1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) International Business Machines Corp., 2000-2004 4 * Portions Copyright (C) Christoph Hellwig, 2001-2002 5 */ 6 7 /* 8 * jfs_logmgr.c: log manager 9 * 10 * for related information, see transaction manager (jfs_txnmgr.c), and 11 * recovery manager (jfs_logredo.c). 12 * 13 * note: for detail, RTFS. 14 * 15 * log buffer manager: 16 * special purpose buffer manager supporting log i/o requirements. 17 * per log serial pageout of logpage 18 * queuing i/o requests and redrive i/o at iodone 19 * maintain current logpage buffer 20 * no caching since append only 21 * appropriate jfs buffer cache buffers as needed 22 * 23 * group commit: 24 * transactions which wrote COMMIT records in the same in-memory 25 * log page during the pageout of previous/current log page(s) are 26 * committed together by the pageout of the page. 27 * 28 * TBD lazy commit: 29 * transactions are committed asynchronously when the log page 30 * containing it COMMIT is paged out when it becomes full; 31 * 32 * serialization: 33 * . a per log lock serialize log write. 34 * . a per log lock serialize group commit. 35 * . a per log lock serialize log open/close; 36 * 37 * TBD log integrity: 38 * careful-write (ping-pong) of last logpage to recover from crash 39 * in overwrite. 40 * detection of split (out-of-order) write of physical sectors 41 * of last logpage via timestamp at end of each sector 42 * with its mirror data array at trailer). 43 * 44 * alternatives: 45 * lsn - 64-bit monotonically increasing integer vs 46 * 32-bit lspn and page eor. 47 */ 48 49 #include <linux/fs.h> 50 #include <linux/blkdev.h> 51 #include <linux/interrupt.h> 52 #include <linux/completion.h> 53 #include <linux/kthread.h> 54 #include <linux/buffer_head.h> /* for sync_blockdev() */ 55 #include <linux/bio.h> 56 #include <linux/freezer.h> 57 #include <linux/export.h> 58 #include <linux/delay.h> 59 #include <linux/mutex.h> 60 #include <linux/seq_file.h> 61 #include <linux/slab.h> 62 #include "jfs_incore.h" 63 #include "jfs_filsys.h" 64 #include "jfs_metapage.h" 65 #include "jfs_superblock.h" 66 #include "jfs_txnmgr.h" 67 #include "jfs_debug.h" 68 69 70 /* 71 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread) 72 */ 73 static struct lbuf *log_redrive_list; 74 static DEFINE_SPINLOCK(log_redrive_lock); 75 76 77 /* 78 * log read/write serialization (per log) 79 */ 80 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock) 81 #define LOG_LOCK(log) mutex_lock(&((log)->loglock)) 82 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock)) 83 84 85 /* 86 * log group commit serialization (per log) 87 */ 88 89 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock) 90 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock) 91 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock) 92 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait) 93 94 /* 95 * log sync serialization (per log) 96 */ 97 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE) 98 #define LOGSYNC_BARRIER(logsize) ((logsize)/4) 99 /* 100 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE) 101 #define LOGSYNC_BARRIER(logsize) ((logsize)/2) 102 */ 103 104 105 /* 106 * log buffer cache synchronization 107 */ 108 static DEFINE_SPINLOCK(jfsLCacheLock); 109 110 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags) 111 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags) 112 113 /* 114 * See __SLEEP_COND in jfs_locks.h 115 */ 116 #define LCACHE_SLEEP_COND(wq, cond, flags) \ 117 do { \ 118 if (cond) \ 119 break; \ 120 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \ 121 } while (0) 122 123 #define LCACHE_WAKEUP(event) wake_up(event) 124 125 126 /* 127 * lbuf buffer cache (lCache) control 128 */ 129 /* log buffer manager pageout control (cumulative, inclusive) */ 130 #define lbmREAD 0x0001 131 #define lbmWRITE 0x0002 /* enqueue at tail of write queue; 132 * init pageout if at head of queue; 133 */ 134 #define lbmRELEASE 0x0004 /* remove from write queue 135 * at completion of pageout; 136 * do not free/recycle it yet: 137 * caller will free it; 138 */ 139 #define lbmSYNC 0x0008 /* do not return to freelist 140 * when removed from write queue; 141 */ 142 #define lbmFREE 0x0010 /* return to freelist 143 * at completion of pageout; 144 * the buffer may be recycled; 145 */ 146 #define lbmDONE 0x0020 147 #define lbmERROR 0x0040 148 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing 149 * of log page 150 */ 151 #define lbmDIRECT 0x0100 152 