318 		hash = INT_MAX - 1;
319 	return hash;
320 }
321 
322 static int kernfs_name_compare(unsigned int hash, const char *name,
323 			       const void *ns, const struct kernfs_node *kn)
324 {
325 	if (hash < kn->hash)
326 		return -1;
327 	if (hash > kn->hash)
328 		return 1;
329 	if (ns < kn->ns)
330 		return -1;
331 	if (ns > kn->ns)
332 		return 1;
333 	return strcmp(name, kn->name);
334 }
335 
336 static int kernfs_sd_compare(const struct kernfs_node *left,
337 			     const struct kernfs_node *right)
338 {
339 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
340 }
341 
342 /**
343  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
344  *	@kn: kernfs_node of interest
345  *
346  *	Link @kn into its sibling rbtree which starts from
347  *	@kn->parent->dir.children.
348  *
349  *	Locking:
350  *	kernfs_rwsem held exclusive
351  *
352  *	RETURNS:
353  *	0 on susccess -EEXIST on failure.
354  */
355 static int kernfs_link_sibling(struct kernfs_node *kn)
356 {
357 	struct rb_node **node = &kn->parent->dir.children.rb_node;
358 	struct rb_node *parent = NULL;
359 
360 	while (*node) {
361 		struct kernfs_node *pos;
362 		int result;
363 
364 		pos = rb_to_kn(*node);
365 		parent = *node;
366 		result = kernfs_sd_compare(kn, pos);
367 		if (result < 0)
368 			node = &pos->rb.rb_left;
369 		else if (result > 0)
370 			node = &pos->rb.rb_right;
371 		else
372 			return -EEXIST;
373 	}
374 
375 	/* add new node and rebalance the tree */
376 	rb_link_node(&kn->rb, parent, node);
377 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
378 
379 	/* successfully added, account subdir number */
380 	if (kernfs_type(kn) == KERNFS_DIR)
381 		kn->parent->dir.subdirs++;
382 	kernfs_inc_rev(kn->parent);
383 
384 	return 0;
385 }
386 
387 /**
388  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389  *	@kn: kernfs_node of interest
390  *
391  *	Try to unlink @kn from its sibling rbtree which starts from
392  *	kn->parent->dir.children.  Returns %true if @kn was actually
393  *	removed, %false if @kn wasn't on the rbtree.
394  *
395  *	Locking:
396  *	kernfs_rwsem held exclusive
397  */
398 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399 {
400 	if (RB_EMPTY_NODE(&kn->rb))
401 		return false;
402 
403 	if (kernfs_type(kn) == KERNFS_DIR)
404 		kn->parent->dir.subdirs--;
405 	kernfs_inc_rev(kn->parent);
406 
407 	rb_erase(&kn->rb, &kn->parent->dir.children);
408 	RB_CLEAR_NODE(&kn->rb);
409 	return true;
410 }
411 
412 /**
413  *	kernfs_get_active - get an active reference to kernfs_node
414  *	@kn: kernfs_node to get an active reference to
415  *
416  *	Get an active reference of @kn.  This function is noop if @kn
417  *	is NULL.
418  *
419  *	RETURNS:
420  *	Pointer to @kn on success, NULL on failure.
421  */
422 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
423 {
424 	if (unlikely(!kn))
425 		return NULL;
426 
427 	if (!atomic_inc_unless_negative(&kn->active))
428 		return NULL;
429 
430 	if (kernfs_lockdep(kn))
431 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
432 	return kn;
433 }
434 
435 /**
436  *	kernfs_put_active - put an active reference to kernfs_node
437  *	@kn: kernfs_node to put an active reference to
438  *
439  *	Put an active reference to @kn.  This function is noop if @kn
440  *	is NULL.
441  */
442 void kernfs_put_active(struct kernfs_node *kn)
443 {
444 	int v;
445 
446 	if (unlikely(!kn))
447 		return;
448 
449 	if (kernfs_lockdep(kn))
450 		rwsem_release(&kn->dep_map, _RET_IP_);
451 	v = atomic_dec_return(&kn->active);
452 	if (likely(v != KN_DEACTIVATED_BIAS))
453 		return;
454 
455 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
456 }
457 
458 /**
459  * kernfs_drain - drain kernfs_node
460  * @kn: kernfs_node to drain
461  *
462  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
463  * removers may invoke this function concurrently on @kn and all will
464  * return after draining is complete.
465  */
466 static void kernfs_drain(struct kernfs_node *kn)
467 	__releases(&kernfs_root(kn)->kernfs_rwsem)
468 	__acquires(&kernfs_root(kn)->kernfs_rwsem)
469 {
470 	struct kernfs_root *root = kernfs_root(kn);
471 
472 	lockdep_assert_held_write(&root->kernfs_rwsem);
473 	WARN_ON_ONCE(kernfs_active(kn));
474 
475 	up_write(&root->kernfs_rwsem);
476 
477 	if (kernfs_lockdep(kn)) {
478 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
479 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
480 			lock_contended(&kn->dep_map, _RET_IP_);
481 	}
482 
483 	/* but everyone should wait for draining */
484 	wait_event(root->deactivate_waitq,
485 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
486 
487 	if (kernfs_lockdep(kn)) {
488 		lock_acquired(&kn->dep_map, _RET_IP_);
489 		rwsem_release(&kn->dep_map, _RET_IP_);
490 	}
491 
492 	kernfs_drain_open_files(kn);
493 
494 	down_write(&root->kernfs_rwsem);
495 }
496 
497 /**
498  * kernfs_get - get a reference count on a kernfs_node
499  * @kn: the target kernfs_node
500  */
501 void kernfs_get(struct kernfs_node *kn)
502 {
503 	if (kn) {
504 		WARN_ON(!atomic_read(&kn->count));
505 		atomic_inc(&kn->count);
506 	}
507 }
508 EXPORT_SYMBOL_GPL(kernfs_get);
509 
510 /**
511  * kernfs_put - put a reference count on a kernfs_node
512  * @kn: the target kernfs_node
513  *
514  * Put a reference count of @kn and destroy it if it reached zero.
