1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf, 48 size_t buflen) 49 { 50 char *p = buf + buflen; 51 int len; 52 53 *--p = '\0'; 54 55 do { 56 len = strlen(kn->name); 57 if (p - buf < len + 1) { 58 buf[0] = '\0'; 59 p = NULL; 60 break; 61 } 62 p -= len; 63 memcpy(p, kn->name, len); 64 *--p = '/'; 65 kn = kn->parent; 66 } while (kn && kn->parent); 67 68 return p; 69 } 70 71 /** 72 * kernfs_name - obtain the name of a given node 73 * @kn: kernfs_node of interest 74 * @buf: buffer to copy @kn's name into 75 * @buflen: size of @buf 76 * 77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 78 * similar to strlcpy(). It returns the length of @kn's name and if @buf 79 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 80 * 81 * This function can be called from any context. 82 */ 83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 84 { 85 unsigned long flags; 86 int ret; 87 88 spin_lock_irqsave(&kernfs_rename_lock, flags); 89 ret = kernfs_name_locked(kn, buf, buflen); 90 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 91 return ret; 92 } 93 94 /** 95 * kernfs_path - build full path of a given node 96 * @kn: kernfs_node of interest 97 * @buf: buffer to copy @kn's name into 98 * @buflen: size of @buf 99 * 100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The 101 * path is built from the end of @buf so the returned pointer usually 102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated 103 * and %NULL is returned. 104 */ 105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) 106 { 107 unsigned long flags; 108 char *p; 109 110 spin_lock_irqsave(&kernfs_rename_lock, flags); 111 p = kernfs_path_locked(kn, buf, buflen); 112 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 113 return p; 114 } 115 EXPORT_SYMBOL_GPL(kernfs_path); 116 117 /** 118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 119 * @kn: kernfs_node of interest 120 * 121 * This function can be called from any context. 122 */ 123 void pr_cont_kernfs_name(struct kernfs_node *kn) 124 { 125 unsigned long flags; 126 127 spin_lock_irqsave(&kernfs_rename_lock, flags); 128 129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 130 pr_cont("%s", kernfs_pr_cont_buf); 131 132 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 133 } 134 135 /** 136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 137 * @kn: kernfs_node of interest 138 * 139 * This function can be called from any context. 140 */ 141 void pr_cont_kernfs_path(struct kernfs_node *kn) 142 { 143 unsigned long flags; 144 char *p; 145 146 spin_lock_irqsave(&kernfs_rename_lock, flags); 147 148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf, 149 sizeof(kernfs_pr_cont_buf)); 150 if (p) 151 pr_cont("%s", p); 152 else 153 pr_cont("<name too long>"); 154 155 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 156 } 157 158 /** 159 * kernfs_get_parent - determine the parent node and pin it 160 * @kn: kernfs_node of interest 161 * 162 * Determines @kn's parent, pins and returns it. This function can be 163 * called from any context. 164 */ 165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 166 { 167 struct kernfs_node *parent; 168 unsigned long flags; 169 170 spin_lock_irqsave(&kernfs_rename_lock, flags); 171 parent = kn->parent; 172 kernfs_get(parent); 173 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 174 175 return parent; 176 } 177 178 /** 179 * kernfs_name_hash 180 * @name: Null terminated string to hash 181 * @ns: Namespace tag to hash 182 * 183 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 184 */ 185 static unsigned int kernfs_name_hash(const char *name, const void *ns) 186 { 187 unsigned long hash = init_name_hash(); 188 unsigned int len = strlen(name); 189 while (len--) 190 hash = partial_name_hash(*name++, hash); 191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); 192 hash &= 0x7fffffffU; 193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 194 if (hash < 2) 195 hash += 2; 196 if (hash >= INT_MAX) 197 hash = INT_MAX - 1; 198 return hash; 199 } 200 201 static int kernfs_name_compare(unsigned int hash, const char *name, 202 const void *ns, const struct kernfs_node *kn) 203 { 204 if (hash != kn->hash) 205 return hash - kn->hash; 206 if (ns != kn->ns) 207 return ns - kn->ns; 208 return strcmp(name, kn->name); 209 } 210 211 static int kernfs_sd_compare(const struct kernfs_node *left, 212 const struct kernfs_node *right) 213 { 214 return kernfs_name_compare(left->hash, left->name, left->ns, right); 215 } 216 217 /** 218 * kernfs_link_sibling - link kernfs_node into sibling rbtree 219 * @kn: kernfs_node of interest 220 * 221 * Link @kn into its sibling rbtree which starts from 222 * @kn->parent->dir.children. 223 * 224 * Locking: 225 * mutex_lock(kernfs_mutex) 226 * 227 * RETURNS: 228 * 0 on susccess -EEXIST on failure. 