153 /* 154 * Global list of active external journals 155 */ 156 static LIST_HEAD(jfs_external_logs); 157 static struct jfs_log *dummy_log; 158 static DEFINE_MUTEX(jfs_log_mutex); 159 160 /* 161 * forward references 162 */ 163 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk, 164 struct lrd * lrd, struct tlock * tlck); 165 166 static int lmNextPage(struct jfs_log * log); 167 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 168 int activate); 169 170 static int open_inline_log(struct super_block *sb); 171 static int open_dummy_log(struct super_block *sb); 172 static int lbmLogInit(struct jfs_log * log); 173 static void lbmLogShutdown(struct jfs_log * log); 174 static struct lbuf *lbmAllocate(struct jfs_log * log, int); 175 static void lbmFree(struct lbuf * bp); 176 static void lbmfree(struct lbuf * bp); 177 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp); 178 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block); 179 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag); 180 static int lbmIOWait(struct lbuf * bp, int flag); 181 static bio_end_io_t lbmIODone; 182 static void lbmStartIO(struct lbuf * bp); 183 static void lmGCwrite(struct jfs_log * log, int cant_block); 184 static int lmLogSync(struct jfs_log * log, int hard_sync); 185 186 187 188 /* 189 * statistics 190 */ 191 #ifdef CONFIG_JFS_STATISTICS 192 static struct lmStat { 193 uint commit; /* # of commit */ 194 uint pagedone; /* # of page written */ 195 uint submitted; /* # of pages submitted */ 196 uint full_page; /* # of full pages submitted */ 197 uint partial_page; /* # of partial pages submitted */ 198 } lmStat; 199 #endif 200 201 static void write_special_inodes(struct jfs_log *log, 202 int (*writer)(struct address_space *)) 203 { 204 struct jfs_sb_info *sbi; 205 206 list_for_each_entry(sbi, &log->sb_list, log_list) { 207 writer(sbi->ipbmap->i_mapping); 208 writer(sbi->ipimap->i_mapping); 209 writer(sbi->direct_inode->i_mapping); 210 } 211 } 212 213 /* 214 * NAME: lmLog() 215 * 216 * FUNCTION: write a log record; 217 * 218 * PARAMETER: 219 * 220 * RETURN: lsn - offset to the next log record to write (end-of-log); 221 * -1 - error; 222 * 223 * note: todo: log error handler 224 */ 225 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 226 struct tlock * tlck) 227 { 228 int lsn; 229 int diffp, difft; 230 struct metapage *mp = NULL; 231 unsigned long flags; 232 233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p", 234 log, tblk, lrd, tlck); 235 236 LOG_LOCK(log); 237 238 /* log by (out-of-transaction) JFS ? */ 239 if (tblk == NULL) 240 goto writeRecord; 241 242 /* log from page ? */ 243 if (tlck == NULL || 244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL) 245 goto writeRecord; 246 247 /* 248 * initialize/update page/transaction recovery lsn 249 */ 250 lsn = log->lsn; 251 252 LOGSYNC_LOCK(log, flags); 253 254 /* 255 * initialize page lsn if first log write of the page 256 */ 257 if (mp->lsn == 0) { 258 mp->log = log; 259 mp->lsn = lsn; 260 log->count++; 261 262 /* insert page at tail of logsynclist */ 263 list_add_tail(&mp->synclist, &log->synclist); 264 } 265 266 /* 267 * initialize/update lsn of tblock of the page 268 * 269 * transaction inherits oldest lsn of pages associated 270 * with allocation/deallocation of resources (their 271 * log records are used to reconstruct allocation map 272 * at recovery time: inode for inode allocation map, 273 * B+-tree index of extent descriptors for block 274 * allocation map); 275 * allocation map pages inherit transaction lsn at 276 * commit time to allow forwarding log syncpt past log 277 * records associated with allocation/deallocation of 278 * resources only after persistent map of these map pages 279 * have been updated and propagated to home. 280 */ 281 /* 282 * initialize transaction lsn: 283 */ 284 if (tblk->lsn == 0) { 285 /* inherit lsn of its first page logged */ 286 tblk->lsn = mp->lsn; 287 log->count++; 288 289 /* insert tblock after the page on logsynclist */ 290 list_add(&tblk->synclist, &mp->synclist); 291 } 292 /* 293 * update transaction lsn: 294 */ 295 else { 296 /* inherit oldest/smallest lsn of page */ 297 logdiff(diffp, mp->lsn, log); 298 logdiff(difft, tblk->lsn, log); 299 if (diffp < difft) { 300 /* update tblock lsn with page lsn */ 301 tblk->lsn = mp->lsn; 302 303 /* move tblock after page on logsynclist */ 304 list_move(&tblk->synclist, &mp->synclist); 305 } 306 } 307 308 LOGSYNC_UNLOCK(log, flags); 309 310 /* 311 * write the log record 312 */ 