xref: /linux/fs/kernfs/dir.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
25 
26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 
28 static bool kernfs_active(struct kernfs_node *kn)
29 {
30 	lockdep_assert_held(&kernfs_mutex);
31 	return atomic_read(&kn->active) >= 0;
32 }
33 
34 static bool kernfs_lockdep(struct kernfs_node *kn)
35 {
36 #ifdef CONFIG_DEBUG_LOCK_ALLOC
37 	return kn->flags & KERNFS_LOCKDEP;
38 #else
39 	return false;
40 #endif
41 }
42 
43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 {
45 	if (!kn)
46 		return strlcpy(buf, "(null)", buflen);
47 
48 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
49 }
50 
51 /* kernfs_node_depth - compute depth from @from to @to */
52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53 {
54 	size_t depth = 0;
55 
56 	while (to->parent && to != from) {
57 		depth++;
58 		to = to->parent;
59 	}
60 	return depth;
61 }
62 
63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
64 						  struct kernfs_node *b)
65 {
66 	size_t da, db;
67 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
68 
69 	if (ra != rb)
70 		return NULL;
71 
72 	da = kernfs_depth(ra->kn, a);
73 	db = kernfs_depth(rb->kn, b);
74 
75 	while (da > db) {
76 		a = a->parent;
77 		da--;
78 	}
79 	while (db > da) {
80 		b = b->parent;
81 		db--;
82 	}
83 
84 	/* worst case b and a will be the same at root */
85 	while (b != a) {
86 		b = b->parent;
87 		a = a->parent;
88 	}
89 
90 	return a;
91 }
92 
93 /**
94  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95  * where kn_from is treated as root of the path.
96  * @kn_from: kernfs node which should be treated as root for the path
97  * @kn_to: kernfs node to which path is needed
98  * @buf: buffer to copy the path into
99  * @buflen: size of @buf
100  *
101  * We need to handle couple of scenarios here:
102  * [1] when @kn_from is an ancestor of @kn_to at some level
103  * kn_from: /n1/n2/n3
104  * kn_to:   /n1/n2/n3/n4/n5
105  * result:  /n4/n5
106  *
107  * [2] when @kn_from is on a different hierarchy and we need to find common
108  * ancestor between @kn_from and @kn_to.
109  * kn_from: /n1/n2/n3/n4
110  * kn_to:   /n1/n2/n5
111  * result:  /../../n5
112  * OR
113  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
114  * kn_to:   /n1/n2/n3         [depth=3]
115  * result:  /../..
116  *
117  * [3] when @kn_to is NULL result will be "(null)"
118  *
119  * Returns the length of the full path.  If the full length is equal to or
120  * greater than @buflen, @buf contains the truncated path with the trailing
121  * '\0'.  On error, -errno is returned.
122  */
123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
124 					struct kernfs_node *kn_from,
125 					char *buf, size_t buflen)
126 {
127 	struct kernfs_node *kn, *common;
128 	const char parent_str[] = "/..";
129 	size_t depth_from, depth_to, len = 0;
130 	int i, j;
131 
132 	if (!kn_to)
133 		return strlcpy(buf, "(null)", buflen);
134 
135 	if (!kn_from)
136 		kn_from = kernfs_root(kn_to)->kn;
137 
138 	if (kn_from == kn_to)
139 		return strlcpy(buf, "/", buflen);
140 
141 	common = kernfs_common_ancestor(kn_from, kn_to);
142 	if (WARN_ON(!common))
143 		return -EINVAL;
144 
145 	depth_to = kernfs_depth(common, kn_to);
146 	depth_from = kernfs_depth(common, kn_from);
147 
148 	if (buf)
149 		buf[0] = '\0';
150 
151 	for (i = 0; i < depth_from; i++)
152 		len += strlcpy(buf + len, parent_str,
153 			       len < buflen ? buflen - len : 0);
154 
155 	/* Calculate how many bytes we need for the rest */
156 	for (i = depth_to - 1; i >= 0; i--) {
157 		for (kn = kn_to, j = 0; j < i; j++)
158 			kn = kn->parent;
159 		len += strlcpy(buf + len, "/",
160 			       len < buflen ? buflen - len : 0);
161 		len += strlcpy(buf + len, kn->name,
162 			       len < buflen ? buflen - len : 0);
163 	}
164 
165 	return len;
166 }
167 
168 /**
169  * kernfs_name - obtain the name of a given node
170  * @kn: kernfs_node of interest
171  * @buf: buffer to copy @kn's name into
172  * @buflen: size of @buf
173  *
174  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
175  * similar to strlcpy().  It returns the length of @kn's name and if @buf
176  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177  *
178  * Fills buffer with "(null)" if @kn is NULL.
179  *
180  * This function can be called from any context.
181  */
182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
183 {
184 	unsigned long flags;
185 	int ret;
186 
187 	spin_lock_irqsave(&kernfs_rename_lock, flags);
188 	ret = kernfs_name_locked(kn, buf, buflen);
189 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
190 	return ret;
191 }
192 
193 /**
194  * kernfs_path_from_node - build path of node @to relative to @from.
195  * @from: parent kernfs_node relative to which we need to build the path
196  * @to: kernfs_node of interest
197  * @buf: buffer to copy @to's path into
198  * @buflen: size of @buf
199  *
200  * Builds @to's path relative to @from in @buf. @from and @to must
201  * be on the same kernfs-root. If @from is not parent of @to, then a relative
202  * path (which includes '..'s) as needed to reach from @from to @to is
203  * returned.
204  *
205  * Returns the length of the full path.  If the full length is equal to or
206  * greater than @buflen, @buf contains the truncated path with the trailing
207  * '\0'.  On error, -errno is returned.
208  */
209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
210 			  char *buf, size_t buflen)
211 {
212 	unsigned long flags;
213 	int ret;
214 
215 	spin_lock_irqsave(&kernfs_rename_lock, flags);
216 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
217 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
218 	return ret;
219 }
220 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
221 
222 /**
223  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224  * @kn: kernfs_node of interest
225  *
226  * This function can be called from any context.