515  */
516 void kernfs_put(struct kernfs_node *kn)
517 {
518 	struct kernfs_node *parent;
519 	struct kernfs_root *root;
520 
521 	if (!kn || !atomic_dec_and_test(&kn->count))
522 		return;
523 	root = kernfs_root(kn);
524  repeat:
525 	/*
526 	 * Moving/renaming is always done while holding reference.
527 	 * kn->parent won't change beneath us.
528 	 */
529 	parent = kn->parent;
530 
531 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
532 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
533 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
534 
535 	if (kernfs_type(kn) == KERNFS_LINK)
536 		kernfs_put(kn->symlink.target_kn);
537 
538 	kfree_const(kn->name);
539 
540 	if (kn->iattr) {
541 		simple_xattrs_free(&kn->iattr->xattrs);
542 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
543 	}
544 	spin_lock(&kernfs_idr_lock);
545 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
546 	spin_unlock(&kernfs_idr_lock);
547 	kmem_cache_free(kernfs_node_cache, kn);
548 
549 	kn = parent;
550 	if (kn) {
551 		if (atomic_dec_and_test(&kn->count))
552 			goto repeat;
553 	} else {
554 		/* just released the root kn, free @root too */
555 		idr_destroy(&root->ino_idr);
556 		kfree(root);
557 	}
558 }
559 EXPORT_SYMBOL_GPL(kernfs_put);
560 
561 /**
562  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
563  * @dentry: the dentry in question
564  *
565  * Return the kernfs_node associated with @dentry.  If @dentry is not a
566  * kernfs one, %NULL is returned.
567  *
568  * While the returned kernfs_node will stay accessible as long as @dentry
569  * is accessible, the returned node can be in any state and the caller is
570  * fully responsible for determining what's accessible.
571  */
572 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
573 {
574 	if (dentry->d_sb->s_op == &kernfs_sops)
575 		return kernfs_dentry_node(dentry);
576 	return NULL;
577 }
578 
579 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
580 					     struct kernfs_node *parent,
581 					     const char *name, umode_t mode,
582 					     kuid_t uid, kgid_t gid,
583 					     unsigned flags)
584 {
585 	struct kernfs_node *kn;
586 	u32 id_highbits;
587 	int ret;
588 
589 	name = kstrdup_const(name, GFP_KERNEL);
590 	if (!name)
591 		return NULL;
592 
593 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
594 	if (!kn)
595 		goto err_out1;
596 
597 	idr_preload(GFP_KERNEL);
598 	spin_lock(&kernfs_idr_lock);
599 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
600 	if (ret >= 0 && ret < root->last_id_lowbits)
601 		root->id_highbits++;
602 	id_highbits = root->id_highbits;
603 	root->last_id_lowbits = ret;
604 	spin_unlock(&kernfs_idr_lock);
605 	idr_preload_end();
606 	if (ret < 0)
607 		goto err_out2;
608 
609 	kn->id = (u64)id_highbits << 32 | ret;
610 
611 	atomic_set(&kn->count, 1);
612 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
613 	RB_CLEAR_NODE(&kn->rb);
614 
615 	kn->name = name;
616 	kn->mode = mode;
617 	kn->flags = flags;
618 
619 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
620 		struct iattr iattr = {
621 			.ia_valid = ATTR_UID | ATTR_GID,
622 			.ia_uid = uid,
623 			.ia_gid = gid,
624 		};
625 
626 		ret = __kernfs_setattr(kn, &iattr);
627 		if (ret < 0)
628 			goto err_out3;
629 	}
630 
631 	if (parent) {
632 		ret = security_kernfs_init_security(parent, kn);
633 		if (ret)
634 			goto err_out3;
635 	}
636 
637 	return kn;
638 
639  err_out3:
640 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
641  err_out2:
642 	kmem_cache_free(kernfs_node_cache, kn);
643  err_out1:
644 	kfree_const(name);
645 	return NULL;
646 }
647 
648 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
649 				    const char *name, umode_t mode,
650 				    kuid_t uid, kgid_t gid,
651 				    unsigned flags)
652 {
653 	struct kernfs_node *kn;
654 
655 	kn = __kernfs_new_node(kernfs_root(parent), parent,
656 			       name, mode, uid, gid, flags);
657 	if (kn) {
658 		kernfs_get(parent);
659 		kn->parent = parent;
660 	}
661 	return kn;
662 }
663 
664 /*
665  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
666  * @root: the kernfs root
667  * @id: the target node id
668  *
669  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
670  * zero, all generations are matched.
671  *
672  * RETURNS:
673  * NULL on failure. Return a kernfs node with reference counter incremented
674  */
675 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
676 						   u64 id)
677 {
678 	struct kernfs_node *kn;
679 	ino_t ino = kernfs_id_ino(id);
680 	u32 gen = kernfs_id_gen(id);
681 
682 	spin_lock(&kernfs_idr_lock);
683 
684 	kn = idr_find(&root->ino_idr, (u32)ino);
685 	if (!kn)
686 		goto err_unlock;
687 
688 	if (sizeof(ino_t) >= sizeof(u64)) {
689 		/* we looked up with the low 32bits, compare the whole */
690 		if (kernfs_ino(kn) != ino)
691 			goto err_unlock;
692 	} else {
693 		/* 0 matches all generations */
694 		if (unlikely(gen && kernfs_gen(kn) != gen))
695 			goto err_unlock;
696 	}
697 
698 	/*
699 	 * ACTIVATED is protected with kernfs_mutex but it was clear when
700 	 * @kn was added to idr and we just wanna see it set.  No need to
701 	 * grab kernfs_mutex.
