1 /* 2 * Copyright (C) International Business Machines Corp., 2000-2004 3 * Portions Copyright (C) Christoph Hellwig, 2001-2002 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 /* 21 * jfs_logmgr.c: log manager 22 * 23 * for related information, see transaction manager (jfs_txnmgr.c), and 24 * recovery manager (jfs_logredo.c). 25 * 26 * note: for detail, RTFS. 27 * 28 * log buffer manager: 29 * special purpose buffer manager supporting log i/o requirements. 30 * per log serial pageout of logpage 31 * queuing i/o requests and redrive i/o at iodone 32 * maintain current logpage buffer 33 * no caching since append only 34 * appropriate jfs buffer cache buffers as needed 35 * 36 * group commit: 37 * transactions which wrote COMMIT records in the same in-memory 38 * log page during the pageout of previous/current log page(s) are 39 * committed together by the pageout of the page. 40 * 41 * TBD lazy commit: 42 * transactions are committed asynchronously when the log page 43 * containing it COMMIT is paged out when it becomes full; 44 * 45 * serialization: 46 * . a per log lock serialize log write. 47 * . a per log lock serialize group commit. 48 * . a per log lock serialize log open/close; 49 * 50 * TBD log integrity: 51 * careful-write (ping-pong) of last logpage to recover from crash 52 * in overwrite. 53 * detection of split (out-of-order) write of physical sectors 54 * of last logpage via timestamp at end of each sector 55 * with its mirror data array at trailer). 56 * 57 * alternatives: 58 * lsn - 64-bit monotonically increasing integer vs 59 * 32-bit lspn and page eor. 60 */ 61 62 #include <linux/fs.h> 63 #include <linux/blkdev.h> 64 #include <linux/interrupt.h> 65 #include <linux/smp_lock.h> 66 #include <linux/completion.h> 67 #include <linux/kthread.h> 68 #include <linux/buffer_head.h> /* for sync_blockdev() */ 69 #include <linux/bio.h> 70 #include <linux/suspend.h> 71 #include <linux/delay.h> 72 #include <linux/mutex.h> 73 #include "jfs_incore.h" 74 #include "jfs_filsys.h" 75 #include "jfs_metapage.h" 76 #include "jfs_superblock.h" 77 #include "jfs_txnmgr.h" 78 #include "jfs_debug.h" 79 80 81 /* 82 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread) 83 */ 84 static struct lbuf *log_redrive_list; 85 static DEFINE_SPINLOCK(log_redrive_lock); 86 87 88 /* 89 * log read/write serialization (per log) 90 */ 91 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock) 92 #define LOG_LOCK(log) mutex_lock(&((log)->loglock)) 93 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock)) 94 95 96 /* 97 * log group commit serialization (per log) 98 */ 99 100 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock) 101 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock) 102 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock) 103 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait) 104 105 /* 106 * log sync serialization (per log) 107 */ 108 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE) 109 #define LOGSYNC_BARRIER(logsize) ((logsize)/4) 110 /* 111 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE) 112 #define LOGSYNC_BARRIER(logsize) ((logsize)/2) 113 */ 114 115 116 /* 117 * log buffer cache synchronization 118 */ 119 static DEFINE_SPINLOCK(jfsLCacheLock); 120 121 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags) 122 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags) 123 124 /* 125 * See __SLEEP_COND in jfs_locks.h 126 */ 127 #define LCACHE_SLEEP_COND(wq, cond, flags) \ 128 do { \ 129 if (cond) \ 130 break; \ 131 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \ 132 } while (0) 133 134 #define LCACHE_WAKEUP(event) wake_up(event) 135 136 137 /* 138 * lbuf buffer cache (lCache) control 139 */ 140 /* log buffer manager pageout control (cumulative, inclusive) */ 141 #define lbmREAD 0x0001 142 #define lbmWRITE 0x0002 /* enqueue at tail of write queue; 143 * init pageout if at head of queue; 144 */ 145 #define lbmRELEASE 0x0004 /* remove from write queue 146 * at completion of pageout; 147 * do not free/recycle it yet: 148 * caller will free it; 149 */ 150 #define lbmSYNC 0x0008 /* do not return to freelist 151 * when removed from write queue; 152 */ 153 #define lbmFREE 0x0010 /* return to freelist 154 * at completion of pageout; 155 * the buffer may be recycled; 156 */ 157 #define lbmDONE 0x0020 158 #define lbmERROR 0x0040 159 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing 160 * of log page 161 */ 162 #define lbmDIRECT 0x0100 163 164 /* 165 * Global list of active external journals 166 */ 167 static LIST_HEAD(jfs_external_logs); 168 static struct jfs_log *dummy_log = NULL; 169 static DEFINE_MUTEX(jfs_log_mutex); 170 171 /* 172 * forward references 173 */ 174 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk, 175 struct lrd * lrd, struct tlock * tlck); 176 177 static int lmNextPage(struct jfs_log * log); 178 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 179 int activate); 180 181 static int open_inline_log(struct super_block *sb); 182 static int open_dummy_log(struct super_block *sb); 183 static int lbmLogInit(struct jfs_log * log); 184 static void lbmLogShutdown(struct jfs_log * log); 185 static struct lbuf *lbmAllocate(struct jfs_log * log, int); 186 static void lbmFree(struct lbuf * bp); 187 static void lbmfree(struct lbuf * bp); 188 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp); 189 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block); 190 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag); 191 static int lbmIOWait(struct lbuf * bp, int flag); 192 static bio_end_io_t lbmIODone; 193 static void lbmStartIO(struct lbuf * bp); 194 static void lmGCwrite(struct jfs_log * log, int cant_block); 195 static int lmLogSync(struct jfs_log * log, int hard_sync); 196 197 198 199 /* 200 * statistics 201 */ 202 #ifdef CONFIG_JFS_STATISTICS 203 static struct lmStat { 204 uint commit; /* # of commit */ 205 uint pagedone; /* # of page written */ 206 uint submitted; /* # of pages submitted */ 207 uint full_page; /* # of full pages submitted */ 208 uint partial_page; /* # of partial pages submitted */ 209 } lmStat; 210 #endif 211 212 213 /* 214 * NAME: lmLog() 215 * 216 * FUNCTION: write a log record; 217 * 218 * PARAMETER: 219 * 220 * RETURN: lsn - offset to the next log record to write (end-of-log); 221 * -1 - error; 222 * 223 * note: todo: log error handler 224 */ 225 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 226 struct tlock * tlck) 227 { 228 int lsn; 229 int diffp, difft; 230 struct metapage *mp = NULL; 231 unsigned long flags; 232 233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p", 234 log, tblk, lrd, tlck); 235 236 LOG_LOCK(log); 237 238 /* log by (out-of-transaction) JFS ? */ 239 if (tblk == NULL) 240 goto writeRecord; 241 242 /* log from page ? */ 243 if (tlck == NULL || 244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL) 245 goto writeRecord; 246 247 /* 248 * initialize/update page/transaction recovery lsn 249 */ 250 lsn = log->lsn; 251 252 LOGSYNC_LOCK(log, flags); 253 254 /* 255 * initialize page lsn if first log write of the page 256 */ 257 if (mp->lsn == 0) { 258 mp->log = log; 259 mp->lsn = lsn; 260 log->count++; 261 262 /* insert page at tail of logsynclist */ 263 list_add_tail(&mp->synclist, &log->synclist); 264 } 265 266 /* 267 * initialize/update lsn of tblock of the page 268 * 269 * transaction inherits oldest lsn of pages associated 270 * with allocation/deallocation of resources (their 271 * log records are used to reconstruct allocation map 272 * at recovery time: inode for inode allocation map, 273 * B+-tree index of extent descriptors for block 274 * allocation map); 275 * allocation map pages inherit transaction lsn at 276 * commit time to allow forwarding log syncpt past log 277 * records associated with allocation/deallocation of 278 * resources only after persistent map of these map pages 279 * have been updated and propagated to home. 280 */ 281 /* 282 * initialize transaction lsn: 283 */ 284 if (tblk->lsn == 0) { 285 /* inherit lsn of its first page logged */ 286 tblk->lsn = mp->lsn; 287 log->count++; 288 289 /* insert tblock after the page on logsynclist */ 290 list_add(&tblk->synclist, &mp->synclist); 291 } 292 /* 293 * update transaction lsn: 294 */ 295 else { 296 /* inherit oldest/smallest lsn of page */ 297 logdiff(diffp, mp->lsn, log); 298 logdiff(difft, tblk->lsn, log); 299 if (diffp < difft) { 300 /* update tblock lsn with page lsn */ 301 tblk->lsn = mp->lsn; 302 303 /* move tblock after page on logsynclist */ 304 list_move(&tblk->synclist, &mp->synclist); 305 } 306 } 307 308 LOGSYNC_UNLOCK(log, flags); 309 310 /* 311 * write the log record 312 */ 313 writeRecord: 314 lsn = lmWriteRecord(log, tblk, lrd, tlck); 315 316 /* 317 * forward log syncpt if log reached next syncpt trigger 318 */ 319 logdiff(diffp, lsn, log); 320 if (diffp >= log->nextsync) 321 lsn = lmLogSync(log, 0); 322 323 /* update end-of-log lsn */ 324 log->lsn = lsn; 325 326 LOG_UNLOCK(log); 327 328 /* return end-of-log address */ 329 return lsn; 330 } 331 332 /* 333 * NAME: lmWriteRecord() 334 * 335 * FUNCTION: move the log record to current log page 336 * 337 * PARAMETER: cd - commit descriptor 338 * 339 * RETURN: end-of-log address 340 * 341 * serialization: LOG_LOCK() held on entry/exit 342 */ 343 static int 344 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 345 struct tlock * tlck) 346 { 347 int lsn = 0; /* end-of-log address */ 348 struct lbuf *bp; /* dst log page buffer */ 349 struct logpage *lp; /* dst log page */ 350 caddr_t dst; /* destination address in log page */ 351 int dstoffset; /* end-of-log offset in log page */ 352 int freespace; /* free space in log page */ 353 caddr_t p; /* src meta-data page */ 354 caddr_t src; 355 int srclen; 356 int nbytes; /* number of bytes to move */ 357 int i; 358 int len; 359 struct linelock *linelock; 360 struct lv *lv; 361 struct lvd *lvd; 362 int l2linesize; 363 364 len = 0; 365 366 /* retrieve destination log page to write */ 367 bp = (struct lbuf *) log->bp; 368 lp = (struct logpage *) bp->l_ldata; 369 dstoffset = log->eor; 370 371 /* any log data to write ? */ 372 if (tlck == NULL) 373 goto moveLrd; 374 375 /* 376 * move log record data 377 */ 378 /* retrieve source meta-data page to log */ 379 if (tlck->flag & tlckPAGELOCK) { 380 p = (caddr_t) (tlck->mp->data); 381 linelock = (struct linelock *) & tlck->lock; 382 } 383 /* retrieve source in-memory inode to log */ 384 else if (tlck->flag & tlckINODELOCK) { 385 if (tlck->type & tlckDTREE) 386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot; 387 else 388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot; 389 linelock = (struct linelock *) & tlck->lock; 390 } 391 #ifdef _JFS_WIP 392 else if (tlck->flag & tlckINLINELOCK) { 393 394 inlinelock = (struct inlinelock *) & tlck; 395 p = (caddr_t) & inlinelock->pxd; 396 linelock = (struct linelock *) & tlck; 397 } 398 #endif /* _JFS_WIP */ 399 else { 400 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck); 401 return 0; /* Probably should trap */ 402 } 403 l2linesize = linelock->l2linesize; 404 405 moveData: 406 ASSERT(linelock->index <= linelock->maxcnt); 407 408 lv = linelock->lv; 409 for (i = 0; i < linelock->index; i++, lv++) { 410 if (lv->length == 0) 411 continue; 412 413 /* is page full ? */ 414 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) { 415 /* page become full: move on to next page */ 416 lmNextPage(log); 417 418 bp = log->bp; 419 lp = (struct logpage *) bp->l_ldata; 420 dstoffset = LOGPHDRSIZE; 421 } 422 423 /* 424 * move log vector data 425 */ 426 src = (u8 *) p + (lv->offset << l2linesize); 427 srclen = lv->length << l2linesize; 428 len += srclen; 429 while (srclen > 0) { 430 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 431 nbytes = min(freespace, srclen); 432 dst = (caddr_t) lp + dstoffset; 433 memcpy(dst, src, nbytes); 434 dstoffset += nbytes; 435 436 /* is page not full ? */ 437 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 438 break; 439 440 /* page become full: move on to next page */ 441 lmNextPage(log); 442 443 bp = (struct lbuf *) log->bp; 444 lp = (struct logpage *) bp->l_ldata; 445 dstoffset = LOGPHDRSIZE; 446 447 srclen -= nbytes; 448 src += nbytes; 449 } 450 451 /* 452 * move log vector descriptor 453 */ 454 len += 4; 455 lvd = (struct lvd *) ((caddr_t) lp + dstoffset); 456 lvd->offset = cpu_to_le16(lv->offset); 457 lvd->length = cpu_to_le16(lv->length); 458 dstoffset += 4; 459 jfs_info("lmWriteRecord: lv offset:%d length:%d", 460 lv->offset, lv->length); 461 } 462 463 if ((i = linelock->next)) { 464 linelock = (struct linelock *) lid_to_tlock(i); 465 goto moveData; 466 } 467 468 /* 469 * move log record descriptor 470 */ 471 moveLrd: 472 lrd->length = cpu_to_le16(len); 473 474 src = (caddr_t) lrd; 475 srclen = LOGRDSIZE; 476 477 while (srclen > 0) { 478 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 479 nbytes = min(freespace, srclen); 480 dst = (caddr_t) lp + dstoffset; 481 memcpy(dst, src, nbytes); 482 483 dstoffset += nbytes; 484 srclen -= nbytes; 485 486 /* are there more to move than freespace of page ? */ 487 if (srclen) 488 goto pageFull; 489 490 /* 491 * end of log record descriptor 492 */ 493 494 /* update last log record eor */ 495 log->eor = dstoffset; 496 bp->l_eor = dstoffset; 497 lsn = (log->page << L2LOGPSIZE) + dstoffset; 498 499 if (lrd->type & cpu_to_le16(LOG_COMMIT)) { 500 tblk->clsn = lsn; 501 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn, 502 bp->l_eor); 503 504 INCREMENT(lmStat.commit); /* # of commit */ 505 506 /* 507 * enqueue tblock for group commit: 508 * 509 * enqueue tblock of non-trivial/synchronous COMMIT 510 * at tail of group commit queue 511 * (trivial/asynchronous COMMITs are ignored by 512 * group commit.) 513 */ 514 LOGGC_LOCK(log); 515 516 /* init tblock gc state */ 517 tblk->flag = tblkGC_QUEUE; 518 tblk->bp = log->bp; 519 tblk->pn = log->page; 520 tblk->eor = log->eor; 521 522 /* enqueue transaction to commit queue */ 523 list_add_tail(&tblk->cqueue, &log->cqueue); 524 525 LOGGC_UNLOCK(log); 526 } 527 528 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x", 529 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset); 530 531 /* page not full ? */ 532 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 533 return lsn; 534 535 pageFull: 536 /* page become full: move on to next page */ 537 lmNextPage(log); 538 539 bp = (struct lbuf *) log->bp; 540 lp = (struct logpage *) bp->l_ldata; 541 dstoffset = LOGPHDRSIZE; 542 src += nbytes; 543 } 544 545 return lsn; 546 } 547 548 549 /* 550 * NAME: lmNextPage() 551 * 552 * FUNCTION: write current page and allocate next page. 553 * 554 * PARAMETER: log 555 * 556 * RETURN: 0 557 * 558 * serialization: LOG_LOCK() held on entry/exit 559 */ 560 static int lmNextPage(struct jfs_log * log) 561 { 562 struct logpage *lp; 563 int lspn; /* log sequence page number */ 564 int pn; /* current page number */ 565 struct lbuf *bp; 566 struct lbuf *nextbp; 567 struct tblock *tblk; 568 569 /* get current log page number and log sequence page number */ 570 pn = log->page; 571 bp = log->bp; 572 lp = (struct logpage *) bp->l_ldata; 573 lspn = le32_to_cpu(lp->h.page); 574 575 LOGGC_LOCK(log); 576 577 /* 578 * write or queue the full page at the tail of write queue 579 */ 580 /* get the tail tblk on commit queue */ 581 if (list_empty(&log->cqueue)) 582 tblk = NULL; 583 else 584 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue); 585 586 /* every tblk who has COMMIT record on the current page, 587 * and has not been committed, must be on commit queue 588 * since tblk is queued at commit queueu at the time 589 * of writing its COMMIT record on the page before 590 * page becomes full (even though the tblk thread 591 * who wrote COMMIT record may have been suspended 592 * currently); 593 */ 594 595 /* is page bound with outstanding tail tblk ? */ 596 if (tblk && tblk->pn == pn) { 597 /* mark tblk for end-of-page */ 598 tblk->flag |= tblkGC_EOP; 599 600 if (log->cflag & logGC_PAGEOUT) { 601 /* if page is not already on write queue, 602 * just enqueue (no lbmWRITE to prevent redrive) 603 * buffer to wqueue to ensure correct serial order 604 * of the pages since log pages will be added 605 * continuously 606 */ 607 if (bp->l_wqnext == NULL) 608 lbmWrite(log, bp, 0, 0); 609 } else { 610 /* 611 * No current GC leader, initiate group commit 612 */ 613 log->cflag |= logGC_PAGEOUT; 614 lmGCwrite(log, 0); 615 } 616 } 617 /* page is not bound with outstanding tblk: 618 * init write or mark it to be redriven (lbmWRITE) 619 */ 620 else { 621 /* finalize the page */ 622 bp->l_ceor = bp->l_eor; 623 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 624 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0); 625 } 626 LOGGC_UNLOCK(log); 627 628 /* 629 * allocate/initialize next page 630 */ 631 /* if log wraps, the first data page of log is 2 632 * (0 never used, 1 is superblock). 