1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) International Business Machines Corp., 2000-2004 4 * Portions Copyright (C) Christoph Hellwig, 2001-2002 5 */ 6 7 /* 8 * jfs_logmgr.c: log manager 9 * 10 * for related information, see transaction manager (jfs_txnmgr.c), and 11 * recovery manager (jfs_logredo.c). 12 * 13 * note: for detail, RTFS. 14 * 15 * log buffer manager: 16 * special purpose buffer manager supporting log i/o requirements. 17 * per log serial pageout of logpage 18 * queuing i/o requests and redrive i/o at iodone 19 * maintain current logpage buffer 20 * no caching since append only 21 * appropriate jfs buffer cache buffers as needed 22 * 23 * group commit: 24 * transactions which wrote COMMIT records in the same in-memory 25 * log page during the pageout of previous/current log page(s) are 26 * committed together by the pageout of the page. 27 * 28 * TBD lazy commit: 29 * transactions are committed asynchronously when the log page 30 * containing it COMMIT is paged out when it becomes full; 31 * 32 * serialization: 33 * . a per log lock serialize log write. 34 * . a per log lock serialize group commit. 35 * . a per log lock serialize log open/close; 36 * 37 * TBD log integrity: 38 * careful-write (ping-pong) of last logpage to recover from crash 39 * in overwrite. 40 * detection of split (out-of-order) write of physical sectors 41 * of last logpage via timestamp at end of each sector 42 * with its mirror data array at trailer). 43 * 44 * alternatives: 45 * lsn - 64-bit monotonically increasing integer vs 46 * 32-bit lspn and page eor. 47 */ 48 49 #include <linux/fs.h> 50 #include <linux/blkdev.h> 51 #include <linux/interrupt.h> 52 #include <linux/completion.h> 53 #include <linux/kthread.h> 54 #include <linux/buffer_head.h> /* for sync_blockdev() */ 55 #include <linux/bio.h> 56 #include <linux/freezer.h> 57 #include <linux/export.h> 58 #include <linux/delay.h> 59 #include <linux/mutex.h> 60 #include <linux/seq_file.h> 61 #include <linux/slab.h> 62 #include "jfs_incore.h" 63 #include "jfs_filsys.h" 64 #include "jfs_metapage.h" 65 #include "jfs_superblock.h" 66 #include "jfs_txnmgr.h" 67 #include "jfs_debug.h" 68 69 70 /* 71 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread) 72 */ 73 static struct lbuf *log_redrive_list; 74 static DEFINE_SPINLOCK(log_redrive_lock); 75 76 77 /* 78 * log read/write serialization (per log) 79 */ 80 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock) 81 #define LOG_LOCK(log) mutex_lock(&((log)->loglock)) 82 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock)) 83 84 85 /* 86 * log group commit serialization (per log) 87 */ 88 89 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock) 90 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock) 91 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock) 92 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait) 93 94 /* 95 * log sync serialization (per log) 96 */ 97 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE) 98 #define LOGSYNC_BARRIER(logsize) ((logsize)/4) 99 /* 100 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE) 101 #define LOGSYNC_BARRIER(logsize) ((logsize)/2) 102 */ 103 104 105 /* 106 * log buffer cache synchronization 107 */ 108 static DEFINE_SPINLOCK(jfsLCacheLock); 109 110 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags) 111 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags) 112 113 /* 114 * See __SLEEP_COND in jfs_locks.h 115 */ 116 #define LCACHE_SLEEP_COND(wq, cond, flags) \ 117 do { \ 118 if (cond) \ 119 break; \ 120 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \ 121 } while (0) 122 123 #define LCACHE_WAKEUP(event) wake_up(event) 124 125 126 /* 127 * lbuf buffer cache (lCache) control 128 */ 129 /* log buffer manager pageout control (cumulative, inclusive) */ 130 #define lbmREAD 0x0001 131 #define lbmWRITE 0x0002 /* enqueue at tail of write queue; 132 * init pageout if at head of queue; 133 */ 134 #define lbmRELEASE 0x0004 /* remove from write queue 135 * at completion of pageout; 136 * do not free/recycle it yet: 137 * caller will free it; 138 */ 139 #define lbmSYNC 0x0008 /* do not return to freelist 140 * when removed from write queue; 141 */ 142 #define lbmFREE 0x0010 /* return to freelist 143 * at completion of pageout; 144 * the buffer may be recycled; 145 */ 146 #define lbmDONE 0x0020 147 #define lbmERROR 0x0040 148 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing 149 * of log page 150 */ 151 #define lbmDIRECT 0x0100 152 153 /* 154 * Global list of active external journals 155 */ 156 static LIST_HEAD(jfs_external_logs); 157 static struct jfs_log *dummy_log; 158 static DEFINE_MUTEX(jfs_log_mutex); 159 160 /* 161 * forward references 162 */ 163 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk, 164 struct lrd * lrd, struct tlock * tlck); 165 166 static int lmNextPage(struct jfs_log * log); 167 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 168 int activate); 169 170 static int open_inline_log(struct super_block *sb); 171 static int open_dummy_log(struct super_block *sb); 172 static int lbmLogInit(struct jfs_log * log); 173 static void lbmLogShutdown(struct jfs_log * log); 174 static struct lbuf *lbmAllocate(struct jfs_log * log, int); 175 static void lbmFree(struct lbuf * bp); 176 static void lbmfree(struct lbuf * bp); 177 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp); 178 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block); 179 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag); 180 static int lbmIOWait(struct lbuf * bp, int flag); 181 static bio_end_io_t lbmIODone; 182 static void lbmStartIO(struct lbuf * bp); 183 static void lmGCwrite(struct jfs_log * log, int cant_block); 184 static int lmLogSync(struct jfs_log * log, int hard_sync); 185 186 187 188 /* 189 * statistics 190 */ 191 #ifdef CONFIG_JFS_STATISTICS 192 static struct lmStat { 193 uint commit; /* # of commit */ 194 uint pagedone; /* # of page written */ 195 uint submitted; /* # of pages submitted */ 196 uint full_page; /* # of full pages submitted */ 197 uint partial_page; /* # of partial pages submitted */ 198 } lmStat; 199 #endif 200 201 static void write_special_inodes(struct jfs_log *log, 202 int (*writer)(struct address_space *)) 203 { 204 struct jfs_sb_info *sbi; 205 206 list_for_each_entry(sbi, &log->sb_list, log_list) { 207 writer(sbi->ipbmap->i_mapping); 208 writer(sbi->ipimap->i_mapping); 209 writer(sbi->direct_inode->i_mapping); 210 } 211 } 212 213 /* 214 * NAME: lmLog() 215 * 216 * FUNCTION: write a log record; 217 * 218 * PARAMETER: 219 * 220 * RETURN: lsn - offset to the next log record to write (end-of-log); 221 * -1 - error; 222 * 223 * note: todo: log error handler 224 */ 225 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 226 struct tlock * tlck) 227 { 228 int lsn; 229 int diffp, difft; 230 struct metapage *mp = NULL; 231 unsigned long flags; 232 233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p", 234 log, tblk, lrd, tlck); 235 236 LOG_LOCK(log); 237 238 /* log by (out-of-transaction) JFS ? */ 239 if (tblk == NULL) 240 goto writeRecord; 241 242 /* log from page ? */ 243 if (tlck == NULL || 244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL) 245 goto writeRecord; 246 247 /* 248 * initialize/update page/transaction recovery lsn 249 */ 250 lsn = log->lsn; 251 252 LOGSYNC_LOCK(log, flags); 253 254 /* 255 * initialize page lsn if first log write of the page 256 */ 257 if (mp->lsn == 0) { 258 mp->log = log; 259 mp->lsn = lsn; 260 log->count++; 261 262 /* insert page at tail of logsynclist */ 263 list_add_tail(&mp->synclist, &log->synclist); 264 } 265 266 /* 267 * initialize/update lsn of tblock of the page 268 * 269 * transaction inherits oldest lsn of pages associated 270 * with allocation/deallocation of resources (their 271 * log records are used to reconstruct allocation map 272 * at recovery time: inode for inode allocation map, 273 * B+-tree index of extent descriptors for block 274 * allocation map); 275 * allocation map pages inherit transaction lsn at 276 * commit time to allow forwarding log syncpt past log 277 * records associated with allocation/deallocation of 278 * resources only after persistent map of these map pages 279 * have been updated and propagated to home. 280 */ 281 /* 282 * initialize transaction lsn: 283 */ 284 