702 	 */
703 	if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
704 		     !atomic_inc_not_zero(&kn->count)))
705 		goto err_unlock;
706 
707 	spin_unlock(&kernfs_idr_lock);
708 	return kn;
709 err_unlock:
710 	spin_unlock(&kernfs_idr_lock);
711 	return NULL;
712 }
713 
714 /**
715  *	kernfs_add_one - add kernfs_node to parent without warning
716  *	@kn: kernfs_node to be added
717  *
718  *	The caller must already have initialized @kn->parent.  This
719  *	function increments nlink of the parent's inode if @kn is a
720  *	directory and link into the children list of the parent.
721  *
722  *	RETURNS:
723  *	0 on success, -EEXIST if entry with the given name already
724  *	exists.
725  */
726 int kernfs_add_one(struct kernfs_node *kn)
727 {
728 	struct kernfs_node *parent = kn->parent;
729 	struct kernfs_root *root = kernfs_root(parent);
730 	struct kernfs_iattrs *ps_iattr;
731 	bool has_ns;
732 	int ret;
733 
734 	down_write(&root->kernfs_rwsem);
735 
736 	ret = -EINVAL;
737 	has_ns = kernfs_ns_enabled(parent);
738 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
739 		 has_ns ? "required" : "invalid", parent->name, kn->name))
740 		goto out_unlock;
741 
742 	if (kernfs_type(parent) != KERNFS_DIR)
743 		goto out_unlock;
744 
745 	ret = -ENOENT;
746 	if (parent->flags & KERNFS_EMPTY_DIR)
747 		goto out_unlock;
748 
749 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
750 		goto out_unlock;
751 
752 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
753 
754 	ret = kernfs_link_sibling(kn);
755 	if (ret)
756 		goto out_unlock;
757 
758 	/* Update timestamps on the parent */
759 	ps_iattr = parent->iattr;
760 	if (ps_iattr) {
761 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
762 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
763 	}
764 
765 	up_write(&root->kernfs_rwsem);
766 
767 	/*
768 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
769 	 * If not activated here, the kernfs user is responsible for
770 	 * activating the node with kernfs_activate().  A node which hasn't
771 	 * been activated is not visible to userland and its removal won't
772 	 * trigger deactivation.
773 	 */
774 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
775 		kernfs_activate(kn);
776 	return 0;
777 
778 out_unlock:
779 	up_write(&root->kernfs_rwsem);
780 	return ret;
781 }
782 
783 /**
784  * kernfs_find_ns - find kernfs_node with the given name
785  * @parent: kernfs_node to search under
786  * @name: name to look for
787  * @ns: the namespace tag to use
788  *
789  * Look for kernfs_node with name @name under @parent.  Returns pointer to
790  * the found kernfs_node on success, %NULL on failure.
791  */
792 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
793 					  const unsigned char *name,
794 					  const void *ns)
795 {
796 	struct rb_node *node = parent->dir.children.rb_node;
797 	bool has_ns = kernfs_ns_enabled(parent);
798 	unsigned int hash;
799 
800 	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
801 
802 	if (has_ns != (bool)ns) {
803 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
804 		     has_ns ? "required" : "invalid", parent->name, name);
805 		return NULL;
806 	}
807 
808 	hash = kernfs_name_hash(name, ns);
809 	while (node) {
810 		struct kernfs_node *kn;
811 		int result;
812 
813 		kn = rb_to_kn(node);
814 		result = kernfs_name_compare(hash, name, ns, kn);
815 		if (result < 0)
816 			node = node->rb_left;
817 		else if (result > 0)
818 			node = node->rb_right;
819 		else
820 			return kn;
821 	}
822 	return NULL;
823 }
824 
825 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
826 					  const unsigned char *path,
827 					  const void *ns)
828 {
829 	size_t len;
830 	char *p, *name;
831 
832 	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
833 
834 	spin_lock_irq(&kernfs_pr_cont_lock);
835 
836 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
837 
838 	if (len >= sizeof(kernfs_pr_cont_buf)) {
839 		spin_unlock_irq(&kernfs_pr_cont_lock);
840 		return NULL;
841 	}
842 
843 	p = kernfs_pr_cont_buf;
844 
845 	while ((name = strsep(&p, "/")) && parent) {
846 		if (*name == '\0')
847 			continue;
848 		parent = kernfs_find_ns(parent, name, ns);
849 	}
850 
851 	spin_unlock_irq(&kernfs_pr_cont_lock);
852 
853 	return parent;
854 }
855 
856 /**
857  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
858  * @parent: kernfs_node to search under
859  * @name: name to look for
860  * @ns: the namespace tag to use
861  *
862  * Look for kernfs_node with name @name under @parent and get a reference
863  * if found.  This function may sleep and returns pointer to the found
864  * kernfs_node on success, %NULL on failure.
865  */
866 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
867 					   const char *name, const void *ns)
868 {
869 	struct kernfs_node *kn;
870 	struct kernfs_root *root = kernfs_root(parent);
871 
872 	down_read(&root->kernfs_rwsem);
873 	kn = kernfs_find_ns(parent, name, ns);
874 	kernfs_get(kn);
875 	up_read(&root->kernfs_rwsem);
876 
877 	return kn;
878 }
879 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
880 
881 /**
882  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
883  * @parent: kernfs_node to search under
884  * @path: path to look for
885  * @ns: the namespace tag to use
886  *
887  * Look for kernfs_node with path @path under @parent and get a reference
888  * if found.  This function may sleep and returns pointer to the found
889  * kernfs_node on success, %NULL on failure.