633 */ 634 log->page = (pn == log->size - 1) ? 2 : pn + 1; 635 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */ 636 637 /* allocate/initialize next log page buffer */ 638 nextbp = lbmAllocate(log, log->page); 639 nextbp->l_eor = log->eor; 640 log->bp = nextbp; 641 642 /* initialize next log page */ 643 lp = (struct logpage *) nextbp->l_ldata; 644 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1); 645 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 646 647 return 0; 648 } 649 650 651 /* 652 * NAME: lmGroupCommit() 653 * 654 * FUNCTION: group commit 655 * initiate pageout of the pages with COMMIT in the order of 656 * page number - redrive pageout of the page at the head of 657 * pageout queue until full page has been written. 658 * 659 * RETURN: 660 * 661 * NOTE: 662 * LOGGC_LOCK serializes log group commit queue, and 663 * transaction blocks on the commit queue. 664 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 665 */ 666 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk) 667 { 668 int rc = 0; 669 670 LOGGC_LOCK(log); 671 672 /* group committed already ? */ 673 if (tblk->flag & tblkGC_COMMITTED) { 674 if (tblk->flag & tblkGC_ERROR) 675 rc = -EIO; 676 677 LOGGC_UNLOCK(log); 678 return rc; 679 } 680 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc); 681 682 if (tblk->xflag & COMMIT_LAZY) 683 tblk->flag |= tblkGC_LAZY; 684 685 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) && 686 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag) 687 || jfs_tlocks_low)) { 688 /* 689 * No pageout in progress 690 * 691 * start group commit as its group leader. 692 */ 693 log->cflag |= logGC_PAGEOUT; 694 695 lmGCwrite(log, 0); 696 } 697 698 if (tblk->xflag & COMMIT_LAZY) { 699 /* 700 * Lazy transactions can leave now 701 */ 702 LOGGC_UNLOCK(log); 703 return 0; 704 } 705 706 /* lmGCwrite gives up LOGGC_LOCK, check again */ 707 708 if (tblk->flag & tblkGC_COMMITTED) { 709 if (tblk->flag & tblkGC_ERROR) 710 rc = -EIO; 711 712 LOGGC_UNLOCK(log); 713 return rc; 714 } 715 716 /* upcount transaction waiting for completion 717 */ 718 log->gcrtc++; 719 tblk->flag |= tblkGC_READY; 720 721 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED), 722 LOGGC_LOCK(log), LOGGC_UNLOCK(log)); 723 724 /* removed from commit queue */ 725 if (tblk->flag & tblkGC_ERROR) 726 rc = -EIO; 727 728 LOGGC_UNLOCK(log); 729 return rc; 730 } 731 732 /* 733 * NAME: lmGCwrite() 734 * 735 * FUNCTION: group commit write 736 * initiate write of log page, building a group of all transactions 737 * with commit records on that page. 738 * 739 * RETURN: None 740 * 741 * NOTE: 742 * LOGGC_LOCK must be held by caller. 743 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 744 */ 745 static void lmGCwrite(struct jfs_log * log, int cant_write) 746 { 747 struct lbuf *bp; 748 struct logpage *lp; 749 int gcpn; /* group commit page number */ 750 struct tblock *tblk; 751 struct tblock *xtblk = NULL; 752 753 /* 754 * build the commit group of a log page 755 * 756 * scan commit queue and make a commit group of all 757 * transactions with COMMIT records on the same log page. 758 */ 759 /* get the head tblk on the commit queue */ 760 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn; 761 762 list_for_each_entry(tblk, &log->cqueue, cqueue) { 763 if (tblk->pn != gcpn) 764 break; 765 766 xtblk = tblk; 767 768 /* state transition: (QUEUE, READY) -> COMMIT */ 769 tblk->flag |= tblkGC_COMMIT; 770 } 771 tblk = xtblk; /* last tblk of the page */ 772 773 /* 774 * pageout to commit transactions on the log page. 775 */ 776 bp = (struct lbuf *) tblk->bp; 777 lp = (struct logpage *) bp->l_ldata; 778 /* is page already full ? */ 779 if (tblk->flag & tblkGC_EOP) { 780 /* mark page to free at end of group commit of the page */ 781 tblk->flag &= ~tblkGC_EOP; 782 tblk->flag |= tblkGC_FREE; 783 bp->l_ceor = bp->l_eor; 784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 785 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC, 786 cant_write); 787 INCREMENT(lmStat.full_page); 788 } 789 /* page is not yet full */ 790 else { 791 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */ 792 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 793 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write); 794 INCREMENT(lmStat.partial_page); 795 } 796 } 797 798 /* 799 * NAME: lmPostGC() 800 * 801 * FUNCTION: group commit post-processing 802 * Processes transactions after their commit records have been written 803 * to disk, redriving log I/O if necessary. 804 * 805 * RETURN: None 806 * 807 * NOTE: 808 * This routine is called a interrupt time by lbmIODone 809 */ 810 static void lmPostGC(struct lbuf * bp) 811 { 812 unsigned long flags; 813 struct jfs_log *log = bp->l_log; 814 struct logpage *lp; 815 struct tblock *tblk, *temp; 816 817 //LOGGC_LOCK(log); 818 spin_lock_irqsave(&log->gclock, flags); 819 /* 820 * current pageout of group commit completed. 821 * 822 * remove/wakeup transactions from commit queue who were 823 * group committed with the current log page 824 */ 825 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) { 826 if (!(tblk->flag & tblkGC_COMMIT)) 827 break; 828 /* if transaction was marked GC_COMMIT then 829 * it has been shipped in the current pageout 830 * and made it to disk - it is committed. 831 */ 832 833 if (bp->l_flag & lbmERROR) 834 tblk->flag |= tblkGC_ERROR; 835 836 /* remove it from the commit queue */ 837 list_del(&tblk->cqueue); 838 tblk->flag &= ~tblkGC_QUEUE; 839 840 if (tblk == log->flush_tblk) { 841 /* we can stop flushing the log now */ 842 clear_bit(log_FLUSH, &log->flag); 843 log->flush_tblk = NULL; 844 } 845 846 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk, 847 tblk->flag); 848 849 if (!(tblk->xflag & COMMIT_FORCE)) 850 /* 851 * Hand tblk over to lazy commit thread 852 */ 853 txLazyUnlock(tblk); 854 else { 855 /* state transition: COMMIT -> COMMITTED */ 856 tblk->flag |= tblkGC_COMMITTED; 857 858 if (tblk->flag & tblkGC_READY) 859 log->gcrtc--; 860 861 LOGGC_WAKEUP(tblk); 862 } 863 864 /* was page full before pageout ? 865 * (and this is the last tblk bound with the page) 866 */ 867 if (tblk->flag & tblkGC_FREE) 868 lbmFree(bp); 869 /* did page become full after pageout ? 870 * (and this is the last tblk bound with the page) 871 */ 872 else if (tblk->flag & tblkGC_EOP) { 873 /* finalize the page */ 874 lp = (struct logpage *) bp->l_ldata; 875 bp->l_ceor = bp->l_eor; 876 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 877 jfs_info("lmPostGC: calling lbmWrite"); 878 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 879 1); 880 } 881 882 } 883 884 /* are there any transactions who have entered lnGroupCommit() 885 * (whose COMMITs are after that of the last log page written. 886 * They are waiting for new group commit (above at (SLEEP 1)) 887 * or lazy transactions are on a full (queued) log page, 888 * select the latest ready transaction as new group leader and 889 * wake her up to lead her group. 890 */ 891 if ((!list_empty(&log->cqueue)) && 892 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) || 893 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low)) 894 /* 895 * Call lmGCwrite with new group leader 896 */ 897 lmGCwrite(log, 1); 898 899 /* no transaction are ready yet (transactions are only just 900 * queued (GC_QUEUE) and not entered for group commit yet). 901 * the first transaction entering group commit 902 * will elect herself as new group leader. 903 */ 904 else 905 log->cflag &= ~logGC_PAGEOUT; 906 907 //LOGGC_UNLOCK(log); 908 spin_unlock_irqrestore(&log->gclock, flags); 909 return; 910 } 911 912 /* 913 * NAME: lmLogSync() 914 * 915 * FUNCTION: write log SYNCPT record for specified log 916 * if new sync address is available 917 * (normally the case if sync() is executed by back-ground 918 * process). 919 * calculate new value of i_nextsync which determines when 920 * this code is called again. 