if (tblk->lsn == 0) { 285 /* inherit lsn of its first page logged */ 286 tblk->lsn = mp->lsn; 287 log->count++; 288 289 /* insert tblock after the page on logsynclist */ 290 list_add(&tblk->synclist, &mp->synclist); 291 } 292 /* 293 * update transaction lsn: 294 */ 295 else { 296 /* inherit oldest/smallest lsn of page */ 297 logdiff(diffp, mp->lsn, log); 298 logdiff(difft, tblk->lsn, log); 299 if (diffp < difft) { 300 /* update tblock lsn with page lsn */ 301 tblk->lsn = mp->lsn; 302 303 /* move tblock after page on logsynclist */ 304 list_move(&tblk->synclist, &mp->synclist); 305 } 306 } 307 308 LOGSYNC_UNLOCK(log, flags); 309 310 /* 311 * write the log record 312 */ 313 writeRecord: 314 lsn = lmWriteRecord(log, tblk, lrd, tlck); 315 316 /* 317 * forward log syncpt if log reached next syncpt trigger 318 */ 319 logdiff(diffp, lsn, log); 320 if (diffp >= log->nextsync) 321 lsn = lmLogSync(log, 0); 322 323 /* update end-of-log lsn */ 324 log->lsn = lsn; 325 326 LOG_UNLOCK(log); 327 328 /* return end-of-log address */ 329 return lsn; 330 } 331 332 /* 333 * NAME: lmWriteRecord() 334 * 335 * FUNCTION: move the log record to current log page 336 * 337 * PARAMETER: cd - commit descriptor 338 * 339 * RETURN: end-of-log address 340 * 341 * serialization: LOG_LOCK() held on entry/exit 342 */ 343 static int 344 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 345 struct tlock * tlck) 346 { 347 int lsn = 0; /* end-of-log address */ 348 struct lbuf *bp; /* dst log page buffer */ 349 struct logpage *lp; /* dst log page */ 350 caddr_t dst; /* destination address in log page */ 351 int dstoffset; /* end-of-log offset in log page */ 352 int freespace; /* free space in log page */ 353 caddr_t p; /* src meta-data page */ 354 caddr_t src; 355 int srclen; 356 int nbytes; /* number of bytes to move */ 357 int i; 358 int len; 359 struct linelock *linelock; 360 struct lv *lv; 361 struct lvd *lvd; 362 int l2linesize; 363 364 len = 0; 365 366 /* retrieve destination log page to write */ 367 bp = (struct lbuf *) log->bp; 368 lp = (struct logpage *) bp->l_ldata; 369 dstoffset = log->eor; 370 371 /* any log data to write ? */ 372 if (tlck == NULL) 373 goto moveLrd; 374 375 /* 376 * move log record data 377 */ 378 /* retrieve source meta-data page to log */ 379 if (tlck->flag & tlckPAGELOCK) { 380 p = (caddr_t) (tlck->mp->data); 381 linelock = (struct linelock *) & tlck->lock; 382 } 383 /* retrieve source in-memory inode to log */ 384 else if (tlck->flag & tlckINODELOCK) { 385 if (tlck->type & tlckDTREE) 386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot; 387 else 388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot; 389 linelock = (struct linelock *) & tlck->lock; 390 } 391 else { 392 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck); 393 return 0; /* Probably should trap */ 394 } 395 l2linesize = linelock->l2linesize; 396 397 moveData: 398 ASSERT(linelock->index <= linelock->maxcnt); 399 400 lv = linelock->lv; 401 for (i = 0; i < linelock->index; i++, lv++) { 402 if (lv->length == 0) 403 continue; 404 405 /* is page full ? */ 406 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) { 407 /* page become full: move on to next page */ 408 lmNextPage(log); 409 410 bp = log->bp; 411 lp = (struct logpage *) bp->l_ldata; 412 dstoffset = LOGPHDRSIZE; 413 } 414 415 /* 416 * move log vector data 417 */ 418 src = (u8 *) p + (lv->offset << l2linesize); 419 srclen = lv->length << l2linesize; 420 len += srclen; 421 while (srclen > 0) { 422 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 423 nbytes = min(freespace, srclen); 424 dst = (caddr_t) lp + dstoffset; 425 memcpy(dst, src, nbytes); 426 dstoffset += nbytes; 427 428 /* is page not full ? */ 429 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 430 break; 431 432 /* page become full: move on to next page */ 433 lmNextPage(log); 434 435 bp = (struct lbuf *) log->bp; 436 lp = (struct logpage *) bp->l_ldata; 437 dstoffset = LOGPHDRSIZE; 438 439 srclen -= nbytes; 440 src += nbytes; 441 } 442 443 /* 444 * move log vector descriptor 445 */ 446 len += 4; 447 lvd = (struct lvd *) ((caddr_t) lp + dstoffset); 448 lvd->offset = cpu_to_le16(lv->offset); 449 lvd->length = cpu_to_le16(lv->length); 450 dstoffset += 4; 451 jfs_info("lmWriteRecord: lv offset:%d length:%d", 452 lv->offset, lv->length); 453 } 454 455 if ((i = linelock->next)) { 456 linelock = (struct linelock *) lid_to_tlock(i); 457 goto moveData; 458 } 459 460 /* 461 * move log record descriptor 462 */ 463 moveLrd: 464 lrd->length = cpu_to_le16(len); 465 466 src = (caddr_t) lrd; 467 srclen = LOGRDSIZE; 468 469 while (srclen > 0) { 470 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 471 nbytes = min(freespace, srclen); 472 dst = (caddr_t) lp + dstoffset; 473 memcpy(dst, src, nbytes); 474 475 dstoffset += nbytes; 476 srclen -= nbytes; 477 478 /* are there more to move than freespace of page ? */ 479 if (srclen) 480 goto pageFull; 481 482 /* 483 * end of log record descriptor 484 */ 485 486 /* update last log record eor */ 487 log->eor = dstoffset; 488 bp->l_eor = dstoffset; 489 lsn = (log->page << L2LOGPSIZE) + dstoffset; 490 491 if (lrd->type & cpu_to_le16(LOG_COMMIT)) { 492 tblk->clsn = lsn; 493 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn, 494 bp->l_eor); 495 496 INCREMENT(lmStat.commit); /* # of commit */ 497 498 /* 499 * enqueue tblock for group commit: 500 * 501 * enqueue tblock of non-trivial/synchronous COMMIT 502 * at tail of group commit queue 503 * (trivial/asynchronous COMMITs are ignored by 504 * group commit.) 505 */ 506 LOGGC_LOCK(log); 507 508 /* init tblock gc state */ 509 tblk->flag = tblkGC_QUEUE; 510 tblk->bp = log->bp; 511 tblk->pn = log->page; 512 tblk->eor = log->eor; 513 514 /* enqueue transaction to commit queue */ 515 list_add_tail(&tblk->cqueue, &log->cqueue); 516 517 LOGGC_UNLOCK(log); 518 } 519 520 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x", 521 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset); 522 523 /* page not full ? */ 524 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 525 return lsn; 526 527 pageFull: 528 /* page become full: move on to next page */ 529 lmNextPage(log); 530 531 bp = (struct lbuf *) log->bp; 532 lp = (struct logpage *) bp->l_ldata; 533 dstoffset = LOGPHDRSIZE; 534 src += nbytes; 535 } 536 537 return lsn; 538 } 539 540 541 /* 542 * NAME: lmNextPage() 543 * 544 * FUNCTION: write current page and allocate next page. 545 * 546 * PARAMETER: log 547 * 548 * RETURN: 0 549 * 550 * serialization: LOG_LOCK() held on entry/exit 551 */ 552 static int lmNextPage(struct jfs_log * log) 553 { 554 struct logpage *lp; 555 int lspn; /* log sequence page number */ 556 int pn; /* current page number */ 557 struct lbuf *bp; 558 struct lbuf *nextbp; 559 struct tblock *tblk; 560 561 /* get current log page number and log sequence page number */ 562 pn = log->page; 563 bp = log->bp; 564 lp = (struct logpage *) bp->l_ldata; 565 lspn = le32_to_cpu(lp->h.page); 566 567 LOGGC_LOCK(log); 568 569 /* 570 * write or queue the full page at the tail of write queue 571 */ 572 /* get the tail tblk on commit queue */ 573 if (list_empty(&log->cqueue)) 574 tblk = NULL; 575 else 576 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue); 577 578 /* every tblk who has COMMIT record on the current page, 579 * and has not been committed, must be on commit queue 580 * since tblk is queued at commit queueu at the time 581 * of writing its COMMIT record on the page before 582 * page becomes full (even though the tblk thread 583 * who wrote COMMIT record may have been suspended 584 * currently); 585 */ 586 587 /* is page bound with outstanding tail tblk ? */ 588 if (tblk && tblk->pn == pn) { 589 /* mark tblk for end-of-page */ 590 tblk->flag |= tblkGC_EOP; 591 592 if (log->cflag & logGC_PAGEOUT) { 593 /* if page is not already on write queue, 594 * just enqueue (no lbmWRITE to prevent redrive) 595 * buffer to wqueue to ensure correct serial order 596 * of the pages since log pages will be added 597 * continuously 598 */ 599 if (bp->l_wqnext == NULL) 600 lbmWrite(log, bp, 0, 0); 601 } else { 602 /* 603 * No current GC leader, initiate group commit 604 */ 605 log->cflag |= logGC_PAGEOUT; 606 lmGCwrite(log, 0); 607 } 608 } 609 /* page is not bound with outstanding tblk: 610 * init write or mark it to be redriven (lbmWRITE) 611 */ 612 else { 613 /* finalize the page */ 614 bp->l_ceor = bp->l_eor; 615 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 616 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0); 617 } 618 LOGGC_UNLOCK(log); 619 620 /* 621 * allocate/initialize next page 622 */ 623 /* if log wraps, the first data page of log is 2 624 * (0 never used, 1 is superblock). 