xref: /linux/fs/kernfs/dir.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path - build full path of a given node
96  * @kn: kernfs_node of interest
97  * @buf: buffer to copy @kn's name into
98  * @buflen: size of @buf
99  *
100  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
101  * path is built from the end of @buf so the returned pointer usually
102  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
103  * and %NULL is returned.
104  */
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106 {
107 	unsigned long flags;
108 	char *p;
109 
110 	spin_lock_irqsave(&kernfs_rename_lock, flags);
111 	p = kernfs_path_locked(kn, buf, buflen);
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 	return p;
114 }
115 EXPORT_SYMBOL_GPL(kernfs_path);
116 
117 /**
118  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119  * @kn: kernfs_node of interest
120  *
121  * This function can be called from any context.
122  */
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&kernfs_rename_lock, flags);
128 
129 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 	pr_cont("%s", kernfs_pr_cont_buf);
131 
132 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133 }
134 
135 /**
136  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137  * @kn: kernfs_node of interest
138  *
139  * This function can be called from any context.
140  */
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
142 {
143 	unsigned long flags;
144 	char *p;
145 
146 	spin_lock_irqsave(&kernfs_rename_lock, flags);
147 
148 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 			       sizeof(kernfs_pr_cont_buf));
150 	if (p)
151 		pr_cont("%s", p);
152 	else
153 		pr_cont("<name too long>");
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * kernfs_get_parent - determine the parent node and pin it
160  * @kn: kernfs_node of interest
161  *
162  * Determines @kn's parent, pins and returns it.  This function can be
163  * called from any context.
164  */
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166 {
167 	struct kernfs_node *parent;
168 	unsigned long flags;
169 
170 	spin_lock_irqsave(&kernfs_rename_lock, flags);
171 	parent = kn->parent;
172 	kernfs_get(parent);
173 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174 
175 	return parent;
176 }
177 
178 /**
179  *	kernfs_name_hash
180  *	@name: Null terminated string to hash
181  *	@ns:   Namespace tag to hash
182  *
183  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
184  */
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
186 {
187 	unsigned long hash = init_name_hash();
188 	unsigned int len = strlen(name);
189 	while (len--)
190 		hash = partial_name_hash(*name++, hash);
191 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 	hash &= 0x7fffffffU;
193 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 	if (hash < 2)
195 		hash += 2;
196 	if (hash >= INT_MAX)
197 		hash = INT_MAX - 1;
198 	return hash;
199 }
200 
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 			       const void *ns, const struct kernfs_node *kn)
203 {
204 	if (hash != kn->hash)
205 		return hash - kn->hash;
206 	if (ns != kn->ns)
207 		return ns - kn->ns;
208 	return strcmp(name, kn->name);
209 }
210 
211 static int kernfs_sd_compare(const struct kernfs_node *left,
212 			     const struct kernfs_node *right)
213 {
214 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
215 }
216 
217 /**
218  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
219  *	@kn: kernfs_node of interest
220  *
221  *	Link @kn into its sibling rbtree which starts from
222  *	@kn->parent->dir.children.
223  *
224  *	Locking:
225  *	mutex_lock(kernfs_mutex)
226  *
227  *	RETURNS:
228  *	0 on susccess -EEXIST on failure.
229  */
230 static int kernfs_link_sibling(struct kernfs_node *kn)
231 {
232 	struct rb_node **node = &kn->parent->dir.children.rb_node;
233 	struct rb_node *parent = NULL;
234 
235 	while (*node) {
236 		struct kernfs_node *pos;
237 		int result;
238 
239 		pos = rb_to_kn(*node);
240 		parent = *node;
241 		result = kernfs_sd_compare(kn, pos);
242 		if (result < 0)
243 			node = &pos->rb.rb_left;
244 		else if (result > 0)
245 			node = &pos->rb.rb_right;
246 		else
247 			return -EEXIST;
248 	}
249 
250 	/* add new node and rebalance the tree */
251 	rb_link_node(&kn->rb, parent, node);
252 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
253 
254 	/* successfully added, account subdir number */
255 	if (kernfs_type(kn) == KERNFS_DIR)
256 		kn->parent->dir.subdirs++;
257 
258 	return 0;
259 }
260 
261 /**
262  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
263  *	@kn: kernfs_node of interest
264  *
265  *	Try to unlink @kn from its sibling rbtree which starts from
266  *	kn->parent->dir.children.  Returns %true if @kn was actually
267  *	removed, %false if @kn wasn't on the rbtree.
268  *
269  *	Locking:
270  *	mutex_lock(kernfs_mutex)
271  */
272 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
273 {
274 	if (RB_EMPTY_NODE(&kn->rb))
275 		return false;
276 
277 	if (kernfs_type(kn) == KERNFS_DIR)
278 		kn->parent->dir.subdirs--;
279 
280 	rb_erase(&kn->rb, &kn->parent->dir.children);
281 	RB_CLEAR_NODE(&kn->rb);
282 	return true;
283 }
284 
285 /**
286  *	kernfs_get_active - get an active reference to kernfs_node
287  *	@kn: kernfs_node to get an active reference to
288  *
289  *	Get an active reference of @kn.  This function is noop if @kn
290  *	is NULL.
