1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) International Business Machines Corp., 2000-2004 4 * Portions Copyright (C) Christoph Hellwig, 2001-2002 5 */ 6 7 /* 8 * jfs_logmgr.c: log manager 9 * 10 * for related information, see transaction manager (jfs_txnmgr.c), and 11 * recovery manager (jfs_logredo.c). 12 * 13 * note: for detail, RTFS. 14 * 15 * log buffer manager: 16 * special purpose buffer manager supporting log i/o requirements. 17 * per log serial pageout of logpage 18 * queuing i/o requests and redrive i/o at iodone 19 * maintain current logpage buffer 20 * no caching since append only 21 * appropriate jfs buffer cache buffers as needed 22 * 23 * group commit: 24 * transactions which wrote COMMIT records in the same in-memory 25 * log page during the pageout of previous/current log page(s) are 26 * committed together by the pageout of the page. 27 * 28 * TBD lazy commit: 29 * transactions are committed asynchronously when the log page 30 * containing it COMMIT is paged out when it becomes full; 31 * 32 * serialization: 33 * . a per log lock serialize log write. 34 * . a per log lock serialize group commit. 35 * . a per log lock serialize log open/close; 36 * 37 * TBD log integrity: 38 * careful-write (ping-pong) of last logpage to recover from crash 39 * in overwrite. 40 * detection of split (out-of-order) write of physical sectors 41 * of last logpage via timestamp at end of each sector 42 * with its mirror data array at trailer). 43 * 44 * alternatives: 45 * lsn - 64-bit monotonically increasing integer vs 46 * 32-bit lspn and page eor. 47 */ 48 49 #include <linux/fs.h> 50 #include <linux/blkdev.h> 51 #include <linux/interrupt.h> 52 #include <linux/completion.h> 53 #include <linux/kthread.h> 54 #include <linux/buffer_head.h> /* for sync_blockdev() */ 55 #include <linux/bio.h> 56 #include <linux/freezer.h> 57 #include <linux/export.h> 58 #include <linux/delay.h> 59 #include <linux/mutex.h> 60 #include <linux/seq_file.h> 61 #include <linux/slab.h> 62 #include "jfs_incore.h" 63 #include "jfs_filsys.h" 64 #include "jfs_metapage.h" 65 #include "jfs_superblock.h" 66 #include "jfs_txnmgr.h" 67 #include "jfs_debug.h" 68 69 70 /* 71 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread) 72 */ 73 static struct lbuf *log_redrive_list; 74 static DEFINE_SPINLOCK(log_redrive_lock); 75 76 77 /* 78 * log read/write serialization (per log) 79 */ 80 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock) 81 #define LOG_LOCK(log) mutex_lock(&((log)->loglock)) 82 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock)) 83 84 85 /* 86 * log group commit serialization (per log) 87 */ 88 89 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock) 90 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock) 91 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock) 92 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait) 93 94 /* 95 * log sync serialization (per log) 96 */ 97 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE) 98 #define LOGSYNC_BARRIER(logsize) ((logsize)/4) 99 /* 100 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE) 101 #define LOGSYNC_BARRIER(logsize) ((logsize)/2) 102 */ 103 104 105 /* 106 * log buffer cache synchronization 107 */ 108 static DEFINE_SPINLOCK(jfsLCacheLock); 109 110 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags) 111 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags) 112 113 /* 114 * See __SLEEP_COND in jfs_locks.h 115 */ 116 #define LCACHE_SLEEP_COND(wq, cond, flags) \ 117 do { \ 118 if (cond) \ 119 break; \ 120 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \ 121 } while (0) 122 123 #define LCACHE_WAKEUP(event) wake_up(event) 124 125 126 /* 127 * lbuf buffer cache (lCache) control 128 */ 129 /* log buffer manager pageout control (cumulative, inclusive) */ 130 #define lbmREAD 0x0001 131 #define lbmWRITE 0x0002 /* enqueue at tail of write queue; 132 * init pageout if at head of queue; 133 */ 134 #define lbmRELEASE 0x0004 /* remove from write queue 135 * at completion of pageout; 136 * do not free/recycle it yet: 137 * caller will free it; 138 */ 139 #define lbmSYNC 0x0008 /* do not return to freelist 140 * when removed from write queue; 141 */ 142 #define lbmFREE 0x0010 /* return to freelist 143 * at completion of pageout; 144 * the buffer may be recycled; 145 */ 146 #define lbmDONE 0x0020 147 #define lbmERROR 0x0040 148 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing 149 * of log page 150 */ 151 #define lbmDIRECT 0x0100 152 153 /* 154 * Global list of active external journals 155 */ 156 static LIST_HEAD(jfs_external_logs); 157 static struct jfs_log *dummy_log; 158 static DEFINE_MUTEX(jfs_log_mutex); 159 160 /* 161 * forward references 162 */ 163 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk, 164 struct lrd * lrd, struct tlock * tlck); 165 166 static int lmNextPage(struct jfs_log * log); 167 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 168 int activate); 169 170 static int open_inline_log(struct super_block *sb); 171 static int open_dummy_log(struct super_block *sb); 172 static int lbmLogInit(struct jfs_log * log); 173 static void lbmLogShutdown(struct jfs_log * log); 174 static struct lbuf *lbmAllocate(struct jfs_log * log, int); 175 static void lbmFree(struct lbuf * bp); 176 static void lbmfree(struct lbuf * bp); 177 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp); 178 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block); 179 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag); 180 static int lbmIOWait(struct lbuf * bp, int flag); 181 static bio_end_io_t lbmIODone; 182 static void lbmStartIO(struct lbuf * bp); 183 static void lmGCwrite(struct jfs_log * log, int cant_block); 184 static int lmLogSync(struct jfs_log * log, int hard_sync); 185 186 187 188 /* 189 * statistics 190 */ 191 #ifdef CONFIG_JFS_STATISTICS 192 static struct lmStat { 193 uint commit; /* # of commit */ 194 uint pagedone; /* # of page written */ 195 uint submitted; /* # of pages submitted */ 196 uint full_page; /* # of full pages submitted */ 197 uint partial_page; /* # of partial pages submitted */ 198 } lmStat; 199 #endif 200 201 static void write_special_inodes(struct jfs_log *log, 202 int (*writer)(struct address_space *)) 203 { 204 struct jfs_sb_info *sbi; 205 206 list_for_each_entry(sbi, &log->sb_list, log_list) { 207 writer(sbi->ipbmap->i_mapping); 208 writer(sbi->ipimap->i_mapping); 209 writer(sbi->direct_inode->i_mapping); 210 } 211 } 212 213 /* 214 * NAME: lmLog() 215 * 216 * FUNCTION: write a log record; 217 * 218 * PARAMETER: 219 * 220 * RETURN: lsn - offset to the next log record to write (end-of-log); 221 * -1 - error; 222 * 223 * note: todo: log error handler 224 */ 225 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 226 struct tlock * tlck) 227 { 228 int lsn; 229 int diffp, difft; 230 struct metapage *mp = NULL; 231 unsigned long flags; 232 233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p", 234 log, tblk, lrd, tlck); 235 236 LOG_LOCK(log); 237 238 /* log by (out-of-transaction) JFS ? */ 239 if (tblk == NULL) 240 goto writeRecord; 241 242 /* log from page ? */ 243 if (tlck == NULL || 244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL) 245 goto writeRecord; 246 247 /* 248 * initialize/update page/transaction recovery lsn 249 */ 250 lsn = log->lsn; 251 252 LOGSYNC_LOCK(log, flags); 253 254 /* 255 * initialize page lsn if first log write of the page 256 */ 257 if (mp->lsn == 0) { 258 mp->log = log; 259 mp->lsn = lsn; 260 log->count++; 261 262 /* insert page at tail of logsynclist */ 263 list_add_tail(&mp->synclist, &log->synclist); 264 } 265 266 /* 267 * initialize/update lsn of tblock of the page 268 * 269 * transaction inherits oldest lsn of pages associated 270 * with allocation/deallocation of resources (their 271 * log records are used to reconstruct allocation map 272 * at recovery time: inode for inode allocation map, 273 * B+-tree index of extent descriptors for block 274 * allocation map); 275 * allocation map pages inherit transaction lsn at 276 * commit time to allow forwarding log syncpt past log 277 * records associated with allocation/deallocation of 278 * resources only after persistent map of these map pages 279 * have been updated and propagated to home. 280 */ 281 /* 282 * initialize transaction lsn: 283 */ 284 