625 */ 626 log->page = (pn == log->size - 1) ? 2 : pn + 1; 627 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */ 628 629 /* allocate/initialize next log page buffer */ 630 nextbp = lbmAllocate(log, log->page); 631 nextbp->l_eor = log->eor; 632 log->bp = nextbp; 633 634 /* initialize next log page */ 635 lp = (struct logpage *) nextbp->l_ldata; 636 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1); 637 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 638 639 return 0; 640 } 641 642 643 /* 644 * NAME: lmGroupCommit() 645 * 646 * FUNCTION: group commit 647 * initiate pageout of the pages with COMMIT in the order of 648 * page number - redrive pageout of the page at the head of 649 * pageout queue until full page has been written. 650 * 651 * RETURN: 652 * 653 * NOTE: 654 * LOGGC_LOCK serializes log group commit queue, and 655 * transaction blocks on the commit queue. 656 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 657 */ 658 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk) 659 { 660 int rc = 0; 661 662 LOGGC_LOCK(log); 663 664 /* group committed already ? */ 665 if (tblk->flag & tblkGC_COMMITTED) { 666 if (tblk->flag & tblkGC_ERROR) 667 rc = -EIO; 668 669 LOGGC_UNLOCK(log); 670 return rc; 671 } 672 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc); 673 674 if (tblk->xflag & COMMIT_LAZY) 675 tblk->flag |= tblkGC_LAZY; 676 677 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) && 678 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag) 679 || jfs_tlocks_low)) { 680 /* 681 * No pageout in progress 682 * 683 * start group commit as its group leader. 684 */ 685 log->cflag |= logGC_PAGEOUT; 686 687 lmGCwrite(log, 0); 688 } 689 690 if (tblk->xflag & COMMIT_LAZY) { 691 /* 692 * Lazy transactions can leave now 693 */ 694 LOGGC_UNLOCK(log); 695 return 0; 696 } 697 698 /* lmGCwrite gives up LOGGC_LOCK, check again */ 699 700 if (tblk->flag & tblkGC_COMMITTED) { 701 if (tblk->flag & tblkGC_ERROR) 702 rc = -EIO; 703 704 LOGGC_UNLOCK(log); 705 return rc; 706 } 707 708 /* upcount transaction waiting for completion 709 */ 710 log->gcrtc++; 711 tblk->flag |= tblkGC_READY; 712 713 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED), 714 LOGGC_LOCK(log), LOGGC_UNLOCK(log)); 715 716 /* removed from commit queue */ 717 if (tblk->flag & tblkGC_ERROR) 718 rc = -EIO; 719 720 LOGGC_UNLOCK(log); 721 return rc; 722 } 723 724 /* 725 * NAME: lmGCwrite() 726 * 727 * FUNCTION: group commit write 728 * initiate write of log page, building a group of all transactions 729 * with commit records on that page. 730 * 731 * RETURN: None 732 * 733 * NOTE: 734 * LOGGC_LOCK must be held by caller. 735 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 736 */ 737 static void lmGCwrite(struct jfs_log * log, int cant_write) 738 { 739 struct lbuf *bp; 740 struct logpage *lp; 741 int gcpn; /* group commit page number */ 742 struct tblock *tblk; 743 struct tblock *xtblk = NULL; 744 745 /* 746 * build the commit group of a log page 747 * 748 * scan commit queue and make a commit group of all 749 * transactions with COMMIT records on the same log page. 750 */ 751 /* get the head tblk on the commit queue */ 752 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn; 753 754 list_for_each_entry(tblk, &log->cqueue, cqueue) { 755 if (tblk->pn != gcpn) 756 break; 757 758 xtblk = tblk; 759 760 /* state transition: (QUEUE, READY) -> COMMIT */ 761 tblk->flag |= tblkGC_COMMIT; 762 } 763 tblk = xtblk; /* last tblk of the page */ 764 765 /* 766 * pageout to commit transactions on the log page. 767 */ 768 bp = (struct lbuf *) tblk->bp; 769 lp = (struct logpage *) bp->l_ldata; 770 /* is page already full ? */ 771 if (tblk->flag & tblkGC_EOP) { 772 /* mark page to free at end of group commit of the page */ 773 tblk->flag &= ~tblkGC_EOP; 774 tblk->flag |= tblkGC_FREE; 775 bp->l_ceor = bp->l_eor; 776 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 777 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC, 778 cant_write); 779 INCREMENT(lmStat.full_page); 780 } 781 /* page is not yet full */ 782 else { 783 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */ 784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 785 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write); 786 INCREMENT(lmStat.partial_page); 787 } 788 } 789 790 /* 791 * NAME: lmPostGC() 792 * 793 * FUNCTION: group commit post-processing 794 * Processes transactions after their commit records have been written 795 * to disk, redriving log I/O if necessary. 796 * 797 * RETURN: None 798 * 799 * NOTE: 800 * This routine is called a interrupt time by lbmIODone 801 */ 802 static void lmPostGC(struct lbuf * bp) 803 { 804 unsigned long flags; 805 struct jfs_log *log = bp->l_log; 806 struct logpage *lp; 807 struct tblock *tblk, *temp; 808 809 //LOGGC_LOCK(log); 810 spin_lock_irqsave(&log->gclock, flags); 811 /* 812 * current pageout of group commit completed. 813 * 814 * remove/wakeup transactions from commit queue who were 815 * group committed with the current log page 816 */ 817 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) { 818 if (!(tblk->flag & tblkGC_COMMIT)) 819 break; 820 /* if transaction was marked GC_COMMIT then 821 * it has been shipped in the current pageout 822 * and made it to disk - it is committed. 823 */ 824 825 if (bp->l_flag & lbmERROR) 826 tblk->flag |= tblkGC_ERROR; 827 828 /* remove it from the commit queue */ 829 list_del(&tblk->cqueue); 830 tblk->flag &= ~tblkGC_QUEUE; 831 832 if (tblk == log->flush_tblk) { 833 /* we can stop flushing the log now */ 834 clear_bit(log_FLUSH, &log->flag); 835 log->flush_tblk = NULL; 836 } 837 838 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk, 839 tblk->flag); 840 841 if (!(tblk->xflag & COMMIT_FORCE)) 842 /* 843 * Hand tblk over to lazy commit thread 844 */ 845 txLazyUnlock(tblk); 846 else { 847 /* state transition: COMMIT -> COMMITTED */ 848 tblk->flag |= tblkGC_COMMITTED; 849 850 if (tblk->flag & tblkGC_READY) 851 log->gcrtc--; 852 853 LOGGC_WAKEUP(tblk); 854 } 855 856 /* was page full before pageout ? 857 * (and this is the last tblk bound with the page) 858 */ 859 if (tblk->flag & tblkGC_FREE) 860 lbmFree(bp); 861 /* did page become full after pageout ? 862 * (and this is the last tblk bound with the page) 863 */ 864 else if (tblk->flag & tblkGC_EOP) { 865 /* finalize the page */ 866 lp = (struct logpage *) bp->l_ldata; 867 bp->l_ceor = bp->l_eor; 868 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 869 jfs_info("lmPostGC: calling lbmWrite"); 870 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 871 1); 872 } 873 874 } 875 876 /* are there any transactions who have entered lnGroupCommit() 877 * (whose COMMITs are after that of the last log page written. 878 * They are waiting for new group commit (above at (SLEEP 1)) 879 * or lazy transactions are on a full (queued) log page, 880 * select the latest ready transaction as new group leader and 881 * wake her up to lead her group. 882 */ 883 if ((!list_empty(&log->cqueue)) && 884 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) || 885 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low)) 886 /* 887 * Call lmGCwrite with new group leader 888 */ 889 lmGCwrite(log, 1); 890 891 /* no transaction are ready yet (transactions are only just 892 * queued (GC_QUEUE) and not entered for group commit yet). 893 * the first transaction entering group commit 894 * will elect herself as new group leader. 895 */ 896 else 897 log->cflag &= ~logGC_PAGEOUT; 898 899 //LOGGC_UNLOCK(log); 900 spin_unlock_irqrestore(&log->gclock, flags); 901 return; 902 } 903 904 /* 905 * NAME: lmLogSync() 906 * 907 * FUNCTION: write log SYNCPT record for specified log 908 * if new sync address is available 909 * (normally the case if sync() is executed by back-ground 910 * process). 911 * calculate new value of i_nextsync which determines when 912 * this code is called again. 