291  *
292  *	RETURNS:
293  *	Pointer to @kn on success, NULL on failure.
294  */
295 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
296 {
297 	if (unlikely(!kn))
298 		return NULL;
299 
300 	if (!atomic_inc_unless_negative(&kn->active))
301 		return NULL;
302 
303 	if (kernfs_lockdep(kn))
304 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
305 	return kn;
306 }
307 
308 /**
309  *	kernfs_put_active - put an active reference to kernfs_node
310  *	@kn: kernfs_node to put an active reference to
311  *
312  *	Put an active reference to @kn.  This function is noop if @kn
313  *	is NULL.
314  */
315 void kernfs_put_active(struct kernfs_node *kn)
316 {
317 	struct kernfs_root *root = kernfs_root(kn);
318 	int v;
319 
320 	if (unlikely(!kn))
321 		return;
322 
323 	if (kernfs_lockdep(kn))
324 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
325 	v = atomic_dec_return(&kn->active);
326 	if (likely(v != KN_DEACTIVATED_BIAS))
327 		return;
328 
329 	wake_up_all(&root->deactivate_waitq);
330 }
331 
332 /**
333  * kernfs_drain - drain kernfs_node
334  * @kn: kernfs_node to drain
335  *
336  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
337  * removers may invoke this function concurrently on @kn and all will
338  * return after draining is complete.
339  */
340 static void kernfs_drain(struct kernfs_node *kn)
341 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
342 {
343 	struct kernfs_root *root = kernfs_root(kn);
344 
345 	lockdep_assert_held(&kernfs_mutex);
346 	WARN_ON_ONCE(kernfs_active(kn));
347 
348 	mutex_unlock(&kernfs_mutex);
349 
350 	if (kernfs_lockdep(kn)) {
351 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
352 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
353 			lock_contended(&kn->dep_map, _RET_IP_);
354 	}
355 
356 	/* but everyone should wait for draining */
357 	wait_event(root->deactivate_waitq,
358 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
359 
360 	if (kernfs_lockdep(kn)) {
361 		lock_acquired(&kn->dep_map, _RET_IP_);
362 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
363 	}
364 
365 	kernfs_unmap_bin_file(kn);
366 
367 	mutex_lock(&kernfs_mutex);
368 }
369 
370 /**
371  * kernfs_get - get a reference count on a kernfs_node
372  * @kn: the target kernfs_node
373  */
374 void kernfs_get(struct kernfs_node *kn)
375 {
376 	if (kn) {
377 		WARN_ON(!atomic_read(&kn->count));
378 		atomic_inc(&kn->count);
379 	}
380 }
381 EXPORT_SYMBOL_GPL(kernfs_get);
382 
383 /**
384  * kernfs_put - put a reference count on a kernfs_node
385  * @kn: the target kernfs_node
386  *
387  * Put a reference count of @kn and destroy it if it reached zero.
388  */
389 void kernfs_put(struct kernfs_node *kn)
390 {
391 	struct kernfs_node *parent;
392 	struct kernfs_root *root;
393 
394 	if (!kn || !atomic_dec_and_test(&kn->count))
395 		return;
396 	root = kernfs_root(kn);
397  repeat:
398 	/*
399 	 * Moving/renaming is always done while holding reference.
400 	 * kn->parent won't change beneath us.
401 	 */
402 	parent = kn->parent;
403 
404 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
405 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
406 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
407 
408 	if (kernfs_type(kn) == KERNFS_LINK)
409 		kernfs_put(kn->symlink.target_kn);
410 	if (!(kn->flags & KERNFS_STATIC_NAME))
411 		kfree(kn->name);
412 	if (kn->iattr) {
413 		if (kn->iattr->ia_secdata)
414 			security_release_secctx(kn->iattr->ia_secdata,
415 						kn->iattr->ia_secdata_len);
416 		simple_xattrs_free(&kn->iattr->xattrs);
417 	}
418 	kfree(kn->iattr);
419 	ida_simple_remove(&root->ino_ida, kn->ino);
420 	kmem_cache_free(kernfs_node_cache, kn);
421 
422 	kn = parent;
423 	if (kn) {
424 		if (atomic_dec_and_test(&kn->count))
425 			goto repeat;
426 	} else {
427 		/* just released the root kn, free @root too */
428 		ida_destroy(&root->ino_ida);
429 		kfree(root);
430 	}
431 }
432 EXPORT_SYMBOL_GPL(kernfs_put);
433 
434 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
435 {
436 	struct kernfs_node *kn;
437 
438 	if (flags & LOOKUP_RCU)
439 		return -ECHILD;
440 
441 	/* Always perform fresh lookup for negatives */
442 	if (!dentry->d_inode)
443 		goto out_bad_unlocked;
444 
445 	kn = dentry->d_fsdata;
446 	mutex_lock(&kernfs_mutex);
447 
448 	/* The kernfs node has been deactivated */
449 	if (!kernfs_active(kn))
450 		goto out_bad;
451 
452 	/* The kernfs node has been moved? */
453 	if (dentry->d_parent->d_fsdata != kn->parent)
454 		goto out_bad;
455 
456 	/* The kernfs node has been renamed */
457 	if (strcmp(dentry->d_name.name, kn->name) != 0)
458 		goto out_bad;
459 
460 	/* The kernfs node has been moved to a different namespace */
461 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
462 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
463 		goto out_bad;
464 
465 	mutex_unlock(&kernfs_mutex);
466 out_valid:
467 	return 1;
468 out_bad:
469 	mutex_unlock(&kernfs_mutex);
470 out_bad_unlocked:
471 	/*
472 	 * @dentry doesn't match the underlying kernfs node, drop the
473 	 * dentry and force lookup.  If we have submounts we must allow the
474 	 * vfs caches to lie about the state of the filesystem to prevent
475 	 * leaks and other nasty things, so use check_submounts_and_drop()
476 	 * instead of d_drop().