if (tblk->lsn == 0) { 285 /* inherit lsn of its first page logged */ 286 tblk->lsn = mp->lsn; 287 log->count++; 288 289 /* insert tblock after the page on logsynclist */ 290 list_add(&tblk->synclist, &mp->synclist); 291 } 292 /* 293 * update transaction lsn: 294 */ 295 else { 296 /* inherit oldest/smallest lsn of page */ 297 logdiff(diffp, mp->lsn, log); 298 logdiff(difft, tblk->lsn, log); 299 if (diffp < difft) { 300 /* update tblock lsn with page lsn */ 301 tblk->lsn = mp->lsn; 302 303 /* move tblock after page on logsynclist */ 304 list_move(&tblk->synclist, &mp->synclist); 305 } 306 } 307 308 LOGSYNC_UNLOCK(log, flags); 309 310 /* 311 * write the log record 312 */ 313 writeRecord: 314 lsn = lmWriteRecord(log, tblk, lrd, tlck); 315 316 /* 317 * forward log syncpt if log reached next syncpt trigger 318 */ 319 logdiff(diffp, lsn, log); 320 if (diffp >= log->nextsync) 321 lsn = lmLogSync(log, 0); 322 323 /* update end-of-log lsn */ 324 log->lsn = lsn; 325 326 LOG_UNLOCK(log); 327 328 /* return end-of-log address */ 329 return lsn; 330 } 331 332 /* 333 * NAME: lmWriteRecord() 334 * 335 * FUNCTION: move the log record to current log page 336 * 337 * PARAMETER: cd - commit descriptor 338 * 339 * RETURN: end-of-log address 340 * 341 * serialization: LOG_LOCK() held on entry/exit 342 */ 343 static int 344 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 345 struct tlock * tlck) 346 { 347 int lsn = 0; /* end-of-log address */ 348 struct lbuf *bp; /* dst log page buffer */ 349 struct logpage *lp; /* dst log page */ 350 caddr_t dst; /* destination address in log page */ 351 int dstoffset; /* end-of-log offset in log page */ 352 int freespace; /* free space in log page */ 353 caddr_t p; /* src meta-data page */ 354 caddr_t src; 355 int srclen; 356 int nbytes; /* number of bytes to move */ 357 int i; 358 int len; 359 struct linelock *linelock; 360 struct lv *lv; 361 struct lvd *lvd; 362 int l2linesize; 363 364 len = 0; 365 366 /* retrieve destination log page to write */ 367 bp = (struct lbuf *) log->bp; 368 lp = (struct logpage *) bp->l_ldata; 369 dstoffset = log->eor; 370 371 /* any log data to write ? */ 372 if (tlck == NULL) 373 goto moveLrd; 374 375 /* 376 * move log record data 377 */ 378 /* retrieve source meta-data page to log */ 379 if (tlck->flag & tlckPAGELOCK) { 380 p = (caddr_t) (tlck->mp->data); 381 linelock = (struct linelock *) & tlck->lock; 382 } 383 /* retrieve source in-memory inode to log */ 384 else if (tlck->flag & tlckINODELOCK) { 385 if (tlck->type & tlckDTREE) 386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot; 387 else 388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot; 389 linelock = (struct linelock *) & tlck->lock; 390 } 391 else { 392 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck); 393 return 0; /* Probably should trap */ 394 } 395 l2linesize = linelock->l2linesize; 396 397 moveData: 398 ASSERT(linelock->index <= linelock->maxcnt); 399 400 lv = linelock->lv; 401 for (i = 0; i < linelock->index; i++, lv++) { 402 if (lv->length == 0) 403 continue; 404 405 /* is page full ? */ 406 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) { 407 /* page become full: move on to next page */ 408 lmNextPage(log); 409 410 bp = log->bp; 411 lp = (struct logpage *) bp->l_ldata; 412 dstoffset = LOGPHDRSIZE; 413 } 414 415 /* 416 * move log vector data 417 */ 418 src = (u8 *) p + (lv->offset << l2linesize); 419 srclen = lv->length << l2linesize; 420 len += srclen; 421 while (srclen > 0) { 422 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 423 nbytes = min(freespace, srclen); 424 dst = (caddr_t) lp + dstoffset; 425 memcpy(dst, src, nbytes); 426 dstoffset += nbytes; 427 428 /* is page not full ? */ 429 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 430 break; 431 432 /* page become full: move on to next page */ 433 lmNextPage(log); 434 435 bp = (struct lbuf *) log->bp; 436 lp = (struct logpage *) bp->l_ldata; 437 dstoffset = LOGPHDRSIZE; 438 439 srclen -= nbytes; 440 src += nbytes; 441 } 442 443 /* 444 * move log vector descriptor 445 */ 446 len += 4; 447 lvd = (struct lvd *) ((caddr_t) lp + dstoffset); 448 lvd->offset = cpu_to_le16(lv->offset); 449 lvd->length = cpu_to_le16(lv->length); 450 dstoffset += 4; 451 jfs_info("lmWriteRecord: lv offset:%d length:%d", 452 lv->offset, lv->length); 453 } 454 455 if ((i = linelock->next)) { 456 linelock = (struct linelock *) lid_to_tlock(i); 457 goto moveData; 458 } 459 460 /* 461 * move log record descriptor 462 */ 463 moveLrd: 464 lrd->length = cpu_to_le16(len); 465 466 src = (caddr_t) lrd; 467 srclen = LOGRDSIZE; 468 469 while (srclen > 0) { 470 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 471 nbytes = min(freespace, srclen); 472 dst = (caddr_t) lp + dstoffset; 473 memcpy(dst, src, nbytes); 474 475 dstoffset += nbytes; 476 srclen -= nbytes; 477 478 /* are there more to move than freespace of page ? */ 479 if (srclen) 480 goto pageFull; 481 482 /* 483 * end of log record descriptor 484 */ 485 486 /* update last log record eor */ 487 log->eor = dstoffset; 488 bp->l_eor = dstoffset; 489 lsn = (log->page << L2LOGPSIZE) + dstoffset; 490 491 if (lrd->type & cpu_to_le16(LOG_COMMIT)) { 492 tblk->clsn = lsn; 493 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn, 494 bp->l_eor); 495 496 INCREMENT(lmStat.commit); /* # of commit */ 497 498 /* 499 * enqueue tblock for group commit: 500 * 501 * enqueue tblock of non-trivial/synchronous COMMIT 502 * at tail of group commit queue 503 * (trivial/asynchronous COMMITs are ignored by 504 * group commit.) 505 */ 506 LOGGC_LOCK(log); 507 508 /* init tblock gc state */ 509 tblk->flag = tblkGC_QUEUE; 510 tblk->bp = log->bp; 511 tblk->pn = log->page; 512 tblk->eor = log->eor; 513 514 /* enqueue transaction to commit queue */ 515 list_add_tail(&tblk->cqueue, &log->cqueue); 516 517 LOGGC_UNLOCK(log); 518 } 519 520 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x", 521 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset); 522 523 /* page not full ? */ 524 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 525 return lsn; 526 527 pageFull: 528 /* page become full: move on to next page */ 529 lmNextPage(log); 530 531 bp = (struct lbuf *) log->bp; 532 lp = (struct logpage *) bp->l_ldata; 533 dstoffset = LOGPHDRSIZE; 534 src += nbytes; 535 } 536 537 return lsn; 538 } 539 540 541 /* 542 * NAME: lmNextPage() 543 * 544 * FUNCTION: write current page and allocate next page. 545 * 546 * PARAMETER: log 547 * 548 * RETURN: 0 549 * 550 * serialization: LOG_LOCK() held on entry/exit 551 */ 552 static int lmNextPage(struct jfs_log * log) 553 { 554 struct logpage *lp; 555 int lspn; /* log sequence page number */ 556 int pn; /* current page number */ 557 struct lbuf *bp; 558 struct lbuf *nextbp; 559 struct tblock *tblk; 560 561 /* get current log page number and log sequence page number */ 562 pn = log->page; 563 bp = log->bp; 564 lp = (struct logpage *) bp->l_ldata; 565 lspn = le32_to_cpu(lp->h.page); 566 567 LOGGC_LOCK(log); 568 569 /* 570 * write or queue the full page at the tail of write queue 571 */ 572 /* get the tail tblk on commit queue */ 573 if (list_empty(&log->cqueue)) 574 tblk = NULL; 575 else 576 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue); 577 578 /* every tblk who has COMMIT record on the current page, 579 * and has not been committed, must be on commit queue 580 * since tblk is queued at commit queueu at the time 581 * of writing its COMMIT record on the page before 582 * page becomes full (even though the tblk thread 583 * who wrote COMMIT record may have been suspended 584 * currently); 585 */ 586 587 /* is page bound with outstanding tail tblk ? */ 588 if (tblk && tblk->pn == pn) { 589 /* mark tblk for end-of-page */ 590 tblk->flag |= tblkGC_EOP; 591 592 if (log->cflag & logGC_PAGEOUT) { 593 /* if page is not already on write queue, 594 * just enqueue (no lbmWRITE to prevent redrive) 595 * buffer to wqueue to ensure correct serial order 596 * of the pages since log pages will be added 597 * continuously 598 */ 599 if (bp->l_wqnext == NULL) 600 lbmWrite(log, bp, 0, 0); 601 } else { 602 /* 603 * No current GC leader, initiate group commit 604 */ 605 log->cflag |= logGC_PAGEOUT; 606 lmGCwrite(log, 0); 607 } 608 } 609 /* page is not bound with outstanding tblk: 610 * init write or mark it to be redriven (lbmWRITE) 611 */ 612 else { 613 /* finalize the page */ 614 bp->l_ceor = bp->l_eor; 615 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 616 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0); 617 } 618 LOGGC_UNLOCK(log); 619 620 /* 621 * allocate/initialize next page 622 */ 623 /* if log wraps, the first data page of log is 2 624 * (0 never used, 1 is superblock). 