913 * 914 * PARAMETERS: log - log structure 915 * hard_sync - 1 to force all metadata to be written 916 * 917 * RETURN: 0 918 * 919 * serialization: LOG_LOCK() held on entry/exit 920 */ 921 static int lmLogSync(struct jfs_log * log, int hard_sync) 922 { 923 int logsize; 924 int written; /* written since last syncpt */ 925 int free; /* free space left available */ 926 int delta; /* additional delta to write normally */ 927 int more; /* additional write granted */ 928 struct lrd lrd; 929 int lsn; 930 struct logsyncblk *lp; 931 unsigned long flags; 932 933 /* push dirty metapages out to disk */ 934 if (hard_sync) 935 write_special_inodes(log, filemap_fdatawrite); 936 else 937 write_special_inodes(log, filemap_flush); 938 939 /* 940 * forward syncpt 941 */ 942 /* if last sync is same as last syncpt, 943 * invoke sync point forward processing to update sync. 944 */ 945 946 if (log->sync == log->syncpt) { 947 LOGSYNC_LOCK(log, flags); 948 if (list_empty(&log->synclist)) 949 log->sync = log->lsn; 950 else { 951 lp = list_entry(log->synclist.next, 952 struct logsyncblk, synclist); 953 log->sync = lp->lsn; 954 } 955 LOGSYNC_UNLOCK(log, flags); 956 957 } 958 959 /* if sync is different from last syncpt, 960 * write a SYNCPT record with syncpt = sync. 961 * reset syncpt = sync 962 */ 963 if (log->sync != log->syncpt) { 964 lrd.logtid = 0; 965 lrd.backchain = 0; 966 lrd.type = cpu_to_le16(LOG_SYNCPT); 967 lrd.length = 0; 968 lrd.log.syncpt.sync = cpu_to_le32(log->sync); 969 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 970 971 log->syncpt = log->sync; 972 } else 973 lsn = log->lsn; 974 975 /* 976 * setup next syncpt trigger (SWAG) 977 */ 978 logsize = log->logsize; 979 980 logdiff(written, lsn, log); 981 free = logsize - written; 982 delta = LOGSYNC_DELTA(logsize); 983 more = min(free / 2, delta); 984 if (more < 2 * LOGPSIZE) { 985 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n"); 986 /* 987 * log wrapping 988 * 989 * option 1 - panic ? No.! 990 * option 2 - shutdown file systems 991 * associated with log ? 992 * option 3 - extend log ? 993 * option 4 - second chance 994 * 995 * mark log wrapped, and continue. 996 * when all active transactions are completed, 997 * mark log valid for recovery. 998 * if crashed during invalid state, log state 999 * implies invalid log, forcing fsck(). 1000 */ 1001 /* mark log state log wrap in log superblock */ 1002 /* log->state = LOGWRAP; */ 1003 1004 /* reset sync point computation */ 1005 log->syncpt = log->sync = lsn; 1006 log->nextsync = delta; 1007 } else 1008 /* next syncpt trigger = written + more */ 1009 log->nextsync = written + more; 1010 1011 /* if number of bytes written from last sync point is more 1012 * than 1/4 of the log size, stop new transactions from 1013 * starting until all current transactions are completed 1014 * by setting syncbarrier flag. 1015 */ 1016 if (!test_bit(log_SYNCBARRIER, &log->flag) && 1017 (written > LOGSYNC_BARRIER(logsize)) && log->active) { 1018 set_bit(log_SYNCBARRIER, &log->flag); 1019 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn, 1020 log->syncpt); 1021 /* 1022 * We may have to initiate group commit 1023 */ 1024 jfs_flush_journal(log, 0); 1025 } 1026 1027 return lsn; 1028 } 1029 1030 /* 1031 * NAME: jfs_syncpt 1032 * 1033 * FUNCTION: write log SYNCPT record for specified log 1034 * 1035 * PARAMETERS: log - log structure 1036 * hard_sync - set to 1 to force metadata to be written 1037 */ 1038 void jfs_syncpt(struct jfs_log *log, int hard_sync) 1039 { LOG_LOCK(log); 1040 if (!test_bit(log_QUIESCE, &log->flag)) 1041 lmLogSync(log, hard_sync); 1042 LOG_UNLOCK(log); 1043 } 1044 1045 /* 1046 * NAME: lmLogOpen() 1047 * 1048 * FUNCTION: open the log on first open; 1049 * insert filesystem in the active list of the log. 1050 * 1051 * PARAMETER: ipmnt - file system mount inode 1052 * iplog - log inode (out) 1053 * 1054 * RETURN: 1055 * 1056 * serialization: 1057 */ 1058 int lmLogOpen(struct super_block *sb) 1059 { 1060 int rc; 1061 struct file *bdev_file; 1062 struct jfs_log *log; 1063 struct jfs_sb_info *sbi = JFS_SBI(sb); 1064 1065 if (sbi->flag & JFS_NOINTEGRITY) 1066 return open_dummy_log(sb); 1067 1068 if (sbi->mntflag & JFS_INLINELOG) 1069 return open_inline_log(sb); 1070 1071 mutex_lock(&jfs_log_mutex); 1072 list_for_each_entry(log, &jfs_external_logs, journal_list) { 1073 if (file_bdev(log->bdev_file)->bd_dev == sbi->logdev) { 1074 if (!uuid_equal(&log->uuid, &sbi->loguuid)) { 1075 jfs_warn("wrong uuid on JFS journal"); 1076 mutex_unlock(&jfs_log_mutex); 1077 return -EINVAL; 1078 } 1079 /* 1080 * add file system to log active file system list 1081 */ 1082 if ((rc = lmLogFileSystem(log, sbi, 1))) { 1083 mutex_unlock(&jfs_log_mutex); 1084 return rc; 1085 } 1086 goto journal_found; 1087 } 1088 } 1089 1090 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) { 1091 mutex_unlock(&jfs_log_mutex); 1092 return -ENOMEM; 1093 } 1094 INIT_LIST_HEAD(&log->sb_list); 1095 init_waitqueue_head(&log->syncwait); 1096 1097 /* 1098 * external log as separate logical volume 1099 * 1100 * file systems to log may have n-to-1 relationship; 1101 */ 1102 1103 bdev_file = bdev_file_open_by_dev(sbi->logdev, 1104 BLK_OPEN_READ | BLK_OPEN_WRITE, log, NULL); 1105 if (IS_ERR(bdev_file)) { 1106 rc = PTR_ERR(bdev_file); 1107 goto free; 1108 } 1109 1110 log->bdev_file = bdev_file; 1111 uuid_copy(&log->uuid, &sbi->loguuid); 1112 1113 /* 1114 * initialize log: 1115 */ 1116 if ((rc = lmLogInit(log))) 1117 goto close; 1118 1119 list_add(&log->journal_list, &jfs_external_logs); 1120 1121 /* 1122 * add file system to log active file system list 1123 */ 1124 if ((rc = lmLogFileSystem(log, sbi, 1))) 1125 goto shutdown; 1126 1127 journal_found: 1128 LOG_LOCK(log); 1129 list_add(&sbi->log_list, &log->sb_list); 1130 sbi->log = log; 1131 LOG_UNLOCK(log); 1132 1133 mutex_unlock(&jfs_log_mutex); 1134 return 0; 1135 1136 /* 1137 * unwind on error 1138 */ 1139 shutdown: /* unwind lbmLogInit() */ 1140 list_del(&log->journal_list); 1141 lbmLogShutdown(log); 1142 1143 close: /* close external log device */ 1144 bdev_fput(bdev_file); 1145 1146 free: /* free log descriptor */ 1147 mutex_unlock(&jfs_log_mutex); 1148 kfree(log); 1149 1150 jfs_warn("lmLogOpen: exit(%d)", rc); 1151 return rc; 1152 } 1153 1154 static int open_inline_log(struct super_block *sb) 1155 { 1156 struct jfs_log *log; 1157 int rc; 1158 1159 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) 1160 return -ENOMEM; 1161 INIT_LIST_HEAD(&log->sb_list); 1162 init_waitqueue_head(&log->syncwait); 1163 1164 set_bit(log_INLINELOG, &log->flag); 1165 log->bdev_file = sb->s_bdev_file; 1166 log->base = addressPXD(&JFS_SBI(sb)->logpxd); 1167 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >> 1168 (L2LOGPSIZE - sb->s_blocksize_bits); 1169 log->l2bsize = sb->s_blocksize_bits; 1170 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits); 1171 1172 /* 1173 * initialize log. 1174 */ 1175 if ((rc = lmLogInit(log))) { 1176 kfree(log); 1177 jfs_warn("lmLogOpen: exit(%d)", rc); 1178 return rc; 1179 } 1180 1181 list_add(&JFS_SBI(sb)->log_list, &log->sb_list); 1182 JFS_SBI(sb)->log = log; 1183 1184 return rc; 1185 } 1186 1187 static int open_dummy_log(struct super_block *sb) 1188 { 1189 int rc; 1190 1191 mutex_lock(&jfs_log_mutex); 1192 if (!dummy_log) { 1193 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL); 1194 if (!dummy_log) { 1195 mutex_unlock(&jfs_log_mutex); 1196 return -ENOMEM; 1197 } 1198 INIT_LIST_HEAD(&dummy_log->sb_list); 1199 init_waitqueue_head(&dummy_log->syncwait); 1200 dummy_log->no_integrity = 1; 1201 /* Make up some stuff */ 1202 dummy_log->size = 1024; 1203 rc = lmLogInit(dummy_log); 1204 if (rc) { 1205 kfree(dummy_log); 1206 dummy_log = NULL; 1207 mutex_unlock(&jfs_log_mutex); 1208 return rc; 1209 } 1210 } 1211 1212 LOG_LOCK(dummy_log); 1213 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list); 1214 JFS_SBI(sb)->log = dummy_log; 1215 LOG_UNLOCK(dummy_log); 1216 mutex_unlock(&jfs_log_mutex); 1217 1218 return 0; 1219 } 1220 1221 /* 1222 * NAME: lmLogInit() 1223 * 1224 * FUNCTION: log initialization at first log open. 1225 * 1226 * logredo() (or logformat()) should have been run previously. 1227 * initialize the log from log superblock. 1228 * set the log state in the superblock to LOGMOUNT and 1229 * write SYNCPT log record. 