227  */
228 void pr_cont_kernfs_name(struct kernfs_node *kn)
229 {
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(&kernfs_rename_lock, flags);
233 
234 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
235 	pr_cont("%s", kernfs_pr_cont_buf);
236 
237 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
238 }
239 
240 /**
241  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242  * @kn: kernfs_node of interest
243  *
244  * This function can be called from any context.
245  */
246 void pr_cont_kernfs_path(struct kernfs_node *kn)
247 {
248 	unsigned long flags;
249 	int sz;
250 
251 	spin_lock_irqsave(&kernfs_rename_lock, flags);
252 
253 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
254 					  sizeof(kernfs_pr_cont_buf));
255 	if (sz < 0) {
256 		pr_cont("(error)");
257 		goto out;
258 	}
259 
260 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
261 		pr_cont("(name too long)");
262 		goto out;
263 	}
264 
265 	pr_cont("%s", kernfs_pr_cont_buf);
266 
267 out:
268 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
269 }
270 
271 /**
272  * kernfs_get_parent - determine the parent node and pin it
273  * @kn: kernfs_node of interest
274  *
275  * Determines @kn's parent, pins and returns it.  This function can be
276  * called from any context.
277  */
278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
279 {
280 	struct kernfs_node *parent;
281 	unsigned long flags;
282 
283 	spin_lock_irqsave(&kernfs_rename_lock, flags);
284 	parent = kn->parent;
285 	kernfs_get(parent);
286 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
287 
288 	return parent;
289 }
290 
291 /**
292  *	kernfs_name_hash
293  *	@name: Null terminated string to hash
294  *	@ns:   Namespace tag to hash
295  *
296  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
297  */
298 static unsigned int kernfs_name_hash(const char *name, const void *ns)
299 {
300 	unsigned long hash = init_name_hash(ns);
301 	unsigned int len = strlen(name);
302 	while (len--)
303 		hash = partial_name_hash(*name++, hash);
304 	hash = end_name_hash(hash);
305 	hash &= 0x7fffffffU;
306 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
307 	if (hash < 2)
308 		hash += 2;
309 	if (hash >= INT_MAX)
310 		hash = INT_MAX - 1;
311 	return hash;
312 }
313 
314 static int kernfs_name_compare(unsigned int hash, const char *name,
315 			       const void *ns, const struct kernfs_node *kn)
316 {
317 	if (hash < kn->hash)
318 		return -1;
319 	if (hash > kn->hash)
320 		return 1;
321 	if (ns < kn->ns)
322 		return -1;
323 	if (ns > kn->ns)
324 		return 1;
325 	return strcmp(name, kn->name);
326 }
327 
328 static int kernfs_sd_compare(const struct kernfs_node *left,
329 			     const struct kernfs_node *right)
330 {
331 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
332 }
333 
334 /**
335  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
336  *	@kn: kernfs_node of interest
337  *
338  *	Link @kn into its sibling rbtree which starts from
339  *	@kn->parent->dir.children.
340  *
341  *	Locking:
342  *	mutex_lock(kernfs_mutex)
343  *
344  *	RETURNS:
345  *	0 on susccess -EEXIST on failure.
346  */
347 static int kernfs_link_sibling(struct kernfs_node *kn)
348 {
349 	struct rb_node **node = &kn->parent->dir.children.rb_node;
350 	struct rb_node *parent = NULL;
351 
352 	while (*node) {
353 		struct kernfs_node *pos;
354 		int result;
355 
356 		pos = rb_to_kn(*node);
357 		parent = *node;
358 		result = kernfs_sd_compare(kn, pos);
359 		if (result < 0)
360 			node = &pos->rb.rb_left;
361 		else if (result > 0)
362 			node = &pos->rb.rb_right;
363 		else
364 			return -EEXIST;
365 	}
366 
367 	/* add new node and rebalance the tree */
368 	rb_link_node(&kn->rb, parent, node);
369 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
370 
371 	/* successfully added, account subdir number */
372 	if (kernfs_type(kn) == KERNFS_DIR)
373 		kn->parent->dir.subdirs++;
374 
375 	return 0;
376 }
377 
378 /**
379  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380  *	@kn: kernfs_node of interest
381  *
382  *	Try to unlink @kn from its sibling rbtree which starts from
383  *	kn->parent->dir.children.  Returns %true if @kn was actually
384  *	removed, %false if @kn wasn't on the rbtree.
385  *
386  *	Locking:
387  *	mutex_lock(kernfs_mutex)
388  */
389 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390 {
391 	if (RB_EMPTY_NODE(&kn->rb))
392 		return false;
393 
394 	if (kernfs_type(kn) == KERNFS_DIR)
395 		kn->parent->dir.subdirs--;
396 
397 	rb_erase(&kn->rb, &kn->parent->dir.children);
398 	RB_CLEAR_NODE(&kn->rb);
399 	return true;
400 }
401 
402 /**
403  *	kernfs_get_active - get an active reference to kernfs_node
404  *	@kn: kernfs_node to get an active reference to
405  *
406  *	Get an active reference of @kn.  This function is noop if @kn
407  *	is NULL.
408  *
409  *	RETURNS:
410  *	Pointer to @kn on success, NULL on failure.
411  */
412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413 {
414 	if (unlikely(!kn))
415 		return NULL;
416 
417 	if (!atomic_inc_unless_negative(&kn->active))
418 		return NULL;
419 
420 	if (kernfs_lockdep(kn))
421 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
422 	return kn;
423 }
424 
425 /**
426  *	kernfs_put_active - put an active reference to kernfs_node
427  *	@kn: kernfs_node to put an active reference to
428  *
429  *	Put an active reference to @kn.  This function is noop if @kn
430  *	is NULL.
431  */
432 void kernfs_put_active(struct kernfs_node *kn)
433 {
434 	struct kernfs_root *root = kernfs_root(kn);
435 	int v;
436 
437 	if (unlikely(!kn))
438 		return;
439 
440 	if (kernfs_lockdep(kn))
441 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 	v = atomic_dec_return(&kn->active);
443 	if (likely(v != KN_DEACTIVATED_BIAS))
444 		return;
445 
446 	wake_up_all(&root->deactivate_waitq);
447 }
448 
449 /**
450  * kernfs_drain - drain kernfs_node
451  * @kn: kernfs_node to drain
452  *
453  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
454  * removers may invoke this function concurrently on @kn and all will
455  * return after draining is complete.