229 */ 230 static int kernfs_link_sibling(struct kernfs_node *kn) 231 { 232 struct rb_node **node = &kn->parent->dir.children.rb_node; 233 struct rb_node *parent = NULL; 234 235 while (*node) { 236 struct kernfs_node *pos; 237 int result; 238 239 pos = rb_to_kn(*node); 240 parent = *node; 241 result = kernfs_sd_compare(kn, pos); 242 if (result < 0) 243 node = &pos->rb.rb_left; 244 else if (result > 0) 245 node = &pos->rb.rb_right; 246 else 247 return -EEXIST; 248 } 249 250 /* add new node and rebalance the tree */ 251 rb_link_node(&kn->rb, parent, node); 252 rb_insert_color(&kn->rb, &kn->parent->dir.children); 253 254 /* successfully added, account subdir number */ 255 if (kernfs_type(kn) == KERNFS_DIR) 256 kn->parent->dir.subdirs++; 257 258 return 0; 259 } 260 261 /** 262 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 263 * @kn: kernfs_node of interest 264 * 265 * Try to unlink @kn from its sibling rbtree which starts from 266 * kn->parent->dir.children. Returns %true if @kn was actually 267 * removed, %false if @kn wasn't on the rbtree. 268 * 269 * Locking: 270 * mutex_lock(kernfs_mutex) 271 */ 272 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 273 { 274 if (RB_EMPTY_NODE(&kn->rb)) 275 return false; 276 277 if (kernfs_type(kn) == KERNFS_DIR) 278 kn->parent->dir.subdirs--; 279 280 rb_erase(&kn->rb, &kn->parent->dir.children); 281 RB_CLEAR_NODE(&kn->rb); 282 return true; 283 } 284 285 /** 286 * kernfs_get_active - get an active reference to kernfs_node 287 * @kn: kernfs_node to get an active reference to 288 * 289 * Get an active reference of @kn. This function is noop if @kn 290 * is NULL. 291 * 292 * RETURNS: 293 * Pointer to @kn on success, NULL on failure. 294 */ 295 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 296 { 297 if (unlikely(!kn)) 298 return NULL; 299 300 if (!atomic_inc_unless_negative(&kn->active)) 301 return NULL; 302 303 if (kernfs_lockdep(kn)) 304 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 305 return kn; 306 } 307 308 /** 309 * kernfs_put_active - put an active reference to kernfs_node 310 * @kn: kernfs_node to put an active reference to 311 * 312 * Put an active reference to @kn. This function is noop if @kn 313 * is NULL. 314 */ 315 void kernfs_put_active(struct kernfs_node *kn) 316 { 317 struct kernfs_root *root = kernfs_root(kn); 318 int v; 319 320 if (unlikely(!kn)) 321 return; 322 323 if (kernfs_lockdep(kn)) 324 rwsem_release(&kn->dep_map, 1, _RET_IP_); 325 v = atomic_dec_return(&kn->active); 326 if (likely(v != KN_DEACTIVATED_BIAS)) 327 return; 328 329 wake_up_all(&root->deactivate_waitq); 330 } 331 332 /** 333 * kernfs_drain - drain kernfs_node 334 * @kn: kernfs_node to drain 335 * 336 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 337 * removers may invoke this function concurrently on @kn and all will 338 * return after draining is complete. 339 */ 340 static void kernfs_drain(struct kernfs_node *kn) 341 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 342 { 343 struct kernfs_root *root = kernfs_root(kn); 344 345 lockdep_assert_held(&kernfs_mutex); 346 WARN_ON_ONCE(kernfs_active(kn)); 347 348 mutex_unlock(&kernfs_mutex); 349 350 if (kernfs_lockdep(kn)) { 351 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 352 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 353 lock_contended(&kn->dep_map, _RET_IP_); 354 } 355 356 /* but everyone should wait for draining */ 357 wait_event(root->deactivate_waitq, 358 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 359 360 if (kernfs_lockdep(kn)) { 361 lock_acquired(&kn->dep_map, _RET_IP_); 362 rwsem_release(&kn->dep_map, 1, _RET_IP_); 363 } 364 365 kernfs_unmap_bin_file(kn); 366 367 mutex_lock(&kernfs_mutex); 368 } 369 370 /** 371 * kernfs_get - get a reference count on a kernfs_node 372 * @kn: the target kernfs_node 373 */ 374 void kernfs_get(struct kernfs_node *kn) 375 { 376 if (kn) { 377 WARN_ON(!atomic_read(&kn->count)); 378 atomic_inc(&kn->count); 379 } 380 } 381 EXPORT_SYMBOL_GPL(kernfs_get); 382 383 /** 384 * kernfs_put - put a reference count on a kernfs_node 385 * @kn: the target kernfs_node 386 * 387 * Put a reference count of @kn and destroy it if it reached zero. 388 */ 389 void kernfs_put(struct kernfs_node *kn) 390 { 391 struct kernfs_node *parent; 392 struct kernfs_root *root; 393 394 if (!kn || !atomic_dec_and_test(&kn->count)) 395 return; 396 root = kernfs_root(kn); 397 repeat: 398 /* 399 * Moving/renaming is always done while holding reference. 400 * kn->parent won't change beneath us. 401 */ 402 parent = kn->parent; 403 404 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 405 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 406 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 407 408 if (kernfs_type(kn) == KERNFS_LINK) 409 kernfs_put(kn->symlink.target_kn); 410 if (!