477 	 */
478 	if (check_submounts_and_drop(dentry) != 0)
479 		goto out_valid;
480 
481 	return 0;
482 }
483 
484 static void kernfs_dop_release(struct dentry *dentry)
485 {
486 	kernfs_put(dentry->d_fsdata);
487 }
488 
489 const struct dentry_operations kernfs_dops = {
490 	.d_revalidate	= kernfs_dop_revalidate,
491 	.d_release	= kernfs_dop_release,
492 };
493 
494 /**
495  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
496  * @dentry: the dentry in question
497  *
498  * Return the kernfs_node associated with @dentry.  If @dentry is not a
499  * kernfs one, %NULL is returned.
500  *
501  * While the returned kernfs_node will stay accessible as long as @dentry
502  * is accessible, the returned node can be in any state and the caller is
503  * fully responsible for determining what's accessible.
504  */
505 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
506 {
507 	if (dentry->d_sb->s_op == &kernfs_sops)
508 		return dentry->d_fsdata;
509 	return NULL;
510 }
511 
512 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
513 					     const char *name, umode_t mode,
514 					     unsigned flags)
515 {
516 	char *dup_name = NULL;
517 	struct kernfs_node *kn;
518 	int ret;
519 
520 	if (!(flags & KERNFS_STATIC_NAME)) {
521 		name = dup_name = kstrdup(name, GFP_KERNEL);
522 		if (!name)
523 			return NULL;
524 	}
525 
526 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
527 	if (!kn)
528 		goto err_out1;
529 
530 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
531 	if (ret < 0)
532 		goto err_out2;
533 	kn->ino = ret;
534 
535 	atomic_set(&kn->count, 1);
536 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
537 	RB_CLEAR_NODE(&kn->rb);
538 
539 	kn->name = name;
540 	kn->mode = mode;
541 	kn->flags = flags;
542 
543 	return kn;
544 
545  err_out2:
546 	kmem_cache_free(kernfs_node_cache, kn);
547  err_out1:
548 	kfree(dup_name);
549 	return NULL;
550 }
551 
552 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
553 				    const char *name, umode_t mode,
554 				    unsigned flags)
555 {
556 	struct kernfs_node *kn;
557 
558 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
559 	if (kn) {
560 		kernfs_get(parent);
561 		kn->parent = parent;
562 	}
563 	return kn;
564 }
565 
566 /**
567  *	kernfs_add_one - add kernfs_node to parent without warning
568  *	@kn: kernfs_node to be added
569  *
570  *	The caller must already have initialized @kn->parent.  This
571  *	function increments nlink of the parent's inode if @kn is a
572  *	directory and link into the children list of the parent.
573  *
574  *	RETURNS:
575  *	0 on success, -EEXIST if entry with the given name already
576  *	exists.
577  */
578 int kernfs_add_one(struct kernfs_node *kn)
579 {
580 	struct kernfs_node *parent = kn->parent;
581 	struct kernfs_iattrs *ps_iattr;
582 	bool has_ns;
583 	int ret;
584 
585 	mutex_lock(&kernfs_mutex);
586 
587 	ret = -EINVAL;
588 	has_ns = kernfs_ns_enabled(parent);
589 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
590 		 has_ns ? "required" : "invalid", parent->name, kn->name))
591 		goto out_unlock;
592 
593 	if (kernfs_type(parent) != KERNFS_DIR)
594 		goto out_unlock;
595 
596 	ret = -ENOENT;
597 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
598 		goto out_unlock;
599 
600 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
601 
602 	ret = kernfs_link_sibling(kn);
603 	if (ret)
604 		goto out_unlock;
605 
606 	/* Update timestamps on the parent */
607 	ps_iattr = parent->iattr;
608 	if (ps_iattr) {
609 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
610 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
611 	}
612 
613 	mutex_unlock(&kernfs_mutex);
614 
615 	/*
616 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
617 	 * If not activated here, the kernfs user is responsible for
618 	 * activating the node with kernfs_activate().  A node which hasn't
619 	 * been activated is not visible to userland and its removal won't
620 	 * trigger deactivation.