921 * 922 * PARAMETERS: log - log structure 923 * hard_sync - 1 to force all metadata to be written 924 * 925 * RETURN: 0 926 * 927 * serialization: LOG_LOCK() held on entry/exit 928 */ 929 static int lmLogSync(struct jfs_log * log, int hard_sync) 930 { 931 int logsize; 932 int written; /* written since last syncpt */ 933 int free; /* free space left available */ 934 int delta; /* additional delta to write normally */ 935 int more; /* additional write granted */ 936 struct lrd lrd; 937 int lsn; 938 struct logsyncblk *lp; 939 struct jfs_sb_info *sbi; 940 unsigned long flags; 941 942 /* push dirty metapages out to disk */ 943 if (hard_sync) 944 list_for_each_entry(sbi, &log->sb_list, log_list) { 945 filemap_fdatawrite(sbi->ipbmap->i_mapping); 946 filemap_fdatawrite(sbi->ipimap->i_mapping); 947 filemap_fdatawrite(sbi->direct_inode->i_mapping); 948 } 949 else 950 list_for_each_entry(sbi, &log->sb_list, log_list) { 951 filemap_flush(sbi->ipbmap->i_mapping); 952 filemap_flush(sbi->ipimap->i_mapping); 953 filemap_flush(sbi->direct_inode->i_mapping); 954 } 955 956 /* 957 * forward syncpt 958 */ 959 /* if last sync is same as last syncpt, 960 * invoke sync point forward processing to update sync. 961 */ 962 963 if (log->sync == log->syncpt) { 964 LOGSYNC_LOCK(log, flags); 965 if (list_empty(&log->synclist)) 966 log->sync = log->lsn; 967 else { 968 lp = list_entry(log->synclist.next, 969 struct logsyncblk, synclist); 970 log->sync = lp->lsn; 971 } 972 LOGSYNC_UNLOCK(log, flags); 973 974 } 975 976 /* if sync is different from last syncpt, 977 * write a SYNCPT record with syncpt = sync. 978 * reset syncpt = sync 979 */ 980 if (log->sync != log->syncpt) { 981 lrd.logtid = 0; 982 lrd.backchain = 0; 983 lrd.type = cpu_to_le16(LOG_SYNCPT); 984 lrd.length = 0; 985 lrd.log.syncpt.sync = cpu_to_le32(log->sync); 986 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 987 988 log->syncpt = log->sync; 989 } else 990 lsn = log->lsn; 991 992 /* 993 * setup next syncpt trigger (SWAG) 994 */ 995 logsize = log->logsize; 996 997 logdiff(written, lsn, log); 998 free = logsize - written; 999 delta = LOGSYNC_DELTA(logsize); 1000 more = min(free / 2, delta); 1001 if (more < 2 * LOGPSIZE) { 1002 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n"); 1003 /* 1004 * log wrapping 1005 * 1006 * option 1 - panic ? No.! 1007 * option 2 - shutdown file systems 1008 * associated with log ? 1009 * option 3 - extend log ? 1010 */ 1011 /* 1012 * option 4 - second chance 1013 * 1014 * mark log wrapped, and continue. 1015 * when all active transactions are completed, 1016 * mark log vaild for recovery. 1017 * if crashed during invalid state, log state 1018 * implies invald log, forcing fsck(). 1019 */ 1020 /* mark log state log wrap in log superblock */ 1021 /* log->state = LOGWRAP; */ 1022 1023 /* reset sync point computation */ 1024 log->syncpt = log->sync = lsn; 1025 log->nextsync = delta; 1026 } else 1027 /* next syncpt trigger = written + more */ 1028 log->nextsync = written + more; 1029 1030 /* if number of bytes written from last sync point is more 1031 * than 1/4 of the log size, stop new transactions from 1032 * starting until all current transactions are completed 1033 * by setting syncbarrier flag. 1034 */ 1035 if (!test_bit(log_SYNCBARRIER, &log->flag) && 1036 (written > LOGSYNC_BARRIER(logsize)) && log->active) { 1037 set_bit(log_SYNCBARRIER, &log->flag); 1038 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn, 1039 log->syncpt); 1040 /* 1041 * We may have to initiate group commit 1042 */ 1043 jfs_flush_journal(log, 0); 1044 } 1045 1046 return lsn; 1047 } 1048 1049 /* 1050 * NAME: jfs_syncpt 1051 * 1052 * FUNCTION: write log SYNCPT record for specified log 1053 * 1054 * PARAMETERS: log - log structure 1055 * hard_sync - set to 1 to force metadata to be written 1056 */ 1057 void jfs_syncpt(struct jfs_log *log, int hard_sync) 1058 { LOG_LOCK(log); 1059 lmLogSync(log, hard_sync); 1060 LOG_UNLOCK(log); 1061 } 1062 1063 /* 1064 * NAME: lmLogOpen() 1065 * 1066 * FUNCTION: open the log on first open; 1067 * insert filesystem in the active list of the log. 1068 * 1069 * PARAMETER: ipmnt - file system mount inode 1070 * iplog - log inode (out) 1071 * 1072 * RETURN: 1073 * 1074 * serialization: 1075 */ 1076 int lmLogOpen(struct super_block *sb) 1077 { 1078 int rc; 1079 struct block_device *bdev; 1080 struct jfs_log *log; 1081 struct jfs_sb_info *sbi = JFS_SBI(sb); 1082 1083 if (sbi->flag & JFS_NOINTEGRITY) 1084 return open_dummy_log(sb); 1085 1086 if (sbi->mntflag & JFS_INLINELOG) 1087 return open_inline_log(sb); 1088 1089 mutex_lock(&jfs_log_mutex); 1090 list_for_each_entry(log, &jfs_external_logs, journal_list) { 1091 if (log->bdev->bd_dev == sbi->logdev) { 1092 if (memcmp(log->uuid, sbi->loguuid, 1093 sizeof(log->uuid))) { 1094 jfs_warn("wrong uuid on JFS journal\n"); 1095 mutex_unlock(&jfs_log_mutex); 1096 return -EINVAL; 1097 } 1098 /* 1099 * add file system to log active file system list 1100 */ 1101 if ((rc = lmLogFileSystem(log, sbi, 1))) { 1102 mutex_unlock(&jfs_log_mutex); 1103 return rc; 1104 } 1105 goto journal_found; 1106 } 1107 } 1108 1109 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) { 1110 mutex_unlock(&jfs_log_mutex); 1111 return -ENOMEM; 1112 } 1113 INIT_LIST_HEAD(&log->sb_list); 1114 init_waitqueue_head(&log->syncwait); 1115 1116 /* 1117 * external log as separate logical volume 1118 * 1119 * file systems to log may have n-to-1 relationship; 1120 */ 1121 1122 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE); 1123 if (IS_ERR(bdev)) { 1124 rc = -PTR_ERR(bdev); 1125 goto free; 1126 } 1127 1128 if ((rc = bd_claim(bdev, log))) { 1129 goto close; 1130 } 1131 1132 log->bdev = bdev; 1133 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid)); 1134 1135 /* 1136 * initialize log: 1137 */ 1138 if ((rc = lmLogInit(log))) 1139 goto unclaim; 1140 1141 list_add(&log->journal_list, &jfs_external_logs); 1142 1143 /* 1144 * add file system to log active file system list 1145 */ 1146 if ((rc = lmLogFileSystem(log, sbi, 1))) 1147 goto shutdown; 1148 1149 journal_found: 1150 LOG_LOCK(log); 1151 list_add(&sbi->log_list, &log->sb_list); 1152 sbi->log = log; 1153 LOG_UNLOCK(log); 1154 1155 mutex_unlock(&jfs_log_mutex); 1156 return 0; 1157 1158 /* 1159 * unwind on error 1160 */ 1161 shutdown: /* unwind lbmLogInit() */ 1162 list_del(&log->journal_list); 1163 lbmLogShutdown(log); 1164 1165 unclaim: 1166 bd_release(bdev); 1167 1168 close: /* close external log device */ 1169 blkdev_put(bdev); 1170 1171 free: /* free log descriptor */ 1172 mutex_unlock(&jfs_log_mutex); 1173 kfree(log); 1174 1175 jfs_warn("lmLogOpen: exit(%d)", rc); 1176 return rc; 1177 } 1178 1179 static int open_inline_log(struct super_block *sb) 1180 { 1181 struct jfs_log *log; 1182 int rc; 1183 1184 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) 1185 return -ENOMEM; 1186 INIT_LIST_HEAD(&log->sb_list); 1187 init_waitqueue_head(&log->syncwait); 1188 1189 set_bit(log_INLINELOG, &log->flag); 1190 log->bdev = sb->s_bdev; 1191 log->base = addressPXD(&JFS_SBI(sb)->logpxd); 1192 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >> 1193 (L2LOGPSIZE - sb->s_blocksize_bits); 1194 log->l2bsize = sb->s_blocksize_bits; 1195 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits); 1196 1197 /* 1198 * initialize log. 1199 */ 1200 if ((rc = lmLogInit(log))) { 1201 kfree(log); 1202 jfs_warn("lmLogOpen: exit(%d)", rc); 1203 return rc; 1204 } 1205 1206 list_add(&JFS_SBI(sb)->log_list, &log->sb_list); 1207 JFS_SBI(sb)->log = log; 1208 1209 return rc; 1210 } 1211 1212 static int open_dummy_log(struct super_block *sb) 1213 { 1214 int rc; 1215 1216 mutex_lock(&jfs_log_mutex); 1217 if (!dummy_log) { 1218 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL); 1219 if (!dummy_log) { 1220 mutex_unlock(&jfs_log_mutex); 1221 return -ENOMEM; 1222 } 1223 INIT_LIST_HEAD(&dummy_log->sb_list); 1224 init_waitqueue_head(&dummy_log->syncwait); 1225 dummy_log->no_integrity = 1; 1226 /* Make up some stuff */ 1227 dummy_log->base = 0; 1228 dummy_log->size = 1024; 1229 rc = lmLogInit(dummy_log); 1230 if (rc) { 1231 kfree(dummy_log); 1232 dummy_log = NULL; 1233 mutex_unlock(&jfs_log_mutex); 1234 return rc; 1235 } 1236 } 1237 1238 LOG_LOCK(dummy_log); 1239 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list); 1240 JFS_SBI(sb)->log = dummy_log; 1241 LOG_UNLOCK(dummy_log); 1242 mutex_unlock(&jfs_log_mutex); 1243 1244 return 0; 1245 } 1246 1247 /* 1248 * NAME: lmLogInit() 1249 * 1250 * FUNCTION: log initialization at first log open. 1251 * 1252 * logredo() (or logformat()) should have been run previously. 1253 * initialize the log from log superblock. 1254 * set the log state in the superblock to LOGMOUNT and 1255 * write SYNCPT log record. 