(kn->flags & KERNFS_STATIC_NAME)) 411 kfree(kn->name); 412 if (kn->iattr) { 413 if (kn->iattr->ia_secdata) 414 security_release_secctx(kn->iattr->ia_secdata, 415 kn->iattr->ia_secdata_len); 416 simple_xattrs_free(&kn->iattr->xattrs); 417 } 418 kfree(kn->iattr); 419 ida_simple_remove(&root->ino_ida, kn->ino); 420 kmem_cache_free(kernfs_node_cache, kn); 421 422 kn = parent; 423 if (kn) { 424 if (atomic_dec_and_test(&kn->count)) 425 goto repeat; 426 } else { 427 /* just released the root kn, free @root too */ 428 ida_destroy(&root->ino_ida); 429 kfree(root); 430 } 431 } 432 EXPORT_SYMBOL_GPL(kernfs_put); 433 434 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 435 { 436 struct kernfs_node *kn; 437 438 if (flags & LOOKUP_RCU) 439 return -ECHILD; 440 441 /* Always perform fresh lookup for negatives */ 442 if (!dentry->d_inode) 443 goto out_bad_unlocked; 444 445 kn = dentry->d_fsdata; 446 mutex_lock(&kernfs_mutex); 447 448 /* The kernfs node has been deactivated */ 449 if (!kernfs_active(kn)) 450 goto out_bad; 451 452 /* The kernfs node has been moved? */ 453 if (dentry->d_parent->d_fsdata != kn->parent) 454 goto out_bad; 455 456 /* The kernfs node has been renamed */ 457 if (strcmp(dentry->d_name.name, kn->name) != 0) 458 goto out_bad; 459 460 /* The kernfs node has been moved to a different namespace */ 461 if (kn->parent && kernfs_ns_enabled(kn->parent) && 462 kernfs_info(dentry->d_sb)->ns != kn->ns) 463 goto out_bad; 464 465 mutex_unlock(&kernfs_mutex); 466 out_valid: 467 return 1; 468 out_bad: 469 mutex_unlock(&kernfs_mutex); 470 out_bad_unlocked: 471 /* 472 * @dentry doesn't match the underlying kernfs node, drop the 473 * dentry and force lookup. If we have submounts we must allow the 474 * vfs caches to lie about the state of the filesystem to prevent 475 * leaks and other nasty things, so use check_submounts_and_drop() 476 * instead of d_drop(). 477 */ 478 if (check_submounts_and_drop(dentry) != 0) 479 goto out_valid; 480 481 return 0; 482 } 483 484 static void kernfs_dop_release(struct dentry *dentry) 485 { 486 kernfs_put(dentry->d_fsdata); 487 } 488 489 const struct dentry_operations kernfs_dops = { 490 .d_revalidate = kernfs_dop_revalidate, 491 .d_release = kernfs_dop_release, 492 }; 493 494 /** 495 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 496 * @dentry: the dentry in question 497 * 498 * Return the kernfs_node associated with @dentry. If @dentry is not a 499 * kernfs one, %NULL is returned. 500 * 501 * While the returned kernfs_node will stay accessible as long as @dentry 502 * is accessible, the returned node can be in any state and the caller is 503 * fully responsible for determining what's accessible. 504 */ 505 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 506 { 507 if (dentry->d_sb->s_op == &kernfs_sops) 508 return dentry->d_fsdata; 509 return NULL; 510 } 511 512 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 513 const char *name, umode_t mode, 514 unsigned flags) 515 { 516 char *dup_name = NULL; 517 struct kernfs_node *kn; 518 int ret; 519 520 if (!(flags & KERNFS_STATIC_NAME)) { 521 name = dup_name = kstrdup(name, GFP_KERNEL); 522 if (!name) 523 return NULL; 524 } 525 526 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 527 if (!kn) 528 goto err_out1; 529 530 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 531 if (ret < 0) 532 goto err_out2; 533 kn->ino = ret; 534 535 atomic_set(&kn->count, 1); 536 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 537 RB_CLEAR_NODE(&kn->rb); 538 539 kn->name = name; 540 kn->mode = mode; 541 kn->flags = flags; 542 543 return kn; 544 545 err_out2: 546 kmem_cache_free(kernfs_node_cache, kn); 547 err_out1: 548 kfree(dup_name); 549 return NULL; 550 } 551 552 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 553 const char *name, umode_t mode, 554 unsigned flags) 555 { 556 struct kernfs_node *kn; 557 558 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 559 if (kn) { 560 kernfs_get(parent); 561 kn->parent = parent; 562 } 563 return kn; 564 } 565 566 /** 567 * kernfs_add_one - add kernfs_node to parent without warning 568 * @kn: kernfs_node to be added 569 * 570 * The caller must already have initialized @kn->parent. This 571 * function increments nlink of the parent's inode if @kn is a 572 * directory and link into the children list of the parent. 573 * 574 * RETURNS: 575 * 0 on success, -EEXIST if entry with the given name already 576 * exists. 