890  */
891 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
892 					   const char *path, const void *ns)
893 {
894 	struct kernfs_node *kn;
895 	struct kernfs_root *root = kernfs_root(parent);
896 
897 	down_read(&root->kernfs_rwsem);
898 	kn = kernfs_walk_ns(parent, path, ns);
899 	kernfs_get(kn);
900 	up_read(&root->kernfs_rwsem);
901 
902 	return kn;
903 }
904 
905 /**
906  * kernfs_create_root - create a new kernfs hierarchy
907  * @scops: optional syscall operations for the hierarchy
908  * @flags: KERNFS_ROOT_* flags
909  * @priv: opaque data associated with the new directory
910  *
911  * Returns the root of the new hierarchy on success, ERR_PTR() value on
912  * failure.
913  */
914 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
915 				       unsigned int flags, void *priv)
916 {
917 	struct kernfs_root *root;
918 	struct kernfs_node *kn;
919 
920 	root = kzalloc(sizeof(*root), GFP_KERNEL);
921 	if (!root)
922 		return ERR_PTR(-ENOMEM);
923 
924 	idr_init(&root->ino_idr);
925 	init_rwsem(&root->kernfs_rwsem);
926 	INIT_LIST_HEAD(&root->supers);
927 
928 	/*
929 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
930 	 * High bits generation.  The starting value for both ino and
931 	 * genenration is 1.  Initialize upper 32bit allocation
932 	 * accordingly.
933 	 */
934 	if (sizeof(ino_t) >= sizeof(u64))
935 		root->id_highbits = 0;
936 	else
937 		root->id_highbits = 1;
938 
939 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
940 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
941 			       KERNFS_DIR);
942 	if (!kn) {
943 		idr_destroy(&root->ino_idr);
944 		kfree(root);
945 		return ERR_PTR(-ENOMEM);
946 	}
947 
948 	kn->priv = priv;
949 	kn->dir.root = root;
950 
951 	root->syscall_ops = scops;
952 	root->flags = flags;
953 	root->kn = kn;
954 	init_waitqueue_head(&root->deactivate_waitq);
955 
956 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
957 		kernfs_activate(kn);
958 
959 	return root;
960 }
961 
962 /**
963  * kernfs_destroy_root - destroy a kernfs hierarchy
964  * @root: root of the hierarchy to destroy
965  *
966  * Destroy the hierarchy anchored at @root by removing all existing
967  * directories and destroying @root.
968  */
969 void kernfs_destroy_root(struct kernfs_root *root)
970 {
971 	/*
972 	 *  kernfs_remove holds kernfs_rwsem from the root so the root
973 	 *  shouldn't be freed during the operation.
974 	 */
975 	kernfs_get(root->kn);
976 	kernfs_remove(root->kn);
977 	kernfs_put(root->kn); /* will also free @root */
978 }
979 
980 /**
981  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
982  * @root: root to use to lookup
983  */
984 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
985 {
986 	return root->kn;
987 }
988 
989 /**
990  * kernfs_create_dir_ns - create a directory
991  * @parent: parent in which to create a new directory
992  * @name: name of the new directory
993  * @mode: mode of the new directory
994  * @uid: uid of the new directory
995  * @gid: gid of the new directory
996  * @priv: opaque data associated with the new directory
997  * @ns: optional namespace tag of the directory
998  *
999  * Returns the created node on success, ERR_PTR() value on failure.
1000  */
1001 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1002 					 const char *name, umode_t mode,
1003 					 kuid_t uid, kgid_t gid,
1004 					 void *priv, const void *ns)
1005 {
1006 	struct kernfs_node *kn;
1007 	int rc;
1008 
1009 	/* allocate */
1010 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1011 			     uid, gid, KERNFS_DIR);
1012 	if (!kn)
1013 		return ERR_PTR(-ENOMEM);
1014 
1015 	kn->dir.root = parent->dir.root;
1016 	kn->ns = ns;
1017 	kn->priv = priv;
1018 
1019 	/* link in */
1020 	rc = kernfs_add_one(kn);
1021 	if (!rc)
1022 		return kn;
1023 
1024 	kernfs_put(kn);
1025 	return ERR_PTR(rc);
1026 }
1027 
1028 /**
1029  * kernfs_create_empty_dir - create an always empty directory
1030  * @parent: parent in which to create a new directory
1031  * @name: name of the new directory
1032  *
1033  * Returns the created node on success, ERR_PTR() value on failure.
1034  */
1035 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1036 					    const char *name)
1037 {
1038 	struct kernfs_node *kn;
1039 	int rc;
1040 
1041 	/* allocate */
1042 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1043 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1044 	if (!kn)
1045 		return ERR_PTR(-ENOMEM);
1046 
1047 	kn->flags |= KERNFS_EMPTY_DIR;
1048 	kn->dir.root = parent->dir.root;
1049 	kn->ns = NULL;
1050 	kn->priv = NULL;
1051 
1052 	/* link in */
1053 	rc = kernfs_add_one(kn);
1054 	if (!rc)
1055 		return kn;
1056 
1057 	kernfs_put(kn);
1058 	return ERR_PTR(rc);
1059 }
1060 
1061 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1062 {
1063 	struct kernfs_node *kn;
1064 	struct kernfs_root *root;
1065 
1066 	if (flags & LOOKUP_RCU)
1067 		return -ECHILD;
1068 
1069 	/* Negative hashed dentry? */
1070 	if (d_really_is_negative(dentry)) {
1071 		struct kernfs_node *parent;
1072 
1073 		/* If the kernfs parent node has changed discard and
1074 		 * proceed to ->lookup.