625 */ 626 log->page = (pn == log->size - 1) ? 2 : pn + 1; 627 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */ 628 629 /* allocate/initialize next log page buffer */ 630 nextbp = lbmAllocate(log, log->page); 631 nextbp->l_eor = log->eor; 632 log->bp = nextbp; 633 634 /* initialize next log page */ 635 lp = (struct logpage *) nextbp->l_ldata; 636 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1); 637 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 638 639 return 0; 640 } 641 642 643 /* 644 * NAME: lmGroupCommit() 645 * 646 * FUNCTION: group commit 647 * initiate pageout of the pages with COMMIT in the order of 648 * page number - redrive pageout of the page at the head of 649 * pageout queue until full page has been written. 650 * 651 * RETURN: 652 * 653 * NOTE: 654 * LOGGC_LOCK serializes log group commit queue, and 655 * transaction blocks on the commit queue. 656 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 657 */ 658 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk) 659 { 660 int rc = 0; 661 662 LOGGC_LOCK(log); 663 664 /* group committed already ? */ 665 if (tblk->flag & tblkGC_COMMITTED) { 666 if (tblk->flag & tblkGC_ERROR) 667 rc = -EIO; 668 669 LOGGC_UNLOCK(log); 670 return rc; 671 } 672 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc); 673 674 if (tblk->xflag & COMMIT_LAZY) 675 tblk->flag |= tblkGC_LAZY; 676 677 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) && 678 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag) 679 || jfs_tlocks_low)) { 680 /* 681 * No pageout in progress 682 * 683 * start group commit as its group leader. 684 */ 685 log->cflag |= logGC_PAGEOUT; 686 687 lmGCwrite(log, 0); 688 } 689 690 if (tblk->xflag & COMMIT_LAZY) { 691 /* 692 * Lazy transactions can leave now 693 */ 694 LOGGC_UNLOCK(log); 695 return 0; 696 } 697 698 /* lmGCwrite gives up LOGGC_LOCK, check again */ 699 700 if (tblk->flag & tblkGC_COMMITTED) { 701 if (tblk->flag & tblkGC_ERROR) 702 rc = -EIO; 703 704 LOGGC_UNLOCK(log); 705 return rc; 706 } 707 708 /* upcount transaction waiting for completion 709 */ 710 log->gcrtc++; 711 tblk->flag |= tblkGC_READY; 712 713 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED), 714 LOGGC_LOCK(log), LOGGC_UNLOCK(log)); 715 716 /* removed from commit queue */ 717 if (tblk->flag & tblkGC_ERROR) 718 rc = -EIO; 719 720 LOGGC_UNLOCK(log); 721 return rc; 722 } 723 724 /* 725 * NAME: lmGCwrite() 726 * 727 * FUNCTION: group commit write 728 * initiate write of log page, building a group of all transactions 729 * with commit records on that page. 730 * 731 * RETURN: None 732 * 733 * NOTE: 734 * LOGGC_LOCK must be held by caller. 735 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 736 */ 737 static void lmGCwrite(struct jfs_log * log, int cant_write) 738 { 739 struct lbuf *bp; 740 struct logpage *lp; 741 int gcpn; /* group commit page number */ 742 struct tblock *tblk; 743 struct tblock *xtblk = NULL; 744 745 /* 746 * build the commit group of a log page 747 * 748 * scan commit queue and make a commit group of all 749 * transactions with COMMIT records on the same log page. 750 */ 751 /* get the head tblk on the commit queue */ 752 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn; 753 754 list_for_each_entry(tblk, &log->cqueue, cqueue) { 755 if (tblk->pn != gcpn) 756 break; 757 758 xtblk = tblk; 759 760 /* state transition: (QUEUE, READY) -> COMMIT */ 761 tblk->flag |= tblkGC_COMMIT; 762 } 763 tblk = xtblk; /* last tblk of the page */ 764 765 /* 766 * pageout to commit transactions on the log page. 767 */ 768 bp = (struct lbuf *) tblk->bp; 769 lp = (struct logpage *) bp->l_ldata; 770 /* is page already full ? */ 771 if (tblk->flag & tblkGC_EOP) { 772 /* mark page to free at end of group commit of the page */ 773 tblk->flag &= ~tblkGC_EOP; 774 tblk->flag |= tblkGC_FREE; 775 bp->l_ceor = bp->l_eor; 776 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 777 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC, 778 cant_write); 779 INCREMENT(lmStat.full_page); 780 } 781 /* page is not yet full */ 782 else { 783 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */ 784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 785 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write); 786 INCREMENT(lmStat.partial_page); 787 } 788 } 789 790 /* 791 * NAME: lmPostGC() 792 * 793 * FUNCTION: group commit post-processing 794 * Processes transactions after their commit records have been written 795 * to disk, redriving log I/O if necessary. 796 * 797 * RETURN: None 798 * 799 * NOTE: 800 * This routine is called a interrupt time by lbmIODone 801 */ 802 static void lmPostGC(struct lbuf * bp) 803 { 804 unsigned long flags; 805 struct jfs_log *log = bp->l_log; 806 struct logpage *lp; 807 struct tblock *tblk, *temp; 808 809 //LOGGC_LOCK(log); 810 spin_lock_irqsave(&log->gclock, flags); 811 /* 812 * current pageout of group commit completed. 813 * 814 * remove/wakeup transactions from commit queue who were 815 * group committed with the current log page 816 */ 817 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) { 818 if (!(tblk->flag & tblkGC_COMMIT)) 819 break; 820 /* if transaction was marked GC_COMMIT then 821 * it has been shipped in the current pageout 822 * and made it to disk - it is committed. 823 */ 824 825 if (bp->l_flag & lbmERROR) 826 tblk->flag |= tblkGC_ERROR; 827 828 /* remove it from the commit queue */ 829 list_del(&tblk->cqueue); 830 tblk->flag &= ~tblkGC_QUEUE; 831 832 if (tblk == log->flush_tblk) { 833 /* we can stop flushing the log now */ 834 clear_bit(log_FLUSH, &log->flag); 835 log->flush_tblk = NULL; 836 } 837 838 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk, 839 tblk->flag); 840 841 if (!(tblk->xflag & COMMIT_FORCE)) 842 /* 843 * Hand tblk over to lazy commit thread 844 */ 845 txLazyUnlock(tblk); 846 else { 847 /* state transition: COMMIT -> COMMITTED */ 848 tblk->flag |= tblkGC_COMMITTED; 849 850 if (tblk->flag & tblkGC_READY) 851 log->gcrtc--; 852 853 LOGGC_WAKEUP(tblk); 854 } 855 856 /* was page full before pageout ? 857 * (and this is the last tblk bound with the page) 858 */ 859 if (tblk->flag & tblkGC_FREE) 860 lbmFree(bp); 861 /* did page become full after pageout ? 862 * (and this is the last tblk bound with the page) 863 */ 864 else if (tblk->flag & tblkGC_EOP) { 865 /* finalize the page */ 866 lp = (struct logpage *) bp->l_ldata; 867 bp->l_ceor = bp->l_eor; 868 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 869 jfs_info("lmPostGC: calling lbmWrite"); 870 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 871 1); 872 } 873 874 } 875 876 /* are there any transactions who have entered lnGroupCommit() 877 * (whose COMMITs are after that of the last log page written. 878 * They are waiting for new group commit (above at (SLEEP 1)) 879 * or lazy transactions are on a full (queued) log page, 880 * select the latest ready transaction as new group leader and 881 * wake her up to lead her group. 882 */ 883 if ((!list_empty(&log->cqueue)) && 884 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) || 885 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low)) 886 /* 887 * Call lmGCwrite with new group leader 888 */ 889 lmGCwrite(log, 1); 890 891 /* no transaction are ready yet (transactions are only just 892 * queued (GC_QUEUE) and not entered for group commit yet). 893 * the first transaction entering group commit 894 * will elect herself as new group leader. 895 */ 896 else 897 log->cflag &= ~logGC_PAGEOUT; 898 899 //LOGGC_UNLOCK(log); 900 spin_unlock_irqrestore(&log->gclock, flags); 901 return; 902 } 903 904 /* 905 * NAME: lmLogSync() 906 * 907 * FUNCTION: write log SYNCPT record for specified log 908 * if new sync address is available 909 * (normally the case if sync() is executed by back-ground 910 * process). 911 * calculate new value of i_nextsync which determines when 912 * this code is called again. 