456  */
457 static void kernfs_drain(struct kernfs_node *kn)
458 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 	struct kernfs_root *root = kernfs_root(kn);
461 
462 	lockdep_assert_held(&kernfs_mutex);
463 	WARN_ON_ONCE(kernfs_active(kn));
464 
465 	mutex_unlock(&kernfs_mutex);
466 
467 	if (kernfs_lockdep(kn)) {
468 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 			lock_contended(&kn->dep_map, _RET_IP_);
471 	}
472 
473 	/* but everyone should wait for draining */
474 	wait_event(root->deactivate_waitq,
475 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476 
477 	if (kernfs_lockdep(kn)) {
478 		lock_acquired(&kn->dep_map, _RET_IP_);
479 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 	}
481 
482 	kernfs_drain_open_files(kn);
483 
484 	mutex_lock(&kernfs_mutex);
485 }
486 
487 /**
488  * kernfs_get - get a reference count on a kernfs_node
489  * @kn: the target kernfs_node
490  */
491 void kernfs_get(struct kernfs_node *kn)
492 {
493 	if (kn) {
494 		WARN_ON(!atomic_read(&kn->count));
495 		atomic_inc(&kn->count);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499 
500 /**
501  * kernfs_put - put a reference count on a kernfs_node
502  * @kn: the target kernfs_node
503  *
504  * Put a reference count of @kn and destroy it if it reached zero.
505  */
506 void kernfs_put(struct kernfs_node *kn)
507 {
508 	struct kernfs_node *parent;
509 	struct kernfs_root *root;
510 
511 	/*
512 	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 	 * depends on this to filter reused stale node
514 	 */
515 	if (!kn || !atomic_dec_and_test(&kn->count))
516 		return;
517 	root = kernfs_root(kn);
518  repeat:
519 	/*
520 	 * Moving/renaming is always done while holding reference.
521 	 * kn->parent won't change beneath us.
522 	 */
523 	parent = kn->parent;
524 
525 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528 
529 	if (kernfs_type(kn) == KERNFS_LINK)
530 		kernfs_put(kn->symlink.target_kn);
531 
532 	kfree_const(kn->name);
533 
534 	if (kn->iattr) {
535 		if (kn->iattr->ia_secdata)
536 			security_release_secctx(kn->iattr->ia_secdata,
537 						kn->iattr->ia_secdata_len);
538 		simple_xattrs_free(&kn->iattr->xattrs);
539 	}
540 	kfree(kn->iattr);
541 	spin_lock(&kernfs_idr_lock);
542 	idr_remove(&root->ino_idr, kn->id.ino);
543 	spin_unlock(&kernfs_idr_lock);
544 	kmem_cache_free(kernfs_node_cache, kn);
545 
546 	kn = parent;
547 	if (kn) {
548 		if (atomic_dec_and_test(&kn->count))
549 			goto repeat;
550 	} else {
551 		/* just released the root kn, free @root too */
552 		idr_destroy(&root->ino_idr);
553 		kfree(root);
554 	}
555 }
556 EXPORT_SYMBOL_GPL(kernfs_put);
557 
558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
559 {
560 	struct kernfs_node *kn;
561 
562 	if (flags & LOOKUP_RCU)
563 		return -ECHILD;
564 
565 	/* Always perform fresh lookup for negatives */
566 	if (d_really_is_negative(dentry))
567 		goto out_bad_unlocked;
568 
569 	kn = kernfs_dentry_node(dentry);
570 	mutex_lock(&kernfs_mutex);
571 
572 	/* The kernfs node has been deactivated */
573 	if (!kernfs_active(kn))
574 		goto out_bad;
575 
576 	/* The kernfs node has been moved? */
577 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
578 		goto out_bad;
579 
580 	/* The kernfs node has been renamed */
581 	if (strcmp(dentry->d_name.name, kn->name) != 0)
582 		goto out_bad;
583 
584 	/* The kernfs node has been moved to a different namespace */
585 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
587 		goto out_bad;
588 
589 	mutex_unlock(&kernfs_mutex);
590 	return 1;
591 out_bad:
592 	mutex_unlock(&kernfs_mutex);
593 out_bad_unlocked:
594 	return 0;
595 }
596 
597 const struct dentry_operations kernfs_dops = {
598 	.d_revalidate	= kernfs_dop_revalidate,
599 };
600 
601 /**
602  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603  * @dentry: the dentry in question
604  *
605  * Return the kernfs_node associated with @dentry.  If @dentry is not a
606  * kernfs one, %NULL is returned.
607  *
608  * While the returned kernfs_node will stay accessible as long as @dentry
609  * is accessible, the returned node can be in any state and the caller is
610  * fully responsible for determining what's accessible.
611  */
612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
613 {
614 	if (dentry->d_sb->s_op == &kernfs_sops &&
615 	    !d_really_is_negative(dentry))
616 		return kernfs_dentry_node(dentry);
617 	return NULL;
618 }
619 
620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
621 					     const char *name, umode_t mode,
622 					     unsigned flags)
623 {
624 	struct kernfs_node *kn;
625 	u32 gen;
626 	int cursor;
627 	int ret;
628 
629 	name = kstrdup_const(name, GFP_KERNEL);
630 	if (!name)
631 		return NULL;
632 
633 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
634 	if (!kn)
635 		goto err_out1;
636 
637 	idr_preload(GFP_KERNEL);
638 	spin_lock(&kernfs_idr_lock);
639 	cursor = idr_get_cursor(&root->ino_idr);
640 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
641 	if (ret >= 0 && ret < cursor)
642 		root->next_generation++;
643 	gen = root->next_generation;
644 	spin_unlock(&kernfs_idr_lock);
645 	idr_preload_end();
646 	if (ret < 0)
647 		goto err_out2;
648 	kn->id.ino = ret;
649 	kn->id.generation = gen;
650 
651 	/*
652 	 * set ino first. This barrier is paired with atomic_inc_not_zero in
653 	 * kernfs_find_and_get_node_by_ino
654 	 */
655 	smp_mb__before_atomic();
656 	atomic_set(&kn->count, 1);
657 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
658 	RB_CLEAR_NODE(&kn->rb);
659 
660 	kn->name = name;
661 	kn->mode = mode;
662 	kn->flags = flags;
663 
664 	return kn;
665 
666  err_out2:
667 	kmem_cache_free(kernfs_node_cache, kn);
668  err_out1:
669 	kfree_const(name);
670 	return NULL;
671 }
672 
673 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
674 				    const char *name, umode_t mode,
675 				    unsigned flags)
676 {
677 	struct kernfs_node *kn;
678 
679 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
680 	if (kn) {
681 		kernfs_get(parent);
682 		kn->parent = parent;
683 	}
684 	return kn;
685 }
686 
687 /*
688  * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
689  * @root: the kernfs root
690  * @ino: inode number
691  *
692  * RETURNS:
693  * NULL on failure. Return a kernfs node with reference counter incremented
694  */
695 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
696 						    unsigned int ino)
697 {
698 	struct kernfs_node *kn;
699 
700 	rcu_read_lock();
701 	kn = idr_find(&root->ino_idr, ino);
702 	if (!kn)
703 		goto out;
704 
705 	/*
706 	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
707 	 * is freed, but reused before RCU grace period. But a freed node (see
708 	 * kernfs_put) or an incompletedly initialized node (see
709 	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
710 	 * filter out such node.
