xref: /linux/fs/kernfs/dir.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	if (!kn)
45 		return strlcpy(buf, "(null)", buflen);
46 
47 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49 
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 	size_t depth = 0;
54 
55 	while (to->parent && to != from) {
56 		depth++;
57 		to = to->parent;
58 	}
59 	return depth;
60 }
61 
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 						  struct kernfs_node *b)
64 {
65 	size_t da, db;
66 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67 
68 	if (ra != rb)
69 		return NULL;
70 
71 	da = kernfs_depth(ra->kn, a);
72 	db = kernfs_depth(rb->kn, b);
73 
74 	while (da > db) {
75 		a = a->parent;
76 		da--;
77 	}
78 	while (db > da) {
79 		b = b->parent;
80 		db--;
81 	}
82 
83 	/* worst case b and a will be the same at root */
84 	while (b != a) {
85 		b = b->parent;
86 		a = a->parent;
87 	}
88 
89 	return a;
90 }
91 
92 /**
93  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94  * where kn_from is treated as root of the path.
95  * @kn_from: kernfs node which should be treated as root for the path
96  * @kn_to: kernfs node to which path is needed
97  * @buf: buffer to copy the path into
98  * @buflen: size of @buf
99  *
100  * We need to handle couple of scenarios here:
101  * [1] when @kn_from is an ancestor of @kn_to at some level
102  * kn_from: /n1/n2/n3
103  * kn_to:   /n1/n2/n3/n4/n5
104  * result:  /n4/n5
105  *
106  * [2] when @kn_from is on a different hierarchy and we need to find common
107  * ancestor between @kn_from and @kn_to.
108  * kn_from: /n1/n2/n3/n4
109  * kn_to:   /n1/n2/n5
110  * result:  /../../n5
111  * OR
112  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
113  * kn_to:   /n1/n2/n3         [depth=3]
114  * result:  /../..
115  *
116  * [3] when @kn_to is NULL result will be "(null)"
117  *
118  * Returns the length of the full path.  If the full length is equal to or
119  * greater than @buflen, @buf contains the truncated path with the trailing
120  * '\0'.  On error, -errno is returned.
121  */
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 					struct kernfs_node *kn_from,
124 					char *buf, size_t buflen)
125 {
126 	struct kernfs_node *kn, *common;
127 	const char parent_str[] = "/..";
128 	size_t depth_from, depth_to, len = 0;
129 	int i, j;
130 
131 	if (!kn_to)
132 		return strlcpy(buf, "(null)", buflen);
133 
134 	if (!kn_from)
135 		kn_from = kernfs_root(kn_to)->kn;
136 
137 	if (kn_from == kn_to)
138 		return strlcpy(buf, "/", buflen);
139 
140 	if (!buf)
141 		return -EINVAL;
142 
143 	common = kernfs_common_ancestor(kn_from, kn_to);
144 	if (WARN_ON(!common))
145 		return -EINVAL;
146 
147 	depth_to = kernfs_depth(common, kn_to);
148 	depth_from = kernfs_depth(common, kn_from);
149 
150 	buf[0] = '\0';
151 
152 	for (i = 0; i < depth_from; i++)
153 		len += strlcpy(buf + len, parent_str,
154 			       len < buflen ? buflen - len : 0);
155 
156 	/* Calculate how many bytes we need for the rest */
157 	for (i = depth_to - 1; i >= 0; i--) {
158 		for (kn = kn_to, j = 0; j < i; j++)
159 			kn = kn->parent;
160 		len += strlcpy(buf + len, "/",
161 			       len < buflen ? buflen - len : 0);
162 		len += strlcpy(buf + len, kn->name,
163 			       len < buflen ? buflen - len : 0);
164 	}
165 
166 	return len;
167 }
168 
169 /**
170  * kernfs_name - obtain the name of a given node
171  * @kn: kernfs_node of interest
172  * @buf: buffer to copy @kn's name into
173  * @buflen: size of @buf
174  *
175  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
176  * similar to strlcpy().  It returns the length of @kn's name and if @buf
177  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178  *
179  * Fills buffer with "(null)" if @kn is NULL.
180  *
181  * This function can be called from any context.
182  */
183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184 {
185 	unsigned long flags;
186 	int ret;
187 
188 	spin_lock_irqsave(&kernfs_rename_lock, flags);
189 	ret = kernfs_name_locked(kn, buf, buflen);
190 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 	return ret;
192 }
193 
194 /**
195  * kernfs_path_from_node - build path of node @to relative to @from.
196  * @from: parent kernfs_node relative to which we need to build the path
197  * @to: kernfs_node of interest
198  * @buf: buffer to copy @to's path into
199  * @buflen: size of @buf
200  *
201  * Builds @to's path relative to @from in @buf. @from and @to must
202  * be on the same kernfs-root. If @from is not parent of @to, then a relative
203  * path (which includes '..'s) as needed to reach from @from to @to is
204  * returned.
205  *
206  * Returns the length of the full path.  If the full length is equal to or
207  * greater than @buflen, @buf contains the truncated path with the trailing
208  * '\0'.  On error, -errno is returned.
209  */
210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 			  char *buf, size_t buflen)
212 {
213 	unsigned long flags;
214 	int ret;
215 
216 	spin_lock_irqsave(&kernfs_rename_lock, flags);
217 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222 
223 /**
224  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225  * @kn: kernfs_node of interest
226  *
227  * This function can be called from any context.
228  */
229 void pr_cont_kernfs_name(struct kernfs_node *kn)
230 {
231 	unsigned long flags;
232 
233 	spin_lock_irqsave(&kernfs_rename_lock, flags);
234 
235 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 	pr_cont("%s", kernfs_pr_cont_buf);
237 
238 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239 }
240 
241 /**
242  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243  * @kn: kernfs_node of interest
244  *
245  * This function can be called from any context.