313 writeRecord: 314 lsn = lmWriteRecord(log, tblk, lrd, tlck); 315 316 /* 317 * forward log syncpt if log reached next syncpt trigger 318 */ 319 logdiff(diffp, lsn, log); 320 if (diffp >= log->nextsync) 321 lsn = lmLogSync(log, 0); 322 323 /* update end-of-log lsn */ 324 log->lsn = lsn; 325 326 LOG_UNLOCK(log); 327 328 /* return end-of-log address */ 329 return lsn; 330 } 331 332 /* 333 * NAME: lmWriteRecord() 334 * 335 * FUNCTION: move the log record to current log page 336 * 337 * PARAMETER: cd - commit descriptor 338 * 339 * RETURN: end-of-log address 340 * 341 * serialization: LOG_LOCK() held on entry/exit 342 */ 343 static int 344 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 345 struct tlock * tlck) 346 { 347 int lsn = 0; /* end-of-log address */ 348 struct lbuf *bp; /* dst log page buffer */ 349 struct logpage *lp; /* dst log page */ 350 caddr_t dst; /* destination address in log page */ 351 int dstoffset; /* end-of-log offset in log page */ 352 int freespace; /* free space in log page */ 353 caddr_t p; /* src meta-data page */ 354 caddr_t src; 355 int srclen; 356 int nbytes; /* number of bytes to move */ 357 int i; 358 int len; 359 struct linelock *linelock; 360 struct lv *lv; 361 struct lvd *lvd; 362 int l2linesize; 363 364 len = 0; 365 366 /* retrieve destination log page to write */ 367 bp = (struct lbuf *) log->bp; 368 lp = (struct logpage *) bp->l_ldata; 369 dstoffset = log->eor; 370 371 /* any log data to write ? */ 372 if (tlck == NULL) 373 goto moveLrd; 374 375 /* 376 * move log record data 377 */ 378 /* retrieve source meta-data page to log */ 379 if (tlck->flag & tlckPAGELOCK) { 380 p = (caddr_t) (tlck->mp->data); 381 linelock = (struct linelock *) & tlck->lock; 382 } 383 /* retrieve source in-memory inode to log */ 384 else if (tlck->flag & tlckINODELOCK) { 385 if (tlck->type & tlckDTREE) 386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot; 387 else 388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot; 389 linelock = (struct linelock *) & tlck->lock; 390 } 391 #ifdef _JFS_WIP 392 else if (tlck->flag & tlckINLINELOCK) { 393 394 inlinelock = (struct inlinelock *) & tlck; 395 p = (caddr_t) & inlinelock->pxd; 396 linelock = (struct linelock *) & tlck; 397 } 398 #endif /* _JFS_WIP */ 399 else { 400 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck); 401 return 0; /* Probably should trap */ 402 } 403 l2linesize = linelock->l2linesize; 404 405 moveData: 406 ASSERT(linelock->index <= linelock->maxcnt); 407 408 lv = linelock->lv; 409 for (i = 0; i < linelock->index; i++, lv++) { 410 if (lv->length == 0) 411 continue; 412 413 /* is page full ? */ 414 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) { 415 /* page become full: move on to next page */ 416 lmNextPage(log); 417 418 bp = log->bp; 419 lp = (struct logpage *) bp->l_ldata; 420 dstoffset = LOGPHDRSIZE; 421 } 422 423 /* 424 * move log vector data 425 */ 426 src = (u8 *) p + (lv->offset << l2linesize); 427 srclen = lv->length << l2linesize; 428 len += srclen; 429 while (srclen > 0) { 430 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 431 nbytes = min(freespace, srclen); 432 dst = (caddr_t) lp + dstoffset; 433 memcpy(dst, src, nbytes); 434 dstoffset += nbytes; 435 436 /* is page not full ? */ 437 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 438 break; 439 440 /* page become full: move on to next page */ 441 lmNextPage(log); 442 443 bp = (struct lbuf *) log->bp; 444 lp = (struct logpage *) bp->l_ldata; 445 dstoffset = LOGPHDRSIZE; 446 447 srclen -= nbytes; 448 src += nbytes; 449 } 450 451 /* 452 * move log vector descriptor 453 */ 454 len += 4; 455 lvd = (struct lvd *) ((caddr_t) lp + dstoffset); 456 lvd->offset = cpu_to_le16(lv->offset); 457 lvd->length = cpu_to_le16(lv->length); 458 dstoffset += 4; 459 jfs_info("lmWriteRecord: lv offset:%d length:%d", 460 lv->offset, lv->length); 461 } 462 463 if ((i = linelock->next)) { 464 linelock = (struct linelock *) lid_to_tlock(i); 465 goto moveData; 466 } 467 468 /* 469 * move log record descriptor 470 */ 471 moveLrd: 472 lrd->length = cpu_to_le16(len); 473 474 src = (caddr_t) lrd; 475 srclen = LOGRDSIZE; 476 477 while (srclen > 0) { 478 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 479 nbytes = min(freespace, srclen); 480 dst = (caddr_t) lp + dstoffset; 481 memcpy(dst, src, nbytes); 482 483 dstoffset += nbytes; 484 srclen -= nbytes; 485 486 /* are there more to move than freespace of page ? */ 487 if (srclen) 488 goto pageFull; 489 490 /* 491 * end of log record descriptor 492 */ 493 494 /* update last log record eor */ 495 log->eor = dstoffset; 496 bp->l_eor = dstoffset; 497 lsn = (log->page << L2LOGPSIZE) + dstoffset; 498 499 if (lrd->type & cpu_to_le16(LOG_COMMIT)) { 500 tblk->clsn = lsn; 501 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn, 502 bp->l_eor); 503 504 INCREMENT(lmStat.commit); /* # of commit */ 505 506 /* 507 * enqueue tblock for group commit: 508 * 509 * enqueue tblock of non-trivial/synchronous COMMIT 510 * at tail of group commit queue 511 * (trivial/asynchronous COMMITs are ignored by 512 * group commit.) 