1230 * 1231 * PARAMETER: log - log structure 1232 * 1233 * RETURN: 0 - if ok 1234 * -EINVAL - bad log magic number or superblock dirty 1235 * error returned from logwait() 1236 * 1237 * serialization: single first open thread 1238 */ 1239 int lmLogInit(struct jfs_log * log) 1240 { 1241 int rc = 0; 1242 struct lrd lrd; 1243 struct logsuper *logsuper; 1244 struct lbuf *bpsuper; 1245 struct lbuf *bp; 1246 struct logpage *lp; 1247 int lsn = 0; 1248 1249 jfs_info("lmLogInit: log:0x%p", log); 1250 1251 /* initialize the group commit serialization lock */ 1252 LOGGC_LOCK_INIT(log); 1253 1254 /* allocate/initialize the log write serialization lock */ 1255 LOG_LOCK_INIT(log); 1256 1257 LOGSYNC_LOCK_INIT(log); 1258 1259 INIT_LIST_HEAD(&log->synclist); 1260 1261 INIT_LIST_HEAD(&log->cqueue); 1262 log->flush_tblk = NULL; 1263 1264 log->count = 0; 1265 1266 /* 1267 * initialize log i/o 1268 */ 1269 if ((rc = lbmLogInit(log))) 1270 return rc; 1271 1272 if (!test_bit(log_INLINELOG, &log->flag)) 1273 log->l2bsize = L2LOGPSIZE; 1274 1275 /* check for disabled journaling to disk */ 1276 if (log->no_integrity) { 1277 /* 1278 * Journal pages will still be filled. When the time comes 1279 * to actually do the I/O, the write is not done, and the 1280 * endio routine is called directly. 1281 */ 1282 bp = lbmAllocate(log , 0); 1283 log->bp = bp; 1284 bp->l_pn = bp->l_eor = 0; 1285 } else { 1286 /* 1287 * validate log superblock 1288 */ 1289 if ((rc = lbmRead(log, 1, &bpsuper))) 1290 goto errout10; 1291 1292 logsuper = (struct logsuper *) bpsuper->l_ldata; 1293 1294 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) { 1295 jfs_warn("*** Log Format Error ! ***"); 1296 rc = -EINVAL; 1297 goto errout20; 1298 } 1299 1300 /* logredo() should have been run successfully. */ 1301 if (logsuper->state != cpu_to_le32(LOGREDONE)) { 1302 jfs_warn("*** Log Is Dirty ! ***"); 1303 rc = -EINVAL; 1304 goto errout20; 1305 } 1306 1307 /* initialize log from log superblock */ 1308 if (test_bit(log_INLINELOG,&log->flag)) { 1309 if (log->size != le32_to_cpu(logsuper->size)) { 1310 rc = -EINVAL; 1311 goto errout20; 1312 } 1313 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx size:0x%x", 1314 log, (unsigned long long)log->base, log->size); 1315 } else { 1316 if (!uuid_equal(&logsuper->uuid, &log->uuid)) { 1317 jfs_warn("wrong uuid on JFS log device"); 1318 rc = -EINVAL; 1319 goto errout20; 1320 } 1321 log->size = le32_to_cpu(logsuper->size); 1322 log->l2bsize = le32_to_cpu(logsuper->l2bsize); 1323 jfs_info("lmLogInit: external log:0x%p base:0x%Lx size:0x%x", 1324 log, (unsigned long long)log->base, log->size); 1325 } 1326 1327 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE; 1328 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page); 1329 1330 /* 1331 * initialize for log append write mode 1332 */ 1333 /* establish current/end-of-log page/buffer */ 1334 if ((rc = lbmRead(log, log->page, &bp))) 1335 goto errout20; 1336 1337 lp = (struct logpage *) bp->l_ldata; 1338 1339 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d", 1340 le32_to_cpu(logsuper->end), log->page, log->eor, 1341 le16_to_cpu(lp->h.eor)); 1342 1343 log->bp = bp; 1344 bp->l_pn = log->page; 1345 bp->l_eor = log->eor; 1346 1347 /* if current page is full, move on to next page */ 1348 if (log->eor >= LOGPSIZE - LOGPTLRSIZE) 1349 lmNextPage(log); 1350 1351 /* 1352 * initialize log syncpoint 1353 */ 1354 /* 1355 * write the first SYNCPT record with syncpoint = 0 1356 * (i.e., log redo up to HERE !); 1357 * remove current page from lbm write queue at end of pageout 1358 * (to write log superblock update), but do not release to 1359 * freelist; 1360 */ 1361 lrd.logtid = 0; 1362 lrd.backchain = 0; 1363 lrd.type = cpu_to_le16(LOG_SYNCPT); 1364 lrd.length = 0; 1365 lrd.log.syncpt.sync = 0; 1366 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1367 bp = log->bp; 1368 bp->l_ceor = bp->l_eor; 1369 lp = (struct logpage *) bp->l_ldata; 1370 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1371 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0); 1372 if ((rc = lbmIOWait(bp, 0))) 1373 goto errout30; 1374 1375 /* 1376 * update/write superblock 1377 */ 1378 logsuper->state = cpu_to_le32(LOGMOUNT); 1379 log->serial = le32_to_cpu(logsuper->serial) + 1; 1380 logsuper->serial = cpu_to_le32(log->serial); 1381 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1382 if ((rc = lbmIOWait(bpsuper, lbmFREE))) 1383 goto errout30; 1384 } 1385 1386 /* initialize logsync parameters */ 1387 log->logsize = (log->size - 2) << L2LOGPSIZE; 1388 log->lsn = lsn; 1389 log->syncpt = lsn; 1390 log->sync = log->syncpt; 1391 log->nextsync = LOGSYNC_DELTA(log->logsize); 1392 1393 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x", 1394 log->lsn, log->syncpt, log->sync); 1395 1396 /* 1397 * initialize for lazy/group commit 1398 */ 1399 log->clsn = lsn; 1400 1401 return 0; 1402 1403 /* 1404 * unwind on error 1405 */ 1406 errout30: /* release log page */ 1407 log->wqueue = NULL; 1408 bp->l_wqnext = NULL; 1409 lbmFree(bp); 1410 1411 errout20: /* release log superblock */ 1412 lbmFree(bpsuper); 1413 1414 errout10: /* unwind lbmLogInit() */ 1415 lbmLogShutdown(log); 1416 1417 jfs_warn("lmLogInit: exit(%d)", rc); 1418 return rc; 1419 } 1420 1421 1422 /* 1423 * NAME: lmLogClose() 1424 * 1425 * FUNCTION: remove file system <ipmnt> from active list of log <iplog> 1426 * and close it on last close. 1427 * 1428 * PARAMETER: sb - superblock 1429 * 1430 * RETURN: errors from subroutines 1431 * 1432 * serialization: 1433 */ 1434 int lmLogClose(struct super_block *sb) 1435 { 1436 struct jfs_sb_info *sbi = JFS_SBI(sb); 1437 struct jfs_log *log = sbi->log; 1438 struct file *bdev_file; 1439 int rc = 0; 1440 1441 jfs_info("lmLogClose: log:0x%p", log); 1442 1443 mutex_lock(&jfs_log_mutex); 1444 LOG_LOCK(log); 1445 list_del(&sbi->log_list); 1446 LOG_UNLOCK(log); 1447 sbi->log = NULL; 1448 1449 /* 1450 * We need to make sure all of the "written" metapages 1451 * actually make it to disk 1452 */ 1453 sync_blockdev(sb->s_bdev); 1454 1455 if (test_bit(log_INLINELOG, &log->flag)) { 1456 /* 1457 * in-line log in host file system 1458 */ 1459 rc = lmLogShutdown(log); 1460 kfree(log); 1461 goto out; 1462 } 1463 1464 if (!log->no_integrity) 1465 lmLogFileSystem(log, sbi, 0); 1466 1467 if (!list_empty(&log->sb_list)) 1468 goto out; 1469 1470 /* 1471 * TODO: ensure that the dummy_log is in a state to allow 1472 * lbmLogShutdown to deallocate all the buffers and call 1473 * kfree against dummy_log. For now, leave dummy_log & its 1474 * buffers in memory, and resuse if another no-integrity mount 1475 * is requested. 1476 */ 1477 if (log->no_integrity) 1478 goto out; 1479 1480 /* 1481 * external log as separate logical volume 1482 */ 1483 list_del(&log->journal_list); 1484 bdev_file = log->bdev_file; 1485 rc = lmLogShutdown(log); 1486 1487 bdev_fput(bdev_file); 1488 1489 kfree(log); 1490 1491 out: 1492 mutex_unlock(&jfs_log_mutex); 1493 jfs_info("lmLogClose: exit(%d)", rc); 1494 return rc; 1495 } 1496 1497 1498 /* 1499 * NAME: jfs_flush_journal() 1500 * 1501 * FUNCTION: initiate write of any outstanding transactions to the journal 1502 * and optionally wait until they are all written to disk 1503 * 1504 * wait == 0 flush until latest txn is committed, don't wait 1505 * wait == 1 flush until latest txn is committed, wait 1506 * wait > 1 flush until all txn's are complete, wait 1507 */ 1508 void jfs_flush_journal(struct jfs_log *log, int wait) 1509 { 1510 int i; 1511 struct tblock *target = NULL; 1512 1513 /* jfs_write_inode may call us during read-only mount */ 1514 if (!log) 1515 return; 1516 1517 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait); 1518 1519 LOGGC_LOCK(log); 1520 1521 if (!list_empty(&log->cqueue)) { 1522 /* 1523 * This ensures that we will keep writing to the journal as long 1524 * as there are unwritten commit records 1525 */ 1526 target = list_entry(log->cqueue.prev, struct tblock, cqueue); 1527 1528 if (test_bit(log_FLUSH, &log->flag)) { 1529 /* 1530 * We're already flushing. 1531 * if flush_tblk is NULL, we are flushing everything, 1532 * so leave it that way. Otherwise, update it to the 1533 * latest transaction 1534 */ 1535 if (log->flush_tblk) 1536 log->flush_tblk = target; 1537 } else { 1538 /* Only flush until latest transaction is committed */ 1539 log->flush_tblk = target; 1540 set_bit(log_FLUSH, &log->flag); 1541 1542 /* 1543 * Initiate I/O on outstanding transactions 1544 */ 1545 if (!