246  */
247 void pr_cont_kernfs_path(struct kernfs_node *kn)
248 {
249 	unsigned long flags;
250 	int sz;
251 
252 	spin_lock_irqsave(&kernfs_rename_lock, flags);
253 
254 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 					  sizeof(kernfs_pr_cont_buf));
256 	if (sz < 0) {
257 		pr_cont("(error)");
258 		goto out;
259 	}
260 
261 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 		pr_cont("(name too long)");
263 		goto out;
264 	}
265 
266 	pr_cont("%s", kernfs_pr_cont_buf);
267 
268 out:
269 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270 }
271 
272 /**
273  * kernfs_get_parent - determine the parent node and pin it
274  * @kn: kernfs_node of interest
275  *
276  * Determines @kn's parent, pins and returns it.  This function can be
277  * called from any context.
278  */
279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280 {
281 	struct kernfs_node *parent;
282 	unsigned long flags;
283 
284 	spin_lock_irqsave(&kernfs_rename_lock, flags);
285 	parent = kn->parent;
286 	kernfs_get(parent);
287 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288 
289 	return parent;
290 }
291 
292 /**
293  *	kernfs_name_hash
294  *	@name: Null terminated string to hash
295  *	@ns:   Namespace tag to hash
296  *
297  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
298  */
299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
300 {
301 	unsigned long hash = init_name_hash(ns);
302 	unsigned int len = strlen(name);
303 	while (len--)
304 		hash = partial_name_hash(*name++, hash);
305 	hash = end_name_hash(hash);
306 	hash &= 0x7fffffffU;
307 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
308 	if (hash < 2)
309 		hash += 2;
310 	if (hash >= INT_MAX)
311 		hash = INT_MAX - 1;
312 	return hash;
313 }
314 
315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 			       const void *ns, const struct kernfs_node *kn)
317 {
318 	if (hash < kn->hash)
319 		return -1;
320 	if (hash > kn->hash)
321 		return 1;
322 	if (ns < kn->ns)
323 		return -1;
324 	if (ns > kn->ns)
325 		return 1;
326 	return strcmp(name, kn->name);
327 }
328 
329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 			     const struct kernfs_node *right)
331 {
332 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 }
334 
335 /**
336  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
337  *	@kn: kernfs_node of interest
338  *
339  *	Link @kn into its sibling rbtree which starts from
340  *	@kn->parent->dir.children.
341  *
342  *	Locking:
343  *	mutex_lock(kernfs_mutex)
344  *
345  *	RETURNS:
346  *	0 on susccess -EEXIST on failure.
347  */
348 static int kernfs_link_sibling(struct kernfs_node *kn)
349 {
350 	struct rb_node **node = &kn->parent->dir.children.rb_node;
351 	struct rb_node *parent = NULL;
352 
353 	while (*node) {
354 		struct kernfs_node *pos;
355 		int result;
356 
357 		pos = rb_to_kn(*node);
358 		parent = *node;
359 		result = kernfs_sd_compare(kn, pos);
360 		if (result < 0)
361 			node = &pos->rb.rb_left;
362 		else if (result > 0)
363 			node = &pos->rb.rb_right;
364 		else
365 			return -EEXIST;
366 	}
367 
368 	/* add new node and rebalance the tree */
369 	rb_link_node(&kn->rb, parent, node);
370 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
371 
372 	/* successfully added, account subdir number */
373 	if (kernfs_type(kn) == KERNFS_DIR)
374 		kn->parent->dir.subdirs++;
375 
376 	return 0;
377 }
378 
379 /**
380  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381  *	@kn: kernfs_node of interest
382  *
383  *	Try to unlink @kn from its sibling rbtree which starts from
384  *	kn->parent->dir.children.  Returns %true if @kn was actually
385  *	removed, %false if @kn wasn't on the rbtree.
386  *
387  *	Locking:
388  *	mutex_lock(kernfs_mutex)
389  */
390 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
391 {
392 	if (RB_EMPTY_NODE(&kn->rb))
393 		return false;
394 
395 	if (kernfs_type(kn) == KERNFS_DIR)
396 		kn->parent->dir.subdirs--;
397 
398 	rb_erase(&kn->rb, &kn->parent->dir.children);
399 	RB_CLEAR_NODE(&kn->rb);
400 	return true;
401 }
402 
403 /**
404  *	kernfs_get_active - get an active reference to kernfs_node
405  *	@kn: kernfs_node to get an active reference to
406  *
407  *	Get an active reference of @kn.  This function is noop if @kn
408  *	is NULL.
409  *
410  *	RETURNS:
411  *	Pointer to @kn on success, NULL on failure.
412  */
413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
414 {
415 	if (unlikely(!kn))
416 		return NULL;
417 
418 	if (!atomic_inc_unless_negative(&kn->active))
419 		return NULL;
420 
421 	if (kernfs_lockdep(kn))
422 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 	return kn;
424 }
425 
426 /**
427  *	kernfs_put_active - put an active reference to kernfs_node
428  *	@kn: kernfs_node to put an active reference to
429  *
430  *	Put an active reference to @kn.  This function is noop if @kn
431  *	is NULL.
432  */
433 void kernfs_put_active(struct kernfs_node *kn)
434 {
435 	int v;
436 
437 	if (unlikely(!kn))
438 		return;
439 
440 	if (kernfs_lockdep(kn))
441 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 	v = atomic_dec_return(&kn->active);
443 	if (likely(v != KN_DEACTIVATED_BIAS))
444 		return;
445 
446 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
447 }
448 
449 /**
450  * kernfs_drain - drain kernfs_node
451  * @kn: kernfs_node to drain
452  *
453  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
454  * removers may invoke this function concurrently on @kn and all will
455  * return after draining is complete.
456  */
457 static void kernfs_drain(struct kernfs_node *kn)
458 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 	struct kernfs_root *root = kernfs_root(kn);
461 
462 	lockdep_assert_held(&kernfs_mutex);
463 	WARN_ON_ONCE(kernfs_active(kn));
464 
465 	mutex_unlock(&kernfs_mutex);
466 
467 	if (kernfs_lockdep(kn)) {
468 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 			lock_contended(&kn->dep_map, _RET_IP_);
471 	}
472 
473 	/* but everyone should wait for draining */
474 	wait_event(root->deactivate_waitq,
475 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476 
477 	if (kernfs_lockdep(kn)) {
478 		lock_acquired(&kn->dep_map, _RET_IP_);
479 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 	}
481 
482 	kernfs_drain_open_files(kn);
483 
484 	mutex_lock(&kernfs_mutex);
485 }
486 
487 /**
488  * kernfs_get - get a reference count on a kernfs_node
489  * @kn: the target kernfs_node
490  */
491 void kernfs_get(struct kernfs_node *kn)
492 {
493 	if (kn) {
494 		WARN_ON(!atomic_read(&kn->count));
495 		atomic_inc(&kn->count);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499 
500 /**
501  * kernfs_put - put a reference count on a kernfs_node
502  * @kn: the target kernfs_node
503  *
504  * Put a reference count of @kn and destroy it if it reached zero.