711 	 */
712 	if (!atomic_inc_not_zero(&kn->count)) {
713 		kn = NULL;
714 		goto out;
715 	}
716 
717 	/*
718 	 * The node could be a new node or a reused node. If it's a new node,
719 	 * we are ok. If it's reused because of RCU (because of
720 	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
721 	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
722 	 * hence we can use 'ino' to filter stale node.
723 	 */
724 	if (kn->id.ino != ino)
725 		goto out;
726 	rcu_read_unlock();
727 
728 	return kn;
729 out:
730 	rcu_read_unlock();
731 	kernfs_put(kn);
732 	return NULL;
733 }
734 
735 /**
736  *	kernfs_add_one - add kernfs_node to parent without warning
737  *	@kn: kernfs_node to be added
738  *
739  *	The caller must already have initialized @kn->parent.  This
740  *	function increments nlink of the parent's inode if @kn is a
741  *	directory and link into the children list of the parent.
742  *
743  *	RETURNS:
744  *	0 on success, -EEXIST if entry with the given name already
745  *	exists.
746  */
747 int kernfs_add_one(struct kernfs_node *kn)
748 {
749 	struct kernfs_node *parent = kn->parent;
750 	struct kernfs_iattrs *ps_iattr;
751 	bool has_ns;
752 	int ret;
753 
754 	mutex_lock(&kernfs_mutex);
755 
756 	ret = -EINVAL;
757 	has_ns = kernfs_ns_enabled(parent);
758 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
759 		 has_ns ? "required" : "invalid", parent->name, kn->name))
760 		goto out_unlock;
761 
762 	if (kernfs_type(parent) != KERNFS_DIR)
763 		goto out_unlock;
764 
765 	ret = -ENOENT;
766 	if (parent->flags & KERNFS_EMPTY_DIR)
767 		goto out_unlock;
768 
769 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
770 		goto out_unlock;
771 
772 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
773 
774 	ret = kernfs_link_sibling(kn);
775 	if (ret)
776 		goto out_unlock;
777 
778 	/* Update timestamps on the parent */
779 	ps_iattr = parent->iattr;
780 	if (ps_iattr) {
781 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
782 		ktime_get_real_ts(&ps_iattrs->ia_ctime);
783 		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
784 	}
785 
786 	mutex_unlock(&kernfs_mutex);
787 
788 	/*
789 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
790 	 * If not activated here, the kernfs user is responsible for
791 	 * activating the node with kernfs_activate().  A node which hasn't
792 	 * been activated is not visible to userland and its removal won't
793 	 * trigger deactivation.
794 	 */
795 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
796 		kernfs_activate(kn);
797 	return 0;
798 
799 out_unlock:
800 	mutex_unlock(&kernfs_mutex);
801 	return ret;
802 }
803 
804 /**
805  * kernfs_find_ns - find kernfs_node with the given name
806  * @parent: kernfs_node to search under
807  * @name: name to look for
808  * @ns: the namespace tag to use
809  *
810  * Look for kernfs_node with name @name under @parent.  Returns pointer to
811  * the found kernfs_node on success, %NULL on failure.
812  */
813 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
814 					  const unsigned char *name,
815 					  const void *ns)
816 {
817 	struct rb_node *node = parent->dir.children.rb_node;
818 	bool has_ns = kernfs_ns_enabled(parent);
819 	unsigned int hash;
820 
821 	lockdep_assert_held(&kernfs_mutex);
822 
823 	if (has_ns != (bool)ns) {
824 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
825 		     has_ns ? "required" : "invalid", parent->name, name);
826 		return NULL;
827 	}
828 
829 	hash = kernfs_name_hash(name, ns);
830 	while (node) {
831 		struct kernfs_node *kn;
832 		int result;
833 
834 		kn = rb_to_kn(node);
835 		result = kernfs_name_compare(hash, name, ns, kn);
836 		if (result < 0)
837 			node = node->rb_left;
838 		else if (result > 0)
839 			node = node->rb_right;
840 		else
841 			return kn;
842 	}
843 	return NULL;
844 }
845 
846 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
847 					  const unsigned char *path,
848 					  const void *ns)
849 {
850 	size_t len;
851 	char *p, *name;
852 
853 	lockdep_assert_held(&kernfs_mutex);
854 
855 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
856 	spin_lock_irq(&kernfs_rename_lock);
857 
858 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
859 
860 	if (len >= sizeof(kernfs_pr_cont_buf)) {
861 		spin_unlock_irq(&kernfs_rename_lock);
862 		return NULL;
863 	}
864 
865 	p = kernfs_pr_cont_buf;
866 
867 	while ((name = strsep(&p, "/")) && parent) {
868 		if (*name == '\0')
869 			continue;
870 		parent = kernfs_find_ns(parent, name, ns);
871 	}
872 
873 	spin_unlock_irq(&kernfs_rename_lock);
874 
875 	return parent;
876 }
877 
878 /**
879  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
880  * @parent: kernfs_node to search under
881  * @name: name to look for
882  * @ns: the namespace tag to use
883  *
884  * Look for kernfs_node with name @name under @parent and get a reference
885  * if found.  This function may sleep and returns pointer to the found
886  * kernfs_node on success, %NULL on failure.