621 	 */
622 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
623 		kernfs_activate(kn);
624 	return 0;
625 
626 out_unlock:
627 	mutex_unlock(&kernfs_mutex);
628 	return ret;
629 }
630 
631 /**
632  * kernfs_find_ns - find kernfs_node with the given name
633  * @parent: kernfs_node to search under
634  * @name: name to look for
635  * @ns: the namespace tag to use
636  *
637  * Look for kernfs_node with name @name under @parent.  Returns pointer to
638  * the found kernfs_node on success, %NULL on failure.
639  */
640 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
641 					  const unsigned char *name,
642 					  const void *ns)
643 {
644 	struct rb_node *node = parent->dir.children.rb_node;
645 	bool has_ns = kernfs_ns_enabled(parent);
646 	unsigned int hash;
647 
648 	lockdep_assert_held(&kernfs_mutex);
649 
650 	if (has_ns != (bool)ns) {
651 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
652 		     has_ns ? "required" : "invalid", parent->name, name);
653 		return NULL;
654 	}
655 
656 	hash = kernfs_name_hash(name, ns);
657 	while (node) {
658 		struct kernfs_node *kn;
659 		int result;
660 
661 		kn = rb_to_kn(node);
662 		result = kernfs_name_compare(hash, name, ns, kn);
663 		if (result < 0)
664 			node = node->rb_left;
665 		else if (result > 0)
666 			node = node->rb_right;
667 		else
668 			return kn;
669 	}
670 	return NULL;
671 }
672 
673 /**
674  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
675  * @parent: kernfs_node to search under
676  * @name: name to look for
677  * @ns: the namespace tag to use
678  *
679  * Look for kernfs_node with name @name under @parent and get a reference
680  * if found.  This function may sleep and returns pointer to the found
681  * kernfs_node on success, %NULL on failure.
682  */
683 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
684 					   const char *name, const void *ns)
685 {
686 	struct kernfs_node *kn;
687 
688 	mutex_lock(&kernfs_mutex);
689 	kn = kernfs_find_ns(parent, name, ns);
690 	kernfs_get(kn);
691 	mutex_unlock(&kernfs_mutex);
692 
693 	return kn;
694 }
695 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
696 
697 /**
698  * kernfs_create_root - create a new kernfs hierarchy
699  * @scops: optional syscall operations for the hierarchy
700  * @flags: KERNFS_ROOT_* flags
701  * @priv: opaque data associated with the new directory
702  *
703  * Returns the root of the new hierarchy on success, ERR_PTR() value on
704  * failure.
705  */
706 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
707 				       unsigned int flags, void *priv)
708 {
709 	struct kernfs_root *root;
710 	struct kernfs_node *kn;
711 
712 	root = kzalloc(sizeof(*root), GFP_KERNEL);
713 	if (!root)
714 		return ERR_PTR(-ENOMEM);
715 
716 	ida_init(&root->ino_ida);
717 
718 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
719 			       KERNFS_DIR);
720 	if (!kn) {
721 		ida_destroy(&root->ino_ida);
722 		kfree(root);
723 		return ERR_PTR(-ENOMEM);
724 	}
725 
726 	kn->priv = priv;
727 	kn->dir.root = root;
728 
729 	root->syscall_ops = scops;
730 	root->flags = flags;
731 	root->kn = kn;
732 	init_waitqueue_head(&root->deactivate_waitq);
733 
734 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
735 		kernfs_activate(kn);
736 
737 	return root;
738 }
739 
740 /**
741  * kernfs_destroy_root - destroy a kernfs hierarchy
742  * @root: root of the hierarchy to destroy
743  *
744  * Destroy the hierarchy anchored at @root by removing all existing
745  * directories and destroying @root.
746  */
747 void kernfs_destroy_root(struct kernfs_root *root)
748 {
749 	kernfs_remove(root->kn);	/* will also free @root */
750 }
751 
752 /**
753  * kernfs_create_dir_ns - create a directory
754  * @parent: parent in which to create a new directory
755  * @name: name of the new directory
756  * @mode: mode of the new directory
757  * @priv: opaque data associated with the new directory
758  * @ns: optional namespace tag of the directory
759  *
760  * Returns the created node on success, ERR_PTR() value on failure.