505  */
506 void kernfs_put(struct kernfs_node *kn)
507 {
508 	struct kernfs_node *parent;
509 	struct kernfs_root *root;
510 
511 	/*
512 	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 	 * depends on this to filter reused stale node
514 	 */
515 	if (!kn || !atomic_dec_and_test(&kn->count))
516 		return;
517 	root = kernfs_root(kn);
518  repeat:
519 	/*
520 	 * Moving/renaming is always done while holding reference.
521 	 * kn->parent won't change beneath us.
522 	 */
523 	parent = kn->parent;
524 
525 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528 
529 	if (kernfs_type(kn) == KERNFS_LINK)
530 		kernfs_put(kn->symlink.target_kn);
531 
532 	kfree_const(kn->name);
533 
534 	if (kn->iattr) {
535 		simple_xattrs_free(&kn->iattr->xattrs);
536 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
537 	}
538 	spin_lock(&kernfs_idr_lock);
539 	idr_remove(&root->ino_idr, kn->id.ino);
540 	spin_unlock(&kernfs_idr_lock);
541 	kmem_cache_free(kernfs_node_cache, kn);
542 
543 	kn = parent;
544 	if (kn) {
545 		if (atomic_dec_and_test(&kn->count))
546 			goto repeat;
547 	} else {
548 		/* just released the root kn, free @root too */
549 		idr_destroy(&root->ino_idr);
550 		kfree(root);
551 	}
552 }
553 EXPORT_SYMBOL_GPL(kernfs_put);
554 
555 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
556 {
557 	struct kernfs_node *kn;
558 
559 	if (flags & LOOKUP_RCU)
560 		return -ECHILD;
561 
562 	/* Always perform fresh lookup for negatives */
563 	if (d_really_is_negative(dentry))
564 		goto out_bad_unlocked;
565 
566 	kn = kernfs_dentry_node(dentry);
567 	mutex_lock(&kernfs_mutex);
568 
569 	/* The kernfs node has been deactivated */
570 	if (!kernfs_active(kn))
571 		goto out_bad;
572 
573 	/* The kernfs node has been moved? */
574 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
575 		goto out_bad;
576 
577 	/* The kernfs node has been renamed */
578 	if (strcmp(dentry->d_name.name, kn->name) != 0)
579 		goto out_bad;
580 
581 	/* The kernfs node has been moved to a different namespace */
582 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
583 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
584 		goto out_bad;
585 
586 	mutex_unlock(&kernfs_mutex);
587 	return 1;
588 out_bad:
589 	mutex_unlock(&kernfs_mutex);
590 out_bad_unlocked:
591 	return 0;
592 }
593 
594 const struct dentry_operations kernfs_dops = {
595 	.d_revalidate	= kernfs_dop_revalidate,
596 };
597 
598 /**
599  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
600  * @dentry: the dentry in question
601  *
602  * Return the kernfs_node associated with @dentry.  If @dentry is not a
603  * kernfs one, %NULL is returned.
604  *
605  * While the returned kernfs_node will stay accessible as long as @dentry
606  * is accessible, the returned node can be in any state and the caller is
607  * fully responsible for determining what's accessible.
608  */
609 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
610 {
611 	if (dentry->d_sb->s_op == &kernfs_sops &&
612 	    !d_really_is_negative(dentry))
613 		return kernfs_dentry_node(dentry);
614 	return NULL;
615 }
616 
617 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
618 					     struct kernfs_node *parent,
619 					     const char *name, umode_t mode,
620 					     kuid_t uid, kgid_t gid,
621 					     unsigned flags)
622 {
623 	struct kernfs_node *kn;
624 	u32 gen;
625 	int cursor;
626 	int ret;
627 
628 	name = kstrdup_const(name, GFP_KERNEL);
629 	if (!name)
630 		return NULL;
631 
632 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
633 	if (!kn)
634 		goto err_out1;
635 
636 	idr_preload(GFP_KERNEL);
637 	spin_lock(&kernfs_idr_lock);
638 	cursor = idr_get_cursor(&root->ino_idr);
639 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
640 	if (ret >= 0 && ret < cursor)
641 		root->next_generation++;
642 	gen = root->next_generation;
643 	spin_unlock(&kernfs_idr_lock);
644 	idr_preload_end();
645 	if (ret < 0)
646 		goto err_out2;
647 	kn->id.ino = ret;
648 	kn->id.generation = gen;
649 
650 	/*
651 	 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
652 	 * kernfs_find_and_get_node_by_ino
653 	 */
654 	atomic_set_release(&kn->count, 1);
655 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
656 	RB_CLEAR_NODE(&kn->rb);
657 
658 	kn->name = name;
659 	kn->mode = mode;
660 	kn->flags = flags;
661 
662 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
663 		struct iattr iattr = {
664 			.ia_valid = ATTR_UID | ATTR_GID,
665 			.ia_uid = uid,
666 			.ia_gid = gid,
667 		};
668 
669 		ret = __kernfs_setattr(kn, &iattr);
670 		if (ret < 0)
671 			goto err_out3;
672 	}
673 
674 	if (parent) {
675 		ret = security_kernfs_init_security(parent, kn);
676 		if (ret)
677 			goto err_out3;
678 	}
679 
680 	return kn;
681 
682  err_out3:
683 	idr_remove(&root->ino_idr, kn->id.ino);
684  err_out2:
685 	kmem_cache_free(kernfs_node_cache, kn);
686  err_out1:
687 	kfree_const(name);
688 	return NULL;
689 }
690 
691 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
692 				    const char *name, umode_t mode,
693 				    kuid_t uid, kgid_t gid,
694 				    unsigned flags)
695 {
696 	struct kernfs_node *kn;
697 
698 	kn = __kernfs_new_node(kernfs_root(parent), parent,
699 			       name, mode, uid, gid, flags);
700 	if (kn) {
701 		kernfs_get(parent);
702 		kn->parent = parent;
703 	}
704 	return kn;
705 }
706 
707 /*
708  * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
709  * @root: the kernfs root
710  * @ino: inode number
711  *
712  * RETURNS:
713  * NULL on failure. Return a kernfs node with reference counter incremented
714  */
715 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
716 						    unsigned int ino)
717 {
718 	struct kernfs_node *kn;
719 
720 	rcu_read_lock();
721 	kn = idr_find(&root->ino_idr, ino);
722 	if (!kn)
723 		goto out;
724 
725 	/*
726 	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
727 	 * is freed, but reused before RCU grace period. But a freed node (see
728 	 * kernfs_put) or an incompletedly initialized node (see
729 	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
730 	 * filter out such node.