887  */
888 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
889 					   const char *name, const void *ns)
890 {
891 	struct kernfs_node *kn;
892 
893 	mutex_lock(&kernfs_mutex);
894 	kn = kernfs_find_ns(parent, name, ns);
895 	kernfs_get(kn);
896 	mutex_unlock(&kernfs_mutex);
897 
898 	return kn;
899 }
900 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
901 
902 /**
903  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
904  * @parent: kernfs_node to search under
905  * @path: path to look for
906  * @ns: the namespace tag to use
907  *
908  * Look for kernfs_node with path @path under @parent and get a reference
909  * if found.  This function may sleep and returns pointer to the found
910  * kernfs_node on success, %NULL on failure.
911  */
912 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
913 					   const char *path, const void *ns)
914 {
915 	struct kernfs_node *kn;
916 
917 	mutex_lock(&kernfs_mutex);
918 	kn = kernfs_walk_ns(parent, path, ns);
919 	kernfs_get(kn);
920 	mutex_unlock(&kernfs_mutex);
921 
922 	return kn;
923 }
924 
925 /**
926  * kernfs_create_root - create a new kernfs hierarchy
927  * @scops: optional syscall operations for the hierarchy
928  * @flags: KERNFS_ROOT_* flags
929  * @priv: opaque data associated with the new directory
930  *
931  * Returns the root of the new hierarchy on success, ERR_PTR() value on
932  * failure.
933  */
934 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
935 				       unsigned int flags, void *priv)
936 {
937 	struct kernfs_root *root;
938 	struct kernfs_node *kn;
939 
940 	root = kzalloc(sizeof(*root), GFP_KERNEL);
941 	if (!root)
942 		return ERR_PTR(-ENOMEM);
943 
944 	idr_init(&root->ino_idr);
945 	INIT_LIST_HEAD(&root->supers);
946 	root->next_generation = 1;
947 
948 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
949 			       KERNFS_DIR);
950 	if (!kn) {
951 		idr_destroy(&root->ino_idr);
952 		kfree(root);
953 		return ERR_PTR(-ENOMEM);
954 	}
955 
956 	kn->priv = priv;
957 	kn->dir.root = root;
958 
959 	root->syscall_ops = scops;
960 	root->flags = flags;
961 	root->kn = kn;
962 	init_waitqueue_head(&root->deactivate_waitq);
963 
964 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
965 		kernfs_activate(kn);
966 
967 	return root;
968 }
969 
970 /**
971  * kernfs_destroy_root - destroy a kernfs hierarchy
972  * @root: root of the hierarchy to destroy
973  *
974  * Destroy the hierarchy anchored at @root by removing all existing
975  * directories and destroying @root.
976  */
977 void kernfs_destroy_root(struct kernfs_root *root)
978 {
979 	kernfs_remove(root->kn);	/* will also free @root */
980 }
981 
982 /**
983  * kernfs_create_dir_ns - create a directory
984  * @parent: parent in which to create a new directory
985  * @name: name of the new directory
986  * @mode: mode of the new directory
987  * @priv: opaque data associated with the new directory
988  * @ns: optional namespace tag of the directory
989  *
990  * Returns the created node on success, ERR_PTR() value on failure.
991  */
992 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
993 					 const char *name, umode_t mode,
994 					 void *priv, const void *ns)
995 {
996 	struct kernfs_node *kn;
997 	int rc;
998 
999 	/* allocate */
1000 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
1001 	if (!kn)
1002 		return ERR_PTR(-ENOMEM);
1003 
1004 	kn->dir.root = parent->dir.root;
1005 	kn->ns = ns;
1006 	kn->priv = priv;
1007 
1008 	/* link in */
1009 	rc = kernfs_add_one(kn);
1010 	if (!rc)
1011 		return kn;
1012 
1013 	kernfs_put(kn);
1014 	return ERR_PTR(rc);
1015 }
1016 
1017 /**
1018  * kernfs_create_empty_dir - create an always empty directory
1019  * @parent: parent in which to create a new directory
1020  * @name: name of the new directory
1021  *
1022  * Returns the created node on success, ERR_PTR() value on failure.
1023  */
1024 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1025 					    const char *name)
1026 {
1027 	struct kernfs_node *kn;
1028 	int rc;
1029 
1030 	/* allocate */
1031 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1032 	if (!kn)
1033 		return ERR_PTR(-ENOMEM);
1034 
1035 	kn->flags |= KERNFS_EMPTY_DIR;
1036 	kn->dir.root = parent->dir.root;
1037 	kn->ns = NULL;
1038 	kn->priv = NULL;
1039 
1040 	/* link in */
1041 	rc = kernfs_add_one(kn);
1042 	if (!rc)
1043 		return kn;
1044 
1045 	kernfs_put(kn);
1046 	return ERR_PTR(rc);
1047 }
1048 
1049 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1050 					struct dentry *dentry,
1051 					unsigned int flags)
1052 {
1053 	struct dentry *ret;
1054 	struct kernfs_node *parent = dir->i_private;
1055 	struct kernfs_node *kn;
1056 	struct inode *inode;
1057 	const void *ns = NULL;
1058 
1059 	mutex_lock(&kernfs_mutex);
1060 
1061 	if (kernfs_ns_enabled(parent))
1062 		ns = kernfs_info(dir->i_sb)->ns;
1063 
1064 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1065 
1066 	/* no such entry */
1067 	if (!kn || !kernfs_active(kn)) {
1068 		ret = NULL;
1069 		goto out_unlock;
1070 	}
1071 
1072 	/* attach dentry and inode */
1073 	inode = kernfs_get_inode(dir->i_sb, kn);
1074 	if (!inode) {
1075 		ret = ERR_PTR(-ENOMEM);
1076 		goto out_unlock;
1077 	}
1078 
1079 	/* instantiate and hash dentry */
1080 	ret = d_splice_alias(inode, dentry);
1081  out_unlock:
1082 	mutex_unlock(&kernfs_mutex);
1083 	return ret;
1084 }
1085 
1086 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1087 			    umode_t mode)
1088 {
1089 	struct kernfs_node *parent = dir->i_private;
1090 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1091 	int ret;
1092 
1093 	if (!scops || !scops->mkdir)
1094 		return -EPERM;
1095 
1096 	if (!kernfs_get_active(parent))
1097 		return -ENODEV;
1098 
1099 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1100 
1101 	kernfs_put_active(parent);
1102 	return ret;
1103 }
1104 
1105 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1106 {