513 */ 514 LOGGC_LOCK(log); 515 516 /* init tblock gc state */ 517 tblk->flag = tblkGC_QUEUE; 518 tblk->bp = log->bp; 519 tblk->pn = log->page; 520 tblk->eor = log->eor; 521 522 /* enqueue transaction to commit queue */ 523 list_add_tail(&tblk->cqueue, &log->cqueue); 524 525 LOGGC_UNLOCK(log); 526 } 527 528 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x", 529 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset); 530 531 /* page not full ? */ 532 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 533 return lsn; 534 535 pageFull: 536 /* page become full: move on to next page */ 537 lmNextPage(log); 538 539 bp = (struct lbuf *) log->bp; 540 lp = (struct logpage *) bp->l_ldata; 541 dstoffset = LOGPHDRSIZE; 542 src += nbytes; 543 } 544 545 return lsn; 546 } 547 548 549 /* 550 * NAME: lmNextPage() 551 * 552 * FUNCTION: write current page and allocate next page. 553 * 554 * PARAMETER: log 555 * 556 * RETURN: 0 557 * 558 * serialization: LOG_LOCK() held on entry/exit 559 */ 560 static int lmNextPage(struct jfs_log * log) 561 { 562 struct logpage *lp; 563 int lspn; /* log sequence page number */ 564 int pn; /* current page number */ 565 struct lbuf *bp; 566 struct lbuf *nextbp; 567 struct tblock *tblk; 568 569 /* get current log page number and log sequence page number */ 570 pn = log->page; 571 bp = log->bp; 572 lp = (struct logpage *) bp->l_ldata; 573 lspn = le32_to_cpu(lp->h.page); 574 575 LOGGC_LOCK(log); 576 577 /* 578 * write or queue the full page at the tail of write queue 579 */ 580 /* get the tail tblk on commit queue */ 581 if (list_empty(&log->cqueue)) 582 tblk = NULL; 583 else 584 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue); 585 586 /* every tblk who has COMMIT record on the current page, 587 * and has not been committed, must be on commit queue 588 * since tblk is queued at commit queueu at the time 589 * of writing its COMMIT record on the page before 590 * page becomes full (even though the tblk thread 591 * who wrote COMMIT record may have been suspended 592 * currently); 593 */ 594 595 /* is page bound with outstanding tail tblk ? */ 596 if (tblk && tblk->pn == pn) { 597 /* mark tblk for end-of-page */ 598 tblk->flag |= tblkGC_EOP; 599 600 if (log->cflag & logGC_PAGEOUT) { 601 /* if page is not already on write queue, 602 * just enqueue (no lbmWRITE to prevent redrive) 603 * buffer to wqueue to ensure correct serial order 604 * of the pages since log pages will be added 605 * continuously 606 */ 607 if (bp->l_wqnext == NULL) 608 lbmWrite(log, bp, 0, 0); 609 } else { 610 /* 611 * No current GC leader, initiate group commit 612 */ 613 log->cflag |= logGC_PAGEOUT; 614 lmGCwrite(log, 0); 615 } 616 } 617 /* page is not bound with outstanding tblk: 618 * init write or mark it to be redriven (lbmWRITE) 619 */ 620 else { 621 /* finalize the page */ 622 bp->l_ceor = bp->l_eor; 623 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 624 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0); 625 } 626 LOGGC_UNLOCK(log); 627 628 /* 629 * allocate/initialize next page 630 */ 631 /* if log wraps, the first data page of log is 2 632 * (0 never used, 1 is superblock). 633 */ 634 log->page = (pn == log->size - 1) ? 2 : pn + 1; 635 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */ 636 637 /* allocate/initialize next log page buffer */ 638 nextbp = lbmAllocate(log, log->page); 639 nextbp->l_eor = log->eor; 640 log->bp = nextbp; 641 642 /* initialize next log page */ 643 lp = (struct logpage *) nextbp->l_ldata; 644 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1); 645 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 646 647 return 0; 648 } 649 650 651 /* 652 * NAME: lmGroupCommit() 653 * 654 * FUNCTION: group commit 655 * initiate pageout of the pages with COMMIT in the order of 656 * page number - redrive pageout of the page at the head of 657 * pageout queue until full page has been written. 