1075 		 */
1076 		spin_lock(&dentry->d_lock);
1077 		parent = kernfs_dentry_node(dentry->d_parent);
1078 		if (parent) {
1079 			spin_unlock(&dentry->d_lock);
1080 			root = kernfs_root(parent);
1081 			down_read(&root->kernfs_rwsem);
1082 			if (kernfs_dir_changed(parent, dentry)) {
1083 				up_read(&root->kernfs_rwsem);
1084 				return 0;
1085 			}
1086 			up_read(&root->kernfs_rwsem);
1087 		} else
1088 			spin_unlock(&dentry->d_lock);
1089 
1090 		/* The kernfs parent node hasn't changed, leave the
1091 		 * dentry negative and return success.
1092 		 */
1093 		return 1;
1094 	}
1095 
1096 	kn = kernfs_dentry_node(dentry);
1097 	root = kernfs_root(kn);
1098 	down_read(&root->kernfs_rwsem);
1099 
1100 	/* The kernfs node has been deactivated */
1101 	if (!kernfs_active(kn))
1102 		goto out_bad;
1103 
1104 	/* The kernfs node has been moved? */
1105 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1106 		goto out_bad;
1107 
1108 	/* The kernfs node has been renamed */
1109 	if (strcmp(dentry->d_name.name, kn->name) != 0)
1110 		goto out_bad;
1111 
1112 	/* The kernfs node has been moved to a different namespace */
1113 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1114 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1115 		goto out_bad;
1116 
1117 	up_read(&root->kernfs_rwsem);
1118 	return 1;
1119 out_bad:
1120 	up_read(&root->kernfs_rwsem);
1121 	return 0;
1122 }
1123 
1124 const struct dentry_operations kernfs_dops = {
1125 	.d_revalidate	= kernfs_dop_revalidate,
1126 };
1127 
1128 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1129 					struct dentry *dentry,
1130 					unsigned int flags)
1131 {
1132 	struct kernfs_node *parent = dir->i_private;
1133 	struct kernfs_node *kn;
1134 	struct kernfs_root *root;
1135 	struct inode *inode = NULL;
1136 	const void *ns = NULL;
1137 
1138 	root = kernfs_root(parent);
1139 	down_read(&root->kernfs_rwsem);
1140 	if (kernfs_ns_enabled(parent))
1141 		ns = kernfs_info(dir->i_sb)->ns;
1142 
1143 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1144 	/* attach dentry and inode */
1145 	if (kn) {
1146 		/* Inactive nodes are invisible to the VFS so don't
1147 		 * create a negative.
1148 		 */
1149 		if (!kernfs_active(kn)) {
1150 			up_read(&root->kernfs_rwsem);
1151 			return NULL;
1152 		}
1153 		inode = kernfs_get_inode(dir->i_sb, kn);
1154 		if (!inode)
1155 			inode = ERR_PTR(-ENOMEM);
1156 	}
1157 	/*
1158 	 * Needed for negative dentry validation.
1159 	 * The negative dentry can be created in kernfs_iop_lookup()
1160 	 * or transforms from positive dentry in dentry_unlink_inode()
1161 	 * called from vfs_rmdir().
1162 	 */
1163 	if (!IS_ERR(inode))
1164 		kernfs_set_rev(parent, dentry);
1165 	up_read(&root->kernfs_rwsem);
1166 
1167 	/* instantiate and hash (possibly negative) dentry */
1168 	return d_splice_alias(inode, dentry);
1169 }
1170 
1171 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1172 			    struct inode *dir, struct dentry *dentry,
1173 			    umode_t mode)
1174 {
1175 	struct kernfs_node *parent = dir->i_private;
1176 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1177 	int ret;
1178 
1179 	if (!scops || !scops->mkdir)
1180 		return -EPERM;
1181 
1182 	if (!kernfs_get_active(parent))
1183 		return -ENODEV;
1184 
1185 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1186 
1187 	kernfs_put_active(parent);
1188 	return ret;
1189 }
1190 
1191 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1192 {
1193 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1194 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1195 	int ret;
1196 
1197 	if (!scops || !scops->rmdir)
1198 		return -EPERM;
1199 
1200 	if (!kernfs_get_active(kn))
1201 		return -ENODEV;
1202 
1203 	ret = scops->rmdir(kn);
1204 
1205 	kernfs_put_active(kn);
1206 	return ret;
1207 }
1208 
1209 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1210 			     struct inode *old_dir, struct dentry *old_dentry,
1211 			     struct inode *new_dir, struct dentry *new_dentry,
1212 			     unsigned int flags)
1213 {
1214 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1215 	struct kernfs_node *new_parent = new_dir->i_private;
1216 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1217 	int ret;
1218 
1219 	if (flags)
1220 		return -EINVAL;
1221 
1222 	if (!scops || !scops->rename)
1223 		return -EPERM;
1224 
1225 	if (!kernfs_get_active(kn))
1226 		return -ENODEV;
1227 
1228 	if (!kernfs_get_active(new_parent)) {
1229 		kernfs_put_active(kn);
1230 		return -ENODEV;
1231 	}
1232 
1233 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1234 
1235 	kernfs_put_active(new_parent);
1236 	kernfs_put_active(kn);
1237 	return ret;
1238 }
1239 
1240 const struct inode_operations kernfs_dir_iops = {
1241 	.lookup		= kernfs_iop_lookup,
1242 	.permission	= kernfs_iop_permission,
1243 	.setattr	= kernfs_iop_setattr,
1244 	.getattr	= kernfs_iop_getattr,
1245 	.listxattr	= kernfs_iop_listxattr,
1246 
1247 	.mkdir		= kernfs_iop_mkdir,
1248 	.rmdir		= kernfs_iop_rmdir,
1249 	.rename		= kernfs_iop_rename,
1250 };
1251 
1252 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1253 {
1254 	struct kernfs_node *last;
1255 
1256 	while (true) {
1257 		struct rb_node *rbn;
1258 
1259 		last = pos;
1260 
1261 		if (kernfs_type(pos) != KERNFS_DIR)
1262 			break;
1263 
1264 		rbn = rb_first(&pos->dir.children);
1265 		if (!rbn)
1266 			break;
1267 
1268 		pos = rb_to_kn(rbn);
1269 	}
1270 
1271 	return last;
1272 }
1273 
1274 /**
1275  * kernfs_next_descendant_post - find the next descendant for post-order walk
1276  * @pos: the current position (%NULL to initiate traversal)
1277  * @root: kernfs_node whose descendants to walk
1278  *
1279  * Find the next descendant to visit for post-order traversal of @root's
1280  * descendants.  @root is included in the iteration and the last node to be
1281  * visited.