577 */ 578 int kernfs_add_one(struct kernfs_node *kn) 579 { 580 struct kernfs_node *parent = kn->parent; 581 struct kernfs_iattrs *ps_iattr; 582 bool has_ns; 583 int ret; 584 585 mutex_lock(&kernfs_mutex); 586 587 ret = -EINVAL; 588 has_ns = kernfs_ns_enabled(parent); 589 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 590 has_ns ? "required" : "invalid", parent->name, kn->name)) 591 goto out_unlock; 592 593 if (kernfs_type(parent) != KERNFS_DIR) 594 goto out_unlock; 595 596 ret = -ENOENT; 597 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 598 goto out_unlock; 599 600 kn->hash = kernfs_name_hash(kn->name, kn->ns); 601 602 ret = kernfs_link_sibling(kn); 603 if (ret) 604 goto out_unlock; 605 606 /* Update timestamps on the parent */ 607 ps_iattr = parent->iattr; 608 if (ps_iattr) { 609 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 610 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; 611 } 612 613 mutex_unlock(&kernfs_mutex); 614 615 /* 616 * Activate the new node unless CREATE_DEACTIVATED is requested. 617 * If not activated here, the kernfs user is responsible for 618 * activating the node with kernfs_activate(). A node which hasn't 619 * been activated is not visible to userland and its removal won't 620 * trigger deactivation. 621 */ 622 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 623 kernfs_activate(kn); 624 return 0; 625 626 out_unlock: 627 mutex_unlock(&kernfs_mutex); 628 return ret; 629 } 630 631 /** 632 * kernfs_find_ns - find kernfs_node with the given name 633 * @parent: kernfs_node to search under 634 * @name: name to look for 635 * @ns: the namespace tag to use 636 * 637 * Look for kernfs_node with name @name under @parent. Returns pointer to 638 * the found kernfs_node on success, %NULL on failure. 639 */ 640 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 641 const unsigned char *name, 642 const void *ns) 643 { 644 struct rb_node *node = parent->dir.children.rb_node; 645 bool has_ns = kernfs_ns_enabled(parent); 646 unsigned int hash; 647 648 lockdep_assert_held(&kernfs_mutex); 649 650 if (has_ns != (bool)ns) { 651 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 652 has_ns ? "required" : "invalid", parent->name, name); 653 return NULL; 654 } 655 656 hash = kernfs_name_hash(name, ns); 657 while (node) { 658 struct kernfs_node *kn; 659 int result; 660 661 kn = rb_to_kn(node); 662 result = kernfs_name_compare(hash, name, ns, kn); 663 if (result < 0) 664 node = node->rb_left; 665 else if (result > 0) 666 node = node->rb_right; 667 else 668 return kn; 669 } 670 return NULL; 671 } 672 673 /** 674 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 675 * @parent: kernfs_node to search under 676 * @name: name to look for 677 * @ns: the namespace tag to use 678 * 679 * Look for kernfs_node with name @name under @parent and get a reference 680 * if found. This function may sleep and returns pointer to the found 681 * kernfs_node on success, %NULL on failure. 682 */ 683 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 684 const char *name, const void *ns) 685 { 686 struct kernfs_node *kn; 687 688 mutex_lock(&kernfs_mutex); 689 kn = kernfs_find_ns(parent, name, ns); 690 kernfs_get(kn); 691 mutex_unlock(&kernfs_mutex); 692 693 return kn; 694 } 695 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 696 697 /** 698 * kernfs_create_root - create a new kernfs hierarchy 699 * @scops: optional syscall operations for the hierarchy 700 * @flags: KERNFS_ROOT_* flags 701 * @priv: opaque data associated with the new directory 702 * 703 * Returns the root of the new hierarchy on success, ERR_PTR() value on 704 * failure. 705 */ 706 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 707 unsigned int flags, void *priv) 708 { 709 struct kernfs_root *root; 710 struct kernfs_node *kn; 711 712 root = kzalloc(sizeof(*root), GFP_KERNEL); 713 if (!root) 714 return ERR_PTR(-ENOMEM); 715 716 ida_init(&root->ino_ida); 717 718 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 719 KERNFS_DIR); 720 if (!kn) { 721 ida_destroy(&root->ino_ida); 722 kfree(root); 723 return ERR_PTR(-ENOMEM); 724 } 725 726 kn->priv = priv; 727 kn->dir.root = root; 728 729 root->syscall_ops = scops; 730 root->flags = flags; 731 root->kn = kn; 732 init_waitqueue_head(&root->deactivate_waitq); 733 734 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 735 kernfs_activate(kn); 736 737 return root; 738 } 739 740 /** 741 * kernfs_destroy_root - destroy a kernfs hierarchy 742 * @root: root of the hierarchy to destroy 743 * 744 * Destroy the hierarchy anchored at @root by removing all existing 745 * directories and destroying @root. 746 */ 747 void kernfs_destroy_root(struct kernfs_root *root) 748 { 749 kernfs_remove(root->kn); /* will also free @root */ 750 } 751 752 /** 753 * kernfs_create_dir_ns - create a directory 754 * @parent: parent in which to create a new directory 755 * @name: name of the new directory 756 * @mode: mode of the new directory 757 * @priv: opaque data associated with the new directory 758 * @ns: optional namespace tag of the directory 759 * 760 * Returns the created node on success, ERR_PTR() value on failure. 