(log->cflag & logGC_PAGEOUT)) { 1546 log->cflag |= logGC_PAGEOUT; 1547 lmGCwrite(log, 0); 1548 } 1549 } 1550 } 1551 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) { 1552 /* Flush until all activity complete */ 1553 set_bit(log_FLUSH, &log->flag); 1554 log->flush_tblk = NULL; 1555 } 1556 1557 if (wait && target && !(target->flag & tblkGC_COMMITTED)) { 1558 DECLARE_WAITQUEUE(__wait, current); 1559 1560 add_wait_queue(&target->gcwait, &__wait); 1561 set_current_state(TASK_UNINTERRUPTIBLE); 1562 LOGGC_UNLOCK(log); 1563 schedule(); 1564 LOGGC_LOCK(log); 1565 remove_wait_queue(&target->gcwait, &__wait); 1566 } 1567 LOGGC_UNLOCK(log); 1568 1569 if (wait < 2) 1570 return; 1571 1572 write_special_inodes(log, filemap_fdatawrite); 1573 1574 /* 1575 * If there was recent activity, we may need to wait 1576 * for the lazycommit thread to catch up 1577 */ 1578 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) { 1579 for (i = 0; i < 200; i++) { /* Too much? */ 1580 msleep(250); 1581 write_special_inodes(log, filemap_fdatawrite); 1582 if (list_empty(&log->cqueue) && 1583 list_empty(&log->synclist)) 1584 break; 1585 } 1586 } 1587 assert(list_empty(&log->cqueue)); 1588 1589 #ifdef CONFIG_JFS_DEBUG 1590 if (!list_empty(&log->synclist)) { 1591 struct logsyncblk *lp; 1592 1593 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n"); 1594 list_for_each_entry(lp, &log->synclist, synclist) { 1595 if (lp->xflag & COMMIT_PAGE) { 1596 struct metapage *mp = (struct metapage *)lp; 1597 print_hex_dump(KERN_ERR, "metapage: ", 1598 DUMP_PREFIX_ADDRESS, 16, 4, 1599 mp, sizeof(struct metapage), 0); 1600 print_hex_dump(KERN_ERR, "page: ", 1601 DUMP_PREFIX_ADDRESS, 16, 1602 sizeof(long), mp->folio, 1603 sizeof(struct page), 0); 1604 } else 1605 print_hex_dump(KERN_ERR, "tblock:", 1606 DUMP_PREFIX_ADDRESS, 16, 4, 1607 lp, sizeof(struct tblock), 0); 1608 } 1609 } 1610 #else 1611 WARN_ON(!list_empty(&log->synclist)); 1612 #endif 1613 clear_bit(log_FLUSH, &log->flag); 1614 } 1615 1616 /* 1617 * NAME: lmLogShutdown() 1618 * 1619 * FUNCTION: log shutdown at last LogClose(). 1620 * 1621 * write log syncpt record. 1622 * update super block to set redone flag to 0. 1623 * 1624 * PARAMETER: log - log inode 1625 * 1626 * RETURN: 0 - success 1627 * 1628 * serialization: single last close thread 1629 */ 1630 int lmLogShutdown(struct jfs_log * log) 1631 { 1632 int rc; 1633 struct lrd lrd; 1634 int lsn; 1635 struct logsuper *logsuper; 1636 struct lbuf *bpsuper; 1637 struct lbuf *bp; 1638 struct logpage *lp; 1639 1640 jfs_info("lmLogShutdown: log:0x%p", log); 1641 1642 jfs_flush_journal(log, 2); 1643 1644 /* 1645 * write the last SYNCPT record with syncpoint = 0 1646 * (i.e., log redo up to HERE !) 1647 */ 1648 lrd.logtid = 0; 1649 lrd.backchain = 0; 1650 lrd.type = cpu_to_le16(LOG_SYNCPT); 1651 lrd.length = 0; 1652 lrd.log.syncpt.sync = 0; 1653 1654 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1655 bp = log->bp; 1656 lp = (struct logpage *) bp->l_ldata; 1657 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1658 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0); 1659 lbmIOWait(log->bp, lbmFREE); 1660 log->bp = NULL; 1661 1662 /* 1663 * synchronous update log superblock 1664 * mark log state as shutdown cleanly 1665 * (i.e., Log does not need to be replayed). 1666 */ 1667 if ((rc = lbmRead(log, 1, &bpsuper))) 1668 goto out; 1669 1670 logsuper = (struct logsuper *) bpsuper->l_ldata; 1671 logsuper->state = cpu_to_le32(LOGREDONE); 1672 logsuper->end = cpu_to_le32(lsn); 1673 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1674 rc = lbmIOWait(bpsuper, lbmFREE); 1675 1676 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d", 1677 lsn, log->page, log->eor); 1678 1679 out: 1680 /* 1681 * shutdown per log i/o 1682 */ 1683 lbmLogShutdown(log); 1684 1685 if (rc) { 1686 jfs_warn("lmLogShutdown: exit(%d)", rc); 1687 } 1688 return rc; 1689 } 1690 1691 1692 /* 1693 * NAME: lmLogFileSystem() 1694 * 1695 * FUNCTION: insert (<activate> = true)/remove (<activate> = false) 1696 * file system into/from log active file system list. 1697 * 1698 * PARAMETE: log - pointer to logs inode. 1699 * fsdev - kdev_t of filesystem. 1700 * serial - pointer to returned log serial number 1701 * activate - insert/remove device from active list. 1702 * 1703 * RETURN: 0 - success 1704 * errors returned by vms_iowait(). 1705 */ 1706 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 1707 int activate) 1708 { 1709 int rc = 0; 1710 int i; 1711 struct logsuper *logsuper; 1712 struct lbuf *bpsuper; 1713 uuid_t *uuid = &sbi->uuid; 1714 1715 /* 1716 * insert/remove file system device to log active file system list. 1717 */ 1718 if ((rc = lbmRead(log, 1, &bpsuper))) 1719 return rc; 1720 1721 logsuper = (struct logsuper *) bpsuper->l_ldata; 1722 if (activate) { 1723 for (i = 0; i < MAX_ACTIVE; i++) 1724 if (uuid_is_null(&logsuper->active[i].uuid)) { 1725 uuid_copy(&logsuper->active[i].uuid, uuid); 1726 sbi->aggregate = i; 1727 break; 1728 } 1729 if (i == MAX_ACTIVE) { 1730 jfs_warn("Too many file systems sharing journal!"); 1731 lbmFree(bpsuper); 1732 return -EMFILE; /* Is there a better rc? */ 1733 } 1734 } else { 1735 for (i = 0; i < MAX_ACTIVE; i++) 1736 if (uuid_equal(&logsuper->active[i].uuid, uuid)) { 1737 uuid_copy(&logsuper->active[i].uuid, 1738 &uuid_null); 1739 break; 1740 } 1741 if (i == MAX_ACTIVE) { 1742 jfs_warn("Somebody stomped on the journal!"); 1743 lbmFree(bpsuper); 1744 return -EIO; 1745 } 1746 1747 } 1748 1749 /* 1750 * synchronous write log superblock: 1751 * 1752 * write sidestream bypassing write queue: 1753 * at file system mount, log super block is updated for 1754 * activation of the file system before any log record 1755 * (MOUNT record) of the file system, and at file system 1756 * unmount, all meta data for the file system has been 1757 * flushed before log super block is updated for deactivation 1758 * of the file system. 1759 */ 1760 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1761 rc = lbmIOWait(bpsuper, lbmFREE); 1762 1763 return rc; 1764 } 1765 1766 /* 1767 * log buffer manager (lbm) 1768 * ------------------------ 1769 * 1770 * special purpose buffer manager supporting log i/o requirements. 1771 * 1772 * per log write queue: 1773 * log pageout occurs in serial order by fifo write queue and 1774 * restricting to a single i/o in pregress at any one time. 1775 * a circular singly-linked list 1776 * (log->wrqueue points to the tail, and buffers are linked via 1777 * bp->wrqueue field), and 1778 * maintains log page in pageout ot waiting for pageout in serial pageout. 1779 */ 1780 1781 /* 1782 * lbmLogInit() 1783 * 1784 * initialize per log I/O setup at lmLogInit() 1785 */ 1786 static int lbmLogInit(struct jfs_log * log) 1787 { /* log inode */ 1788 int i; 1789 struct lbuf *lbuf; 1790 1791 jfs_info("lbmLogInit: log:0x%p", log); 1792 1793 /* initialize current buffer cursor */ 1794 log->bp = NULL; 1795 1796 /* initialize log device write queue */ 1797 log->wqueue = NULL; 1798 1799 /* 1800 * Each log has its own buffer pages allocated to it. These are 1801 * not managed by the page cache. This ensures that a transaction 1802 * writing to the log does not block trying to allocate a page from 1803 * the page cache (for the log). This would be bad, since page 1804 * allocation waits on the kswapd thread that may be committing inodes 1805 * which would cause log activity. Was that clear? I'm trying to 1806 * avoid deadlock here. 1807 */ 1808 init_waitqueue_head(&log->free_wait); 1809 1810 log->lbuf_free = NULL; 1811 1812 for (i = 0; i < LOGPAGES;) { 1813 char *buffer; 1814 uint offset; 1815 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 1816 1817 if (!page) 1818 goto error; 1819 buffer = page_address(page); 1820 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) { 1821 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL); 1822 if (lbuf == NULL) { 1823 if (offset == 0) 1824 __free_page(page); 1825 goto error; 1826 } 1827 if (offset) /* we already have one reference */ 1828 get_page(page); 1829 lbuf->l_offset = offset; 1830 lbuf->l_ldata = buffer + offset; 1831 lbuf->l_page = page; 1832 lbuf->l_log = log; 1833 init_waitqueue_head(&lbuf->l_ioevent); 1834 1835 lbuf->l_freelist = log->lbuf_free; 