731 	 */
732 	if (!atomic_inc_not_zero(&kn->count)) {
733 		kn = NULL;
734 		goto out;
735 	}
736 
737 	/*
738 	 * The node could be a new node or a reused node. If it's a new node,
739 	 * we are ok. If it's reused because of RCU (because of
740 	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
741 	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
742 	 * hence we can use 'ino' to filter stale node.
743 	 */
744 	if (kn->id.ino != ino)
745 		goto out;
746 	rcu_read_unlock();
747 
748 	return kn;
749 out:
750 	rcu_read_unlock();
751 	kernfs_put(kn);
752 	return NULL;
753 }
754 
755 /**
756  *	kernfs_add_one - add kernfs_node to parent without warning
757  *	@kn: kernfs_node to be added
758  *
759  *	The caller must already have initialized @kn->parent.  This
760  *	function increments nlink of the parent's inode if @kn is a
761  *	directory and link into the children list of the parent.
762  *
763  *	RETURNS:
764  *	0 on success, -EEXIST if entry with the given name already
765  *	exists.
766  */
767 int kernfs_add_one(struct kernfs_node *kn)
768 {
769 	struct kernfs_node *parent = kn->parent;
770 	struct kernfs_iattrs *ps_iattr;
771 	bool has_ns;
772 	int ret;
773 
774 	mutex_lock(&kernfs_mutex);
775 
776 	ret = -EINVAL;
777 	has_ns = kernfs_ns_enabled(parent);
778 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
779 		 has_ns ? "required" : "invalid", parent->name, kn->name))
780 		goto out_unlock;
781 
782 	if (kernfs_type(parent) != KERNFS_DIR)
783 		goto out_unlock;
784 
785 	ret = -ENOENT;
786 	if (parent->flags & KERNFS_EMPTY_DIR)
787 		goto out_unlock;
788 
789 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
790 		goto out_unlock;
791 
792 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
793 
794 	ret = kernfs_link_sibling(kn);
795 	if (ret)
796 		goto out_unlock;
797 
798 	/* Update timestamps on the parent */
799 	ps_iattr = parent->iattr;
800 	if (ps_iattr) {
801 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
802 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
803 	}
804 
805 	mutex_unlock(&kernfs_mutex);
806 
807 	/*
808 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
809 	 * If not activated here, the kernfs user is responsible for
810 	 * activating the node with kernfs_activate().  A node which hasn't
811 	 * been activated is not visible to userland and its removal won't
812 	 * trigger deactivation.
813 	 */
814 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
815 		kernfs_activate(kn);
816 	return 0;
817 
818 out_unlock:
819 	mutex_unlock(&kernfs_mutex);
820 	return ret;
821 }
822 
823 /**
824  * kernfs_find_ns - find kernfs_node with the given name
825  * @parent: kernfs_node to search under
826  * @name: name to look for
827  * @ns: the namespace tag to use
828  *
829  * Look for kernfs_node with name @name under @parent.  Returns pointer to
830  * the found kernfs_node on success, %NULL on failure.
831  */
832 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
833 					  const unsigned char *name,
834 					  const void *ns)
835 {
836 	struct rb_node *node = parent->dir.children.rb_node;
837 	bool has_ns = kernfs_ns_enabled(parent);
838 	unsigned int hash;
839 
840 	lockdep_assert_held(&kernfs_mutex);
841 
842 	if (has_ns != (bool)ns) {
843 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
844 		     has_ns ? "required" : "invalid", parent->name, name);
845 		return NULL;
846 	}
847 
848 	hash = kernfs_name_hash(name, ns);
849 	while (node) {
850 		struct kernfs_node *kn;
851 		int result;
852 
853 		kn = rb_to_kn(node);
854 		result = kernfs_name_compare(hash, name, ns, kn);
855 		if (result < 0)
856 			node = node->rb_left;
857 		else if (result > 0)
858 			node = node->rb_right;
859 		else
860 			return kn;
861 	}
862 	return NULL;
863 }
864 
865 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
866 					  const unsigned char *path,
867 					  const void *ns)
868 {
869 	size_t len;
870 	char *p, *name;
871 
872 	lockdep_assert_held(&kernfs_mutex);
873 
874 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
875 	spin_lock_irq(&kernfs_rename_lock);
876 
877 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
878 
879 	if (len >= sizeof(kernfs_pr_cont_buf)) {
880 		spin_unlock_irq(&kernfs_rename_lock);
881 		return NULL;
882 	}
883 
884 	p = kernfs_pr_cont_buf;
885 
886 	while ((name = strsep(&p, "/")) && parent) {
887 		if (*name == '\0')
888 			continue;
889 		parent = kernfs_find_ns(parent, name, ns);
890 	}
891 
892 	spin_unlock_irq(&kernfs_rename_lock);
893 
894 	return parent;
895 }
896 
897 /**
898  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
899  * @parent: kernfs_node to search under
900  * @name: name to look for
901  * @ns: the namespace tag to use
902  *
903  * Look for kernfs_node with name @name under @parent and get a reference
904  * if found.  This function may sleep and returns pointer to the found
905  * kernfs_node on success, %NULL on failure.