761 */ 762 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 763 const char *name, umode_t mode, 764 void *priv, const void *ns) 765 { 766 struct kernfs_node *kn; 767 int rc; 768 769 /* allocate */ 770 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 771 if (!kn) 772 return ERR_PTR(-ENOMEM); 773 774 kn->dir.root = parent->dir.root; 775 kn->ns = ns; 776 kn->priv = priv; 777 778 /* link in */ 779 rc = kernfs_add_one(kn); 780 if (!rc) 781 return kn; 782 783 kernfs_put(kn); 784 return ERR_PTR(rc); 785 } 786 787 static struct dentry *kernfs_iop_lookup(struct inode *dir, 788 struct dentry *dentry, 789 unsigned int flags) 790 { 791 struct dentry *ret; 792 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 793 struct kernfs_node *kn; 794 struct inode *inode; 795 const void *ns = NULL; 796 797 mutex_lock(&kernfs_mutex); 798 799 if (kernfs_ns_enabled(parent)) 800 ns = kernfs_info(dir->i_sb)->ns; 801 802 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 803 804 /* no such entry */ 805 if (!kn || !kernfs_active(kn)) { 806 ret = NULL; 807 goto out_unlock; 808 } 809 kernfs_get(kn); 810 dentry->d_fsdata = kn; 811 812 /* attach dentry and inode */ 813 inode = kernfs_get_inode(dir->i_sb, kn); 814 if (!inode) { 815 ret = ERR_PTR(-ENOMEM); 816 goto out_unlock; 817 } 818 819 /* instantiate and hash dentry */ 820 ret = d_materialise_unique(dentry, inode); 821 out_unlock: 822 mutex_unlock(&kernfs_mutex); 823 return ret; 824 } 825 826 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 827 umode_t mode) 828 { 829 struct kernfs_node *parent = dir->i_private; 830 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 831 int ret; 832 833 if (!scops || !scops->mkdir) 834 return -EPERM; 835 836 if (!kernfs_get_active(parent)) 837 return -ENODEV; 838 839 ret = scops->mkdir(parent, dentry->d_name.name, mode); 840 841 kernfs_put_active(parent); 842 return ret; 843 } 844 845 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 846 { 847 struct kernfs_node *kn = dentry->d_fsdata; 848 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 849 int ret; 850 851 if (!scops || !scops->rmdir) 852 return -EPERM; 853 854 if (!kernfs_get_active(kn)) 855 return -ENODEV; 856 857 ret = scops->rmdir(kn); 858 859 kernfs_put_active(kn); 860 return ret; 861 } 862 863 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 864 struct inode *new_dir, struct dentry *new_dentry) 865 { 866 struct kernfs_node *kn = old_dentry->d_fsdata; 867 struct kernfs_node *new_parent = new_dir->i_private; 868 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 869 int ret; 870 871 if (!scops || !scops->rename) 872 return -EPERM; 873 874 if (!kernfs_get_active(kn)) 875 return -ENODEV; 876 877 if (!kernfs_get_active(new_parent)) { 878 kernfs_put_active(kn); 879 return -ENODEV; 880 } 881 882 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 883 884 kernfs_put_active(new_parent); 885 kernfs_put_active(kn); 886 return ret; 887 } 888 889 const struct inode_operations kernfs_dir_iops = { 890 .lookup = kernfs_iop_lookup, 891 .permission = kernfs_iop_permission, 892 .setattr = kernfs_iop_setattr, 893 .getattr = kernfs_iop_getattr, 894 .setxattr = kernfs_iop_setxattr, 895 .removexattr = kernfs_iop_removexattr, 896 .getxattr = kernfs_iop_getxattr, 897 .listxattr = kernfs_iop_listxattr, 898 899 .mkdir = kernfs_iop_mkdir, 900 .rmdir = kernfs_iop_rmdir, 901 .rename = kernfs_iop_rename, 902 }; 903 904 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 905 { 906 struct kernfs_node *last; 907 908 while (true) { 909 struct rb_node *rbn; 910 911 last = pos; 912 913 if (kernfs_type(pos) != KERNFS_DIR) 914 break; 915 916 rbn = rb_first(&pos->dir.children); 917 if (!rbn) 918 break; 919 920 pos = rb_to_kn(rbn); 921 } 922 923 return last; 924 } 925 926 /** 927 * kernfs_next_descendant_post - find the next descendant for post-order walk 928 * @pos: the current position (%NULL to initiate traversal) 929 * @root: kernfs_node whose descendants to walk 930 * 931 * Find the next descendant to visit for post-order traversal of @root's 932 * descendants. @root is included in the iteration and the last node to be 933 * visited. 934 */ 935 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 936 struct kernfs_node *root) 937 { 938 struct rb_node *rbn; 939 940 lockdep_assert_held(&kernfs_mutex); 941 942 /* if first iteration, visit leftmost descendant which may be root */ 943 if (!pos) 944 return kernfs_leftmost_descendant(root); 945 946 /* if we visited @root, we're done */ 947 if (pos == root) 948 return NULL; 949 950 /* if there's an unvisited sibling, visit its leftmost descendant */ 951 rbn = rb_next(&pos->rb); 952 if (rbn) 953 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 954 955 /* no sibling left, visit parent */ 956 return pos->parent; 957 } 958 959 /** 960 * kernfs_activate - activate a node which started deactivated 961 * @kn: kernfs_node whose subtree is to be activated 962 * 963 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 964 * needs to be explicitly activated. A node which hasn't been activated 965 * isn't visible to userland and deactivation is skipped during its 966 * removal. This is useful to construct atomic init sequences where 967 * creation of multiple nodes should either succeed or fail atomically. 