913 * 914 * PARAMETERS: log - log structure 915 * hard_sync - 1 to force all metadata to be written 916 * 917 * RETURN: 0 918 * 919 * serialization: LOG_LOCK() held on entry/exit 920 */ 921 static int lmLogSync(struct jfs_log * log, int hard_sync) 922 { 923 int logsize; 924 int written; /* written since last syncpt */ 925 int free; /* free space left available */ 926 int delta; /* additional delta to write normally */ 927 int more; /* additional write granted */ 928 struct lrd lrd; 929 int lsn; 930 struct logsyncblk *lp; 931 unsigned long flags; 932 933 /* push dirty metapages out to disk */ 934 if (hard_sync) 935 write_special_inodes(log, filemap_fdatawrite); 936 else 937 write_special_inodes(log, filemap_flush); 938 939 /* 940 * forward syncpt 941 */ 942 /* if last sync is same as last syncpt, 943 * invoke sync point forward processing to update sync. 944 */ 945 946 if (log->sync == log->syncpt) { 947 LOGSYNC_LOCK(log, flags); 948 if (list_empty(&log->synclist)) 949 log->sync = log->lsn; 950 else { 951 lp = list_entry(log->synclist.next, 952 struct logsyncblk, synclist); 953 log->sync = lp->lsn; 954 } 955 LOGSYNC_UNLOCK(log, flags); 956 957 } 958 959 /* if sync is different from last syncpt, 960 * write a SYNCPT record with syncpt = sync. 961 * reset syncpt = sync 962 */ 963 if (log->sync != log->syncpt) { 964 lrd.logtid = 0; 965 lrd.backchain = 0; 966 lrd.type = cpu_to_le16(LOG_SYNCPT); 967 lrd.length = 0; 968 lrd.log.syncpt.sync = cpu_to_le32(log->sync); 969 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 970 971 log->syncpt = log->sync; 972 } else 973 lsn = log->lsn; 974 975 /* 976 * setup next syncpt trigger (SWAG) 977 */ 978 logsize = log->logsize; 979 980 logdiff(written, lsn, log); 981 free = logsize - written; 982 delta = LOGSYNC_DELTA(logsize); 983 more = min(free / 2, delta); 984 if (more < 2 * LOGPSIZE) { 985 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n"); 986 /* 987 * log wrapping 988 * 989 * option 1 - panic ? No.! 990 * option 2 - shutdown file systems 991 * associated with log ? 992 * option 3 - extend log ? 993 * option 4 - second chance 994 * 995 * mark log wrapped, and continue. 996 * when all active transactions are completed, 997 * mark log valid for recovery. 998 * if crashed during invalid state, log state 999 * implies invalid log, forcing fsck(). 1000 */ 1001 /* mark log state log wrap in log superblock */ 1002 /* log->state = LOGWRAP; */ 1003 1004 /* reset sync point computation */ 1005 log->syncpt = log->sync = lsn; 1006 log->nextsync = delta; 1007 } else 1008 /* next syncpt trigger = written + more */ 1009 log->nextsync = written + more; 1010 1011 /* if number of bytes written from last sync point is more 1012 * than 1/4 of the log size, stop new transactions from 1013 * starting until all current transactions are completed 1014 * by setting syncbarrier flag. 1015 */ 1016 if (!test_bit(log_SYNCBARRIER, &log->flag) && 1017 (written > LOGSYNC_BARRIER(logsize)) && log->active) { 1018 set_bit(log_SYNCBARRIER, &log->flag); 1019 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn, 1020 log->syncpt); 1021 /* 1022 * We may have to initiate group commit 1023 */ 1024 jfs_flush_journal(log, 0); 1025 } 1026 1027 return lsn; 1028 } 1029 1030 /* 1031 * NAME: jfs_syncpt 1032 * 1033 * FUNCTION: write log SYNCPT record for specified log 1034 * 1035 * PARAMETERS: log - log structure 1036 * hard_sync - set to 1 to force metadata to be written 1037 */ 1038 void jfs_syncpt(struct jfs_log *log, int hard_sync) 1039 { LOG_LOCK(log); 1040 if (!test_bit(log_QUIESCE, &log->flag)) 1041 lmLogSync(log, hard_sync); 1042 LOG_UNLOCK(log); 1043 } 1044 1045 /* 1046 * NAME: lmLogOpen() 1047 * 1048 * FUNCTION: open the log on first open; 1049 * insert filesystem in the active list of the log. 1050 * 1051 * PARAMETER: ipmnt - file system mount inode 1052 * iplog - log inode (out) 1053 * 1054 * RETURN: 1055 * 1056 * serialization: 1057 */ 1058 int lmLogOpen(struct super_block *sb) 1059 { 1060 int rc; 1061 struct file *bdev_file; 1062 struct jfs_log *log; 1063 struct jfs_sb_info *sbi = JFS_SBI(sb); 1064 1065 if (sbi->flag & JFS_NOINTEGRITY) 1066 return open_dummy_log(sb); 1067 1068 if (sbi->mntflag & JFS_INLINELOG) 1069 return open_inline_log(sb); 1070 1071 mutex_lock(&jfs_log_mutex); 1072 list_for_each_entry(log, &jfs_external_logs, journal_list) { 1073 if (file_bdev(log->bdev_file)->bd_dev == sbi->logdev) { 1074 if (!uuid_equal(&log->uuid, &sbi->loguuid)) { 1075 jfs_warn("wrong uuid on JFS journal"); 1076 mutex_unlock(&jfs_log_mutex); 1077 return -EINVAL; 1078 } 1079 /* 1080 * add file system to log active file system list 1081 */ 1082 if ((rc = lmLogFileSystem(log, sbi, 1))) { 1083 mutex_unlock(&jfs_log_mutex); 1084 return rc; 1085 } 1086 goto journal_found; 1087 } 1088 } 1089 1090 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) { 1091 mutex_unlock(&jfs_log_mutex); 1092 return -ENOMEM; 1093 } 1094 INIT_LIST_HEAD(&log->sb_list); 1095 init_waitqueue_head(&log->syncwait); 1096 1097 /* 1098 * external log as separate logical volume 1099 * 1100 * file systems to log may have n-to-1 relationship; 1101 */ 1102 1103 bdev_file = bdev_file_open_by_dev(sbi->logdev, 1104 BLK_OPEN_READ | BLK_OPEN_WRITE, log, NULL); 1105 if (IS_ERR(bdev_file)) { 1106 rc = PTR_ERR(bdev_file); 1107 goto free; 1108 } 1109 1110 log->bdev_file = bdev_file; 1111 uuid_copy(&log->uuid, &sbi->loguuid); 1112 1113 /* 1114 * initialize log: 1115 */ 1116 if ((rc = lmLogInit(log))) 1117 goto close; 1118 1119 list_add(&log->journal_list, &jfs_external_logs); 1120 1121 /* 1122 * add file system to log active file system list 1123 */ 1124 if ((rc = lmLogFileSystem(log, sbi, 1))) 1125 goto shutdown; 1126 1127 journal_found: 1128 LOG_LOCK(log); 1129 list_add(&sbi->log_list, &log->sb_list); 1130 sbi->log = log; 1131 LOG_UNLOCK(log); 1132 1133 mutex_unlock(&jfs_log_mutex); 1134 return 0; 1135 1136 /* 1137 * unwind on error 1138 */ 1139 shutdown: /* unwind lbmLogInit() */ 1140 list_del(&log->journal_list); 1141 lbmLogShutdown(log); 1142 1143 close: /* close external log device */ 1144 fput(bdev_file); 1145 1146 free: /* free log descriptor */ 1147 mutex_unlock(&jfs_log_mutex); 1148 kfree(log); 1149 1150 jfs_warn("lmLogOpen: exit(%d)", rc); 1151 return rc; 1152 } 1153 1154 static int open_inline_log(struct super_block *sb) 1155 { 1156 struct jfs_log *log; 1157 int rc; 1158 1159 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) 1160 return -ENOMEM; 1161 INIT_LIST_HEAD(&log->sb_list); 1162 init_waitqueue_head(&log->syncwait); 1163 1164 set_bit(log_INLINELOG, &log->flag); 1165 log->bdev_file = sb->s_bdev_file; 1166 log->base = addressPXD(&JFS_SBI(sb)->logpxd); 1167 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >> 1168 (L2LOGPSIZE - sb->s_blocksize_bits); 1169 log->l2bsize = sb->s_blocksize_bits; 1170 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits); 1171 1172 /* 1173 * initialize log. 1174 */ 1175 if ((rc = lmLogInit(log))) { 1176 kfree(log); 1177 jfs_warn("lmLogOpen: exit(%d)", rc); 1178 return rc; 1179 } 1180 1181 list_add(&JFS_SBI(sb)->log_list, &log->sb_list); 1182 JFS_SBI(sb)->log = log; 1183 1184 return rc; 1185 } 1186 1187 static int open_dummy_log(struct super_block *sb) 1188 { 1189 int rc; 1190 1191 mutex_lock(&jfs_log_mutex); 1192 if (!dummy_log) { 1193 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL); 1194 if (!dummy_log) { 1195 mutex_unlock(&jfs_log_mutex); 1196 return -ENOMEM; 1197 } 1198 INIT_LIST_HEAD(&dummy_log->sb_list); 1199 init_waitqueue_head(&dummy_log->syncwait); 1200 dummy_log->no_integrity = 1; 1201 /* Make up some stuff */ 1202 dummy_log->base = 0; 1203 dummy_log->size = 1024; 1204 rc = lmLogInit(dummy_log); 1205 if (rc) { 1206 kfree(dummy_log); 1207 dummy_log = NULL; 1208 mutex_unlock(&jfs_log_mutex); 1209 return rc; 1210 } 1211 } 1212 1213 LOG_LOCK(dummy_log); 1214 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list); 1215 JFS_SBI(sb)->log = dummy_log; 1216 LOG_UNLOCK(dummy_log); 1217 mutex_unlock(&jfs_log_mutex); 1218 1219 return 0; 1220 } 1221 1222 /* 1223 * NAME: lmLogInit() 1224 * 1225 * FUNCTION: log initialization at first log open. 1226 * 1227 * logredo() (or logformat()) should have been run previously. 1228 * initialize the log from log superblock. 1229 * set the log state in the superblock to LOGMOUNT and 1230 * write SYNCPT log record. 