761  */
762 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
763 					 const char *name, umode_t mode,
764 					 void *priv, const void *ns)
765 {
766 	struct kernfs_node *kn;
767 	int rc;
768 
769 	/* allocate */
770 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
771 	if (!kn)
772 		return ERR_PTR(-ENOMEM);
773 
774 	kn->dir.root = parent->dir.root;
775 	kn->ns = ns;
776 	kn->priv = priv;
777 
778 	/* link in */
779 	rc = kernfs_add_one(kn);
780 	if (!rc)
781 		return kn;
782 
783 	kernfs_put(kn);
784 	return ERR_PTR(rc);
785 }
786 
787 static struct dentry *kernfs_iop_lookup(struct inode *dir,
788 					struct dentry *dentry,
789 					unsigned int flags)
790 {
791 	struct dentry *ret;
792 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
793 	struct kernfs_node *kn;
794 	struct inode *inode;
795 	const void *ns = NULL;
796 
797 	mutex_lock(&kernfs_mutex);
798 
799 	if (kernfs_ns_enabled(parent))
800 		ns = kernfs_info(dir->i_sb)->ns;
801 
802 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
803 
804 	/* no such entry */
805 	if (!kn || !kernfs_active(kn)) {
806 		ret = NULL;
807 		goto out_unlock;
808 	}
809 	kernfs_get(kn);
810 	dentry->d_fsdata = kn;
811 
812 	/* attach dentry and inode */
813 	inode = kernfs_get_inode(dir->i_sb, kn);
814 	if (!inode) {
815 		ret = ERR_PTR(-ENOMEM);
816 		goto out_unlock;
817 	}
818 
819 	/* instantiate and hash dentry */
820 	ret = d_materialise_unique(dentry, inode);
821  out_unlock:
822 	mutex_unlock(&kernfs_mutex);
823 	return ret;
824 }
825 
826 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
827 			    umode_t mode)
828 {
829 	struct kernfs_node *parent = dir->i_private;
830 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
831 	int ret;
832 
833 	if (!scops || !scops->mkdir)
834 		return -EPERM;
835 
836 	if (!kernfs_get_active(parent))
837 		return -ENODEV;
838 
839 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
840 
841 	kernfs_put_active(parent);
842 	return ret;
843 }
844 
845 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
846 {
847 	struct kernfs_node *kn  = dentry->d_fsdata;
848 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
849 	int ret;
850 
851 	if (!scops || !scops->rmdir)
852 		return -EPERM;
853 
854 	if (!kernfs_get_active(kn))
855 		return -ENODEV;
856 
857 	ret = scops->rmdir(kn);
858 
859 	kernfs_put_active(kn);
860 	return ret;
861 }
862 
863 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
864 			     struct inode *new_dir, struct dentry *new_dentry)
865 {
866 	struct kernfs_node *kn  = old_dentry->d_fsdata;
867 	struct kernfs_node *new_parent = new_dir->i_private;
868 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
869 	int ret;
870 
871 	if (!scops || !scops->rename)
872 		return -EPERM;
873 
874 	if (!kernfs_get_active(kn))
875 		return -ENODEV;
876 
877 	if (!kernfs_get_active(new_parent)) {
878 		kernfs_put_active(kn);
879 		return -ENODEV;
880 	}
881 
882 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
883 
884 	kernfs_put_active(new_parent);
885 	kernfs_put_active(kn);
886 	return ret;
887 }
888 
889 const struct inode_operations kernfs_dir_iops = {
890 	.lookup		= kernfs_iop_lookup,
891 	.permission	= kernfs_iop_permission,
892 	.setattr	= kernfs_iop_setattr,
893 	.getattr	= kernfs_iop_getattr,
894 	.setxattr	= kernfs_iop_setxattr,
895 	.removexattr	= kernfs_iop_removexattr,
896 	.getxattr	= kernfs_iop_getxattr,
897 	.listxattr	= kernfs_iop_listxattr,
898 
899 	.mkdir		= kernfs_iop_mkdir,
900 	.rmdir		= kernfs_iop_rmdir,
901 	.rename		= kernfs_iop_rename,
902 };
903 
904 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
905 {
906 	struct kernfs_node *last;
907 
908 	while (true) {
909 		struct rb_node *rbn;
910 
911 		last = pos;
912 
913 		if (kernfs_type(pos) != KERNFS_DIR)
914 			break;
915 
916 		rbn = rb_first(&pos->dir.children);
917 		if (!rbn)
918 			break;
919 
920 		pos = rb_to_kn(rbn);
921 	}
922 
923 	return last;
924 }
925 
926 /**
927  * kernfs_next_descendant_post - find the next descendant for post-order walk
928  * @pos: the current position (%NULL to initiate traversal)
929  * @root: kernfs_node whose descendants to walk
930  *
931  * Find the next descendant to visit for post-order traversal of @root's
932  * descendants.  @root is included in the iteration and the last node to be
933  * visited.
934  */
935 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
936 						       struct kernfs_node *root)
937 {
938 	struct rb_node *rbn;
939 
940 	lockdep_assert_held(&kernfs_mutex);
941 
942 	/* if first iteration, visit leftmost descendant which may be root */
943 	if (!pos)
944 		return kernfs_leftmost_descendant(root);
945 
946 	/* if we visited @root, we're done */
947 	if (pos == root)
948 		return NULL;
949 
950 	/* if there's an unvisited sibling, visit its leftmost descendant */
951 	rbn = rb_next(&pos->rb);
952 	if (rbn)
953 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
954 
955 	/* no sibling left, visit parent */
956 	return pos->parent;
957 }
958 
959 /**
960  * kernfs_activate - activate a node which started deactivated
961  * @kn: kernfs_node whose subtree is to be activated
962  *
963  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
964  * needs to be explicitly activated.  A node which hasn't been activated
965  * isn't visible to userland and deactivation is skipped during its
966  * removal.  This is useful to construct atomic init sequences where
967  * creation of multiple nodes should either succeed or fail atomically.