1107 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1108 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1109 	int ret;
1110 
1111 	if (!scops || !scops->rmdir)
1112 		return -EPERM;
1113 
1114 	if (!kernfs_get_active(kn))
1115 		return -ENODEV;
1116 
1117 	ret = scops->rmdir(kn);
1118 
1119 	kernfs_put_active(kn);
1120 	return ret;
1121 }
1122 
1123 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1124 			     struct inode *new_dir, struct dentry *new_dentry,
1125 			     unsigned int flags)
1126 {
1127 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1128 	struct kernfs_node *new_parent = new_dir->i_private;
1129 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1130 	int ret;
1131 
1132 	if (flags)
1133 		return -EINVAL;
1134 
1135 	if (!scops || !scops->rename)
1136 		return -EPERM;
1137 
1138 	if (!kernfs_get_active(kn))
1139 		return -ENODEV;
1140 
1141 	if (!kernfs_get_active(new_parent)) {
1142 		kernfs_put_active(kn);
1143 		return -ENODEV;
1144 	}
1145 
1146 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1147 
1148 	kernfs_put_active(new_parent);
1149 	kernfs_put_active(kn);
1150 	return ret;
1151 }
1152 
1153 const struct inode_operations kernfs_dir_iops = {
1154 	.lookup		= kernfs_iop_lookup,
1155 	.permission	= kernfs_iop_permission,
1156 	.setattr	= kernfs_iop_setattr,
1157 	.getattr	= kernfs_iop_getattr,
1158 	.listxattr	= kernfs_iop_listxattr,
1159 
1160 	.mkdir		= kernfs_iop_mkdir,
1161 	.rmdir		= kernfs_iop_rmdir,
1162 	.rename		= kernfs_iop_rename,
1163 };
1164 
1165 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1166 {
1167 	struct kernfs_node *last;
1168 
1169 	while (true) {
1170 		struct rb_node *rbn;
1171 
1172 		last = pos;
1173 
1174 		if (kernfs_type(pos) != KERNFS_DIR)
1175 			break;
1176 
1177 		rbn = rb_first(&pos->dir.children);
1178 		if (!rbn)
1179 			break;
1180 
1181 		pos = rb_to_kn(rbn);
1182 	}
1183 
1184 	return last;
1185 }
1186 
1187 /**
1188  * kernfs_next_descendant_post - find the next descendant for post-order walk
1189  * @pos: the current position (%NULL to initiate traversal)
1190  * @root: kernfs_node whose descendants to walk
1191  *
1192  * Find the next descendant to visit for post-order traversal of @root's
1193  * descendants.  @root is included in the iteration and the last node to be
1194  * visited.
1195  */
1196 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1197 						       struct kernfs_node *root)
1198 {
1199 	struct rb_node *rbn;
1200 
1201 	lockdep_assert_held(&kernfs_mutex);
1202 
1203 	/* if first iteration, visit leftmost descendant which may be root */
1204 	if (!pos)
1205 		return kernfs_leftmost_descendant(root);
1206 
1207 	/* if we visited @root, we're done */
1208 	if (pos == root)
1209 		return NULL;
1210 
1211 	/* if there's an unvisited sibling, visit its leftmost descendant */
1212 	rbn = rb_next(&pos->rb);
1213 	if (rbn)
1214 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1215 
1216 	/* no sibling left, visit parent */
1217 	return pos->parent;
1218 }
1219 
1220 /**
1221  * kernfs_activate - activate a node which started deactivated
1222  * @kn: kernfs_node whose subtree is to be activated
1223  *
1224  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1225  * needs to be explicitly activated.  A node which hasn't been activated
1226  * isn't visible to userland and deactivation is skipped during its
1227  * removal.  This is useful to construct atomic init sequences where
1228  * creation of multiple nodes should either succeed or fail atomically.
1229  *
1230  * The caller is responsible for ensuring that this function is not called
1231  * after kernfs_remove*() is invoked on @kn.
1232  */
1233 void kernfs_activate(struct kernfs_node *kn)
1234 {
1235 	struct kernfs_node *pos;
1236 
1237 	mutex_lock(&kernfs_mutex);
1238 
1239 	pos = NULL;
1240 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1241 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1242 			continue;
1243 
1244 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1245 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1246 
1247 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1248 		pos->flags |= KERNFS_ACTIVATED;
1249 	}
1250 
1251 	mutex_unlock(&kernfs_mutex);
1252 }
1253 
1254 static void __kernfs_remove(struct kernfs_node *kn)
1255 {
1256 	struct kernfs_node *pos;
1257 
1258 	lockdep_assert_held(&kernfs_mutex);
1259 
1260 	/*
1261 	 * Short-circuit if non-root @kn has already finished removal.
1262 	 * This is for kernfs_remove_self() which plays with active ref
1263 	 * after removal.
1264 	 */
1265 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1266 		return;
1267 
1268 	pr_debug("kernfs %s: removing\n", kn->name);
1269 
1270 	/* prevent any new usage under @kn by deactivating all nodes */
1271 	pos = NULL;
1272 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1273 		if (kernfs_active(pos))
1274 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1275 
1276 	/* deactivate and unlink the subtree node-by-node */
1277 	do {
1278 		pos = kernfs_leftmost_descendant(kn);
1279 
1280 		/*
1281 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1282 		 * base ref could have been put by someone else by the time
1283 		 * the function returns.  Make sure it doesn't go away
1284 		 * underneath us.
1285 		 */
1286 		kernfs_get(pos);
1287 
1288 		/*
1289 		 * Drain iff @kn was activated.  This avoids draining and
1290 		 * its lockdep annotations for nodes which have never been
1291 		 * activated and allows embedding kernfs_remove() in create
1292 		 * error paths without worrying about draining.
1293 		 */
1294 		if (kn->flags & KERNFS_ACTIVATED)
1295 			kernfs_drain(pos);
1296 		else
1297 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1298 
1299 		/*
1300 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1301 		 * to decide who's responsible for cleanups.