1256 * 1257 * PARAMETER: log - log structure 1258 * 1259 * RETURN: 0 - if ok 1260 * -EINVAL - bad log magic number or superblock dirty 1261 * error returned from logwait() 1262 * 1263 * serialization: single first open thread 1264 */ 1265 int lmLogInit(struct jfs_log * log) 1266 { 1267 int rc = 0; 1268 struct lrd lrd; 1269 struct logsuper *logsuper; 1270 struct lbuf *bpsuper; 1271 struct lbuf *bp; 1272 struct logpage *lp; 1273 int lsn = 0; 1274 1275 jfs_info("lmLogInit: log:0x%p", log); 1276 1277 /* initialize the group commit serialization lock */ 1278 LOGGC_LOCK_INIT(log); 1279 1280 /* allocate/initialize the log write serialization lock */ 1281 LOG_LOCK_INIT(log); 1282 1283 LOGSYNC_LOCK_INIT(log); 1284 1285 INIT_LIST_HEAD(&log->synclist); 1286 1287 INIT_LIST_HEAD(&log->cqueue); 1288 log->flush_tblk = NULL; 1289 1290 log->count = 0; 1291 1292 /* 1293 * initialize log i/o 1294 */ 1295 if ((rc = lbmLogInit(log))) 1296 return rc; 1297 1298 if (!test_bit(log_INLINELOG, &log->flag)) 1299 log->l2bsize = L2LOGPSIZE; 1300 1301 /* check for disabled journaling to disk */ 1302 if (log->no_integrity) { 1303 /* 1304 * Journal pages will still be filled. When the time comes 1305 * to actually do the I/O, the write is not done, and the 1306 * endio routine is called directly. 1307 */ 1308 bp = lbmAllocate(log , 0); 1309 log->bp = bp; 1310 bp->l_pn = bp->l_eor = 0; 1311 } else { 1312 /* 1313 * validate log superblock 1314 */ 1315 if ((rc = lbmRead(log, 1, &bpsuper))) 1316 goto errout10; 1317 1318 logsuper = (struct logsuper *) bpsuper->l_ldata; 1319 1320 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) { 1321 jfs_warn("*** Log Format Error ! ***"); 1322 rc = -EINVAL; 1323 goto errout20; 1324 } 1325 1326 /* logredo() should have been run successfully. */ 1327 if (logsuper->state != cpu_to_le32(LOGREDONE)) { 1328 jfs_warn("*** Log Is Dirty ! ***"); 1329 rc = -EINVAL; 1330 goto errout20; 1331 } 1332 1333 /* initialize log from log superblock */ 1334 if (test_bit(log_INLINELOG,&log->flag)) { 1335 if (log->size != le32_to_cpu(logsuper->size)) { 1336 rc = -EINVAL; 1337 goto errout20; 1338 } 1339 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx " 1340 "size:0x%x", log, 1341 (unsigned long long) log->base, log->size); 1342 } else { 1343 if (memcmp(logsuper->uuid, log->uuid, 16)) { 1344 jfs_warn("wrong uuid on JFS log device"); 1345 goto errout20; 1346 } 1347 log->size = le32_to_cpu(logsuper->size); 1348 log->l2bsize = le32_to_cpu(logsuper->l2bsize); 1349 jfs_info("lmLogInit: external log:0x%p base:0x%Lx " 1350 "size:0x%x", log, 1351 (unsigned long long) log->base, log->size); 1352 } 1353 1354 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE; 1355 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page); 1356 1357 /* 1358 * initialize for log append write mode 1359 */ 1360 /* establish current/end-of-log page/buffer */ 1361 if ((rc = lbmRead(log, log->page, &bp))) 1362 goto errout20; 1363 1364 lp = (struct logpage *) bp->l_ldata; 1365 1366 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d", 1367 le32_to_cpu(logsuper->end), log->page, log->eor, 1368 le16_to_cpu(lp->h.eor)); 1369 1370 log->bp = bp; 1371 bp->l_pn = log->page; 1372 bp->l_eor = log->eor; 1373 1374 /* if current page is full, move on to next page */ 1375 if (log->eor >= LOGPSIZE - LOGPTLRSIZE) 1376 lmNextPage(log); 1377 1378 /* 1379 * initialize log syncpoint 1380 */ 1381 /* 1382 * write the first SYNCPT record with syncpoint = 0 1383 * (i.e., log redo up to HERE !); 1384 * remove current page from lbm write queue at end of pageout 1385 * (to write log superblock update), but do not release to 1386 * freelist; 1387 */ 1388 lrd.logtid = 0; 1389 lrd.backchain = 0; 1390 lrd.type = cpu_to_le16(LOG_SYNCPT); 1391 lrd.length = 0; 1392 lrd.log.syncpt.sync = 0; 1393 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1394 bp = log->bp; 1395 bp->l_ceor = bp->l_eor; 1396 lp = (struct logpage *) bp->l_ldata; 1397 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1398 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0); 1399 if ((rc = lbmIOWait(bp, 0))) 1400 goto errout30; 1401 1402 /* 1403 * update/write superblock 1404 */ 1405 logsuper->state = cpu_to_le32(LOGMOUNT); 1406 log->serial = le32_to_cpu(logsuper->serial) + 1; 1407 logsuper->serial = cpu_to_le32(log->serial); 1408 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1409 if ((rc = lbmIOWait(bpsuper, lbmFREE))) 1410 goto errout30; 1411 } 1412 1413 /* initialize logsync parameters */ 1414 log->logsize = (log->size - 2) << L2LOGPSIZE; 1415 log->lsn = lsn; 1416 log->syncpt = lsn; 1417 log->sync = log->syncpt; 1418 log->nextsync = LOGSYNC_DELTA(log->logsize); 1419 1420 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x", 1421 log->lsn, log->syncpt, log->sync); 1422 1423 /* 1424 * initialize for lazy/group commit 1425 */ 1426 log->clsn = lsn; 1427 1428 return 0; 1429 1430 /* 1431 * unwind on error 1432 */ 1433 errout30: /* release log page */ 1434 log->wqueue = NULL; 1435 bp->l_wqnext = NULL; 1436 lbmFree(bp); 1437 1438 errout20: /* release log superblock */ 1439 lbmFree(bpsuper); 1440 1441 errout10: /* unwind lbmLogInit() */ 1442 lbmLogShutdown(log); 1443 1444 jfs_warn("lmLogInit: exit(%d)", rc); 1445 return rc; 1446 } 1447 1448 1449 /* 1450 * NAME: lmLogClose() 1451 * 1452 * FUNCTION: remove file system <ipmnt> from active list of log <iplog> 1453 * and close it on last close. 1454 * 1455 * PARAMETER: sb - superblock 1456 * 1457 * RETURN: errors from subroutines 1458 * 1459 * serialization: 1460 */ 1461 int lmLogClose(struct super_block *sb) 1462 { 1463 struct jfs_sb_info *sbi = JFS_SBI(sb); 1464 struct jfs_log *log = sbi->log; 1465 struct block_device *bdev; 1466 int rc = 0; 1467 1468 jfs_info("lmLogClose: log:0x%p", log); 1469 1470 mutex_lock(&jfs_log_mutex); 1471 LOG_LOCK(log); 1472 list_del(&sbi->log_list); 1473 LOG_UNLOCK(log); 1474 sbi->log = NULL; 1475 1476 /* 1477 * We need to make sure all of the "written" metapages 1478 * actually make it to disk 1479 */ 1480 sync_blockdev(sb->s_bdev); 1481 1482 if (test_bit(log_INLINELOG, &log->flag)) { 1483 /* 1484 * in-line log in host file system 1485 */ 1486 rc = lmLogShutdown(log); 1487 kfree(log); 1488 goto out; 1489 } 1490 1491 if (!log->no_integrity) 1492 lmLogFileSystem(log, sbi, 0); 1493 1494 if (!list_empty(&log->sb_list)) 1495 goto out; 1496 1497 /* 1498 * TODO: ensure that the dummy_log is in a state to allow 1499 * lbmLogShutdown to deallocate all the buffers and call 1500 * kfree against dummy_log. For now, leave dummy_log & its 1501 * buffers in memory, and resuse if another no-integrity mount 1502 * is requested. 1503 */ 1504 if (log->no_integrity) 1505 goto out; 1506 1507 /* 1508 * external log as separate logical volume 1509 */ 1510 list_del(&log->journal_list); 1511 bdev = log->bdev; 1512 rc = lmLogShutdown(log); 1513 1514 bd_release(bdev); 1515 blkdev_put(bdev); 1516 1517 kfree(log); 1518 1519 out: 1520 mutex_unlock(&jfs_log_mutex); 1521 jfs_info("lmLogClose: exit(%d)", rc); 1522 return rc; 1523 } 1524 1525 1526 /* 1527 * NAME: jfs_flush_journal() 1528 * 1529 * FUNCTION: initiate write of any outstanding transactions to the journal 1530 * and optionally wait until they are all written to disk 1531 * 1532 * wait == 0 flush until latest txn is committed, don't wait 1533 * wait == 1 flush until latest txn is committed, wait 1534 * wait > 1 flush until all txn's are complete, wait 1535 */ 1536 void jfs_flush_journal(struct jfs_log *log, int wait) 1537 { 1538 int i; 1539 struct tblock *target = NULL; 1540 struct jfs_sb_info *sbi; 1541 1542 /* jfs_write_inode may call us during read-only mount */ 1543 if (!log) 1544 return; 1545 1546 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait); 1547 1548 LOGGC_LOCK(log); 1549 1550 if (!list_empty(&log->cqueue)) { 1551 /* 1552 * This ensures that we will keep writing to the journal as long 1553 * as there are unwritten commit records 1554 */ 1555 target = list_entry(log->cqueue.prev, struct tblock, cqueue); 1556 1557 if (test_bit(log_FLUSH, &log->flag)) { 1558 /* 1559 * We're already flushing. 1560 * if flush_tblk is NULL, we are flushing everything, 1561 * so leave it that way. Otherwise, update it to the 1562 * latest transaction 1563 */ 1564 if (log->flush_tblk) 1565 log->flush_tblk = target; 1566 } else { 1567 /* Only flush until latest transaction is committed */ 1568 log->flush_tblk = target; 1569 set_bit(log_FLUSH, &log->flag); 1570 1571 /* 1572 * Initiate I/O on outstanding transactions 1573 */ 1574 if (!