968  *
969  * The caller is responsible for ensuring that this function is not called
970  * after kernfs_remove*() is invoked on @kn.
971  */
972 void kernfs_activate(struct kernfs_node *kn)
973 {
974 	struct kernfs_node *pos;
975 
976 	mutex_lock(&kernfs_mutex);
977 
978 	pos = NULL;
979 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
980 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
981 			continue;
982 
983 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
984 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
985 
986 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
987 		pos->flags |= KERNFS_ACTIVATED;
988 	}
989 
990 	mutex_unlock(&kernfs_mutex);
991 }
992 
993 static void __kernfs_remove(struct kernfs_node *kn)
994 {
995 	struct kernfs_node *pos;
996 
997 	lockdep_assert_held(&kernfs_mutex);
998 
999 	/*
1000 	 * Short-circuit if non-root @kn has already finished removal.
1001 	 * This is for kernfs_remove_self() which plays with active ref
1002 	 * after removal.
1003 	 */
1004 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1005 		return;
1006 
1007 	pr_debug("kernfs %s: removing\n", kn->name);
1008 
1009 	/* prevent any new usage under @kn by deactivating all nodes */
1010 	pos = NULL;
1011 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1012 		if (kernfs_active(pos))
1013 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1014 
1015 	/* deactivate and unlink the subtree node-by-node */
1016 	do {
1017 		pos = kernfs_leftmost_descendant(kn);
1018 
1019 		/*
1020 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1021 		 * base ref could have been put by someone else by the time
1022 		 * the function returns.  Make sure it doesn't go away
1023 		 * underneath us.
1024 		 */
1025 		kernfs_get(pos);
1026 
1027 		/*
1028 		 * Drain iff @kn was activated.  This avoids draining and
1029 		 * its lockdep annotations for nodes which have never been
1030 		 * activated and allows embedding kernfs_remove() in create
1031 		 * error paths without worrying about draining.
1032 		 */
1033 		if (kn->flags & KERNFS_ACTIVATED)
1034 			kernfs_drain(pos);
1035 		else
1036 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1037 
1038 		/*
1039 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1040 		 * to decide who's responsible for cleanups.
1041 		 */
1042 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1043 			struct kernfs_iattrs *ps_iattr =
1044 				pos->parent ? pos->parent->iattr : NULL;
1045 
1046 			/* update timestamps on the parent */
1047 			if (ps_iattr) {
1048 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1049 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1050 			}
1051 
1052 			kernfs_put(pos);
1053 		}
1054 
1055 		kernfs_put(pos);
1056 	} while (pos != kn);
1057 }
1058 
1059 /**
1060  * kernfs_remove - remove a kernfs_node recursively
1061  * @kn: the kernfs_node to remove
1062  *
1063  * Remove @kn along with all its subdirectories and files.
1064  */
1065 void kernfs_remove(struct kernfs_node *kn)
1066 {
1067 	mutex_lock(&kernfs_mutex);
1068 	__kernfs_remove(kn);
1069 	mutex_unlock(&kernfs_mutex);
1070 }
1071 
1072 /**
1073  * kernfs_break_active_protection - break out of active protection
1074  * @kn: the self kernfs_node
1075  *
1076  * The caller must be running off of a kernfs operation which is invoked
1077  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1078  * this function must also be matched with an invocation of
1079  * kernfs_unbreak_active_protection().
1080  *
1081  * This function releases the active reference of @kn the caller is
1082  * holding.  Once this function is called, @kn may be removed at any point
1083  * and the caller is solely responsible for ensuring that the objects it
1084  * dereferences are accessible.
1085  */
1086 void kernfs_break_active_protection(struct kernfs_node *kn)
1087 {
1088 	/*
1089 	 * Take out ourself out of the active ref dependency chain.  If
1090 	 * we're called without an active ref, lockdep will complain.
1091 	 */
1092 	kernfs_put_active(kn);
1093 }
1094 
1095 /**
1096  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1097  * @kn: the self kernfs_node
1098  *
1099  * If kernfs_break_active_protection() was called, this function must be
1100  * invoked before finishing the kernfs operation.  Note that while this
1101  * function restores the active reference, it doesn't and can't actually
1102  * restore the active protection - @kn may already or be in the process of
1103  * being removed.  Once kernfs_break_active_protection() is invoked, that
1104  * protection is irreversibly gone for the kernfs operation instance.
1105  *
1106  * While this function may be called at any point after
1107  * kernfs_break_active_protection() is invoked, its most useful location
1108  * would be right before the enclosing kernfs operation returns.
1109  */
1110 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1111 {
1112 	/*
1113 	 * @kn->active could be in any state; however, the increment we do
1114 	 * here will be undone as soon as the enclosing kernfs operation
1115 	 * finishes and this temporary bump can't break anything.  If @kn
1116 	 * is alive, nothing changes.  If @kn is being deactivated, the
1117 	 * soon-to-follow put will either finish deactivation or restore
1118 	 * deactivated state.  If @kn is already removed, the temporary
1119 	 * bump is guaranteed to be gone before @kn is released.