1231 * 1232 * PARAMETER: log - log structure 1233 * 1234 * RETURN: 0 - if ok 1235 * -EINVAL - bad log magic number or superblock dirty 1236 * error returned from logwait() 1237 * 1238 * serialization: single first open thread 1239 */ 1240 int lmLogInit(struct jfs_log * log) 1241 { 1242 int rc = 0; 1243 struct lrd lrd; 1244 struct logsuper *logsuper; 1245 struct lbuf *bpsuper; 1246 struct lbuf *bp; 1247 struct logpage *lp; 1248 int lsn = 0; 1249 1250 jfs_info("lmLogInit: log:0x%p", log); 1251 1252 /* initialize the group commit serialization lock */ 1253 LOGGC_LOCK_INIT(log); 1254 1255 /* allocate/initialize the log write serialization lock */ 1256 LOG_LOCK_INIT(log); 1257 1258 LOGSYNC_LOCK_INIT(log); 1259 1260 INIT_LIST_HEAD(&log->synclist); 1261 1262 INIT_LIST_HEAD(&log->cqueue); 1263 log->flush_tblk = NULL; 1264 1265 log->count = 0; 1266 1267 /* 1268 * initialize log i/o 1269 */ 1270 if ((rc = lbmLogInit(log))) 1271 return rc; 1272 1273 if (!test_bit(log_INLINELOG, &log->flag)) 1274 log->l2bsize = L2LOGPSIZE; 1275 1276 /* check for disabled journaling to disk */ 1277 if (log->no_integrity) { 1278 /* 1279 * Journal pages will still be filled. When the time comes 1280 * to actually do the I/O, the write is not done, and the 1281 * endio routine is called directly. 1282 */ 1283 bp = lbmAllocate(log , 0); 1284 log->bp = bp; 1285 bp->l_pn = bp->l_eor = 0; 1286 } else { 1287 /* 1288 * validate log superblock 1289 */ 1290 if ((rc = lbmRead(log, 1, &bpsuper))) 1291 goto errout10; 1292 1293 logsuper = (struct logsuper *) bpsuper->l_ldata; 1294 1295 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) { 1296 jfs_warn("*** Log Format Error ! ***"); 1297 rc = -EINVAL; 1298 goto errout20; 1299 } 1300 1301 /* logredo() should have been run successfully. */ 1302 if (logsuper->state != cpu_to_le32(LOGREDONE)) { 1303 jfs_warn("*** Log Is Dirty ! ***"); 1304 rc = -EINVAL; 1305 goto errout20; 1306 } 1307 1308 /* initialize log from log superblock */ 1309 if (test_bit(log_INLINELOG,&log->flag)) { 1310 if (log->size != le32_to_cpu(logsuper->size)) { 1311 rc = -EINVAL; 1312 goto errout20; 1313 } 1314 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx size:0x%x", 1315 log, (unsigned long long)log->base, log->size); 1316 } else { 1317 if (!uuid_equal(&logsuper->uuid, &log->uuid)) { 1318 jfs_warn("wrong uuid on JFS log device"); 1319 rc = -EINVAL; 1320 goto errout20; 1321 } 1322 log->size = le32_to_cpu(logsuper->size); 1323 log->l2bsize = le32_to_cpu(logsuper->l2bsize); 1324 jfs_info("lmLogInit: external log:0x%p base:0x%Lx size:0x%x", 1325 log, (unsigned long long)log->base, log->size); 1326 } 1327 1328 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE; 1329 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page); 1330 1331 /* 1332 * initialize for log append write mode 1333 */ 1334 /* establish current/end-of-log page/buffer */ 1335 if ((rc = lbmRead(log, log->page, &bp))) 1336 goto errout20; 1337 1338 lp = (struct logpage *) bp->l_ldata; 1339 1340 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d", 1341 le32_to_cpu(logsuper->end), log->page, log->eor, 1342 le16_to_cpu(lp->h.eor)); 1343 1344 log->bp = bp; 1345 bp->l_pn = log->page; 1346 bp->l_eor = log->eor; 1347 1348 /* if current page is full, move on to next page */ 1349 if (log->eor >= LOGPSIZE - LOGPTLRSIZE) 1350 lmNextPage(log); 1351 1352 /* 1353 * initialize log syncpoint 1354 */ 1355 /* 1356 * write the first SYNCPT record with syncpoint = 0 1357 * (i.e., log redo up to HERE !); 1358 * remove current page from lbm write queue at end of pageout 1359 * (to write log superblock update), but do not release to 1360 * freelist; 1361 */ 1362 lrd.logtid = 0; 1363 lrd.backchain = 0; 1364 lrd.type = cpu_to_le16(LOG_SYNCPT); 1365 lrd.length = 0; 1366 lrd.log.syncpt.sync = 0; 1367 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1368 bp = log->bp; 1369 bp->l_ceor = bp->l_eor; 1370 lp = (struct logpage *) bp->l_ldata; 1371 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1372 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0); 1373 if ((rc = lbmIOWait(bp, 0))) 1374 goto errout30; 1375 1376 /* 1377 * update/write superblock 1378 */ 1379 logsuper->state = cpu_to_le32(LOGMOUNT); 1380 log->serial = le32_to_cpu(logsuper->serial) + 1; 1381 logsuper->serial = cpu_to_le32(log->serial); 1382 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1383 if ((rc = lbmIOWait(bpsuper, lbmFREE))) 1384 goto errout30; 1385 } 1386 1387 /* initialize logsync parameters */ 1388 log->logsize = (log->size - 2) << L2LOGPSIZE; 1389 log->lsn = lsn; 1390 log->syncpt = lsn; 1391 log->sync = log->syncpt; 1392 log->nextsync = LOGSYNC_DELTA(log->logsize); 1393 1394 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x", 1395 log->lsn, log->syncpt, log->sync); 1396 1397 /* 1398 * initialize for lazy/group commit 1399 */ 1400 log->clsn = lsn; 1401 1402 return 0; 1403 1404 /* 1405 * unwind on error 1406 */ 1407 errout30: /* release log page */ 1408 log->wqueue = NULL; 1409 bp->l_wqnext = NULL; 1410 lbmFree(bp); 1411 1412 errout20: /* release log superblock */ 1413 lbmFree(bpsuper); 1414 1415 errout10: /* unwind lbmLogInit() */ 1416 lbmLogShutdown(log); 1417 1418 jfs_warn("lmLogInit: exit(%d)", rc); 1419 return rc; 1420 } 1421 1422 1423 /* 1424 * NAME: lmLogClose() 1425 * 1426 * FUNCTION: remove file system <ipmnt> from active list of log <iplog> 1427 * and close it on last close. 1428 * 1429 * PARAMETER: sb - superblock 1430 * 1431 * RETURN: errors from subroutines 1432 * 1433 * serialization: 1434 */ 1435 int lmLogClose(struct super_block *sb) 1436 { 1437 struct jfs_sb_info *sbi = JFS_SBI(sb); 1438 struct jfs_log *log = sbi->log; 1439 struct file *bdev_file; 1440 int rc = 0; 1441 1442 jfs_info("lmLogClose: log:0x%p", log); 1443 1444 mutex_lock(&jfs_log_mutex); 1445 LOG_LOCK(log); 1446 list_del(&sbi->log_list); 1447 LOG_UNLOCK(log); 1448 sbi->log = NULL; 1449 1450 /* 1451 * We need to make sure all of the "written" metapages 1452 * actually make it to disk 1453 */ 1454 sync_blockdev(sb->s_bdev); 1455 1456 if (test_bit(log_INLINELOG, &log->flag)) { 1457 /* 1458 * in-line log in host file system 1459 */ 1460 rc = lmLogShutdown(log); 1461 kfree(log); 1462 goto out; 1463 } 1464 1465 if (!log->no_integrity) 1466 lmLogFileSystem(log, sbi, 0); 1467 1468 if (!list_empty(&log->sb_list)) 1469 goto out; 1470 1471 /* 1472 * TODO: ensure that the dummy_log is in a state to allow 1473 * lbmLogShutdown to deallocate all the buffers and call 1474 * kfree against dummy_log. For now, leave dummy_log & its 1475 * buffers in memory, and resuse if another no-integrity mount 1476 * is requested. 1477 */ 1478 if (log->no_integrity) 1479 goto out; 1480 1481 /* 1482 * external log as separate logical volume 1483 */ 1484 list_del(&log->journal_list); 1485 bdev_file = log->bdev_file; 1486 rc = lmLogShutdown(log); 1487 1488 fput(bdev_file); 1489 1490 kfree(log); 1491 1492 out: 1493 mutex_unlock(&jfs_log_mutex); 1494 jfs_info("lmLogClose: exit(%d)", rc); 1495 return rc; 1496 } 1497 1498 1499 /* 1500 * NAME: jfs_flush_journal() 1501 * 1502 * FUNCTION: initiate write of any outstanding transactions to the journal 1503 * and optionally wait until they are all written to disk 1504 * 1505 * wait == 0 flush until latest txn is committed, don't wait 1506 * wait == 1 flush until latest txn is committed, wait 1507 * wait > 1 flush until all txn's are complete, wait 1508 */ 1509 void jfs_flush_journal(struct jfs_log *log, int wait) 1510 { 1511 int i; 1512 struct tblock *target = NULL; 1513 1514 /* jfs_write_inode may call us during read-only mount */ 1515 if (!log) 1516 return; 1517 1518 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait); 1519 1520 LOGGC_LOCK(log); 1521 1522 if (!list_empty(&log->cqueue)) { 1523 /* 1524 * This ensures that we will keep writing to the journal as long 1525 * as there are unwritten commit records 1526 */ 1527 target = list_entry(log->cqueue.prev, struct tblock, cqueue); 1528 1529 if (test_bit(log_FLUSH, &log->flag)) { 1530 /* 1531 * We're already flushing. 1532 * if flush_tblk is NULL, we are flushing everything, 1533 * so leave it that way. Otherwise, update it to the 1534 * latest transaction 1535 */ 1536 if (log->flush_tblk) 1537 log->flush_tblk = target; 1538 } else { 1539 /* Only flush until latest transaction is committed */ 1540 log->flush_tblk = target; 1541 set_bit(log_FLUSH, &log->flag); 1542 1543 /* 1544 * Initiate I/O on outstanding transactions 1545 */ 1546 if (!