1282  */
1283 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1284 						       struct kernfs_node *root)
1285 {
1286 	struct rb_node *rbn;
1287 
1288 	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1289 
1290 	/* if first iteration, visit leftmost descendant which may be root */
1291 	if (!pos)
1292 		return kernfs_leftmost_descendant(root);
1293 
1294 	/* if we visited @root, we're done */
1295 	if (pos == root)
1296 		return NULL;
1297 
1298 	/* if there's an unvisited sibling, visit its leftmost descendant */
1299 	rbn = rb_next(&pos->rb);
1300 	if (rbn)
1301 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1302 
1303 	/* no sibling left, visit parent */
1304 	return pos->parent;
1305 }
1306 
1307 /**
1308  * kernfs_activate - activate a node which started deactivated
1309  * @kn: kernfs_node whose subtree is to be activated
1310  *
1311  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1312  * needs to be explicitly activated.  A node which hasn't been activated
1313  * isn't visible to userland and deactivation is skipped during its
1314  * removal.  This is useful to construct atomic init sequences where
1315  * creation of multiple nodes should either succeed or fail atomically.
1316  *
1317  * The caller is responsible for ensuring that this function is not called
1318  * after kernfs_remove*() is invoked on @kn.
1319  */
1320 void kernfs_activate(struct kernfs_node *kn)
1321 {
1322 	struct kernfs_node *pos;
1323 	struct kernfs_root *root = kernfs_root(kn);
1324 
1325 	down_write(&root->kernfs_rwsem);
1326 
1327 	pos = NULL;
1328 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1329 		if (pos->flags & KERNFS_ACTIVATED)
1330 			continue;
1331 
1332 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1333 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1334 
1335 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1336 		pos->flags |= KERNFS_ACTIVATED;
1337 	}
1338 
1339 	up_write(&root->kernfs_rwsem);
1340 }
1341 
1342 static void __kernfs_remove(struct kernfs_node *kn)
1343 {
1344 	struct kernfs_node *pos;
1345 
1346 	/* Short-circuit if non-root @kn has already finished removal. */
1347 	if (!kn)
1348 		return;
1349 
1350 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1351 
1352 	/*
1353 	 * This is for kernfs_remove_self() which plays with active ref
1354 	 * after removal.
1355 	 */
1356 	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1357 		return;
1358 
1359 	pr_debug("kernfs %s: removing\n", kn->name);
1360 
1361 	/* prevent any new usage under @kn by deactivating all nodes */
1362 	pos = NULL;
1363 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1364 		if (kernfs_active(pos))
1365 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1366 
1367 	/* deactivate and unlink the subtree node-by-node */
1368 	do {
1369 		pos = kernfs_leftmost_descendant(kn);
1370 
1371 		/*
1372 		 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's
1373 		 * base ref could have been put by someone else by the time
1374 		 * the function returns.  Make sure it doesn't go away
1375 		 * underneath us.
1376 		 */
1377 		kernfs_get(pos);
1378 
1379 		/*
1380 		 * Drain iff @kn was activated.  This avoids draining and
1381 		 * its lockdep annotations for nodes which have never been
1382 		 * activated and allows embedding kernfs_remove() in create
1383 		 * error paths without worrying about draining.
1384 		 */
1385 		if (kn->flags & KERNFS_ACTIVATED)
1386 			kernfs_drain(pos);
1387 		else
1388 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1389 
1390 		/*
1391 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1392 		 * to decide who's responsible for cleanups.
1393 		 */
1394 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1395 			struct kernfs_iattrs *ps_iattr =
1396 				pos->parent ? pos->parent->iattr : NULL;
1397 
1398 			/* update timestamps on the parent */
1399 			if (ps_iattr) {
1400 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1401 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1402 			}
1403 
1404 			kernfs_put(pos);
1405 		}
1406 
1407 		kernfs_put(pos);
1408 	} while (pos != kn);
1409 }
1410 
1411 /**
1412  * kernfs_remove - remove a kernfs_node recursively
1413  * @kn: the kernfs_node to remove
1414  *
1415  * Remove @kn along with all its subdirectories and files.
1416  */
1417 void kernfs_remove(struct kernfs_node *kn)
1418 {
1419 	struct kernfs_root *root;
1420 
1421 	if (!kn)
1422 		return;
1423 
1424 	root = kernfs_root(kn);
1425 
1426 	down_write(&root->kernfs_rwsem);
1427 	__kernfs_remove(kn);
1428 	up_write(&root->kernfs_rwsem);
1429 }
1430 
1431 /**
1432  * kernfs_break_active_protection - break out of active protection
1433  * @kn: the self kernfs_node
1434  *
1435  * The caller must be running off of a kernfs operation which is invoked
1436  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1437  * this function must also be matched with an invocation of
1438  * kernfs_unbreak_active_protection().