658 * 659 * RETURN: 660 * 661 * NOTE: 662 * LOGGC_LOCK serializes log group commit queue, and 663 * transaction blocks on the commit queue. 664 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 665 */ 666 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk) 667 { 668 int rc = 0; 669 670 LOGGC_LOCK(log); 671 672 /* group committed already ? */ 673 if (tblk->flag & tblkGC_COMMITTED) { 674 if (tblk->flag & tblkGC_ERROR) 675 rc = -EIO; 676 677 LOGGC_UNLOCK(log); 678 return rc; 679 } 680 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc); 681 682 if (tblk->xflag & COMMIT_LAZY) 683 tblk->flag |= tblkGC_LAZY; 684 685 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) && 686 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag) 687 || jfs_tlocks_low)) { 688 /* 689 * No pageout in progress 690 * 691 * start group commit as its group leader. 692 */ 693 log->cflag |= logGC_PAGEOUT; 694 695 lmGCwrite(log, 0); 696 } 697 698 if (tblk->xflag & COMMIT_LAZY) { 699 /* 700 * Lazy transactions can leave now 701 */ 702 LOGGC_UNLOCK(log); 703 return 0; 704 } 705 706 /* lmGCwrite gives up LOGGC_LOCK, check again */ 707 708 if (tblk->flag & tblkGC_COMMITTED) { 709 if (tblk->flag & tblkGC_ERROR) 710 rc = -EIO; 711 712 LOGGC_UNLOCK(log); 713 return rc; 714 } 715 716 /* upcount transaction waiting for completion 717 */ 718 log->gcrtc++; 719 tblk->flag |= tblkGC_READY; 720 721 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED), 722 LOGGC_LOCK(log), LOGGC_UNLOCK(log)); 723 724 /* removed from commit queue */ 725 if (tblk->flag & tblkGC_ERROR) 726 rc = -EIO; 727 728 LOGGC_UNLOCK(log); 729 return rc; 730 } 731 732 /* 733 * NAME: lmGCwrite() 734 * 735 * FUNCTION: group commit write 736 * initiate write of log page, building a group of all transactions 737 * with commit records on that page. 738 * 739 * RETURN: None 740 * 741 * NOTE: 742 * LOGGC_LOCK must be held by caller. 743 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 744 */ 745 static void lmGCwrite(struct jfs_log * log, int cant_write) 746 { 747 struct lbuf *bp; 748 struct logpage *lp; 749 int gcpn; /* group commit page number */ 750 struct tblock *tblk; 751 struct tblock *xtblk = NULL; 752 753 /* 754 * build the commit group of a log page 755 * 756 * scan commit queue and make a commit group of all 757 * transactions with COMMIT records on the same log page. 758 */ 759 /* get the head tblk on the commit queue */ 760 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn; 761 762 list_for_each_entry(tblk, &log->cqueue, cqueue) { 763 if (tblk->pn != gcpn) 764 break; 765 766 xtblk = tblk; 767 768 /* state transition: (QUEUE, READY) -> COMMIT */ 769 tblk->flag |= tblkGC_COMMIT; 770 } 771 tblk = xtblk; /* last tblk of the page */ 772 773 /* 774 * pageout to commit transactions on the log page. 775 */ 776 bp = (struct lbuf *) tblk->bp; 777 lp = (struct logpage *) bp->l_ldata; 778 /* is page already full ? */ 779 if (tblk->flag & tblkGC_EOP) { 780 /* mark page to free at end of group commit of the page */ 781 tblk->flag &= ~tblkGC_EOP; 782 tblk->flag |= tblkGC_FREE; 783 bp->l_ceor = bp->l_eor; 784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 785 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC, 786 cant_write); 787 INCREMENT(lmStat.full_page); 788 } 789 /* page is not yet full */ 790 else { 791 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */ 792 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 793 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write); 794 INCREMENT(lmStat.partial_page); 795 } 796 } 797 798 /* 799 * NAME: lmPostGC() 800 * 801 * FUNCTION: group commit post-processing 802 * Processes transactions after their commit records have been written 803 * to disk, redriving log I/O if necessary. 804 * 805 * RETURN: None 806 * 807 * NOTE: 808 * This routine is called a interrupt time by lbmIODone 809 */ 810 static void lmPostGC(struct lbuf * bp) 811 { 812 unsigned long flags; 813 struct jfs_log *log = bp->l_log; 814 struct logpage *lp; 815 struct tblock *tblk, *temp; 816 817 //LOGGC_LOCK(log); 818 spin_lock_irqsave(&log->gclock, flags); 819 /* 820 * current pageout of group commit completed. 821 * 822 * remove/wakeup transactions from commit queue who were 823 * group committed with the current log page 824 */ 825 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) { 826 if (!(tblk->flag & tblkGC_COMMIT)) 827 break; 828 /* if transaction was marked GC_COMMIT then 829 * it has been shipped in the current pageout 830 * and made it to disk - it is committed. 