(log->cflag & logGC_PAGEOUT)) { 1547 log->cflag |= logGC_PAGEOUT; 1548 lmGCwrite(log, 0); 1549 } 1550 } 1551 } 1552 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) { 1553 /* Flush until all activity complete */ 1554 set_bit(log_FLUSH, &log->flag); 1555 log->flush_tblk = NULL; 1556 } 1557 1558 if (wait && target && !(target->flag & tblkGC_COMMITTED)) { 1559 DECLARE_WAITQUEUE(__wait, current); 1560 1561 add_wait_queue(&target->gcwait, &__wait); 1562 set_current_state(TASK_UNINTERRUPTIBLE); 1563 LOGGC_UNLOCK(log); 1564 schedule(); 1565 LOGGC_LOCK(log); 1566 remove_wait_queue(&target->gcwait, &__wait); 1567 } 1568 LOGGC_UNLOCK(log); 1569 1570 if (wait < 2) 1571 return; 1572 1573 write_special_inodes(log, filemap_fdatawrite); 1574 1575 /* 1576 * If there was recent activity, we may need to wait 1577 * for the lazycommit thread to catch up 1578 */ 1579 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) { 1580 for (i = 0; i < 200; i++) { /* Too much? */ 1581 msleep(250); 1582 write_special_inodes(log, filemap_fdatawrite); 1583 if (list_empty(&log->cqueue) && 1584 list_empty(&log->synclist)) 1585 break; 1586 } 1587 } 1588 assert(list_empty(&log->cqueue)); 1589 1590 #ifdef CONFIG_JFS_DEBUG 1591 if (!list_empty(&log->synclist)) { 1592 struct logsyncblk *lp; 1593 1594 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n"); 1595 list_for_each_entry(lp, &log->synclist, synclist) { 1596 if (lp->xflag & COMMIT_PAGE) { 1597 struct metapage *mp = (struct metapage *)lp; 1598 print_hex_dump(KERN_ERR, "metapage: ", 1599 DUMP_PREFIX_ADDRESS, 16, 4, 1600 mp, sizeof(struct metapage), 0); 1601 print_hex_dump(KERN_ERR, "page: ", 1602 DUMP_PREFIX_ADDRESS, 16, 1603 sizeof(long), mp->page, 1604 sizeof(struct page), 0); 1605 } else 1606 print_hex_dump(KERN_ERR, "tblock:", 1607 DUMP_PREFIX_ADDRESS, 16, 4, 1608 lp, sizeof(struct tblock), 0); 1609 } 1610 } 1611 #else 1612 WARN_ON(!list_empty(&log->synclist)); 1613 #endif 1614 clear_bit(log_FLUSH, &log->flag); 1615 } 1616 1617 /* 1618 * NAME: lmLogShutdown() 1619 * 1620 * FUNCTION: log shutdown at last LogClose(). 1621 * 1622 * write log syncpt record. 1623 * update super block to set redone flag to 0. 1624 * 1625 * PARAMETER: log - log inode 1626 * 1627 * RETURN: 0 - success 1628 * 1629 * serialization: single last close thread 1630 */ 1631 int lmLogShutdown(struct jfs_log * log) 1632 { 1633 int rc; 1634 struct lrd lrd; 1635 int lsn; 1636 struct logsuper *logsuper; 1637 struct lbuf *bpsuper; 1638 struct lbuf *bp; 1639 struct logpage *lp; 1640 1641 jfs_info("lmLogShutdown: log:0x%p", log); 1642 1643 jfs_flush_journal(log, 2); 1644 1645 /* 1646 * write the last SYNCPT record with syncpoint = 0 1647 * (i.e., log redo up to HERE !) 1648 */ 1649 lrd.logtid = 0; 1650 lrd.backchain = 0; 1651 lrd.type = cpu_to_le16(LOG_SYNCPT); 1652 lrd.length = 0; 1653 lrd.log.syncpt.sync = 0; 1654 1655 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1656 bp = log->bp; 1657 lp = (struct logpage *) bp->l_ldata; 1658 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1659 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0); 1660 lbmIOWait(log->bp, lbmFREE); 1661 log->bp = NULL; 1662 1663 /* 1664 * synchronous update log superblock 1665 * mark log state as shutdown cleanly 1666 * (i.e., Log does not need to be replayed). 1667 */ 1668 if ((rc = lbmRead(log, 1, &bpsuper))) 1669 goto out; 1670 1671 logsuper = (struct logsuper *) bpsuper->l_ldata; 1672 logsuper->state = cpu_to_le32(LOGREDONE); 1673 logsuper->end = cpu_to_le32(lsn); 1674 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1675 rc = lbmIOWait(bpsuper, lbmFREE); 1676 1677 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d", 1678 lsn, log->page, log->eor); 1679 1680 out: 1681 /* 1682 * shutdown per log i/o 1683 */ 1684 lbmLogShutdown(log); 1685 1686 if (rc) { 1687 jfs_warn("lmLogShutdown: exit(%d)", rc); 1688 } 1689 return rc; 1690 } 1691 1692 1693 /* 1694 * NAME: lmLogFileSystem() 1695 * 1696 * FUNCTION: insert (<activate> = true)/remove (<activate> = false) 1697 * file system into/from log active file system list. 1698 * 1699 * PARAMETE: log - pointer to logs inode. 1700 * fsdev - kdev_t of filesystem. 1701 * serial - pointer to returned log serial number 1702 * activate - insert/remove device from active list. 1703 * 1704 * RETURN: 0 - success 1705 * errors returned by vms_iowait(). 1706 */ 1707 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 1708 int activate) 1709 { 1710 int rc = 0; 1711 int i; 1712 struct logsuper *logsuper; 1713 struct lbuf *bpsuper; 1714 uuid_t *uuid = &sbi->uuid; 1715 1716 /* 1717 * insert/remove file system device to log active file system list. 1718 */ 1719 if ((rc = lbmRead(log, 1, &bpsuper))) 1720 return rc; 1721 1722 logsuper = (struct logsuper *) bpsuper->l_ldata; 1723 if (activate) { 1724 for (i = 0; i < MAX_ACTIVE; i++) 1725 if (uuid_is_null(&logsuper->active[i].uuid)) { 1726 uuid_copy(&logsuper->active[i].uuid, uuid); 1727 sbi->aggregate = i; 1728 break; 1729 } 1730 if (i == MAX_ACTIVE) { 1731 jfs_warn("Too many file systems sharing journal!"); 1732 lbmFree(bpsuper); 1733 return -EMFILE; /* Is there a better rc? */ 1734 } 1735 } else { 1736 for (i = 0; i < MAX_ACTIVE; i++) 1737 if (uuid_equal(&logsuper->active[i].uuid, uuid)) { 1738 uuid_copy(&logsuper->active[i].uuid, 1739 &uuid_null); 1740 break; 1741 } 1742 if (i == MAX_ACTIVE) { 1743 jfs_warn("Somebody stomped on the journal!"); 1744 lbmFree(bpsuper); 1745 return -EIO; 1746 } 1747 1748 } 1749 1750 /* 1751 * synchronous write log superblock: 1752 * 1753 * write sidestream bypassing write queue: 1754 * at file system mount, log super block is updated for 1755 * activation of the file system before any log record 1756 * (MOUNT record) of the file system, and at file system 1757 * unmount, all meta data for the file system has been 1758 * flushed before log super block is updated for deactivation 1759 * of the file system. 1760 */ 1761 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1762 rc = lbmIOWait(bpsuper, lbmFREE); 1763 1764 return rc; 1765 } 1766 1767 /* 1768 * log buffer manager (lbm) 1769 * ------------------------ 1770 * 1771 * special purpose buffer manager supporting log i/o requirements. 1772 * 1773 * per log write queue: 1774 * log pageout occurs in serial order by fifo write queue and 1775 * restricting to a single i/o in pregress at any one time. 1776 * a circular singly-linked list 1777 * (log->wrqueue points to the tail, and buffers are linked via 1778 * bp->wrqueue field), and 1779 * maintains log page in pageout ot waiting for pageout in serial pageout. 1780 */ 1781 1782 /* 1783 * lbmLogInit() 1784 * 1785 * initialize per log I/O setup at lmLogInit() 1786 */ 1787 static int lbmLogInit(struct jfs_log * log) 1788 { /* log inode */ 1789 int i; 1790 struct lbuf *lbuf; 1791 1792 jfs_info("lbmLogInit: log:0x%p", log); 1793 1794 /* initialize current buffer cursor */ 1795 log->bp = NULL; 1796 1797 /* initialize log device write queue */ 1798 log->wqueue = NULL; 1799 1800 /* 1801 * Each log has its own buffer pages allocated to it. These are 1802 * not managed by the page cache. This ensures that a transaction 1803 * writing to the log does not block trying to allocate a page from 1804 * the page cache (for the log). This would be bad, since page 1805 * allocation waits on the kswapd thread that may be committing inodes 1806 * which would cause log activity. Was that clear? I'm trying to 1807 * avoid deadlock here. 1808 */ 1809 init_waitqueue_head(&log->free_wait); 1810 1811 log->lbuf_free = NULL; 1812 1813 for (i = 0; i < LOGPAGES;) { 1814 char *buffer; 1815 uint offset; 1816 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 1817 1818 if (!page) 1819 goto error; 1820 buffer = page_address(page); 1821 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) { 1822 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL); 1823 if (lbuf == NULL) { 1824 if (offset == 0) 1825 __free_page(page); 1826 goto error; 1827 } 1828 if (offset) /* we already have one reference */ 1829 get_page(page); 1830 lbuf->l_offset = offset; 1831 lbuf->l_ldata = buffer + offset; 1832 lbuf->l_page = page; 1833 lbuf->l_log = log; 1834 init_waitqueue_head(&lbuf->l_ioevent); 1835 1836 lbuf->l_freelist = log->lbuf_free; 