1302 		 */
1303 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1304 			struct kernfs_iattrs *ps_iattr =
1305 				pos->parent ? pos->parent->iattr : NULL;
1306 
1307 			/* update timestamps on the parent */
1308 			if (ps_iattr) {
1309 				ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1310 				ps_iattr->ia_iattr.ia_mtime =
1311 					ps_iattr->ia_iattr.ia_ctime;
1312 			}
1313 
1314 			kernfs_put(pos);
1315 		}
1316 
1317 		kernfs_put(pos);
1318 	} while (pos != kn);
1319 }
1320 
1321 /**
1322  * kernfs_remove - remove a kernfs_node recursively
1323  * @kn: the kernfs_node to remove
1324  *
1325  * Remove @kn along with all its subdirectories and files.
1326  */
1327 void kernfs_remove(struct kernfs_node *kn)
1328 {
1329 	mutex_lock(&kernfs_mutex);
1330 	__kernfs_remove(kn);
1331 	mutex_unlock(&kernfs_mutex);
1332 }
1333 
1334 /**
1335  * kernfs_break_active_protection - break out of active protection
1336  * @kn: the self kernfs_node
1337  *
1338  * The caller must be running off of a kernfs operation which is invoked
1339  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1340  * this function must also be matched with an invocation of
1341  * kernfs_unbreak_active_protection().
1342  *
1343  * This function releases the active reference of @kn the caller is
1344  * holding.  Once this function is called, @kn may be removed at any point
1345  * and the caller is solely responsible for ensuring that the objects it
1346  * dereferences are accessible.
1347  */
1348 void kernfs_break_active_protection(struct kernfs_node *kn)
1349 {
1350 	/*
1351 	 * Take out ourself out of the active ref dependency chain.  If
1352 	 * we're called without an active ref, lockdep will complain.
1353 	 */
1354 	kernfs_put_active(kn);
1355 }
1356 
1357 /**
1358  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1359  * @kn: the self kernfs_node
1360  *
1361  * If kernfs_break_active_protection() was called, this function must be
1362  * invoked before finishing the kernfs operation.  Note that while this
1363  * function restores the active reference, it doesn't and can't actually
1364  * restore the active protection - @kn may already or be in the process of
1365  * being removed.  Once kernfs_break_active_protection() is invoked, that
1366  * protection is irreversibly gone for the kernfs operation instance.
1367  *
1368  * While this function may be called at any point after
1369  * kernfs_break_active_protection() is invoked, its most useful location
1370  * would be right before the enclosing kernfs operation returns.
1371  */
1372 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1373 {
1374 	/*
1375 	 * @kn->active could be in any state; however, the increment we do
1376 	 * here will be undone as soon as the enclosing kernfs operation
1377 	 * finishes and this temporary bump can't break anything.  If @kn
1378 	 * is alive, nothing changes.  If @kn is being deactivated, the
1379 	 * soon-to-follow put will either finish deactivation or restore
1380 	 * deactivated state.  If @kn is already removed, the temporary
1381 	 * bump is guaranteed to be gone before @kn is released.
1382 	 */
1383 	atomic_inc(&kn->active);
1384 	if (kernfs_lockdep(kn))
1385 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1386 }
1387 
1388 /**
1389  * kernfs_remove_self - remove a kernfs_node from its own method
1390  * @kn: the self kernfs_node to remove
1391  *
1392  * The caller must be running off of a kernfs operation which is invoked
1393  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1394  * implement a file operation which deletes itself.
1395  *
1396  * For example, the "delete" file for a sysfs device directory can be
1397  * implemented by invoking kernfs_remove_self() on the "delete" file
1398  * itself.  This function breaks the circular dependency of trying to
1399  * deactivate self while holding an active ref itself.  It isn't necessary
1400  * to modify the usual removal path to use kernfs_remove_self().  The
1401  * "delete" implementation can simply invoke kernfs_remove_self() on self
1402  * before proceeding with the usual removal path.  kernfs will ignore later
1403  * kernfs_remove() on self.
1404  *
1405  * kernfs_remove_self() can be called multiple times concurrently on the
1406  * same kernfs_node.  Only the first one actually performs removal and
1407  * returns %true.  All others will wait until the kernfs operation which
1408  * won self-removal finishes and return %false.  Note that the losers wait
1409  * for the completion of not only the winning kernfs_remove_self() but also
1410  * the whole kernfs_ops which won the arbitration.  This can be used to
1411  * guarantee, for example, all concurrent writes to a "delete" file to
1412  * finish only after the whole operation is complete.
1413  */
1414 bool kernfs_remove_self(struct kernfs_node *kn)
1415 {
1416 	bool ret;
1417 
1418 	mutex_lock(&kernfs_mutex);
1419 	kernfs_break_active_protection(kn);
1420 
1421 	/*
1422 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1423 	 * the first one will actually perform removal.  When the removal
1424 	 * is complete, SUICIDED is set and the active ref is restored
1425 	 * while holding kernfs_mutex.  The ones which lost arbitration
1426 	 * waits for SUICDED && drained which can happen only after the
1427 	 * enclosing kernfs operation which executed the winning instance
1428 	 * of kernfs_remove_self() finished.
1429 	 */
1430 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1431 		kn->flags |= KERNFS_SUICIDAL;
1432 		__kernfs_remove(kn);
1433 		kn->flags |= KERNFS_SUICIDED;
1434 		ret = true;
1435 	} else {
1436 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1437 		DEFINE_WAIT(wait);
1438 
1439 		while (true) {
1440 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1441 
1442 			if ((kn->flags & KERNFS_SUICIDED) &&
1443 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1444 				break;
1445 
1446 			mutex_unlock(&kernfs_mutex);
1447 			schedule();
1448 			mutex_lock(&kernfs_mutex);
1449 		}
1450 		finish_wait(waitq, &wait);
1451 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1452 		ret = false;
1453 	}
1454 
1455 	/*
1456 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1457 	 * for SUICIDED && deactivated could finish prematurely.