1439  *
1440  * This function releases the active reference of @kn the caller is
1441  * holding.  Once this function is called, @kn may be removed at any point
1442  * and the caller is solely responsible for ensuring that the objects it
1443  * dereferences are accessible.
1444  */
1445 void kernfs_break_active_protection(struct kernfs_node *kn)
1446 {
1447 	/*
1448 	 * Take out ourself out of the active ref dependency chain.  If
1449 	 * we're called without an active ref, lockdep will complain.
1450 	 */
1451 	kernfs_put_active(kn);
1452 }
1453 
1454 /**
1455  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1456  * @kn: the self kernfs_node
1457  *
1458  * If kernfs_break_active_protection() was called, this function must be
1459  * invoked before finishing the kernfs operation.  Note that while this
1460  * function restores the active reference, it doesn't and can't actually
1461  * restore the active protection - @kn may already or be in the process of
1462  * being removed.  Once kernfs_break_active_protection() is invoked, that
1463  * protection is irreversibly gone for the kernfs operation instance.
1464  *
1465  * While this function may be called at any point after
1466  * kernfs_break_active_protection() is invoked, its most useful location
1467  * would be right before the enclosing kernfs operation returns.
1468  */
1469 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1470 {
1471 	/*
1472 	 * @kn->active could be in any state; however, the increment we do
1473 	 * here will be undone as soon as the enclosing kernfs operation
1474 	 * finishes and this temporary bump can't break anything.  If @kn
1475 	 * is alive, nothing changes.  If @kn is being deactivated, the
1476 	 * soon-to-follow put will either finish deactivation or restore
1477 	 * deactivated state.  If @kn is already removed, the temporary
1478 	 * bump is guaranteed to be gone before @kn is released.
1479 	 */
1480 	atomic_inc(&kn->active);
1481 	if (kernfs_lockdep(kn))
1482 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1483 }
1484 
1485 /**
1486  * kernfs_remove_self - remove a kernfs_node from its own method
1487  * @kn: the self kernfs_node to remove
1488  *
1489  * The caller must be running off of a kernfs operation which is invoked
1490  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1491  * implement a file operation which deletes itself.
1492  *
1493  * For example, the "delete" file for a sysfs device directory can be
1494  * implemented by invoking kernfs_remove_self() on the "delete" file
1495  * itself.  This function breaks the circular dependency of trying to
1496  * deactivate self while holding an active ref itself.  It isn't necessary
1497  * to modify the usual removal path to use kernfs_remove_self().  The
1498  * "delete" implementation can simply invoke kernfs_remove_self() on self
1499  * before proceeding with the usual removal path.  kernfs will ignore later
1500  * kernfs_remove() on self.
1501  *
1502  * kernfs_remove_self() can be called multiple times concurrently on the
1503  * same kernfs_node.  Only the first one actually performs removal and
1504  * returns %true.  All others will wait until the kernfs operation which
1505  * won self-removal finishes and return %false.  Note that the losers wait
1506  * for the completion of not only the winning kernfs_remove_self() but also
1507  * the whole kernfs_ops which won the arbitration.  This can be used to
1508  * guarantee, for example, all concurrent writes to a "delete" file to
1509  * finish only after the whole operation is complete.
1510  */
1511 bool kernfs_remove_self(struct kernfs_node *kn)
1512 {
1513 	bool ret;
1514 	struct kernfs_root *root = kernfs_root(kn);
1515 
1516 	down_write(&root->kernfs_rwsem);
1517 	kernfs_break_active_protection(kn);
1518 
1519 	/*
1520 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1521 	 * the first one will actually perform removal.  When the removal
1522 	 * is complete, SUICIDED is set and the active ref is restored
1523 	 * while kernfs_rwsem for held exclusive.  The ones which lost
1524 	 * arbitration waits for SUICIDED && drained which can happen only
1525 	 * after the enclosing kernfs operation which executed the winning
1526 	 * instance of kernfs_remove_self() finished.
1527 	 */
1528 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1529 		kn->flags |= KERNFS_SUICIDAL;
1530 		__kernfs_remove(kn);
1531 		kn->flags |= KERNFS_SUICIDED;
1532 		ret = true;
1533 	} else {
1534 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1535 		DEFINE_WAIT(wait);
1536 
1537 		while (true) {
1538 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1539 
1540 			if ((kn->flags & KERNFS_SUICIDED) &&
1541 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1542 				break;
1543 
1544 			up_write(&root->kernfs_rwsem);
1545 			schedule();
1546 			down_write(&root->kernfs_rwsem);
1547 		}
1548 		finish_wait(waitq, &wait);
1549 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1550 		ret = false;
1551 	}
1552 
1553 	/*
1554 	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1555 	 * waiting for SUICIDED && deactivated could finish prematurely.