1836 log->lbuf_free = lbuf; 1837 i++; 1838 } 1839 } 1840 1841 return (0); 1842 1843 error: 1844 lbmLogShutdown(log); 1845 return -ENOMEM; 1846 } 1847 1848 1849 /* 1850 * lbmLogShutdown() 1851 * 1852 * finalize per log I/O setup at lmLogShutdown() 1853 */ 1854 static void lbmLogShutdown(struct jfs_log * log) 1855 { 1856 struct lbuf *lbuf; 1857 1858 jfs_info("lbmLogShutdown: log:0x%p", log); 1859 1860 lbuf = log->lbuf_free; 1861 while (lbuf) { 1862 struct lbuf *next = lbuf->l_freelist; 1863 __free_page(lbuf->l_page); 1864 kfree(lbuf); 1865 lbuf = next; 1866 } 1867 } 1868 1869 1870 /* 1871 * lbmAllocate() 1872 * 1873 * allocate an empty log buffer 1874 */ 1875 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn) 1876 { 1877 struct lbuf *bp; 1878 unsigned long flags; 1879 1880 /* 1881 * recycle from log buffer freelist if any 1882 */ 1883 LCACHE_LOCK(flags); 1884 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags); 1885 log->lbuf_free = bp->l_freelist; 1886 LCACHE_UNLOCK(flags); 1887 1888 bp->l_flag = 0; 1889 1890 bp->l_wqnext = NULL; 1891 bp->l_freelist = NULL; 1892 1893 bp->l_pn = pn; 1894 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize)); 1895 bp->l_ceor = 0; 1896 1897 return bp; 1898 } 1899 1900 1901 /* 1902 * lbmFree() 1903 * 1904 * release a log buffer to freelist 1905 */ 1906 static void lbmFree(struct lbuf * bp) 1907 { 1908 unsigned long flags; 1909 1910 LCACHE_LOCK(flags); 1911 1912 lbmfree(bp); 1913 1914 LCACHE_UNLOCK(flags); 1915 } 1916 1917 static void lbmfree(struct lbuf * bp) 1918 { 1919 struct jfs_log *log = bp->l_log; 1920 1921 assert(bp->l_wqnext == NULL); 1922 1923 /* 1924 * return the buffer to head of freelist 1925 */ 1926 bp->l_freelist = log->lbuf_free; 1927 log->lbuf_free = bp; 1928 1929 wake_up(&log->free_wait); 1930 return; 1931 } 1932 1933 1934 /* 1935 * NAME: lbmRedrive 1936 * 1937 * FUNCTION: add a log buffer to the log redrive list 1938 * 1939 * PARAMETER: 1940 * bp - log buffer 1941 * 1942 * NOTES: 1943 * Takes log_redrive_lock. 1944 */ 1945 static inline void lbmRedrive(struct lbuf *bp) 1946 { 1947 unsigned long flags; 1948 1949 spin_lock_irqsave(&log_redrive_lock, flags); 1950 bp->l_redrive_next = log_redrive_list; 1951 log_redrive_list = bp; 1952 spin_unlock_irqrestore(&log_redrive_lock, flags); 1953 1954 wake_up_process(jfsIOthread); 1955 } 1956 1957 1958 /* 1959 * lbmRead() 1960 */ 1961 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp) 1962 { 1963 struct bio *bio; 1964 struct lbuf *bp; 1965 1966 /* 1967 * allocate a log buffer 1968 */ 1969 *bpp = bp = lbmAllocate(log, pn); 1970 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn); 1971 1972 bp->l_flag |= lbmREAD; 1973 1974 bio = bio_alloc(file_bdev(log->bdev_file), 1, REQ_OP_READ, GFP_NOFS); 1975 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9); 1976 __bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset); 1977 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE); 1978 1979 bio->bi_end_io = lbmIODone; 1980 bio->bi_private = bp; 1981 /*check if journaling to disk has been disabled*/ 1982 if (log->no_integrity) { 1983 bio->bi_iter.bi_size = 0; 1984 lbmIODone(bio); 1985 } else { 1986 submit_bio(bio); 1987 } 1988 1989 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD)); 1990 1991 return 0; 1992 } 1993 1994 1995 /* 1996 * lbmWrite() 1997 * 1998 * buffer at head of pageout queue stays after completion of 1999 * partial-page pageout and redriven by explicit initiation of 2000 * pageout by caller until full-page pageout is completed and 2001 * released. 2002 * 2003 * device driver i/o done redrives pageout of new buffer at 2004 * head of pageout queue when current buffer at head of pageout 2005 * queue is released at the completion of its full-page pageout. 2006 * 2007 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit(). 2008 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone() 2009 */ 2010 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, 2011 int cant_block) 2012 { 2013 struct lbuf *tail; 2014 unsigned long flags; 2015 2016 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn); 2017 2018 /* map the logical block address to physical block address */ 2019 bp->l_blkno = 2020 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2021 2022 LCACHE_LOCK(flags); /* disable+lock */ 2023 2024 /* 2025 * initialize buffer for device driver 2026 */ 2027 bp->l_flag = flag; 2028 2029 /* 2030 * insert bp at tail of write queue associated with log 2031 * 2032 * (request is either for bp already/currently at head of queue 2033 * or new bp to be inserted at tail) 2034 */ 2035 tail = log->wqueue; 2036 2037 /* is buffer not already on write queue ? */ 2038 if (bp->l_wqnext == NULL) { 2039 /* insert at tail of wqueue */ 2040 if (tail == NULL) { 2041 log->wqueue = bp; 2042 bp->l_wqnext = bp; 2043 } else { 2044 log->wqueue = bp; 2045 bp->l_wqnext = tail->l_wqnext; 2046 tail->l_wqnext = bp; 2047 } 2048 2049 tail = bp; 2050 } 2051 2052 /* is buffer at head of wqueue and for write ? */ 2053 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) { 2054 LCACHE_UNLOCK(flags); /* unlock+enable */ 2055 return; 2056 } 2057 2058 LCACHE_UNLOCK(flags); /* unlock+enable */ 2059 2060 if (cant_block) 2061 lbmRedrive(bp); 2062 else if (flag & lbmSYNC) 2063 lbmStartIO(bp); 2064 else { 2065 LOGGC_UNLOCK(log); 2066 lbmStartIO(bp); 2067 LOGGC_LOCK(log); 2068 } 2069 } 2070 2071 2072 /* 2073 * lbmDirectWrite() 2074 * 2075 * initiate pageout bypassing write queue for sidestream 2076 * (e.g., log superblock) write; 2077 */ 2078 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag) 2079 { 2080 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x", 2081 bp, flag, bp->l_pn); 2082 2083 /* 2084 * initialize buffer for device driver 2085 */ 2086 bp->l_flag = flag | lbmDIRECT; 2087 2088 /* map the logical block address to physical block address */ 2089 bp->l_blkno = 2090 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2091 2092 /* 2093 * initiate pageout of the page 2094 */ 2095 lbmStartIO(bp); 2096 } 2097 2098 2099 /* 2100 * NAME: lbmStartIO() 2101 * 2102 * FUNCTION: Interface to DD strategy routine 2103 * 2104 * RETURN: none 2105 * 2106 * serialization: LCACHE_LOCK() is NOT held during log i/o; 2107 */ 2108 static void lbmStartIO(struct lbuf * bp) 2109 { 2110 struct bio *bio; 2111 struct jfs_log *log = bp->l_log; 2112 struct block_device *bdev = NULL; 2113 2114 jfs_info("lbmStartIO"); 2115 2116 if (!log->no_integrity) 2117 bdev = file_bdev(log->bdev_file); 2118 2119 bio = bio_alloc(bdev, 1, REQ_OP_WRITE | REQ_SYNC, 2120 GFP_NOFS); 2121 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9); 2122 __bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset); 2123 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE); 2124 2125 bio->bi_end_io = lbmIODone; 2126 bio->bi_private = bp; 2127 2128 /* check if journaling to disk has been disabled */ 2129 if (log->no_integrity) { 2130 bio->bi_iter.bi_size = 0; 2131 lbmIODone(bio); 2132 } else { 2133 submit_bio(bio); 2134 INCREMENT(lmStat.submitted); 2135 } 2136 } 2137 2138 2139 /* 2140 * lbmIOWait() 2141 */ 2142 static int lbmIOWait(struct lbuf * bp, int flag) 2143 { 2144 unsigned long flags; 2145 int rc = 0; 2146 2147 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2148 2149 LCACHE_LOCK(flags); /* disable+lock */ 2150 2151 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags); 2152 2153 rc = (bp->l_flag & lbmERROR) ? -EIO : 0; 2154 2155 if (flag & lbmFREE) 2156 lbmfree(bp); 2157 2158 LCACHE_UNLOCK(flags); /* unlock+enable */ 2159 2160 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2161 return rc; 2162 } 2163 2164 /* 2165 * lbmIODone() 2166 * 2167 * executed at INTIODONE level 2168 */ 2169 static void lbmIODone(struct bio *bio) 2170 { 2171 struct lbuf *bp = bio->bi_private; 2172 struct lbuf *nextbp, *tail; 2173 struct jfs_log *log; 2174 unsigned long flags; 2175 2176 /* 2177 * get back jfs buffer bound to the i/o buffer 2178 */ 2179 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag); 2180 2181 LCACHE_LOCK(flags); /* disable+lock */ 2182 2183 bp->l_flag |= lbmDONE; 2184 2185 if (bio->bi_status) { 2186 bp->l_flag |= lbmERROR; 2187 2188 jfs_err("lbmIODone: I/O error in JFS log"); 2189 } 2190 2191 bio_put(bio); 2192 2193 /* 2194 * pagein completion 2195 */ 2196 if (bp->l_flag & lbmREAD) { 2197 bp->l_flag &= ~lbmREAD; 2198 2199 LCACHE_UNLOCK(flags); /* unlock+enable */ 2200 2201 /* wakeup I/O initiator */ 2202 LCACHE_WAKEUP(&bp->l_ioevent); 2203 2204 return; 2205 } 2206 2207 /* 2208 * pageout completion 2209 * 2210 * the bp at the head of write queue has completed pageout. 