1458 	 */
1459 	kernfs_unbreak_active_protection(kn);
1460 
1461 	mutex_unlock(&kernfs_mutex);
1462 	return ret;
1463 }
1464 
1465 /**
1466  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1467  * @parent: parent of the target
1468  * @name: name of the kernfs_node to remove
1469  * @ns: namespace tag of the kernfs_node to remove
1470  *
1471  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1472  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1473  */
1474 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1475 			     const void *ns)
1476 {
1477 	struct kernfs_node *kn;
1478 
1479 	if (!parent) {
1480 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1481 			name);
1482 		return -ENOENT;
1483 	}
1484 
1485 	mutex_lock(&kernfs_mutex);
1486 
1487 	kn = kernfs_find_ns(parent, name, ns);
1488 	if (kn)
1489 		__kernfs_remove(kn);
1490 
1491 	mutex_unlock(&kernfs_mutex);
1492 
1493 	if (kn)
1494 		return 0;
1495 	else
1496 		return -ENOENT;
1497 }
1498 
1499 /**
1500  * kernfs_rename_ns - move and rename a kernfs_node
1501  * @kn: target node
1502  * @new_parent: new parent to put @sd under
1503  * @new_name: new name
1504  * @new_ns: new namespace tag
1505  */
1506 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1507 		     const char *new_name, const void *new_ns)
1508 {
1509 	struct kernfs_node *old_parent;
1510 	const char *old_name = NULL;
1511 	int error;
1512 
1513 	/* can't move or rename root */
1514 	if (!kn->parent)
1515 		return -EINVAL;
1516 
1517 	mutex_lock(&kernfs_mutex);
1518 
1519 	error = -ENOENT;
1520 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1521 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1522 		goto out;
1523 
1524 	error = 0;
1525 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1526 	    (strcmp(kn->name, new_name) == 0))
1527 		goto out;	/* nothing to rename */
1528 
1529 	error = -EEXIST;
1530 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1531 		goto out;
1532 
1533 	/* rename kernfs_node */
1534 	if (strcmp(kn->name, new_name) != 0) {
1535 		error = -ENOMEM;
1536 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1537 		if (!new_name)
1538 			goto out;
1539 	} else {
1540 		new_name = NULL;
1541 	}
1542 
1543 	/*
1544 	 * Move to the appropriate place in the appropriate directories rbtree.
1545 	 */
1546 	kernfs_unlink_sibling(kn);
1547 	kernfs_get(new_parent);
1548 
1549 	/* rename_lock protects ->parent and ->name accessors */
1550 	spin_lock_irq(&kernfs_rename_lock);
1551 
1552 	old_parent = kn->parent;
1553 	kn->parent = new_parent;
1554 
1555 	kn->ns = new_ns;
1556 	if (new_name) {
1557 		old_name = kn->name;
1558 		kn->name = new_name;
1559 	}
1560 
1561 	spin_unlock_irq(&kernfs_rename_lock);
1562 
1563 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1564 	kernfs_link_sibling(kn);
1565 
1566 	kernfs_put(old_parent);
1567 	kfree_const(old_name);
1568 
1569 	error = 0;
1570  out:
1571 	mutex_unlock(&kernfs_mutex);
1572 	return error;
1573 }
1574 
1575 /* Relationship between s_mode and the DT_xxx types */
1576 static inline unsigned char dt_type(struct kernfs_node *kn)
1577 {
1578 	return (kn->mode >> 12) & 15;
1579 }
1580 
1581 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1582 {
1583 	kernfs_put(filp->private_data);
1584 	return 0;
1585 }
1586 
1587 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1588 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1589 {
1590 	if (pos) {
1591 		int valid = kernfs_active(pos) &&
1592 			pos->parent == parent && hash == pos->hash;
1593 		kernfs_put(pos);
1594 		if (!valid)
1595 			pos = NULL;
1596 	}
1597 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1598 		struct rb_node *node = parent->dir.children.rb_node;
1599 		while (node) {
1600 			pos = rb_to_kn(node);
1601 
1602 			if (hash < pos->hash)
1603 				node = node->rb_left;
1604 			else if (hash > pos->hash)
1605 				node = node->rb_right;
1606 			else
1607 				break;
1608 		}
1609 	}
1610 	/* Skip over entries which are dying/dead or in the wrong namespace */
1611 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1612 		struct rb_node *node = rb_next(&pos->rb);
1613 		if (!node)
1614 			pos = NULL;
1615 		else
1616 			pos = rb_to_kn(node);
1617 	}
1618 	return pos;
1619 }
1620 
1621 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1622 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1623 {
1624 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1625 	if (pos) {
1626 		do {
1627 			struct rb_node *node = rb_next(&pos->rb);
1628 			if (!node)
1629 				pos = NULL;
1630 			else
1631 				pos = rb_to_kn(node);
1632 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1633 	}
1634 	return pos;
1635 }
1636 
1637 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1638 {
1639 	struct dentry *dentry = file->f_path.dentry;
1640 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1641 	struct kernfs_node *pos = file->private_data;
1642 	const void *ns = NULL;
1643 
1644 	if (!dir_emit_dots(file, ctx))
1645 		return 0;
1646 	mutex_lock(&kernfs_mutex);
1647 
1648 	if (kernfs_ns_enabled(parent))
1649 		ns = kernfs_info(dentry->d_sb)->ns;
1650 
1651 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1652 	     pos;
1653 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1654 		const char *name = pos->name;
1655 		unsigned int type = dt_type(pos);
1656 		int len = strlen(name);
1657 		ino_t ino = pos->id.ino;
1658 
1659 		ctx->pos = pos->hash;
1660 		file->private_data = pos;
1661 		kernfs_get(pos);
1662 
1663 		mutex_unlock(&kernfs_mutex);
1664 		if (!dir_emit(ctx, name, len, ino, type))
1665 			return 0;
1666 		mutex_lock(&kernfs_mutex);
1667 	}
1668 	mutex_unlock(&kernfs_mutex);
1669 	file->private_data = NULL;
1670 	ctx->pos = INT_MAX;
1671 	return 0;
1672 }
1673 
1674 const struct file_operations kernfs_dir_fops = {
1675 	.read		= generic_read_dir,
1676 	.iterate_shared	= kernfs_fop_readdir,
1677 	.release	= kernfs_dir_fop_release,
1678 	.llseek		= generic_file_llseek,
1679 };
1680