(log->cflag & logGC_PAGEOUT)) { 1575 log->cflag |= logGC_PAGEOUT; 1576 lmGCwrite(log, 0); 1577 } 1578 } 1579 } 1580 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) { 1581 /* Flush until all activity complete */ 1582 set_bit(log_FLUSH, &log->flag); 1583 log->flush_tblk = NULL; 1584 } 1585 1586 if (wait && target && !(target->flag & tblkGC_COMMITTED)) { 1587 DECLARE_WAITQUEUE(__wait, current); 1588 1589 add_wait_queue(&target->gcwait, &__wait); 1590 set_current_state(TASK_UNINTERRUPTIBLE); 1591 LOGGC_UNLOCK(log); 1592 schedule(); 1593 current->state = TASK_RUNNING; 1594 LOGGC_LOCK(log); 1595 remove_wait_queue(&target->gcwait, &__wait); 1596 } 1597 LOGGC_UNLOCK(log); 1598 1599 if (wait < 2) 1600 return; 1601 1602 list_for_each_entry(sbi, &log->sb_list, log_list) { 1603 filemap_fdatawrite(sbi->ipbmap->i_mapping); 1604 filemap_fdatawrite(sbi->ipimap->i_mapping); 1605 filemap_fdatawrite(sbi->direct_inode->i_mapping); 1606 } 1607 1608 /* 1609 * If there was recent activity, we may need to wait 1610 * for the lazycommit thread to catch up 1611 */ 1612 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) { 1613 for (i = 0; i < 200; i++) { /* Too much? */ 1614 msleep(250); 1615 if (list_empty(&log->cqueue) && 1616 list_empty(&log->synclist)) 1617 break; 1618 } 1619 } 1620 assert(list_empty(&log->cqueue)); 1621 1622 #ifdef CONFIG_JFS_DEBUG 1623 if (!list_empty(&log->synclist)) { 1624 struct logsyncblk *lp; 1625 1626 list_for_each_entry(lp, &log->synclist, synclist) { 1627 if (lp->xflag & COMMIT_PAGE) { 1628 struct metapage *mp = (struct metapage *)lp; 1629 dump_mem("orphan metapage", lp, 1630 sizeof(struct metapage)); 1631 dump_mem("page", mp->page, sizeof(struct page)); 1632 } 1633 else 1634 dump_mem("orphan tblock", lp, 1635 sizeof(struct tblock)); 1636 } 1637 } 1638 #endif 1639 //assert(list_empty(&log->synclist)); 1640 clear_bit(log_FLUSH, &log->flag); 1641 } 1642 1643 /* 1644 * NAME: lmLogShutdown() 1645 * 1646 * FUNCTION: log shutdown at last LogClose(). 1647 * 1648 * write log syncpt record. 1649 * update super block to set redone flag to 0. 1650 * 1651 * PARAMETER: log - log inode 1652 * 1653 * RETURN: 0 - success 1654 * 1655 * serialization: single last close thread 1656 */ 1657 int lmLogShutdown(struct jfs_log * log) 1658 { 1659 int rc; 1660 struct lrd lrd; 1661 int lsn; 1662 struct logsuper *logsuper; 1663 struct lbuf *bpsuper; 1664 struct lbuf *bp; 1665 struct logpage *lp; 1666 1667 jfs_info("lmLogShutdown: log:0x%p", log); 1668 1669 jfs_flush_journal(log, 2); 1670 1671 /* 1672 * write the last SYNCPT record with syncpoint = 0 1673 * (i.e., log redo up to HERE !) 1674 */ 1675 lrd.logtid = 0; 1676 lrd.backchain = 0; 1677 lrd.type = cpu_to_le16(LOG_SYNCPT); 1678 lrd.length = 0; 1679 lrd.log.syncpt.sync = 0; 1680 1681 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1682 bp = log->bp; 1683 lp = (struct logpage *) bp->l_ldata; 1684 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1685 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0); 1686 lbmIOWait(log->bp, lbmFREE); 1687 log->bp = NULL; 1688 1689 /* 1690 * synchronous update log superblock 1691 * mark log state as shutdown cleanly 1692 * (i.e., Log does not need to be replayed). 1693 */ 1694 if ((rc = lbmRead(log, 1, &bpsuper))) 1695 goto out; 1696 1697 logsuper = (struct logsuper *) bpsuper->l_ldata; 1698 logsuper->state = cpu_to_le32(LOGREDONE); 1699 logsuper->end = cpu_to_le32(lsn); 1700 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1701 rc = lbmIOWait(bpsuper, lbmFREE); 1702 1703 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d", 1704 lsn, log->page, log->eor); 1705 1706 out: 1707 /* 1708 * shutdown per log i/o 1709 */ 1710 lbmLogShutdown(log); 1711 1712 if (rc) { 1713 jfs_warn("lmLogShutdown: exit(%d)", rc); 1714 } 1715 return rc; 1716 } 1717 1718 1719 /* 1720 * NAME: lmLogFileSystem() 1721 * 1722 * FUNCTION: insert (<activate> = true)/remove (<activate> = false) 1723 * file system into/from log active file system list. 1724 * 1725 * PARAMETE: log - pointer to logs inode. 1726 * fsdev - kdev_t of filesystem. 1727 * serial - pointer to returned log serial number 1728 * activate - insert/remove device from active list. 1729 * 1730 * RETURN: 0 - success 1731 * errors returned by vms_iowait(). 1732 */ 1733 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 1734 int activate) 1735 { 1736 int rc = 0; 1737 int i; 1738 struct logsuper *logsuper; 1739 struct lbuf *bpsuper; 1740 char *uuid = sbi->uuid; 1741 1742 /* 1743 * insert/remove file system device to log active file system list. 1744 */ 1745 if ((rc = lbmRead(log, 1, &bpsuper))) 1746 return rc; 1747 1748 logsuper = (struct logsuper *) bpsuper->l_ldata; 1749 if (activate) { 1750 for (i = 0; i < MAX_ACTIVE; i++) 1751 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) { 1752 memcpy(logsuper->active[i].uuid, uuid, 16); 1753 sbi->aggregate = i; 1754 break; 1755 } 1756 if (i == MAX_ACTIVE) { 1757 jfs_warn("Too many file systems sharing journal!"); 1758 lbmFree(bpsuper); 1759 return -EMFILE; /* Is there a better rc? */ 1760 } 1761 } else { 1762 for (i = 0; i < MAX_ACTIVE; i++) 1763 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) { 1764 memcpy(logsuper->active[i].uuid, NULL_UUID, 16); 1765 break; 1766 } 1767 if (i == MAX_ACTIVE) { 1768 jfs_warn("Somebody stomped on the journal!"); 1769 lbmFree(bpsuper); 1770 return -EIO; 1771 } 1772 1773 } 1774 1775 /* 1776 * synchronous write log superblock: 1777 * 1778 * write sidestream bypassing write queue: 1779 * at file system mount, log super block is updated for 1780 * activation of the file system before any log record 1781 * (MOUNT record) of the file system, and at file system 1782 * unmount, all meta data for the file system has been 1783 * flushed before log super block is updated for deactivation 1784 * of the file system. 1785 */ 1786 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1787 rc = lbmIOWait(bpsuper, lbmFREE); 1788 1789 return rc; 1790 } 1791 1792 /* 1793 * log buffer manager (lbm) 1794 * ------------------------ 1795 * 1796 * special purpose buffer manager supporting log i/o requirements. 1797 * 1798 * per log write queue: 1799 * log pageout occurs in serial order by fifo write queue and 1800 * restricting to a single i/o in pregress at any one time. 1801 * a circular singly-linked list 1802 * (log->wrqueue points to the tail, and buffers are linked via 1803 * bp->wrqueue field), and 1804 * maintains log page in pageout ot waiting for pageout in serial pageout. 1805 */ 1806 1807 /* 1808 * lbmLogInit() 1809 * 1810 * initialize per log I/O setup at lmLogInit() 1811 */ 1812 static int lbmLogInit(struct jfs_log * log) 1813 { /* log inode */ 1814 int i; 1815 struct lbuf *lbuf; 1816 1817 jfs_info("lbmLogInit: log:0x%p", log); 1818 1819 /* initialize current buffer cursor */ 1820 log->bp = NULL; 1821 1822 /* initialize log device write queue */ 1823 log->wqueue = NULL; 1824 1825 /* 1826 * Each log has its own buffer pages allocated to it. These are 1827 * not managed by the page cache. This ensures that a transaction 1828 * writing to the log does not block trying to allocate a page from 1829 * the page cache (for the log). This would be bad, since page 1830 * allocation waits on the kswapd thread that may be committing inodes 1831 * which would cause log activity. Was that clear? I'm trying to 1832 * avoid deadlock here. 1833 */ 1834 init_waitqueue_head(&log->free_wait); 1835 1836 log->lbuf_free = NULL; 1837 1838 for (i = 0; i < LOGPAGES;) { 1839 char *buffer; 1840 uint offset; 1841 struct page *page; 1842 1843 buffer = (char *) get_zeroed_page(GFP_KERNEL); 1844 if (buffer == NULL) 1845 goto error; 1846 page = virt_to_page(buffer); 1847 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) { 1848 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL); 1849 if (lbuf == NULL) { 1850 if (offset == 0) 1851 free_page((unsigned long) buffer); 1852 goto error; 1853 } 1854 if (offset) /* we already have one reference */ 1855 get_page(page); 1856 lbuf->l_offset = offset; 1857 lbuf->l_ldata = buffer + offset; 1858 lbuf->l_page = page; 1859 lbuf->l_log = log; 1860 init_waitqueue_head(&lbuf->l_ioevent); 1861 1862 lbuf->l_freelist = log->lbuf_free; 1863 log->lbuf_free = lbuf; 1864 i++; 1865 } 1866 } 1867 1868 return (0); 1869 1870 error: 1871 lbmLogShutdown(log); 1872 return -ENOMEM; 1873 } 1874 1875 1876 /* 1877 * lbmLogShutdown() 1878 * 1879 * finalize per log I/O setup at lmLogShutdown() 1880 */ 1881 static void lbmLogShutdown(struct jfs_log * log) 1882 { 1883 struct lbuf *lbuf; 1884 1885 jfs_info("lbmLogShutdown: log:0x%p", log); 1886 1887 lbuf = log->lbuf_free; 1888 while (lbuf) { 1889 struct lbuf *next = lbuf->l_freelist; 1890 __free_page(lbuf->l_page); 1891 kfree(lbuf); 1892 lbuf = next; 1893 } 1894 } 1895 1896 1897 /* 1898 * lbmAllocate() 1899 * 1900 * allocate an empty log buffer 1901 */ 1902 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn) 1903 { 1904 struct lbuf *bp; 1905 unsigned long flags; 1906 1907 /* 1908 * recycle from log buffer freelist if any 1909 */ 1910 LCACHE_LOCK(flags); 1911 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags); 1912 log->lbuf_free = bp->l_freelist; 1913 LCACHE_UNLOCK(flags); 1914 1915 bp->l_flag = 0; 1916 1917 bp->l_wqnext = NULL; 1918 bp->l_freelist = NULL; 1919 1920 bp->l_pn = pn; 1921 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize)); 1922 bp->l_ceor = 0; 1923 1924 return bp; 1925 } 1926 1927 1928 /* 1929 * lbmFree() 1930 * 1931 * release a log buffer to freelist 1932 */ 1933 static void lbmFree(struct lbuf * bp) 1934 { 1935 unsigned long flags; 1936 1937 LCACHE_LOCK(flags); 1938 1939 lbmfree(bp); 1940 1941 LCACHE_UNLOCK(flags); 1942 } 1943 1944 static void lbmfree(struct lbuf * bp) 1945 { 1946 struct jfs_log *log = bp->l_log; 1947 1948 assert(bp->l_wqnext == NULL); 1949 1950 /* 1951 * return the buffer to head of freelist 1952 */ 1953 bp->l_freelist = log->lbuf_free; 1954 log->lbuf_free = bp; 1955 1956 wake_up(&log->free_wait); 1957 return; 1958 } 1959 1960 1961 /* 1962 * NAME: lbmRedrive 1963 * 1964 * FUNCTION: add a log buffer to the the log redrive list 1965 * 1966 * PARAMETER: 1967 * bp - log buffer 1968 * 1969 * NOTES: 1970 * Takes log_redrive_lock. 1971 */ 1972 static inline void lbmRedrive(struct lbuf *bp) 1973 { 1974 unsigned long flags; 1975 1976 spin_lock_irqsave(&log_redrive_lock, flags); 1977 bp->l_redrive_next = log_redrive_list; 1978 log_redrive_list = bp; 1979 spin_unlock_irqrestore(&log_redrive_lock, flags); 1980 1981 wake_up_process(jfsIOthread); 1982 } 1983 1984 1985 /* 1986 * lbmRead() 1987 */ 1988 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp) 1989 { 1990 struct bio *bio; 1991 struct lbuf *bp; 1992 1993 /* 1994 * allocate a log buffer 1995 */ 1996 *bpp = bp = lbmAllocate(log, pn); 1997 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn); 1998 1999 bp->l_flag |= lbmREAD; 2000 2001 bio = bio_alloc(GFP_NOFS, 1); 2002 2003 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9); 2004 bio->bi_bdev = log->bdev; 2005 bio->bi_io_vec[0].bv_page = bp->l_page; 2006 bio->bi_io_vec[0].bv_len = LOGPSIZE; 2007 bio->bi_io_vec[0].bv_offset = bp->l_offset; 2008 2009 bio->bi_vcnt = 1; 2010 bio->bi_idx = 0; 2011 bio->bi_size = LOGPSIZE; 2012 2013 bio->bi_end_io = lbmIODone; 2014 bio->bi_private = bp; 2015 submit_bio(READ_SYNC, bio); 2016 2017 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD)); 2018 2019 return 0; 2020 } 2021 2022 2023 /* 2024 * lbmWrite() 2025 * 2026 * buffer at head of pageout queue stays after completion of 2027 * partial-page pageout and redriven by explicit initiation of 2028 * pageout by caller until full-page pageout is completed and 2029 * released. 2030 * 2031 * device driver i/o done redrives pageout of new buffer at 2032 * head of pageout queue when current buffer at head of pageout 2033 * queue is released at the completion of its full-page pageout. 2034 * 2035 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit(). 2036 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone() 2037 */ 2038 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, 2039 int cant_block) 2040 { 2041 struct lbuf *tail; 2042 unsigned long flags; 2043 2044 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn); 2045 2046 /* map the logical block address to physical block address */ 2047 bp->l_blkno = 2048 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2049 2050 LCACHE_LOCK(flags); /* disable+lock */ 2051 2052 /* 2053 * initialize buffer for device driver 2054 */ 2055 bp->l_flag = flag; 2056 2057 /* 2058 * insert bp at tail of write queue associated with log 2059 * 2060 * (request is either for bp already/currently at head of queue 2061 * or new bp to be inserted at tail) 2062 */ 2063 tail = log->wqueue; 2064 2065 /* is buffer not already on write queue ? */ 2066 if (bp->l_wqnext == NULL) { 2067 /* insert at tail of wqueue */ 2068 if (tail == NULL) { 2069 log->wqueue = bp; 2070 bp->l_wqnext = bp; 2071 } else { 2072 log->wqueue = bp; 2073 bp->l_wqnext = tail->l_wqnext; 2074 tail->l_wqnext = bp; 2075 } 2076 2077 tail = bp; 2078 } 2079 2080 /* is buffer at head of wqueue and for write ? */ 2081 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) { 2082 LCACHE_UNLOCK(flags); /* unlock+enable */ 2083 return; 2084 } 2085 2086 LCACHE_UNLOCK(flags); /* unlock+enable */ 2087 2088 if (cant_block) 2089 lbmRedrive(bp); 2090 else if (flag & lbmSYNC) 2091 lbmStartIO(bp); 2092 else { 2093 LOGGC_UNLOCK(log); 2094 lbmStartIO(bp); 2095 LOGGC_LOCK(log); 2096 } 2097 } 2098 2099 2100 /* 2101 * lbmDirectWrite() 2102 * 2103 * initiate pageout bypassing write queue for sidestream 2104 * (e.g., log superblock) write; 2105 */ 2106 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag) 2107 { 2108 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x", 2109 bp, flag, bp->l_pn); 2110 2111 /* 2112 * initialize buffer for device driver 2113 */ 2114 bp->l_flag = flag | lbmDIRECT; 2115 2116 /* map the logical block address to physical block address */ 2117 bp->l_blkno = 2118 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2119 2120 /* 2121 * initiate pageout of the page 2122 */ 2123 lbmStartIO(bp); 2124 } 2125 2126 2127 /* 2128 * NAME: lbmStartIO() 2129 * 2130 * FUNCTION: Interface to DD strategy routine 2131 * 2132 * RETURN: none 2133 * 2134 * serialization: LCACHE_LOCK() is NOT held during log i/o; 2135 */ 2136 static void lbmStartIO(struct lbuf * bp) 2137 { 2138 struct bio *bio; 2139 struct jfs_log *log = bp->l_log; 2140 2141 jfs_info("lbmStartIO\n"); 2142 2143 bio = bio_alloc(GFP_NOFS, 1); 2144 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9); 2145 bio->bi_bdev = log->bdev; 2146 bio->bi_io_vec[0].bv_page = bp->l_page; 2147 bio->bi_io_vec[0].bv_len = LOGPSIZE; 2148 bio->bi_io_vec[0].bv_offset = bp->l_offset; 2149 2150 bio->bi_vcnt = 1; 2151 bio->bi_idx = 0; 2152 bio->bi_size = LOGPSIZE; 2153 2154 bio->bi_end_io = lbmIODone; 2155 bio->bi_private = bp; 2156 2157 /* check if journaling to disk has been disabled */ 2158 if (log->no_integrity) { 2159 bio->bi_size = 0; 2160 lbmIODone(bio, 0, 0); 2161 } else { 2162 submit_bio(WRITE_SYNC, bio); 2163 INCREMENT(lmStat.submitted); 2164 } 2165 } 2166 2167 2168 /* 2169 * lbmIOWait() 2170 */ 2171 static int lbmIOWait(struct lbuf * bp, int flag) 2172 { 2173 unsigned long flags; 2174 int rc = 0; 2175 2176 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2177 2178 LCACHE_LOCK(flags); /* disable+lock */ 2179 2180 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags); 2181 2182 rc = (bp->l_flag & lbmERROR) ? -EIO : 0; 2183 2184 if (flag & lbmFREE) 2185 lbmfree(bp); 2186 2187 LCACHE_UNLOCK(flags); /* unlock+enable */ 2188 2189 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2190 return rc; 2191 } 2192 2193 /* 2194 * lbmIODone() 2195 * 2196 * executed at INTIODONE level 2197 */ 2198 static int lbmIODone(struct bio *bio, unsigned int bytes_done, int error) 2199 { 2200 struct lbuf *bp = bio->bi_private; 2201 struct lbuf *nextbp, *tail; 2202 struct jfs_log *log; 2203 unsigned long flags; 2204 2205 if (bio->bi_size) 2206 return 1; 2207 2208 /* 2209 * get back jfs buffer bound to the i/o buffer 2210 */ 2211 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag); 2212 2213 LCACHE_LOCK(flags); /* disable+lock */ 2214 2215 bp->l_flag |= lbmDONE; 2216 2217 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2218 bp->l_flag |= lbmERROR; 2219 2220 jfs_err("lbmIODone: I/O error in JFS log"); 2221 } 2222 2223 bio_put(bio); 2224 2225 /* 2226 * pagein completion 2227 */ 2228 if (bp->l_flag & lbmREAD) { 2229 bp->l_flag &= ~lbmREAD; 2230 2231 LCACHE_UNLOCK(flags); /* unlock+enable */ 2232 2233 /* wakeup I/O initiator */ 2234 LCACHE_WAKEUP(&bp->l_ioevent); 2235 2236 return 0; 2237 } 2238 2239 /* 2240 * pageout completion 2241 * 2242 * the bp at the head of write queue has completed pageout. 