831 */ 832 833 if (bp->l_flag & lbmERROR) 834 tblk->flag |= tblkGC_ERROR; 835 836 /* remove it from the commit queue */ 837 list_del(&tblk->cqueue); 838 tblk->flag &= ~tblkGC_QUEUE; 839 840 if (tblk == log->flush_tblk) { 841 /* we can stop flushing the log now */ 842 clear_bit(log_FLUSH, &log->flag); 843 log->flush_tblk = NULL; 844 } 845 846 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk, 847 tblk->flag); 848 849 if (!(tblk->xflag & COMMIT_FORCE)) 850 /* 851 * Hand tblk over to lazy commit thread 852 */ 853 txLazyUnlock(tblk); 854 else { 855 /* state transition: COMMIT -> COMMITTED */ 856 tblk->flag |= tblkGC_COMMITTED; 857 858 if (tblk->flag & tblkGC_READY) 859 log->gcrtc--; 860 861 LOGGC_WAKEUP(tblk); 862 } 863 864 /* was page full before pageout ? 865 * (and this is the last tblk bound with the page) 866 */ 867 if (tblk->flag & tblkGC_FREE) 868 lbmFree(bp); 869 /* did page become full after pageout ? 870 * (and this is the last tblk bound with the page) 871 */ 872 else if (tblk->flag & tblkGC_EOP) { 873 /* finalize the page */ 874 lp = (struct logpage *) bp->l_ldata; 875 bp->l_ceor = bp->l_eor; 876 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 877 jfs_info("lmPostGC: calling lbmWrite"); 878 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 879 1); 880 } 881 882 } 883 884 /* are there any transactions who have entered lnGroupCommit() 885 * (whose COMMITs are after that of the last log page written. 886 * They are waiting for new group commit (above at (SLEEP 1)) 887 * or lazy transactions are on a full (queued) log page, 888 * select the latest ready transaction as new group leader and 889 * wake her up to lead her group. 890 */ 891 if ((!list_empty(&log->cqueue)) && 892 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) || 893 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low)) 894 /* 895 * Call lmGCwrite with new group leader 896 */ 897 lmGCwrite(log, 1); 898 899 /* no transaction are ready yet (transactions are only just 900 * queued (GC_QUEUE) and not entered for group commit yet). 901 * the first transaction entering group commit 902 * will elect herself as new group leader. 903 */ 904 else 905 log->cflag &= ~logGC_PAGEOUT; 906 907 //LOGGC_UNLOCK(log); 908 spin_unlock_irqrestore(&log->gclock, flags); 909 return; 910 } 911 912 /* 913 * NAME: lmLogSync() 914 * 915 * FUNCTION: write log SYNCPT record for specified log 916 * if new sync address is available 917 * (normally the case if sync() is executed by back-ground 918 * process). 919 * calculate new value of i_nextsync which determines when 920 * this code is called again. 921 * 922 * PARAMETERS: log - log structure 923 * hard_sync - 1 to force all metadata to be written 924 * 925 * RETURN: 0 926 * 927 * serialization: LOG_LOCK() held on entry/exit 928 */ 929 static int lmLogSync(struct jfs_log * log, int hard_sync) 930 { 931 int logsize; 932 int written; /* written since last syncpt */ 933 int free; /* free space left available */ 934 int delta; /* additional delta to write normally */ 935 int more; /* additional write granted */ 936 struct lrd lrd; 937 int lsn; 938 struct logsyncblk *lp; 939 unsigned long flags; 940 941 /* push dirty metapages out to disk */ 942 if (hard_sync) 943 write_special_inodes(log, filemap_fdatawrite); 944 else 945 write_special_inodes(log, filemap_flush); 946 947 /* 948 * forward syncpt 949 */ 950 /* if last sync is same as last syncpt, 951 * invoke sync point forward processing to update sync. 952 */ 953 954 if (log->sync == log->syncpt) { 955 LOGSYNC_LOCK(log, flags); 956 if (list_empty(&log->synclist)) 957 log->sync = log->lsn; 958 else { 959 lp = list_entry(log->synclist.next, 960 struct logsyncblk, synclist); 961 log->sync = lp->lsn; 962 } 963 LOGSYNC_UNLOCK(log, flags); 964 965 } 966 967 /* if sync is different from last syncpt, 968 * write a SYNCPT record with syncpt = sync. 969 * reset syncpt = sync 970 */ 971 if (log->sync != log->syncpt) { 972 lrd.logtid = 0; 973 lrd.backchain = 0; 974 lrd.type = cpu_to_le16(LOG_SYNCPT); 975 lrd.length = 0; 976 lrd.log.syncpt.sync = cpu_to_le32(log->sync); 977 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 978 979 log->syncpt = log->sync; 980 } else 981 lsn = log->lsn; 982 983 /* 984 * setup next syncpt trigger (SWAG) 985 */ 986 logsize = log->logsize; 987 988 logdiff(written, lsn, log); 989 free = logsize - written; 990 delta = LOGSYNC_DELTA(logsize); 991 more = min(free / 2, delta); 992 if (more < 2 * LOGPSIZE) { 993 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n"); 994 /* 995 * log wrapping 996 * 997 * option 1 - panic ? No.! 998 * option 2 - shutdown file systems 999 * associated with log ? 