1837 log->lbuf_free = lbuf; 1838 i++; 1839 } 1840 } 1841 1842 return (0); 1843 1844 error: 1845 lbmLogShutdown(log); 1846 return -ENOMEM; 1847 } 1848 1849 1850 /* 1851 * lbmLogShutdown() 1852 * 1853 * finalize per log I/O setup at lmLogShutdown() 1854 */ 1855 static void lbmLogShutdown(struct jfs_log * log) 1856 { 1857 struct lbuf *lbuf; 1858 1859 jfs_info("lbmLogShutdown: log:0x%p", log); 1860 1861 lbuf = log->lbuf_free; 1862 while (lbuf) { 1863 struct lbuf *next = lbuf->l_freelist; 1864 __free_page(lbuf->l_page); 1865 kfree(lbuf); 1866 lbuf = next; 1867 } 1868 } 1869 1870 1871 /* 1872 * lbmAllocate() 1873 * 1874 * allocate an empty log buffer 1875 */ 1876 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn) 1877 { 1878 struct lbuf *bp; 1879 unsigned long flags; 1880 1881 /* 1882 * recycle from log buffer freelist if any 1883 */ 1884 LCACHE_LOCK(flags); 1885 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags); 1886 log->lbuf_free = bp->l_freelist; 1887 LCACHE_UNLOCK(flags); 1888 1889 bp->l_flag = 0; 1890 1891 bp->l_wqnext = NULL; 1892 bp->l_freelist = NULL; 1893 1894 bp->l_pn = pn; 1895 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize)); 1896 bp->l_ceor = 0; 1897 1898 return bp; 1899 } 1900 1901 1902 /* 1903 * lbmFree() 1904 * 1905 * release a log buffer to freelist 1906 */ 1907 static void lbmFree(struct lbuf * bp) 1908 { 1909 unsigned long flags; 1910 1911 LCACHE_LOCK(flags); 1912 1913 lbmfree(bp); 1914 1915 LCACHE_UNLOCK(flags); 1916 } 1917 1918 static void lbmfree(struct lbuf * bp) 1919 { 1920 struct jfs_log *log = bp->l_log; 1921 1922 assert(bp->l_wqnext == NULL); 1923 1924 /* 1925 * return the buffer to head of freelist 1926 */ 1927 bp->l_freelist = log->lbuf_free; 1928 log->lbuf_free = bp; 1929 1930 wake_up(&log->free_wait); 1931 return; 1932 } 1933 1934 1935 /* 1936 * NAME: lbmRedrive 1937 * 1938 * FUNCTION: add a log buffer to the log redrive list 1939 * 1940 * PARAMETER: 1941 * bp - log buffer 1942 * 1943 * NOTES: 1944 * Takes log_redrive_lock. 1945 */ 1946 static inline void lbmRedrive(struct lbuf *bp) 1947 { 1948 unsigned long flags; 1949 1950 spin_lock_irqsave(&log_redrive_lock, flags); 1951 bp->l_redrive_next = log_redrive_list; 1952 log_redrive_list = bp; 1953 spin_unlock_irqrestore(&log_redrive_lock, flags); 1954 1955 wake_up_process(jfsIOthread); 1956 } 1957 1958 1959 /* 1960 * lbmRead() 1961 */ 1962 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp) 1963 { 1964 struct bio *bio; 1965 struct lbuf *bp; 1966 1967 /* 1968 * allocate a log buffer 1969 */ 1970 *bpp = bp = lbmAllocate(log, pn); 1971 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn); 1972 1973 bp->l_flag |= lbmREAD; 1974 1975 bio = bio_alloc(file_bdev(log->bdev_file), 1, REQ_OP_READ, GFP_NOFS); 1976 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9); 1977 __bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset); 1978 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE); 1979 1980 bio->bi_end_io = lbmIODone; 1981 bio->bi_private = bp; 1982 /*check if journaling to disk has been disabled*/ 1983 if (log->no_integrity) { 1984 bio->bi_iter.bi_size = 0; 1985 lbmIODone(bio); 1986 } else { 1987 submit_bio(bio); 1988 } 1989 1990 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD)); 1991 1992 return 0; 1993 } 1994 1995 1996 /* 1997 * lbmWrite() 1998 * 1999 * buffer at head of pageout queue stays after completion of 2000 * partial-page pageout and redriven by explicit initiation of 2001 * pageout by caller until full-page pageout is completed and 2002 * released. 2003 * 2004 * device driver i/o done redrives pageout of new buffer at 2005 * head of pageout queue when current buffer at head of pageout 2006 * queue is released at the completion of its full-page pageout. 2007 * 2008 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit(). 2009 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone() 2010 */ 2011 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, 2012 int cant_block) 2013 { 2014 struct lbuf *tail; 2015 unsigned long flags; 2016 2017 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn); 2018 2019 /* map the logical block address to physical block address */ 2020 bp->l_blkno = 2021 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2022 2023 LCACHE_LOCK(flags); /* disable+lock */ 2024 2025 /* 2026 * initialize buffer for device driver 2027 */ 2028 bp->l_flag = flag; 2029 2030 /* 2031 * insert bp at tail of write queue associated with log 2032 * 2033 * (request is either for bp already/currently at head of queue 2034 * or new bp to be inserted at tail) 2035 */ 2036 tail = log->wqueue; 2037 2038 /* is buffer not already on write queue ? */ 2039 if (bp->l_wqnext == NULL) { 2040 /* insert at tail of wqueue */ 2041 if (tail == NULL) { 2042 log->wqueue = bp; 2043 bp->l_wqnext = bp; 2044 } else { 2045 log->wqueue = bp; 2046 bp->l_wqnext = tail->l_wqnext; 2047 tail->l_wqnext = bp; 2048 } 2049 2050 tail = bp; 2051 } 2052 2053 /* is buffer at head of wqueue and for write ? */ 2054 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) { 2055 LCACHE_UNLOCK(flags); /* unlock+enable */ 2056 return; 2057 } 2058 2059 LCACHE_UNLOCK(flags); /* unlock+enable */ 2060 2061 if (cant_block) 2062 lbmRedrive(bp); 2063 else if (flag & lbmSYNC) 2064 lbmStartIO(bp); 2065 else { 2066 LOGGC_UNLOCK(log); 2067 lbmStartIO(bp); 2068 LOGGC_LOCK(log); 2069 } 2070 } 2071 2072 2073 /* 2074 * lbmDirectWrite() 2075 * 2076 * initiate pageout bypassing write queue for sidestream 2077 * (e.g., log superblock) write; 2078 */ 2079 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag) 2080 { 2081 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x", 2082 bp, flag, bp->l_pn); 2083 2084 /* 2085 * initialize buffer for device driver 2086 */ 2087 bp->l_flag = flag | lbmDIRECT; 2088 2089 /* map the logical block address to physical block address */ 2090 bp->l_blkno = 2091 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2092 2093 /* 2094 * initiate pageout of the page 2095 */ 2096 lbmStartIO(bp); 2097 } 2098 2099 2100 /* 2101 * NAME: lbmStartIO() 2102 * 2103 * FUNCTION: Interface to DD strategy routine 2104 * 2105 * RETURN: none 2106 * 2107 * serialization: LCACHE_LOCK() is NOT held during log i/o; 2108 */ 2109 static void lbmStartIO(struct lbuf * bp) 2110 { 2111 struct bio *bio; 2112 struct jfs_log *log = bp->l_log; 2113 struct block_device *bdev = NULL; 2114 2115 jfs_info("lbmStartIO"); 2116 2117 if (!log->no_integrity) 2118 bdev = file_bdev(log->bdev_file); 2119 2120 bio = bio_alloc(bdev, 1, REQ_OP_WRITE | REQ_SYNC, 2121 GFP_NOFS); 2122 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9); 2123 __bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset); 2124 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE); 2125 2126 bio->bi_end_io = lbmIODone; 2127 bio->bi_private = bp; 2128 2129 /* check if journaling to disk has been disabled */ 2130 if (log->no_integrity) { 2131 bio->bi_iter.bi_size = 0; 2132 lbmIODone(bio); 2133 } else { 2134 submit_bio(bio); 2135 INCREMENT(lmStat.submitted); 2136 } 2137 } 2138 2139 2140 /* 2141 * lbmIOWait() 2142 */ 2143 static int lbmIOWait(struct lbuf * bp, int flag) 2144 { 2145 unsigned long flags; 2146 int rc = 0; 2147 2148 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2149 2150 LCACHE_LOCK(flags); /* disable+lock */ 2151 2152 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags); 2153 2154 rc = (bp->l_flag & lbmERROR) ? -EIO : 0; 2155 2156 if (flag & lbmFREE) 2157 lbmfree(bp); 2158 2159 LCACHE_UNLOCK(flags); /* unlock+enable */ 2160 2161 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2162 return rc; 2163 } 2164 2165 /* 2166 * lbmIODone() 2167 * 2168 * executed at INTIODONE level 2169 */ 2170 static void lbmIODone(struct bio *bio) 2171 { 2172 struct lbuf *bp = bio->bi_private; 2173 struct lbuf *nextbp, *tail; 2174 struct jfs_log *log; 2175 unsigned long flags; 2176 2177 /* 2178 * get back jfs buffer bound to the i/o buffer 2179 */ 2180 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag); 2181 2182 LCACHE_LOCK(flags); /* disable+lock */ 2183 2184 bp->l_flag |= lbmDONE; 2185 2186 if (bio->bi_status) { 2187 bp->l_flag |= lbmERROR; 2188 2189 jfs_err("lbmIODone: I/O error in JFS log"); 2190 } 2191 2192 bio_put(bio); 2193 2194 /* 2195 * pagein completion 2196 */ 2197 if (bp->l_flag & lbmREAD) { 2198 bp->l_flag &= ~lbmREAD; 2199 2200 LCACHE_UNLOCK(flags); /* unlock+enable */ 2201 2202 /* wakeup I/O initiator */ 2203 LCACHE_WAKEUP(&bp->l_ioevent); 2204 2205 return; 2206 } 2207 2208 /* 2209 * pageout completion 2210 * 2211 * the bp at the head of write queue has completed pageout. 