1120 	 */
1121 	atomic_inc(&kn->active);
1122 	if (kernfs_lockdep(kn))
1123 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1124 }
1125 
1126 /**
1127  * kernfs_remove_self - remove a kernfs_node from its own method
1128  * @kn: the self kernfs_node to remove
1129  *
1130  * The caller must be running off of a kernfs operation which is invoked
1131  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1132  * implement a file operation which deletes itself.
1133  *
1134  * For example, the "delete" file for a sysfs device directory can be
1135  * implemented by invoking kernfs_remove_self() on the "delete" file
1136  * itself.  This function breaks the circular dependency of trying to
1137  * deactivate self while holding an active ref itself.  It isn't necessary
1138  * to modify the usual removal path to use kernfs_remove_self().  The
1139  * "delete" implementation can simply invoke kernfs_remove_self() on self
1140  * before proceeding with the usual removal path.  kernfs will ignore later
1141  * kernfs_remove() on self.
1142  *
1143  * kernfs_remove_self() can be called multiple times concurrently on the
1144  * same kernfs_node.  Only the first one actually performs removal and
1145  * returns %true.  All others will wait until the kernfs operation which
1146  * won self-removal finishes and return %false.  Note that the losers wait
1147  * for the completion of not only the winning kernfs_remove_self() but also
1148  * the whole kernfs_ops which won the arbitration.  This can be used to
1149  * guarantee, for example, all concurrent writes to a "delete" file to
1150  * finish only after the whole operation is complete.
1151  */
1152 bool kernfs_remove_self(struct kernfs_node *kn)
1153 {
1154 	bool ret;
1155 
1156 	mutex_lock(&kernfs_mutex);
1157 	kernfs_break_active_protection(kn);
1158 
1159 	/*
1160 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1161 	 * the first one will actually perform removal.  When the removal
1162 	 * is complete, SUICIDED is set and the active ref is restored
1163 	 * while holding kernfs_mutex.  The ones which lost arbitration
1164 	 * waits for SUICDED && drained which can happen only after the
1165 	 * enclosing kernfs operation which executed the winning instance
1166 	 * of kernfs_remove_self() finished.
1167 	 */
1168 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1169 		kn->flags |= KERNFS_SUICIDAL;
1170 		__kernfs_remove(kn);
1171 		kn->flags |= KERNFS_SUICIDED;
1172 		ret = true;
1173 	} else {
1174 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1175 		DEFINE_WAIT(wait);
1176 
1177 		while (true) {
1178 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1179 
1180 			if ((kn->flags & KERNFS_SUICIDED) &&
1181 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1182 				break;
1183 
1184 			mutex_unlock(&kernfs_mutex);
1185 			schedule();
1186 			mutex_lock(&kernfs_mutex);
1187 		}
1188 		finish_wait(waitq, &wait);
1189 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1190 		ret = false;
1191 	}
1192 
1193 	/*
1194 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1195 	 * for SUICIDED && deactivated could finish prematurely.
1196 	 */
1197 	kernfs_unbreak_active_protection(kn);
1198 
1199 	mutex_unlock(&kernfs_mutex);
1200 	return ret;
1201 }
1202 
1203 /**
1204  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1205  * @parent: parent of the target
1206  * @name: name of the kernfs_node to remove
1207  * @ns: namespace tag of the kernfs_node to remove
1208  *
1209  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1210  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1211  */
1212 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1213 			     const void *ns)
1214 {
1215 	struct kernfs_node *kn;
1216 
1217 	if (!parent) {
1218 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1219 			name);
1220 		return -ENOENT;
1221 	}
1222 
1223 	mutex_lock(&kernfs_mutex);
1224 
1225 	kn = kernfs_find_ns(parent, name, ns);
1226 	if (kn)
1227 		__kernfs_remove(kn);
1228 
1229 	mutex_unlock(&kernfs_mutex);
1230 
1231 	if (kn)
1232 		return 0;
1233 	else
1234 		return -ENOENT;
1235 }
1236 
1237 /**
1238  * kernfs_rename_ns - move and rename a kernfs_node
1239  * @kn: target node
1240  * @new_parent: new parent to put @sd under
1241  * @new_name: new name
1242  * @new_ns: new namespace tag
1243  */
1244 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1245 		     const char *new_name, const void *new_ns)
1246 {
1247 	struct kernfs_node *old_parent;
1248 	const char *old_name = NULL;
1249 	int error;
1250 
1251 	/* can't move or rename root */
1252 	if (!kn->parent)
1253 		return -EINVAL;
1254 
1255 	mutex_lock(&kernfs_mutex);
1256 
1257 	error = -ENOENT;
1258 	if (!kernfs_active(kn) || !kernfs_active(new_parent))
1259 		goto out;
1260 
1261 	error = 0;
1262 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1263 	    (strcmp(kn->name, new_name) == 0))
1264 		goto out;	/* nothing to rename */
1265 
1266 	error = -EEXIST;
1267 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1268 		goto out;
1269 
1270 	/* rename kernfs_node */
1271 	if (strcmp(kn->name, new_name) != 0) {
1272 		error = -ENOMEM;
1273 		new_name = kstrdup(new_name, GFP_KERNEL);
1274 		if (!new_name)
1275 			goto out;
1276 	} else {
1277 		new_name = NULL;
1278 	}
1279 
1280 	/*
1281 	 * Move to the appropriate place in the appropriate directories rbtree.