906  */
907 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
908 					   const char *name, const void *ns)
909 {
910 	struct kernfs_node *kn;
911 
912 	mutex_lock(&kernfs_mutex);
913 	kn = kernfs_find_ns(parent, name, ns);
914 	kernfs_get(kn);
915 	mutex_unlock(&kernfs_mutex);
916 
917 	return kn;
918 }
919 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
920 
921 /**
922  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
923  * @parent: kernfs_node to search under
924  * @path: path to look for
925  * @ns: the namespace tag to use
926  *
927  * Look for kernfs_node with path @path under @parent and get a reference
928  * if found.  This function may sleep and returns pointer to the found
929  * kernfs_node on success, %NULL on failure.
930  */
931 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
932 					   const char *path, const void *ns)
933 {
934 	struct kernfs_node *kn;
935 
936 	mutex_lock(&kernfs_mutex);
937 	kn = kernfs_walk_ns(parent, path, ns);
938 	kernfs_get(kn);
939 	mutex_unlock(&kernfs_mutex);
940 
941 	return kn;
942 }
943 
944 /**
945  * kernfs_create_root - create a new kernfs hierarchy
946  * @scops: optional syscall operations for the hierarchy
947  * @flags: KERNFS_ROOT_* flags
948  * @priv: opaque data associated with the new directory
949  *
950  * Returns the root of the new hierarchy on success, ERR_PTR() value on
951  * failure.
952  */
953 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
954 				       unsigned int flags, void *priv)
955 {
956 	struct kernfs_root *root;
957 	struct kernfs_node *kn;
958 
959 	root = kzalloc(sizeof(*root), GFP_KERNEL);
960 	if (!root)
961 		return ERR_PTR(-ENOMEM);
962 
963 	idr_init(&root->ino_idr);
964 	INIT_LIST_HEAD(&root->supers);
965 	root->next_generation = 1;
966 
967 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
968 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
969 			       KERNFS_DIR);
970 	if (!kn) {
971 		idr_destroy(&root->ino_idr);
972 		kfree(root);
973 		return ERR_PTR(-ENOMEM);
974 	}
975 
976 	kn->priv = priv;
977 	kn->dir.root = root;
978 
979 	root->syscall_ops = scops;
980 	root->flags = flags;
981 	root->kn = kn;
982 	init_waitqueue_head(&root->deactivate_waitq);
983 
984 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
985 		kernfs_activate(kn);
986 
987 	return root;
988 }
989 
990 /**
991  * kernfs_destroy_root - destroy a kernfs hierarchy
992  * @root: root of the hierarchy to destroy
993  *
994  * Destroy the hierarchy anchored at @root by removing all existing
995  * directories and destroying @root.
996  */
997 void kernfs_destroy_root(struct kernfs_root *root)
998 {
999 	kernfs_remove(root->kn);	/* will also free @root */
1000 }
1001 
1002 /**
1003  * kernfs_create_dir_ns - create a directory
1004  * @parent: parent in which to create a new directory
1005  * @name: name of the new directory
1006  * @mode: mode of the new directory
1007  * @uid: uid of the new directory
1008  * @gid: gid of the new directory
1009  * @priv: opaque data associated with the new directory
1010  * @ns: optional namespace tag of the directory
1011  *
1012  * Returns the created node on success, ERR_PTR() value on failure.
1013  */
1014 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1015 					 const char *name, umode_t mode,
1016 					 kuid_t uid, kgid_t gid,
1017 					 void *priv, const void *ns)
1018 {
1019 	struct kernfs_node *kn;
1020 	int rc;
1021 
1022 	/* allocate */
1023 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1024 			     uid, gid, KERNFS_DIR);
1025 	if (!kn)
1026 		return ERR_PTR(-ENOMEM);
1027 
1028 	kn->dir.root = parent->dir.root;
1029 	kn->ns = ns;
1030 	kn->priv = priv;
1031 
1032 	/* link in */
1033 	rc = kernfs_add_one(kn);
1034 	if (!rc)
1035 		return kn;
1036 
1037 	kernfs_put(kn);
1038 	return ERR_PTR(rc);
1039 }
1040 
1041 /**
1042  * kernfs_create_empty_dir - create an always empty directory
1043  * @parent: parent in which to create a new directory
1044  * @name: name of the new directory
1045  *
1046  * Returns the created node on success, ERR_PTR() value on failure.
1047  */
1048 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1049 					    const char *name)
1050 {
1051 	struct kernfs_node *kn;
1052 	int rc;
1053 
1054 	/* allocate */
1055 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1056 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1057 	if (!kn)
1058 		return ERR_PTR(-ENOMEM);
1059 
1060 	kn->flags |= KERNFS_EMPTY_DIR;
1061 	kn->dir.root = parent->dir.root;
1062 	kn->ns = NULL;
1063 	kn->priv = NULL;
1064 
1065 	/* link in */
1066 	rc = kernfs_add_one(kn);
1067 	if (!rc)
1068 		return kn;
1069 
1070 	kernfs_put(kn);
1071 	return ERR_PTR(rc);
1072 }
1073 
1074 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1075 					struct dentry *dentry,
1076 					unsigned int flags)
1077 {
1078 	struct dentry *ret;
1079 	struct kernfs_node *parent = dir->i_private;
1080 	struct kernfs_node *kn;
1081 	struct inode *inode;
1082 	const void *ns = NULL;
1083 
1084 	mutex_lock(&kernfs_mutex);
1085 
1086 	if (kernfs_ns_enabled(parent))
1087 		ns = kernfs_info(dir->i_sb)->ns;
1088 
1089 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1090 
1091 	/* no such entry */
1092 	if (!kn || !kernfs_active(kn)) {
1093 		ret = NULL;
1094 		goto out_unlock;
1095 	}
1096 
1097 	/* attach dentry and inode */
1098 	inode = kernfs_get_inode(dir->i_sb, kn);
1099 	if (!inode) {
1100 		ret = ERR_PTR(-ENOMEM);
1101 		goto out_unlock;
1102 	}
1103 
1104 	/* instantiate and hash dentry */
1105 	ret = d_splice_alias(inode, dentry);
1106  out_unlock:
1107 	mutex_unlock(&kernfs_mutex);
1108 	return ret;
1109 }
1110 
1111 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1112 			    umode_t mode)
1113 {
1114 	struct kernfs_node *parent = dir->i_private;
1115 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1116 	int ret;
1117 
1118 	if (!scops || !scops->mkdir)