968 * 969 * The caller is responsible for ensuring that this function is not called 970 * after kernfs_remove*() is invoked on @kn. 971 */ 972 void kernfs_activate(struct kernfs_node *kn) 973 { 974 struct kernfs_node *pos; 975 976 mutex_lock(&kernfs_mutex); 977 978 pos = NULL; 979 while ((pos = kernfs_next_descendant_post(pos, kn))) { 980 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 981 continue; 982 983 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 984 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 985 986 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 987 pos->flags |= KERNFS_ACTIVATED; 988 } 989 990 mutex_unlock(&kernfs_mutex); 991 } 992 993 static void __kernfs_remove(struct kernfs_node *kn) 994 { 995 struct kernfs_node *pos; 996 997 lockdep_assert_held(&kernfs_mutex); 998 999 /* 1000 * Short-circuit if non-root @kn has already finished removal. 1001 * This is for kernfs_remove_self() which plays with active ref 1002 * after removal. 1003 */ 1004 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1005 return; 1006 1007 pr_debug("kernfs %s: removing\n", kn->name); 1008 1009 /* prevent any new usage under @kn by deactivating all nodes */ 1010 pos = NULL; 1011 while ((pos = kernfs_next_descendant_post(pos, kn))) 1012 if (kernfs_active(pos)) 1013 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1014 1015 /* deactivate and unlink the subtree node-by-node */ 1016 do { 1017 pos = kernfs_leftmost_descendant(kn); 1018 1019 /* 1020 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1021 * base ref could have been put by someone else by the time 1022 * the function returns. Make sure it doesn't go away 1023 * underneath us. 1024 */ 1025 kernfs_get(pos); 1026 1027 /* 1028 * Drain iff @kn was activated. This avoids draining and 1029 * its lockdep annotations for nodes which have never been 1030 * activated and allows embedding kernfs_remove() in create 1031 * error paths without worrying about draining. 1032 */ 1033 if (kn->flags & KERNFS_ACTIVATED) 1034 kernfs_drain(pos); 1035 else 1036 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1037 1038 /* 1039 * kernfs_unlink_sibling() succeeds once per node. Use it 1040 * to decide who's responsible for cleanups. 1041 */ 1042 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1043 struct kernfs_iattrs *ps_iattr = 1044 pos->parent ? pos->parent->iattr : NULL; 1045 1046 /* update timestamps on the parent */ 1047 if (ps_iattr) { 1048 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; 1049 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; 1050 } 1051 1052 kernfs_put(pos); 1053 } 1054 1055 kernfs_put(pos); 1056 } while (pos != kn); 1057 } 1058 1059 /** 1060 * kernfs_remove - remove a kernfs_node recursively 1061 * @kn: the kernfs_node to remove 1062 * 1063 * Remove @kn along with all its subdirectories and files. 1064 */ 1065 void kernfs_remove(struct kernfs_node *kn) 1066 { 1067 mutex_lock(&kernfs_mutex); 1068 __kernfs_remove(kn); 1069 mutex_unlock(&kernfs_mutex); 1070 } 1071 1072 /** 1073 * kernfs_break_active_protection - break out of active protection 1074 * @kn: the self kernfs_node 1075 * 1076 * The caller must be running off of a kernfs operation which is invoked 1077 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1078 * this function must also be matched with an invocation of 1079 * kernfs_unbreak_active_protection(). 1080 * 1081 * This function releases the active reference of @kn the caller is 1082 * holding. Once this function is called, @kn may be removed at any point 1083 * and the caller is solely responsible for ensuring that the objects it 1084 * dereferences are accessible. 1085 */ 1086 void kernfs_break_active_protection(struct kernfs_node *kn) 1087 { 1088 /* 1089 * Take out ourself out of the active ref dependency chain. If 1090 * we're called without an active ref, lockdep will complain. 1091 */ 1092 kernfs_put_active(kn); 1093 } 1094 1095 /** 1096 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1097 * @kn: the self kernfs_node 1098 * 1099 * If kernfs_break_active_protection() was called, this function must be 1100 * invoked before finishing the kernfs operation. Note that while this 1101 * function restores the active reference, it doesn't and can't actually 1102 * restore the active protection - @kn may already or be in the process of 1103 * being removed. Once kernfs_break_active_protection() is invoked, that 1104 * protection is irreversibly gone for the kernfs operation instance. 1105 * 1106 * While this function may be called at any point after 1107 * kernfs_break_active_protection() is invoked, its most useful location 1108 * would be right before the enclosing kernfs operation returns. 