1000 * option 3 - extend log ? 1001 * option 4 - second chance 1002 * 1003 * mark log wrapped, and continue. 1004 * when all active transactions are completed, 1005 * mark log valid for recovery. 1006 * if crashed during invalid state, log state 1007 * implies invalid log, forcing fsck(). 1008 */ 1009 /* mark log state log wrap in log superblock */ 1010 /* log->state = LOGWRAP; */ 1011 1012 /* reset sync point computation */ 1013 log->syncpt = log->sync = lsn; 1014 log->nextsync = delta; 1015 } else 1016 /* next syncpt trigger = written + more */ 1017 log->nextsync = written + more; 1018 1019 /* if number of bytes written from last sync point is more 1020 * than 1/4 of the log size, stop new transactions from 1021 * starting until all current transactions are completed 1022 * by setting syncbarrier flag. 1023 */ 1024 if (!test_bit(log_SYNCBARRIER, &log->flag) && 1025 (written > LOGSYNC_BARRIER(logsize)) && log->active) { 1026 set_bit(log_SYNCBARRIER, &log->flag); 1027 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn, 1028 log->syncpt); 1029 /* 1030 * We may have to initiate group commit 1031 */ 1032 jfs_flush_journal(log, 0); 1033 } 1034 1035 return lsn; 1036 } 1037 1038 /* 1039 * NAME: jfs_syncpt 1040 * 1041 * FUNCTION: write log SYNCPT record for specified log 1042 * 1043 * PARAMETERS: log - log structure 1044 * hard_sync - set to 1 to force metadata to be written 1045 */ 1046 void jfs_syncpt(struct jfs_log *log, int hard_sync) 1047 { LOG_LOCK(log); 1048 if (!test_bit(log_QUIESCE, &log->flag)) 1049 lmLogSync(log, hard_sync); 1050 LOG_UNLOCK(log); 1051 } 1052 1053 /* 1054 * NAME: lmLogOpen() 1055 * 1056 * FUNCTION: open the log on first open; 1057 * insert filesystem in the active list of the log. 1058 * 1059 * PARAMETER: ipmnt - file system mount inode 1060 * iplog - log inode (out) 1061 * 1062 * RETURN: 1063 * 1064 * serialization: 1065 */ 1066 int lmLogOpen(struct super_block *sb) 1067 { 1068 int rc; 1069 struct block_device *bdev; 1070 struct jfs_log *log; 1071 struct jfs_sb_info *sbi = JFS_SBI(sb); 1072 1073 if (sbi->flag & JFS_NOINTEGRITY) 1074 return open_dummy_log(sb); 1075 1076 if (sbi->mntflag & JFS_INLINELOG) 1077 return open_inline_log(sb); 1078 1079 mutex_lock(&jfs_log_mutex); 1080 list_for_each_entry(log, &jfs_external_logs, journal_list) { 1081 if (log->bdev->bd_dev == sbi->logdev) { 1082 if (!uuid_equal(&log->uuid, &sbi->loguuid)) { 1083 jfs_warn("wrong uuid on JFS journal"); 1084 mutex_unlock(&jfs_log_mutex); 1085 return -EINVAL; 1086 } 1087 /* 1088 * add file system to log active file system list 1089 */ 1090 if ((rc = lmLogFileSystem(log, sbi, 1))) { 1091 mutex_unlock(&jfs_log_mutex); 1092 return rc; 1093 } 1094 goto journal_found; 1095 } 1096 } 1097 1098 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) { 1099 mutex_unlock(&jfs_log_mutex); 1100 return -ENOMEM; 1101 } 1102 INIT_LIST_HEAD(&log->sb_list); 1103 init_waitqueue_head(&log->syncwait); 1104 1105 /* 1106 * external log as separate logical volume 1107 * 1108 * file systems to log may have n-to-1 relationship; 1109 */ 1110 1111 bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 1112 log); 1113 if (IS_ERR(bdev)) { 1114 rc = PTR_ERR(bdev); 1115 goto free; 1116 } 1117 1118 log->bdev = bdev; 1119 uuid_copy(&log->uuid, &sbi->loguuid); 1120 1121 /* 1122 * initialize log: 1123 */ 1124 if ((rc = lmLogInit(log))) 1125 goto close; 1126 1127 list_add(&log->journal_list, &jfs_external_logs); 1128 1129 /* 1130 * add file system to log active file system list 1131 */ 1132 if ((rc = lmLogFileSystem(log, sbi, 1))) 1133 goto shutdown; 1134 1135 journal_found: 1136 LOG_LOCK(log); 1137 list_add(&sbi->log_list, &log->sb_list); 1138 sbi->log = log; 1139 LOG_UNLOCK(log); 1140 1141 mutex_unlock(&jfs_log_mutex); 1142 return 0; 1143 1144 /* 1145 * unwind on error 1146 */ 1147 shutdown: /* unwind lbmLogInit() */ 1148 list_del(&log->journal_list); 1149 lbmLogShutdown(log); 1150 1151 close: /* close external log device */ 1152 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1153 1154 free: /* free log descriptor */ 1155 mutex_unlock(&jfs_log_mutex); 1156 kfree(log); 1157 1158 jfs_warn("lmLogOpen: exit(%d)", rc); 1159 return rc; 1160 } 1161 1162 static int open_inline_log(struct super_block *sb) 1163 { 1164 struct jfs_log *log; 1165 int rc; 1166 1167 