1119 		return -EPERM;
1120 
1121 	if (!kernfs_get_active(parent))
1122 		return -ENODEV;
1123 
1124 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1125 
1126 	kernfs_put_active(parent);
1127 	return ret;
1128 }
1129 
1130 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1131 {
1132 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1133 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1134 	int ret;
1135 
1136 	if (!scops || !scops->rmdir)
1137 		return -EPERM;
1138 
1139 	if (!kernfs_get_active(kn))
1140 		return -ENODEV;
1141 
1142 	ret = scops->rmdir(kn);
1143 
1144 	kernfs_put_active(kn);
1145 	return ret;
1146 }
1147 
1148 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1149 			     struct inode *new_dir, struct dentry *new_dentry,
1150 			     unsigned int flags)
1151 {
1152 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1153 	struct kernfs_node *new_parent = new_dir->i_private;
1154 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1155 	int ret;
1156 
1157 	if (flags)
1158 		return -EINVAL;
1159 
1160 	if (!scops || !scops->rename)
1161 		return -EPERM;
1162 
1163 	if (!kernfs_get_active(kn))
1164 		return -ENODEV;
1165 
1166 	if (!kernfs_get_active(new_parent)) {
1167 		kernfs_put_active(kn);
1168 		return -ENODEV;
1169 	}
1170 
1171 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1172 
1173 	kernfs_put_active(new_parent);
1174 	kernfs_put_active(kn);
1175 	return ret;
1176 }
1177 
1178 const struct inode_operations kernfs_dir_iops = {
1179 	.lookup		= kernfs_iop_lookup,
1180 	.permission	= kernfs_iop_permission,
1181 	.setattr	= kernfs_iop_setattr,
1182 	.getattr	= kernfs_iop_getattr,
1183 	.listxattr	= kernfs_iop_listxattr,
1184 
1185 	.mkdir		= kernfs_iop_mkdir,
1186 	.rmdir		= kernfs_iop_rmdir,
1187 	.rename		= kernfs_iop_rename,
1188 };
1189 
1190 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1191 {
1192 	struct kernfs_node *last;
1193 
1194 	while (true) {
1195 		struct rb_node *rbn;
1196 
1197 		last = pos;
1198 
1199 		if (kernfs_type(pos) != KERNFS_DIR)
1200 			break;
1201 
1202 		rbn = rb_first(&pos->dir.children);
1203 		if (!rbn)
1204 			break;
1205 
1206 		pos = rb_to_kn(rbn);
1207 	}
1208 
1209 	return last;
1210 }
1211 
1212 /**
1213  * kernfs_next_descendant_post - find the next descendant for post-order walk
1214  * @pos: the current position (%NULL to initiate traversal)
1215  * @root: kernfs_node whose descendants to walk
1216  *
1217  * Find the next descendant to visit for post-order traversal of @root's
1218  * descendants.  @root is included in the iteration and the last node to be
1219  * visited.
1220  */
1221 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1222 						       struct kernfs_node *root)
1223 {
1224 	struct rb_node *rbn;
1225 
1226 	lockdep_assert_held(&kernfs_mutex);
1227 
1228 	/* if first iteration, visit leftmost descendant which may be root */
1229 	if (!pos)
1230 		return kernfs_leftmost_descendant(root);
1231 
1232 	/* if we visited @root, we're done */
1233 	if (pos == root)
1234 		return NULL;
1235 
1236 	/* if there's an unvisited sibling, visit its leftmost descendant */
1237 	rbn = rb_next(&pos->rb);
1238 	if (rbn)
1239 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1240 
1241 	/* no sibling left, visit parent */
1242 	return pos->parent;
1243 }
1244 
1245 /**
1246  * kernfs_activate - activate a node which started deactivated
1247  * @kn: kernfs_node whose subtree is to be activated
1248  *
1249  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1250  * needs to be explicitly activated.  A node which hasn't been activated
1251  * isn't visible to userland and deactivation is skipped during its
1252  * removal.  This is useful to construct atomic init sequences where
1253  * creation of multiple nodes should either succeed or fail atomically.
1254  *
1255  * The caller is responsible for ensuring that this function is not called
1256  * after kernfs_remove*() is invoked on @kn.
1257  */
1258 void kernfs_activate(struct kernfs_node *kn)
1259 {
1260 	struct kernfs_node *pos;
1261 
1262 	mutex_lock(&kernfs_mutex);
1263 
1264 	pos = NULL;
1265 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1266 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1267 			continue;
1268 
1269 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1270 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1271 
1272 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1273 		pos->flags |= KERNFS_ACTIVATED;
1274 	}
1275 
1276 	mutex_unlock(&kernfs_mutex);
1277 }
1278 
1279 static void __kernfs_remove(struct kernfs_node *kn)
1280 {
1281 	struct kernfs_node *pos;
1282 
1283 	lockdep_assert_held(&kernfs_mutex);
1284 
1285 	/*
1286 	 * Short-circuit if non-root @kn has already finished removal.
1287 	 * This is for kernfs_remove_self() which plays with active ref
1288 	 * after removal.
1289 	 */
1290 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1291 		return;
1292 
1293 	pr_debug("kernfs %s: removing\n", kn->name);
1294 
1295 	/* prevent any new usage under @kn by deactivating all nodes */
1296 	pos = NULL;
1297 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1298 		if (kernfs_active(pos))
1299 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1300 
1301 	/* deactivate and unlink the subtree node-by-node */
1302 	do {
1303 		pos = kernfs_leftmost_descendant(kn);
1304 
1305 		/*
1306 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1307 		 * base ref could have been put by someone else by the time
1308 		 * the function returns.  Make sure it doesn't go away
1309 		 * underneath us.
1310 		 */
1311 		kernfs_get(pos);
1312 
1313 		/*
1314 		 * Drain iff @kn was activated.  This avoids draining and
1315 		 * its lockdep annotations for nodes which have never been
1316 		 * activated and allows embedding kernfs_remove() in create
1317 		 * error paths without worrying about draining.