1109 */ 1110 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1111 { 1112 /* 1113 * @kn->active could be in any state; however, the increment we do 1114 * here will be undone as soon as the enclosing kernfs operation 1115 * finishes and this temporary bump can't break anything. If @kn 1116 * is alive, nothing changes. If @kn is being deactivated, the 1117 * soon-to-follow put will either finish deactivation or restore 1118 * deactivated state. If @kn is already removed, the temporary 1119 * bump is guaranteed to be gone before @kn is released. 1120 */ 1121 atomic_inc(&kn->active); 1122 if (kernfs_lockdep(kn)) 1123 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1124 } 1125 1126 /** 1127 * kernfs_remove_self - remove a kernfs_node from its own method 1128 * @kn: the self kernfs_node to remove 1129 * 1130 * The caller must be running off of a kernfs operation which is invoked 1131 * with an active reference - e.g. one of kernfs_ops. This can be used to 1132 * implement a file operation which deletes itself. 1133 * 1134 * For example, the "delete" file for a sysfs device directory can be 1135 * implemented by invoking kernfs_remove_self() on the "delete" file 1136 * itself. This function breaks the circular dependency of trying to 1137 * deactivate self while holding an active ref itself. It isn't necessary 1138 * to modify the usual removal path to use kernfs_remove_self(). The 1139 * "delete" implementation can simply invoke kernfs_remove_self() on self 1140 * before proceeding with the usual removal path. kernfs will ignore later 1141 * kernfs_remove() on self. 1142 * 1143 * kernfs_remove_self() can be called multiple times concurrently on the 1144 * same kernfs_node. Only the first one actually performs removal and 1145 * returns %true. All others will wait until the kernfs operation which 1146 * won self-removal finishes and return %false. Note that the losers wait 1147 * for the completion of not only the winning kernfs_remove_self() but also 1148 * the whole kernfs_ops which won the arbitration. This can be used to 1149 * guarantee, for example, all concurrent writes to a "delete" file to 1150 * finish only after the whole operation is complete. 1151 */ 1152 bool kernfs_remove_self(struct kernfs_node *kn) 1153 { 1154 bool ret; 1155 1156 mutex_lock(&kernfs_mutex); 1157 kernfs_break_active_protection(kn); 1158 1159 /* 1160 * SUICIDAL is used to arbitrate among competing invocations. Only 1161 * the first one will actually perform removal. When the removal 1162 * is complete, SUICIDED is set and the active ref is restored 1163 * while holding kernfs_mutex. The ones which lost arbitration 1164 * waits for SUICDED && drained which can happen only after the 1165 * enclosing kernfs operation which executed the winning instance 1166 * of kernfs_remove_self() finished. 1167 */ 1168 if (!(kn->flags & KERNFS_SUICIDAL)) { 1169 kn->flags |= KERNFS_SUICIDAL; 1170 __kernfs_remove(kn); 1171 kn->flags |= KERNFS_SUICIDED; 1172 ret = true; 1173 } else { 1174 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1175 DEFINE_WAIT(wait); 1176 1177 while (true) { 1178 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1179 1180 if ((kn->flags & KERNFS_SUICIDED) && 1181 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1182 break; 1183 1184 mutex_unlock(&kernfs_mutex); 1185 schedule(); 1186 mutex_lock(&kernfs_mutex); 1187 } 1188 finish_wait(waitq, &wait); 1189 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1190 ret = false; 1191 } 1192 1193 /* 1194 * This must be done while holding kernfs_mutex; otherwise, waiting 1195 * for SUICIDED && deactivated could finish prematurely. 1196 */ 1197 kernfs_unbreak_active_protection(kn); 1198 1199 mutex_unlock(&kernfs_mutex); 1200 return ret; 1201 } 1202 1203 /** 1204 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1205 * @parent: parent of the target 1206 * @name: name of the kernfs_node to remove 1207 * @ns: namespace tag of the kernfs_node to remove 1208 * 1209 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1210 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1211 */ 1212 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1213 const void *ns) 1214 { 1215 struct kernfs_node *kn; 1216 1217 if (!parent) { 1218 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1219 name); 1220 return -ENOENT; 1221 } 1222 1223 mutex_lock(&kernfs_mutex); 1224 1225 kn = kernfs_find_ns(parent, name, ns); 1226 if (kn) 1227 __kernfs_remove(kn); 1228 1229 mutex_unlock(&kernfs_mutex); 1230 1231 if (kn) 1232 return 0; 1233 else 1234 return -ENOENT; 1235 } 1236 1237 /** 1238 * kernfs_rename_ns - move and rename a kernfs_node 1239 * @kn: target node 1240 * @new_parent: new parent to put @sd under 1241 * @new_name: new name 1242 * @new_ns: new namespace tag 1243 */ 1244 