1282 	 */
1283 	kernfs_unlink_sibling(kn);
1284 	kernfs_get(new_parent);
1285 
1286 	/* rename_lock protects ->parent and ->name accessors */
1287 	spin_lock_irq(&kernfs_rename_lock);
1288 
1289 	old_parent = kn->parent;
1290 	kn->parent = new_parent;
1291 
1292 	kn->ns = new_ns;
1293 	if (new_name) {
1294 		if (!(kn->flags & KERNFS_STATIC_NAME))
1295 			old_name = kn->name;
1296 		kn->flags &= ~KERNFS_STATIC_NAME;
1297 		kn->name = new_name;
1298 	}
1299 
1300 	spin_unlock_irq(&kernfs_rename_lock);
1301 
1302 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1303 	kernfs_link_sibling(kn);
1304 
1305 	kernfs_put(old_parent);
1306 	kfree(old_name);
1307 
1308 	error = 0;
1309  out:
1310 	mutex_unlock(&kernfs_mutex);
1311 	return error;
1312 }
1313 
1314 /* Relationship between s_mode and the DT_xxx types */
1315 static inline unsigned char dt_type(struct kernfs_node *kn)
1316 {
1317 	return (kn->mode >> 12) & 15;
1318 }
1319 
1320 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1321 {
1322 	kernfs_put(filp->private_data);
1323 	return 0;
1324 }
1325 
1326 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1327 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1328 {
1329 	if (pos) {
1330 		int valid = kernfs_active(pos) &&
1331 			pos->parent == parent && hash == pos->hash;
1332 		kernfs_put(pos);
1333 		if (!valid)
1334 			pos = NULL;
1335 	}
1336 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1337 		struct rb_node *node = parent->dir.children.rb_node;
1338 		while (node) {
1339 			pos = rb_to_kn(node);
1340 
1341 			if (hash < pos->hash)
1342 				node = node->rb_left;
1343 			else if (hash > pos->hash)
1344 				node = node->rb_right;
1345 			else
1346 				break;
1347 		}
1348 	}
1349 	/* Skip over entries which are dying/dead or in the wrong namespace */
1350 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1351 		struct rb_node *node = rb_next(&pos->rb);
1352 		if (!node)
1353 			pos = NULL;
1354 		else
1355 			pos = rb_to_kn(node);
1356 	}
1357 	return pos;
1358 }
1359 
1360 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1361 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1362 {
1363 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1364 	if (pos) {
1365 		do {
1366 			struct rb_node *node = rb_next(&pos->rb);
1367 			if (!node)
1368 				pos = NULL;
1369 			else
1370 				pos = rb_to_kn(node);
1371 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1372 	}
1373 	return pos;
1374 }
1375 
1376 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1377 {
1378 	struct dentry *dentry = file->f_path.dentry;
1379 	struct kernfs_node *parent = dentry->d_fsdata;
1380 	struct kernfs_node *pos = file->private_data;
1381 	const void *ns = NULL;
1382 
1383 	if (!dir_emit_dots(file, ctx))
1384 		return 0;
1385 	mutex_lock(&kernfs_mutex);
1386 
1387 	if (kernfs_ns_enabled(parent))
1388 		ns = kernfs_info(dentry->d_sb)->ns;
1389 
1390 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1391 	     pos;
1392 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1393 		const char *name = pos->name;
1394 		unsigned int type = dt_type(pos);
1395 		int len = strlen(name);
1396 		ino_t ino = pos->ino;
1397 
1398 		ctx->pos = pos->hash;
1399 		file->private_data = pos;
1400 		kernfs_get(pos);
1401 
1402 		mutex_unlock(&kernfs_mutex);
1403 		if (!dir_emit(ctx, name, len, ino, type))
1404 			return 0;
1405 		mutex_lock(&kernfs_mutex);
1406 	}
1407 	mutex_unlock(&kernfs_mutex);
1408 	file->private_data = NULL;
1409 	ctx->pos = INT_MAX;
1410 	return 0;
1411 }
1412 
1413 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1414 				    int whence)
1415 {
1416 	struct inode *inode = file_inode(file);
1417 	loff_t ret;
1418 
1419 	mutex_lock(&inode->i_mutex);
1420 	ret = generic_file_llseek(file, offset, whence);
1421 	mutex_unlock(&inode->i_mutex);
1422 
1423 	return ret;
1424 }
1425 
1426 const struct file_operations kernfs_dir_fops = {
1427 	.read		= generic_read_dir,
1428 	.iterate	= kernfs_fop_readdir,
1429 	.release	= kernfs_dir_fop_release,
1430 	.llseek		= kernfs_dir_fop_llseek,
1431 };
1432