1318 		 */
1319 		if (kn->flags & KERNFS_ACTIVATED)
1320 			kernfs_drain(pos);
1321 		else
1322 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1323 
1324 		/*
1325 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1326 		 * to decide who's responsible for cleanups.
1327 		 */
1328 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1329 			struct kernfs_iattrs *ps_iattr =
1330 				pos->parent ? pos->parent->iattr : NULL;
1331 
1332 			/* update timestamps on the parent */
1333 			if (ps_iattr) {
1334 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1335 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1336 			}
1337 
1338 			kernfs_put(pos);
1339 		}
1340 
1341 		kernfs_put(pos);
1342 	} while (pos != kn);
1343 }
1344 
1345 /**
1346  * kernfs_remove - remove a kernfs_node recursively
1347  * @kn: the kernfs_node to remove
1348  *
1349  * Remove @kn along with all its subdirectories and files.
1350  */
1351 void kernfs_remove(struct kernfs_node *kn)
1352 {
1353 	mutex_lock(&kernfs_mutex);
1354 	__kernfs_remove(kn);
1355 	mutex_unlock(&kernfs_mutex);
1356 }
1357 
1358 /**
1359  * kernfs_break_active_protection - break out of active protection
1360  * @kn: the self kernfs_node
1361  *
1362  * The caller must be running off of a kernfs operation which is invoked
1363  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1364  * this function must also be matched with an invocation of
1365  * kernfs_unbreak_active_protection().
1366  *
1367  * This function releases the active reference of @kn the caller is
1368  * holding.  Once this function is called, @kn may be removed at any point
1369  * and the caller is solely responsible for ensuring that the objects it
1370  * dereferences are accessible.
1371  */
1372 void kernfs_break_active_protection(struct kernfs_node *kn)
1373 {
1374 	/*
1375 	 * Take out ourself out of the active ref dependency chain.  If
1376 	 * we're called without an active ref, lockdep will complain.
1377 	 */
1378 	kernfs_put_active(kn);
1379 }
1380 
1381 /**
1382  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1383  * @kn: the self kernfs_node
1384  *
1385  * If kernfs_break_active_protection() was called, this function must be
1386  * invoked before finishing the kernfs operation.  Note that while this
1387  * function restores the active reference, it doesn't and can't actually
1388  * restore the active protection - @kn may already or be in the process of
1389  * being removed.  Once kernfs_break_active_protection() is invoked, that
1390  * protection is irreversibly gone for the kernfs operation instance.
1391  *
1392  * While this function may be called at any point after
1393  * kernfs_break_active_protection() is invoked, its most useful location
1394  * would be right before the enclosing kernfs operation returns.
1395  */
1396 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1397 {
1398 	/*
1399 	 * @kn->active could be in any state; however, the increment we do
1400 	 * here will be undone as soon as the enclosing kernfs operation
1401 	 * finishes and this temporary bump can't break anything.  If @kn
1402 	 * is alive, nothing changes.  If @kn is being deactivated, the
1403 	 * soon-to-follow put will either finish deactivation or restore
1404 	 * deactivated state.  If @kn is already removed, the temporary
1405 	 * bump is guaranteed to be gone before @kn is released.
1406 	 */
1407 	atomic_inc(&kn->active);
1408 	if (kernfs_lockdep(kn))
1409 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1410 }
1411 
1412 /**
1413  * kernfs_remove_self - remove a kernfs_node from its own method
1414  * @kn: the self kernfs_node to remove
1415  *
1416  * The caller must be running off of a kernfs operation which is invoked
1417  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1418  * implement a file operation which deletes itself.
1419  *
1420  * For example, the "delete" file for a sysfs device directory can be
1421  * implemented by invoking kernfs_remove_self() on the "delete" file
1422  * itself.  This function breaks the circular dependency of trying to
1423  * deactivate self while holding an active ref itself.  It isn't necessary
1424  * to modify the usual removal path to use kernfs_remove_self().  The
1425  * "delete" implementation can simply invoke kernfs_remove_self() on self
1426  * before proceeding with the usual removal path.  kernfs will ignore later
1427  * kernfs_remove() on self.
1428  *
1429  * kernfs_remove_self() can be called multiple times concurrently on the
1430  * same kernfs_node.  Only the first one actually performs removal and
1431  * returns %true.  All others will wait until the kernfs operation which
1432  * won self-removal finishes and return %false.  Note that the losers wait
1433  * for the completion of not only the winning kernfs_remove_self() but also
1434  * the whole kernfs_ops which won the arbitration.  This can be used to
1435  * guarantee, for example, all concurrent writes to a "delete" file to
1436  * finish only after the whole operation is complete.
1437  */
1438 bool kernfs_remove_self(struct kernfs_node *kn)
1439 {
1440 	bool ret;
1441 
1442 	mutex_lock(&kernfs_mutex);
1443 	kernfs_break_active_protection(kn);
1444 
1445 	/*
1446 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1447 	 * the first one will actually perform removal.  When the removal
1448 	 * is complete, SUICIDED is set and the active ref is restored
1449 	 * while holding kernfs_mutex.  The ones which lost arbitration
1450 	 * waits for SUICDED && drained which can happen only after the
1451 	 * enclosing kernfs operation which executed the winning instance
1452 	 * of kernfs_remove_self() finished.
1453 	 */
1454 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1455 		kn->flags |= KERNFS_SUICIDAL;
1456 		__kernfs_remove(kn);
1457 		kn->flags |= KERNFS_SUICIDED;
1458 		ret = true;
1459 	} else {
1460 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1461 		DEFINE_WAIT(wait);
1462 
1463 		while (true) {
1464 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1465 
1466 			if ((kn->flags & KERNFS_SUICIDED) &&
1467 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1468 				break;
1469 
1470 			mutex_unlock(&kernfs_mutex);
1471 			schedule();
1472 			mutex_lock(&kernfs_mutex);
1473 		}
1474 		finish_wait(waitq, &wait);
1475 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1476 		ret = false;
1477 	}
1478 
1479 	/*
1480 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1481 	 * for SUICIDED && deactivated could finish prematurely.