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1245 const char *new_name, const void *new_ns) 1246 { 1247 struct kernfs_node *old_parent; 1248 const char *old_name = NULL; 1249 int error; 1250 1251 /* can't move or rename root */ 1252 if (!kn->parent) 1253 return -EINVAL; 1254 1255 mutex_lock(&kernfs_mutex); 1256 1257 error = -ENOENT; 1258 if (!kernfs_active(kn) || !kernfs_active(new_parent)) 1259 goto out; 1260 1261 error = 0; 1262 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1263 (strcmp(kn->name, new_name) == 0)) 1264 goto out; /* nothing to rename */ 1265 1266 error = -EEXIST; 1267 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1268 goto out; 1269 1270 /* rename kernfs_node */ 1271 if (strcmp(kn->name, new_name) != 0) { 1272 error = -ENOMEM; 1273 new_name = kstrdup(new_name, GFP_KERNEL); 1274 if (!new_name) 1275 goto out; 1276 } else { 1277 new_name = NULL; 1278 } 1279 1280 /* 1281 * Move to the appropriate place in the appropriate directories rbtree. 1282 */ 1283 kernfs_unlink_sibling(kn); 1284 kernfs_get(new_parent); 1285 1286 /* rename_lock protects ->parent and ->name accessors */ 1287 spin_lock_irq(&kernfs_rename_lock); 1288 1289 old_parent = kn->parent; 1290 kn->parent = new_parent; 1291 1292 kn->ns = new_ns; 1293 if (new_name) { 1294 if (!(kn->flags & KERNFS_STATIC_NAME)) 1295 old_name = kn->name; 1296 kn->flags &= ~KERNFS_STATIC_NAME; 1297 kn->name = new_name; 1298 } 1299 1300 spin_unlock_irq(&kernfs_rename_lock); 1301 1302 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1303 kernfs_link_sibling(kn); 1304 1305 kernfs_put(old_parent); 1306 kfree(old_name); 1307 1308 error = 0; 1309 out: 1310 mutex_unlock(&kernfs_mutex); 1311 return error; 1312 } 1313 1314 /* Relationship between s_mode and the DT_xxx types */ 1315 static inline unsigned char dt_type(struct kernfs_node *kn) 1316 { 1317 return (kn->mode >> 12) & 15; 1318 } 1319 1320 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1321 { 1322 kernfs_put(filp->private_data); 1323 return 0; 1324 } 1325 1326 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1327 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1328 { 1329 if (pos) { 1330 int valid = kernfs_active(pos) && 1331 pos->parent == parent && hash == pos->hash; 1332 kernfs_put(pos); 1333 if (!valid) 1334 pos = NULL; 1335 } 1336 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1337 struct rb_node *node = parent->dir.children.rb_node; 1338 while (node) { 1339 pos = rb_to_kn(node); 1340 1341 if (hash < pos->hash) 1342 node = node->rb_left; 1343 else if (hash > pos->hash) 1344 node = node->rb_right; 1345 else 1346 break; 1347 } 1348 } 1349 /* Skip over entries which are dying/dead or in the wrong namespace */ 1350 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1351 struct rb_node *node = rb_next(&pos->rb); 1352 if (!node) 1353 pos = NULL; 1354 else 1355 pos = rb_to_kn(node); 1356 } 1357 return pos; 1358 } 1359 1360 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1361 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1362 { 1363 pos = kernfs_dir_pos(ns, parent, ino, pos); 1364 if (pos) { 1365 do { 1366 struct rb_node *node = rb_next(&pos->rb); 1367 if (!node) 1368 pos = NULL; 1369 else 1370 pos = rb_to_kn(node); 1371 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1372 } 1373 return pos; 1374 } 1375 1376 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1377 { 1378 struct dentry *dentry = file->f_path.dentry; 1379 struct kernfs_node *parent = dentry->d_fsdata; 1380 struct kernfs_node *pos = file->private_data; 1381 const void *ns = NULL; 1382 1383 if (!dir_emit_dots(file, ctx)) 1384 return 0; 1385 mutex_lock(&kernfs_mutex); 1386 1387 if (kernfs_ns_enabled(parent)) 1388 ns = kernfs_info(dentry->d_sb)->ns; 1389 1390 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1391 pos; 1392 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1393 const char *name = pos->name; 1394 unsigned int type = dt_type(pos); 1395 int len = strlen(name); 1396 ino_t ino = pos->ino; 1397 1398 ctx->pos = pos->hash; 1399 file->private_data = pos; 1400 kernfs_get(pos); 1401 1402 mutex_unlock(&kernfs_mutex); 1403 if (!dir_emit(ctx, name, len, ino, type)) 1404 return 0; 1405 mutex_lock(&kernfs_mutex); 1406 } 1407 mutex_unlock(&kernfs_mutex); 1408 file->private_data = NULL; 1409 ctx->pos = INT_MAX; 1410 return 0; 1411 } 1412 1413 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset, 1414 int whence) 1415 { 1416 struct inode *inode = file_inode(file); 1417 loff_t ret; 1418 1419 mutex_lock(&inode->i_mutex); 1420 ret = generic_file_llseek(file, offset, whence); 1421 mutex_unlock(&inode->i_mutex); 1422 1423 return ret; 1424 } 1425 1426 const struct file_operations kernfs_dir_fops = { 1427 .read = generic_read_dir, 1428 .iterate = kernfs_fop_readdir, 1429 .release = kernfs_dir_fop_release, 1430 .llseek = kernfs_dir_fop_llseek, 1431 }; 1432