1556 	 */
1557 	kernfs_unbreak_active_protection(kn);
1558 
1559 	up_write(&root->kernfs_rwsem);
1560 	return ret;
1561 }
1562 
1563 /**
1564  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1565  * @parent: parent of the target
1566  * @name: name of the kernfs_node to remove
1567  * @ns: namespace tag of the kernfs_node to remove
1568  *
1569  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1570  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1571  */
1572 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1573 			     const void *ns)
1574 {
1575 	struct kernfs_node *kn;
1576 	struct kernfs_root *root;
1577 
1578 	if (!parent) {
1579 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1580 			name);
1581 		return -ENOENT;
1582 	}
1583 
1584 	root = kernfs_root(parent);
1585 	down_write(&root->kernfs_rwsem);
1586 
1587 	kn = kernfs_find_ns(parent, name, ns);
1588 	if (kn)
1589 		__kernfs_remove(kn);
1590 
1591 	up_write(&root->kernfs_rwsem);
1592 
1593 	if (kn)
1594 		return 0;
1595 	else
1596 		return -ENOENT;
1597 }
1598 
1599 /**
1600  * kernfs_rename_ns - move and rename a kernfs_node
1601  * @kn: target node
1602  * @new_parent: new parent to put @sd under
1603  * @new_name: new name
1604  * @new_ns: new namespace tag
1605  */
1606 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1607 		     const char *new_name, const void *new_ns)
1608 {
1609 	struct kernfs_node *old_parent;
1610 	struct kernfs_root *root;
1611 	const char *old_name = NULL;
1612 	int error;
1613 
1614 	/* can't move or rename root */
1615 	if (!kn->parent)
1616 		return -EINVAL;
1617 
1618 	root = kernfs_root(kn);
1619 	down_write(&root->kernfs_rwsem);
1620 
1621 	error = -ENOENT;
1622 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1623 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1624 		goto out;
1625 
1626 	error = 0;
1627 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1628 	    (strcmp(kn->name, new_name) == 0))
1629 		goto out;	/* nothing to rename */
1630 
1631 	error = -EEXIST;
1632 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1633 		goto out;
1634 
1635 	/* rename kernfs_node */
1636 	if (strcmp(kn->name, new_name) != 0) {
1637 		error = -ENOMEM;
1638 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1639 		if (!new_name)
1640 			goto out;
1641 	} else {
1642 		new_name = NULL;
1643 	}
1644 
1645 	/*
1646 	 * Move to the appropriate place in the appropriate directories rbtree.
1647 	 */
1648 	kernfs_unlink_sibling(kn);
1649 	kernfs_get(new_parent);
1650 
1651 	/* rename_lock protects ->parent and ->name accessors */
1652 	spin_lock_irq(&kernfs_rename_lock);
1653 
1654 	old_parent = kn->parent;
1655 	kn->parent = new_parent;
1656 
1657 	kn->ns = new_ns;
1658 	if (new_name) {
1659 		old_name = kn->name;
1660 		kn->name = new_name;
1661 	}
1662 
1663 	spin_unlock_irq(&kernfs_rename_lock);
1664 
1665 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1666 	kernfs_link_sibling(kn);
1667 
1668 	kernfs_put(old_parent);
1669 	kfree_const(old_name);
1670 
1671 	error = 0;
1672  out:
1673 	up_write(&root->kernfs_rwsem);
1674 	return error;
1675 }
1676 
1677 /* Relationship between mode and the DT_xxx types */
1678 static inline unsigned char dt_type(struct kernfs_node *kn)
1679 {
1680 	return (kn->mode >> 12) & 15;
1681 }
1682 
1683 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1684 {
1685 	kernfs_put(filp->private_data);
1686 	return 0;
1687 }
1688 
1689 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1690 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1691 {
1692 	if (pos) {
1693 		int valid = kernfs_active(pos) &&
1694 			pos->parent == parent && hash == pos->hash;
1695 		kernfs_put(pos);
1696 		if (!valid)
1697 			pos = NULL;
1698 	}
1699 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1700 		struct rb_node *node = parent->dir.children.rb_node;
1701 		while (node) {
1702 			pos = rb_to_kn(node);
1703 
1704 			if (hash < pos->hash)
1705 				node = node->rb_left;
1706 			else if (hash > pos->hash)
1707 				node = node->rb_right;
1708 			else
1709 				break;
1710 		}
1711 	}
1712 	/* Skip over entries which are dying/dead or in the wrong namespace */
1713 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1714 		struct rb_node *node = rb_next(&pos->rb);
1715 		if (!node)
1716 			pos = NULL;
1717 		else
1718 			pos = rb_to_kn(node);
1719 	}
1720 	return pos;
1721 }
1722 
1723 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1724 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1725 {
1726 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1727 	if (pos) {
1728 		do {
1729 			struct rb_node *node = rb_next(&pos->rb);
1730 			if (!node)
1731 				pos = NULL;
1732 			else
1733 				pos = rb_to_kn(node);
1734 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1735 	}
1736 	return pos;
1737 }
1738 
1739 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1740 {
1741 	struct dentry *dentry = file->f_path.dentry;
1742 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1743 	struct kernfs_node *pos = file->private_data;
1744 	struct kernfs_root *root;
1745 	const void *ns = NULL;
1746 
1747 	if (!dir_emit_dots(file, ctx))
1748 		return 0;
1749 
1750 	root = kernfs_root(parent);
1751 	down_read(&root->kernfs_rwsem);
1752 
1753 	if (kernfs_ns_enabled(parent))
1754 		ns = kernfs_info(dentry->d_sb)->ns;
1755 
1756 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1757 	     pos;
1758 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1759 		const char *name = pos->name;
1760 		unsigned int type = dt_type(pos);
1761 		int len = strlen(name);
1762 		ino_t ino = kernfs_ino(pos);
1763 
1764 		ctx->pos = pos->hash;
1765 		file->private_data = pos;
1766 		kernfs_get(pos);
1767 
1768 		up_read(&root->kernfs_rwsem);
1769 		if (!dir_emit(ctx, name, len, ino, type))
1770 			return 0;
1771 		down_read(&root->kernfs_rwsem);
1772 	}
1773 	up_read(&root->kernfs_rwsem);
1774 	file->private_data = NULL;
1775 	ctx->pos = INT_MAX;
1776 	return 0;
1777 }
1778 
1779 const struct file_operations kernfs_dir_fops = {
1780 	.read		= generic_read_dir,
1781 	.iterate_shared	= kernfs_fop_readdir,
1782 	.release	= kernfs_dir_fop_release,
1783 	.llseek		= generic_file_llseek,
1784 };
1785