1482 	 */
1483 	kernfs_unbreak_active_protection(kn);
1484 
1485 	mutex_unlock(&kernfs_mutex);
1486 	return ret;
1487 }
1488 
1489 /**
1490  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1491  * @parent: parent of the target
1492  * @name: name of the kernfs_node to remove
1493  * @ns: namespace tag of the kernfs_node to remove
1494  *
1495  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1496  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1497  */
1498 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1499 			     const void *ns)
1500 {
1501 	struct kernfs_node *kn;
1502 
1503 	if (!parent) {
1504 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1505 			name);
1506 		return -ENOENT;
1507 	}
1508 
1509 	mutex_lock(&kernfs_mutex);
1510 
1511 	kn = kernfs_find_ns(parent, name, ns);
1512 	if (kn)
1513 		__kernfs_remove(kn);
1514 
1515 	mutex_unlock(&kernfs_mutex);
1516 
1517 	if (kn)
1518 		return 0;
1519 	else
1520 		return -ENOENT;
1521 }
1522 
1523 /**
1524  * kernfs_rename_ns - move and rename a kernfs_node
1525  * @kn: target node
1526  * @new_parent: new parent to put @sd under
1527  * @new_name: new name
1528  * @new_ns: new namespace tag
1529  */
1530 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1531 		     const char *new_name, const void *new_ns)
1532 {
1533 	struct kernfs_node *old_parent;
1534 	const char *old_name = NULL;
1535 	int error;
1536 
1537 	/* can't move or rename root */
1538 	if (!kn->parent)
1539 		return -EINVAL;
1540 
1541 	mutex_lock(&kernfs_mutex);
1542 
1543 	error = -ENOENT;
1544 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1545 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1546 		goto out;
1547 
1548 	error = 0;
1549 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1550 	    (strcmp(kn->name, new_name) == 0))
1551 		goto out;	/* nothing to rename */
1552 
1553 	error = -EEXIST;
1554 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1555 		goto out;
1556 
1557 	/* rename kernfs_node */
1558 	if (strcmp(kn->name, new_name) != 0) {
1559 		error = -ENOMEM;
1560 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1561 		if (!new_name)
1562 			goto out;
1563 	} else {
1564 		new_name = NULL;
1565 	}
1566 
1567 	/*
1568 	 * Move to the appropriate place in the appropriate directories rbtree.
1569 	 */
1570 	kernfs_unlink_sibling(kn);
1571 	kernfs_get(new_parent);
1572 
1573 	/* rename_lock protects ->parent and ->name accessors */
1574 	spin_lock_irq(&kernfs_rename_lock);
1575 
1576 	old_parent = kn->parent;
1577 	kn->parent = new_parent;
1578 
1579 	kn->ns = new_ns;
1580 	if (new_name) {
1581 		old_name = kn->name;
1582 		kn->name = new_name;
1583 	}
1584 
1585 	spin_unlock_irq(&kernfs_rename_lock);
1586 
1587 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1588 	kernfs_link_sibling(kn);
1589 
1590 	kernfs_put(old_parent);
1591 	kfree_const(old_name);
1592 
1593 	error = 0;
1594  out:
1595 	mutex_unlock(&kernfs_mutex);
1596 	return error;
1597 }
1598 
1599 /* Relationship between s_mode and the DT_xxx types */
1600 static inline unsigned char dt_type(struct kernfs_node *kn)
1601 {
1602 	return (kn->mode >> 12) & 15;
1603 }
1604 
1605 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1606 {
1607 	kernfs_put(filp->private_data);
1608 	return 0;
1609 }
1610 
1611 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1612 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1613 {
1614 	if (pos) {
1615 		int valid = kernfs_active(pos) &&
1616 			pos->parent == parent && hash == pos->hash;
1617 		kernfs_put(pos);
1618 		if (!valid)
1619 			pos = NULL;
1620 	}
1621 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1622 		struct rb_node *node = parent->dir.children.rb_node;
1623 		while (node) {
1624 			pos = rb_to_kn(node);
1625 
1626 			if (hash < pos->hash)
1627 				node = node->rb_left;
1628 			else if (hash > pos->hash)
1629 				node = node->rb_right;
1630 			else
1631 				break;
1632 		}
1633 	}
1634 	/* Skip over entries which are dying/dead or in the wrong namespace */
1635 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1636 		struct rb_node *node = rb_next(&pos->rb);
1637 		if (!node)
1638 			pos = NULL;
1639 		else
1640 			pos = rb_to_kn(node);
1641 	}
1642 	return pos;
1643 }
1644 
1645 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1646 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1647 {
1648 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1649 	if (pos) {
1650 		do {
1651 			struct rb_node *node = rb_next(&pos->rb);
1652 			if (!node)
1653 				pos = NULL;
1654 			else
1655 				pos = rb_to_kn(node);
1656 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1657 	}
1658 	return pos;
1659 }
1660 
1661 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1662 {
1663 	struct dentry *dentry = file->f_path.dentry;
1664 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1665 	struct kernfs_node *pos = file->private_data;
1666 	const void *ns = NULL;
1667 
1668 	if (!dir_emit_dots(file, ctx))
1669 		return 0;
1670 	mutex_lock(&kernfs_mutex);
1671 
1672 	if (kernfs_ns_enabled(parent))
1673 		ns = kernfs_info(dentry->d_sb)->ns;
1674 
1675 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1676 	     pos;
1677 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1678 		const char *name = pos->name;
1679 		unsigned int type = dt_type(pos);
1680 		int len = strlen(name);
1681 		ino_t ino = pos->id.ino;
1682 
1683 		ctx->pos = pos->hash;
1684 		file->private_data = pos;
1685 		kernfs_get(pos);
1686 
1687 		mutex_unlock(&kernfs_mutex);
1688 		if (!dir_emit(ctx, name, len, ino, type))
1689 			return 0;
1690 		mutex_lock(&kernfs_mutex);
1691 	}
1692 	mutex_unlock(&kernfs_mutex);
1693 	file->private_data = NULL;
1694 	ctx->pos = INT_MAX;
1695 	return 0;
1696 }
1697 
1698 const struct file_operations kernfs_dir_fops = {
1699 	.read		= generic_read_dir,
1700 	.iterate_shared	= kernfs_fop_readdir,
1701 	.release	= kernfs_dir_fop_release,
1702 	.llseek		= generic_file_llseek,
1703 };
1704