2243 * 2244 * if single-commit/full-page pageout, remove the current buffer 2245 * from head of pageout queue, and redrive pageout with 2246 * the new buffer at head of pageout queue; 2247 * otherwise, the partial-page pageout buffer stays at 2248 * the head of pageout queue to be redriven for pageout 2249 * by lmGroupCommit() until full-page pageout is completed. 2250 */ 2251 bp->l_flag &= ~lbmWRITE; 2252 INCREMENT(lmStat.pagedone); 2253 2254 /* update committed lsn */ 2255 log = bp->l_log; 2256 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor; 2257 2258 if (bp->l_flag & lbmDIRECT) { 2259 LCACHE_WAKEUP(&bp->l_ioevent); 2260 LCACHE_UNLOCK(flags); 2261 return 0; 2262 } 2263 2264 tail = log->wqueue; 2265 2266 /* single element queue */ 2267 if (bp == tail) { 2268 /* remove head buffer of full-page pageout 2269 * from log device write queue 2270 */ 2271 if (bp->l_flag & lbmRELEASE) { 2272 log->wqueue = NULL; 2273 bp->l_wqnext = NULL; 2274 } 2275 } 2276 /* multi element queue */ 2277 else { 2278 /* remove head buffer of full-page pageout 2279 * from log device write queue 2280 */ 2281 if (bp->l_flag & lbmRELEASE) { 2282 nextbp = tail->l_wqnext = bp->l_wqnext; 2283 bp->l_wqnext = NULL; 2284 2285 /* 2286 * redrive pageout of next page at head of write queue: 2287 * redrive next page without any bound tblk 2288 * (i.e., page w/o any COMMIT records), or 2289 * first page of new group commit which has been 2290 * queued after current page (subsequent pageout 2291 * is performed synchronously, except page without 2292 * any COMMITs) by lmGroupCommit() as indicated 2293 * by lbmWRITE flag; 2294 */ 2295 if (nextbp->l_flag & lbmWRITE) { 2296 /* 2297 * We can't do the I/O at interrupt time. 2298 * The jfsIO thread can do it 2299 */ 2300 lbmRedrive(nextbp); 2301 } 2302 } 2303 } 2304 2305 /* 2306 * synchronous pageout: 2307 * 2308 * buffer has not necessarily been removed from write queue 2309 * (e.g., synchronous write of partial-page with COMMIT): 2310 * leave buffer for i/o initiator to dispose 2311 */ 2312 if (bp->l_flag & lbmSYNC) { 2313 LCACHE_UNLOCK(flags); /* unlock+enable */ 2314 2315 /* wakeup I/O initiator */ 2316 LCACHE_WAKEUP(&bp->l_ioevent); 2317 } 2318 2319 /* 2320 * Group Commit pageout: 2321 */ 2322 else if (bp->l_flag & lbmGC) { 2323 LCACHE_UNLOCK(flags); 2324 lmPostGC(bp); 2325 } 2326 2327 /* 2328 * asynchronous pageout: 2329 * 2330 * buffer must have been removed from write queue: 2331 * insert buffer at head of freelist where it can be recycled 2332 */ 2333 else { 2334 assert(bp->l_flag & lbmRELEASE); 2335 assert(bp->l_flag & lbmFREE); 2336 lbmfree(bp); 2337 2338 LCACHE_UNLOCK(flags); /* unlock+enable */ 2339 } 2340 2341 return 0; 2342 } 2343 2344 int jfsIOWait(void *arg) 2345 { 2346 struct lbuf *bp; 2347 2348 do { 2349 spin_lock_irq(&log_redrive_lock); 2350 while ((bp = log_redrive_list) != 0) { 2351 log_redrive_list = bp->l_redrive_next; 2352 bp->l_redrive_next = NULL; 2353 spin_unlock_irq(&log_redrive_lock); 2354 lbmStartIO(bp); 2355 spin_lock_irq(&log_redrive_lock); 2356 } 2357 spin_unlock_irq(&log_redrive_lock); 2358 2359 if (freezing(current)) { 2360 refrigerator(); 2361 } else { 2362 set_current_state(TASK_INTERRUPTIBLE); 2363 schedule(); 2364 current->state = TASK_RUNNING; 2365 } 2366 } while (!kthread_should_stop()); 2367 2368 jfs_info("jfsIOWait being killed!"); 2369 return 0; 2370 } 2371 2372 /* 2373 * NAME: lmLogFormat()/jfs_logform() 2374 * 2375 * FUNCTION: format file system log 2376 * 2377 * PARAMETERS: 2378 * log - volume log 2379 * logAddress - start address of log space in FS block 2380 * logSize - length of log space in FS block; 2381 * 2382 * RETURN: 0 - success 2383 * -EIO - i/o error 2384 * 2385 * XXX: We're synchronously writing one page at a time. This needs to 2386 * be improved by writing multiple pages at once. 2387 */ 2388 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize) 2389 { 2390 int rc = -EIO; 2391 struct jfs_sb_info *sbi; 2392 struct logsuper *logsuper; 2393 struct logpage *lp; 2394 int lspn; /* log sequence page number */ 2395 struct lrd *lrd_ptr; 2396 int npages = 0; 2397 struct lbuf *bp; 2398 2399 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d", 2400 (long long)logAddress, logSize); 2401 2402 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list); 2403 2404 /* allocate a log buffer */ 2405 bp = lbmAllocate(log, 1); 2406 2407 npages = logSize >> sbi->l2nbperpage; 2408 2409 /* 2410 * log space: 2411 * 2412 * page 0 - reserved; 2413 * page 1 - log superblock; 2414 * page 2 - log data page: A SYNC log record is written 2415 * into this page at logform time; 2416 * pages 3-N - log data page: set to empty log data pages; 2417 */ 2418 /* 2419 * init log superblock: log page 1 2420 */ 2421 logsuper = (struct logsuper *) bp->l_ldata; 2422 2423 logsuper->magic = cpu_to_le32(LOGMAGIC); 2424 logsuper->version = cpu_to_le32(LOGVERSION); 2425 logsuper->state = cpu_to_le32(LOGREDONE); 2426 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */ 2427 logsuper->size = cpu_to_le32(npages); 2428 logsuper->bsize = cpu_to_le32(sbi->bsize); 2429 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize); 2430 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE); 2431 2432 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2433 bp->l_blkno = logAddress + sbi->nbperpage; 2434 lbmStartIO(bp); 2435 if ((rc = lbmIOWait(bp, 0))) 2436 goto exit; 2437 2438 /* 2439 * init pages 2 to npages-1 as log data pages: 2440 * 2441 * log page sequence number (lpsn) initialization: 2442 * 2443 * pn: 0 1 2 3 n-1 2444 * +-----+-----+=====+=====+===.....===+=====+ 2445 * lspn: N-1 0 1 N-2 2446 * <--- N page circular file ----> 2447 * 2448 * the N (= npages-2) data pages of the log is maintained as 2449 * a circular file for the log records; 2450 * lpsn grows by 1 monotonically as each log page is written 2451 * to the circular file of the log; 2452 * and setLogpage() will not reset the page number even if 2453 * the eor is equal to LOGPHDRSIZE. In order for binary search 2454 * still work in find log end process, we have to simulate the 2455 * log wrap situation at the log format time. 2456 * The 1st log page written will have the highest lpsn. Then 2457 * the succeeding log pages will have ascending order of 2458 * the lspn starting from 0, ... (N-2) 2459 */ 2460 lp = (struct logpage *) bp->l_ldata; 2461 /* 2462 * initialize 1st log page to be written: lpsn = N - 1, 2463 * write a SYNCPT log record is written to this page 2464 */ 2465 lp->h.page = lp->t.page = cpu_to_le32(npages - 3); 2466 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE); 2467 2468 lrd_ptr = (struct lrd *) &lp->data; 2469 lrd_ptr->logtid = 0; 2470 lrd_ptr->backchain = 0; 2471 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT); 2472 lrd_ptr->length = 0; 2473 lrd_ptr->log.syncpt.sync = 0; 2474 2475 bp->l_blkno += sbi->nbperpage; 2476 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2477 lbmStartIO(bp); 2478 if ((rc = lbmIOWait(bp, 0))) 2479 goto exit; 2480 2481 /* 2482 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2) 2483 */ 2484 for (lspn = 0; lspn < npages - 3; lspn++) { 2485 lp->h.page = lp->t.page = cpu_to_le32(lspn); 2486 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 2487 2488 bp->l_blkno += sbi->nbperpage; 2489 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2490 lbmStartIO(bp); 2491 if ((rc = lbmIOWait(bp, 0))) 2492 goto exit; 2493 } 2494 2495 rc = 0; 2496 exit: 2497 /* 2498 * finalize log 2499 */ 2500 /* release the buffer */ 2501 lbmFree(bp); 2502 2503 return rc; 2504 } 2505 2506 #ifdef CONFIG_JFS_STATISTICS 2507 int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length, 2508 int *eof, void *data) 2509 { 2510 int len = 0; 2511 off_t begin; 2512 2513 len += sprintf(buffer, 2514 "JFS Logmgr stats\n" 2515 "================\n" 2516 "commits = %d\n" 2517 "writes submitted = %d\n" 2518 "writes completed = %d\n" 2519 "full pages submitted = %d\n" 2520 "partial pages submitted = %d\n", 2521 lmStat.commit, 2522 lmStat.submitted, 2523 lmStat.pagedone, 2524 lmStat.full_page, 2525 lmStat.partial_page); 2526 2527 begin = offset; 2528 *start = buffer + begin; 2529 len -= begin; 2530 2531 if (len > length) 2532 len = length; 2533 else 2534 *eof = 1; 2535 2536 if (len < 0) 2537 len = 0; 2538 2539 return len; 2540 } 2541 #endif /* CONFIG_JFS_STATISTICS */ 2542