2211 * 2212 * if single-commit/full-page pageout, remove the current buffer 2213 * from head of pageout queue, and redrive pageout with 2214 * the new buffer at head of pageout queue; 2215 * otherwise, the partial-page pageout buffer stays at 2216 * the head of pageout queue to be redriven for pageout 2217 * by lmGroupCommit() until full-page pageout is completed. 2218 */ 2219 bp->l_flag &= ~lbmWRITE; 2220 INCREMENT(lmStat.pagedone); 2221 2222 /* update committed lsn */ 2223 log = bp->l_log; 2224 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor; 2225 2226 if (bp->l_flag & lbmDIRECT) { 2227 LCACHE_WAKEUP(&bp->l_ioevent); 2228 LCACHE_UNLOCK(flags); 2229 return; 2230 } 2231 2232 tail = log->wqueue; 2233 2234 /* single element queue */ 2235 if (bp == tail) { 2236 /* remove head buffer of full-page pageout 2237 * from log device write queue 2238 */ 2239 if (bp->l_flag & lbmRELEASE) { 2240 log->wqueue = NULL; 2241 bp->l_wqnext = NULL; 2242 } 2243 } 2244 /* multi element queue */ 2245 else { 2246 /* remove head buffer of full-page pageout 2247 * from log device write queue 2248 */ 2249 if (bp->l_flag & lbmRELEASE) { 2250 nextbp = tail->l_wqnext = bp->l_wqnext; 2251 bp->l_wqnext = NULL; 2252 2253 /* 2254 * redrive pageout of next page at head of write queue: 2255 * redrive next page without any bound tblk 2256 * (i.e., page w/o any COMMIT records), or 2257 * first page of new group commit which has been 2258 * queued after current page (subsequent pageout 2259 * is performed synchronously, except page without 2260 * any COMMITs) by lmGroupCommit() as indicated 2261 * by lbmWRITE flag; 2262 */ 2263 if (nextbp->l_flag & lbmWRITE) { 2264 /* 2265 * We can't do the I/O at interrupt time. 2266 * The jfsIO thread can do it 2267 */ 2268 lbmRedrive(nextbp); 2269 } 2270 } 2271 } 2272 2273 /* 2274 * synchronous pageout: 2275 * 2276 * buffer has not necessarily been removed from write queue 2277 * (e.g., synchronous write of partial-page with COMMIT): 2278 * leave buffer for i/o initiator to dispose 2279 */ 2280 if (bp->l_flag & lbmSYNC) { 2281 LCACHE_UNLOCK(flags); /* unlock+enable */ 2282 2283 /* wakeup I/O initiator */ 2284 LCACHE_WAKEUP(&bp->l_ioevent); 2285 } 2286 2287 /* 2288 * Group Commit pageout: 2289 */ 2290 else if (bp->l_flag & lbmGC) { 2291 LCACHE_UNLOCK(flags); 2292 lmPostGC(bp); 2293 } 2294 2295 /* 2296 * asynchronous pageout: 2297 * 2298 * buffer must have been removed from write queue: 2299 * insert buffer at head of freelist where it can be recycled 2300 */ 2301 else { 2302 assert(bp->l_flag & lbmRELEASE); 2303 assert(bp->l_flag & lbmFREE); 2304 lbmfree(bp); 2305 2306 LCACHE_UNLOCK(flags); /* unlock+enable */ 2307 } 2308 } 2309 2310 int jfsIOWait(void *arg) 2311 { 2312 struct lbuf *bp; 2313 2314 do { 2315 spin_lock_irq(&log_redrive_lock); 2316 while ((bp = log_redrive_list)) { 2317 log_redrive_list = bp->l_redrive_next; 2318 bp->l_redrive_next = NULL; 2319 spin_unlock_irq(&log_redrive_lock); 2320 lbmStartIO(bp); 2321 spin_lock_irq(&log_redrive_lock); 2322 } 2323 2324 if (freezing(current)) { 2325 spin_unlock_irq(&log_redrive_lock); 2326 try_to_freeze(); 2327 } else { 2328 set_current_state(TASK_INTERRUPTIBLE); 2329 spin_unlock_irq(&log_redrive_lock); 2330 schedule(); 2331 } 2332 } while (!kthread_should_stop()); 2333 2334 jfs_info("jfsIOWait being killed!"); 2335 return 0; 2336 } 2337 2338 /* 2339 * NAME: lmLogFormat()/jfs_logform() 2340 * 2341 * FUNCTION: format file system log 2342 * 2343 * PARAMETERS: 2344 * log - volume log 2345 * logAddress - start address of log space in FS block 2346 * logSize - length of log space in FS block; 2347 * 2348 * RETURN: 0 - success 2349 * -EIO - i/o error 2350 * 2351 * XXX: We're synchronously writing one page at a time. This needs to 2352 * be improved by writing multiple pages at once. 2353 */ 2354 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize) 2355 { 2356 int rc = -EIO; 2357 struct jfs_sb_info *sbi; 2358 struct logsuper *logsuper; 2359 struct logpage *lp; 2360 int lspn; /* log sequence page number */ 2361 struct lrd *lrd_ptr; 2362 int npages = 0; 2363 struct lbuf *bp; 2364 2365 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d", 2366 (long long)logAddress, logSize); 2367 2368 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list); 2369 2370 /* allocate a log buffer */ 2371 bp = lbmAllocate(log, 1); 2372 2373 npages = logSize >> sbi->l2nbperpage; 2374 2375 /* 2376 * log space: 2377 * 2378 * page 0 - reserved; 2379 * page 1 - log superblock; 2380 * page 2 - log data page: A SYNC log record is written 2381 * into this page at logform time; 2382 * pages 3-N - log data page: set to empty log data pages; 2383 */ 2384 /* 2385 * init log superblock: log page 1 2386 */ 2387 logsuper = (struct logsuper *) bp->l_ldata; 2388 2389 logsuper->magic = cpu_to_le32(LOGMAGIC); 2390 logsuper->version = cpu_to_le32(LOGVERSION); 2391 logsuper->state = cpu_to_le32(LOGREDONE); 2392 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */ 2393 logsuper->size = cpu_to_le32(npages); 2394 logsuper->bsize = cpu_to_le32(sbi->bsize); 2395 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize); 2396 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE); 2397 2398 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2399 bp->l_blkno = logAddress + sbi->nbperpage; 2400 lbmStartIO(bp); 2401 if ((rc = lbmIOWait(bp, 0))) 2402 goto exit; 2403 2404 /* 2405 * init pages 2 to npages-1 as log data pages: 2406 * 2407 * log page sequence number (lpsn) initialization: 2408 * 2409 * pn: 0 1 2 3 n-1 2410 * +-----+-----+=====+=====+===.....===+=====+ 2411 * lspn: N-1 0 1 N-2 2412 * <--- N page circular file ----> 2413 * 2414 * the N (= npages-2) data pages of the log is maintained as 2415 * a circular file for the log records; 2416 * lpsn grows by 1 monotonically as each log page is written 2417 * to the circular file of the log; 2418 * and setLogpage() will not reset the page number even if 2419 * the eor is equal to LOGPHDRSIZE. In order for binary search 2420 * still work in find log end process, we have to simulate the 2421 * log wrap situation at the log format time. 2422 * The 1st log page written will have the highest lpsn. Then 2423 * the succeeding log pages will have ascending order of 2424 * the lspn starting from 0, ... (N-2) 2425 */ 2426 lp = (struct logpage *) bp->l_ldata; 2427 /* 2428 * initialize 1st log page to be written: lpsn = N - 1, 2429 * write a SYNCPT log record is written to this page 2430 */ 2431 lp->h.page = lp->t.page = cpu_to_le32(npages - 3); 2432 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE); 2433 2434 lrd_ptr = (struct lrd *) &lp->data; 2435 lrd_ptr->logtid = 0; 2436 lrd_ptr->backchain = 0; 2437 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT); 2438 lrd_ptr->length = 0; 2439 lrd_ptr->log.syncpt.sync = 0; 2440 2441 bp->l_blkno += sbi->nbperpage; 2442 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2443 lbmStartIO(bp); 2444 if ((rc = lbmIOWait(bp, 0))) 2445 goto exit; 2446 2447 /* 2448 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2) 2449 */ 2450 for (lspn = 0; lspn < npages - 3; lspn++) { 2451 lp->h.page = lp->t.page = cpu_to_le32(lspn); 2452 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 2453 2454 bp->l_blkno += sbi->nbperpage; 2455 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2456 lbmStartIO(bp); 2457 if ((rc = lbmIOWait(bp, 0))) 2458 goto exit; 2459 } 2460 2461 rc = 0; 2462 exit: 2463 /* 2464 * finalize log 2465 */ 2466 /* release the buffer */ 2467 lbmFree(bp); 2468 2469 return rc; 2470 } 2471 2472 #ifdef CONFIG_JFS_STATISTICS 2473 int jfs_lmstats_proc_show(struct seq_file *m, void *v) 2474 { 2475 seq_printf(m, 2476 "JFS Logmgr stats\n" 2477 "================\n" 2478 "commits = %d\n" 2479 "writes submitted = %d\n" 2480 "writes completed = %d\n" 2481 "full pages submitted = %d\n" 2482 "partial pages submitted = %d\n", 2483 lmStat.commit, 2484 lmStat.submitted, 2485 lmStat.pagedone, 2486 lmStat.full_page, 2487 lmStat.partial_page); 2488 return 0; 2489 } 2490 #endif /* CONFIG_JFS_STATISTICS */ 2491