2212 * 2213 * if single-commit/full-page pageout, remove the current buffer 2214 * from head of pageout queue, and redrive pageout with 2215 * the new buffer at head of pageout queue; 2216 * otherwise, the partial-page pageout buffer stays at 2217 * the head of pageout queue to be redriven for pageout 2218 * by lmGroupCommit() until full-page pageout is completed. 2219 */ 2220 bp->l_flag &= ~lbmWRITE; 2221 INCREMENT(lmStat.pagedone); 2222 2223 /* update committed lsn */ 2224 log = bp->l_log; 2225 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor; 2226 2227 if (bp->l_flag & lbmDIRECT) { 2228 LCACHE_WAKEUP(&bp->l_ioevent); 2229 LCACHE_UNLOCK(flags); 2230 return; 2231 } 2232 2233 tail = log->wqueue; 2234 2235 /* single element queue */ 2236 if (bp == tail) { 2237 /* remove head buffer of full-page pageout 2238 * from log device write queue 2239 */ 2240 if (bp->l_flag & lbmRELEASE) { 2241 log->wqueue = NULL; 2242 bp->l_wqnext = NULL; 2243 } 2244 } 2245 /* multi element queue */ 2246 else { 2247 /* remove head buffer of full-page pageout 2248 * from log device write queue 2249 */ 2250 if (bp->l_flag & lbmRELEASE) { 2251 nextbp = tail->l_wqnext = bp->l_wqnext; 2252 bp->l_wqnext = NULL; 2253 2254 /* 2255 * redrive pageout of next page at head of write queue: 2256 * redrive next page without any bound tblk 2257 * (i.e., page w/o any COMMIT records), or 2258 * first page of new group commit which has been 2259 * queued after current page (subsequent pageout 2260 * is performed synchronously, except page without 2261 * any COMMITs) by lmGroupCommit() as indicated 2262 * by lbmWRITE flag; 2263 */ 2264 if (nextbp->l_flag & lbmWRITE) { 2265 /* 2266 * We can't do the I/O at interrupt time. 2267 * The jfsIO thread can do it 2268 */ 2269 lbmRedrive(nextbp); 2270 } 2271 } 2272 } 2273 2274 /* 2275 * synchronous pageout: 2276 * 2277 * buffer has not necessarily been removed from write queue 2278 * (e.g., synchronous write of partial-page with COMMIT): 2279 * leave buffer for i/o initiator to dispose 2280 */ 2281 if (bp->l_flag & lbmSYNC) { 2282 LCACHE_UNLOCK(flags); /* unlock+enable */ 2283 2284 /* wakeup I/O initiator */ 2285 LCACHE_WAKEUP(&bp->l_ioevent); 2286 } 2287 2288 /* 2289 * Group Commit pageout: 2290 */ 2291 else if (bp->l_flag & lbmGC) { 2292 LCACHE_UNLOCK(flags); 2293 lmPostGC(bp); 2294 } 2295 2296 /* 2297 * asynchronous pageout: 2298 * 2299 * buffer must have been removed from write queue: 2300 * insert buffer at head of freelist where it can be recycled 2301 */ 2302 else { 2303 assert(bp->l_flag & lbmRELEASE); 2304 assert(bp->l_flag & lbmFREE); 2305 lbmfree(bp); 2306 2307 LCACHE_UNLOCK(flags); /* unlock+enable */ 2308 } 2309 } 2310 2311 int jfsIOWait(void *arg) 2312 { 2313 struct lbuf *bp; 2314 2315 do { 2316 spin_lock_irq(&log_redrive_lock); 2317 while ((bp = log_redrive_list)) { 2318 log_redrive_list = bp->l_redrive_next; 2319 bp->l_redrive_next = NULL; 2320 spin_unlock_irq(&log_redrive_lock); 2321 lbmStartIO(bp); 2322 spin_lock_irq(&log_redrive_lock); 2323 } 2324 2325 if (freezing(current)) { 2326 spin_unlock_irq(&log_redrive_lock); 2327 try_to_freeze(); 2328 } else { 2329 set_current_state(TASK_INTERRUPTIBLE); 2330 spin_unlock_irq(&log_redrive_lock); 2331 schedule(); 2332 } 2333 } while (!kthread_should_stop()); 2334 2335 jfs_info("jfsIOWait being killed!"); 2336 return 0; 2337 } 2338 2339 /* 2340 * NAME: lmLogFormat()/jfs_logform() 2341 * 2342 * FUNCTION: format file system log 2343 * 2344 * PARAMETERS: 2345 * log - volume log 2346 * logAddress - start address of log space in FS block 2347 * logSize - length of log space in FS block; 2348 * 2349 * RETURN: 0 - success 2350 * -EIO - i/o error 2351 * 2352 * XXX: We're synchronously writing one page at a time. This needs to 2353 * be improved by writing multiple pages at once. 2354 */ 2355 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize) 2356 { 2357 int rc = -EIO; 2358 struct jfs_sb_info *sbi; 2359 struct logsuper *logsuper; 2360 struct logpage *lp; 2361 int lspn; /* log sequence page number */ 2362 struct lrd *lrd_ptr; 2363 int npages = 0; 2364 struct lbuf *bp; 2365 2366 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d", 2367 (long long)logAddress, logSize); 2368 2369 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list); 2370 2371 /* allocate a log buffer */ 2372 bp = lbmAllocate(log, 1); 2373 2374 npages = logSize >> sbi->l2nbperpage; 2375 2376 /* 2377 * log space: 2378 * 2379 * page 0 - reserved; 2380 * page 1 - log superblock; 2381 * page 2 - log data page: A SYNC log record is written 2382 * into this page at logform time; 2383 * pages 3-N - log data page: set to empty log data pages; 2384 */ 2385 /* 2386 * init log superblock: log page 1 2387 */ 2388 logsuper = (struct logsuper *) bp->l_ldata; 2389 2390 logsuper->magic = cpu_to_le32(LOGMAGIC); 2391 logsuper->version = cpu_to_le32(LOGVERSION); 2392 logsuper->state = cpu_to_le32(LOGREDONE); 2393 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */ 2394 logsuper->size = cpu_to_le32(npages); 2395 logsuper->bsize = cpu_to_le32(sbi->bsize); 2396 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize); 2397 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE); 2398 2399 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2400 bp->l_blkno = logAddress + sbi->nbperpage; 2401 lbmStartIO(bp); 2402 if ((rc = lbmIOWait(bp, 0))) 2403 goto exit; 2404 2405 /* 2406 * init pages 2 to npages-1 as log data pages: 2407 * 2408 * log page sequence number (lpsn) initialization: 2409 * 2410 * pn: 0 1 2 3 n-1 2411 * +-----+-----+=====+=====+===.....===+=====+ 2412 * lspn: N-1 0 1 N-2 2413 * <--- N page circular file ----> 2414 * 2415 * the N (= npages-2) data pages of the log is maintained as 2416 * a circular file for the log records; 2417 * lpsn grows by 1 monotonically as each log page is written 2418 * to the circular file of the log; 2419 * and setLogpage() will not reset the page number even if 2420 * the eor is equal to LOGPHDRSIZE. In order for binary search 2421 * still work in find log end process, we have to simulate the 2422 * log wrap situation at the log format time. 2423 * The 1st log page written will have the highest lpsn. Then 2424 * the succeeding log pages will have ascending order of 2425 * the lspn starting from 0, ... (N-2) 2426 */ 2427 lp = (struct logpage *) bp->l_ldata; 2428 /* 2429 * initialize 1st log page to be written: lpsn = N - 1, 2430 * write a SYNCPT log record is written to this page 2431 */ 2432 lp->h.page = lp->t.page = cpu_to_le32(npages - 3); 2433 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE); 2434 2435 lrd_ptr = (struct lrd *) &lp->data; 2436 lrd_ptr->logtid = 0; 2437 lrd_ptr->backchain = 0; 2438 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT); 2439 lrd_ptr->length = 0; 2440 lrd_ptr->log.syncpt.sync = 0; 2441 2442 bp->l_blkno += sbi->nbperpage; 2443 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2444 lbmStartIO(bp); 2445 if ((rc = lbmIOWait(bp, 0))) 2446 goto exit; 2447 2448 /* 2449 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2) 2450 */ 2451 for (lspn = 0; lspn < npages - 3; lspn++) { 2452 lp->h.page = lp->t.page = cpu_to_le32(lspn); 2453 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 2454 2455 bp->l_blkno += sbi->nbperpage; 2456 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2457 lbmStartIO(bp); 2458 if ((rc = lbmIOWait(bp, 0))) 2459 goto exit; 2460 } 2461 2462 rc = 0; 2463 exit: 2464 /* 2465 * finalize log 2466 */ 2467 /* release the buffer */ 2468 lbmFree(bp); 2469 2470 return rc; 2471 } 2472 2473 #ifdef CONFIG_JFS_STATISTICS 2474 int jfs_lmstats_proc_show(struct seq_file *m, void *v) 2475 { 2476 seq_printf(m, 2477 "JFS Logmgr stats\n" 2478 "================\n" 2479 "commits = %d\n" 2480 "writes submitted = %d\n" 2481 "writes completed = %d\n" 2482 "full pages submitted = %d\n" 2483 "partial pages submitted = %d\n", 2484 lmStat.commit, 2485 lmStat.submitted, 2486 lmStat.pagedone, 2487 lmStat.full_page, 2488 lmStat.partial_page); 2489 return 0; 2490 } 2491 #endif /* CONFIG_JFS_STATISTICS */ 2492