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) 1168 return -ENOMEM; 1169 INIT_LIST_HEAD(&log->sb_list); 1170 init_waitqueue_head(&log->syncwait); 1171 1172 set_bit(log_INLINELOG, &log->flag); 1173 log->bdev = sb->s_bdev; 1174 log->base = addressPXD(&JFS_SBI(sb)->logpxd); 1175 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >> 1176 (L2LOGPSIZE - sb->s_blocksize_bits); 1177 log->l2bsize = sb->s_blocksize_bits; 1178 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits); 1179 1180 /* 1181 * initialize log. 1182 */ 1183 if ((rc = lmLogInit(log))) { 1184 kfree(log); 1185 jfs_warn("lmLogOpen: exit(%d)", rc); 1186 return rc; 1187 } 1188 1189 list_add(&JFS_SBI(sb)->log_list, &log->sb_list); 1190 JFS_SBI(sb)->log = log; 1191 1192 return rc; 1193 } 1194 1195 static int open_dummy_log(struct super_block *sb) 1196 { 1197 int rc; 1198 1199 mutex_lock(&jfs_log_mutex); 1200 if (!dummy_log) { 1201 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL); 1202 if (!dummy_log) { 1203 mutex_unlock(&jfs_log_mutex); 1204 return -ENOMEM; 1205 } 1206 INIT_LIST_HEAD(&dummy_log->sb_list); 1207 init_waitqueue_head(&dummy_log->syncwait); 1208 dummy_log->no_integrity = 1; 1209 /* Make up some stuff */ 1210 dummy_log->base = 0; 1211 dummy_log->size = 1024; 1212 rc = lmLogInit(dummy_log); 1213 if (rc) { 1214 kfree(dummy_log); 1215 dummy_log = NULL; 1216 mutex_unlock(&jfs_log_mutex); 1217 return rc; 1218 } 1219 } 1220 1221 LOG_LOCK(dummy_log); 1222 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list); 1223 JFS_SBI(sb)->log = dummy_log; 1224 LOG_UNLOCK(dummy_log); 1225 mutex_unlock(&jfs_log_mutex); 1226 1227 return 0; 1228 } 1229 1230 /* 1231 * NAME: lmLogInit() 1232 * 1233 * FUNCTION: log initialization at first log open. 1234 * 1235 * logredo() (or logformat()) should have been run previously. 1236 * initialize the log from log superblock. 1237 * set the log state in the superblock to LOGMOUNT and 1238 * write SYNCPT log record. 1239 * 1240 * PARAMETER: log - log structure 1241 * 1242 * RETURN: 0 - if ok 1243 * -EINVAL - bad log magic number or superblock dirty 1244 * error returned from logwait() 1245 * 1246 * serialization: single first open thread 1247 */ 1248 int lmLogInit(struct jfs_log * log) 1249 { 1250 int rc = 0; 1251 struct lrd lrd; 1252 struct logsuper *logsuper; 1253 struct lbuf *bpsuper; 1254 struct lbuf *bp; 1255 struct logpage *lp; 1256 int lsn = 0; 1257 1258 jfs_info("lmLogInit: log:0x%p", log); 1259 1260 /* initialize the group commit serialization lock */ 1261 LOGGC_LOCK_INIT(log); 1262 1263 /* allocate/initialize the log write serialization lock */ 1264 LOG_LOCK_INIT(log); 1265 1266 LOGSYNC_LOCK_INIT(log); 1267 1268 INIT_LIST_HEAD(&log->synclist); 1269 1270 INIT_LIST_HEAD(&log->cqueue); 1271 log->flush_tblk = NULL; 1272 1273 log->count = 0; 1274 1275 /* 1276 * initialize log i/o 1277 */ 1278 if ((rc = lbmLogInit(log))) 1279 return rc; 1280 1281 if (!test_bit(log_INLINELOG, &log->flag)) 1282 log->l2bsize = L2LOGPSIZE; 1283 1284 /* check for disabled journaling to disk */ 1285 if (log->no_integrity) { 1286 /* 1287 * Journal pages will still be filled. When the time comes 1288 * to actually do the I/O, the write is not done, and the 1289 * endio routine is called directly. 1290 */ 1291 bp = lbmAllocate(log , 0); 1292 log->bp = bp; 1293 bp->l_pn = bp->l_eor = 0; 1294 } else { 1295 /* 1296 * validate log superblock 1297 */ 1298 if ((rc = lbmRead(log, 1, &bpsuper))) 1299 goto errout10; 1300 1301 logsuper = (struct logsuper *) bpsuper->l_ldata; 1302 1303 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) { 1304 jfs_warn("*** Log Format Error ! ***"); 1305 rc = -EINVAL; 1306 goto errout20; 1307 } 1308 1309 /* logredo() should have been run successfully. */ 1310 if (logsuper->state != cpu_to_le32(LOGREDONE)) { 1311 jfs_warn("*** Log Is Dirty ! ***"); 1312 rc = -EINVAL; 1313 goto errout20; 1314 } 1315 1316 /* initialize log from log superblock */ 1317 if (test_bit(log_INLINELOG,&log->flag)) { 1318 if (log->size != le32_to_cpu(logsuper->size)) { 1319 rc = -EINVAL; 1320 goto errout20; 1321 } 1322 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx size:0x%x", 1323 log, (unsigned long long)log->base, log->size); 1324 } else { 1325 if (!uuid_equal(&logsuper->uuid, &log->uuid)) { 1326 jfs_warn("wrong uuid on JFS log device"); 1327 rc = -EINVAL; 1328 goto errout20; 1329 } 1330 log->size = le32_to_cpu(logsuper->size); 1331 log->l2bsize = le32_to_cpu(logsuper->l2bsize); 1332 jfs_info("lmLogInit: external log:0x%p base:0x%Lx size:0x%x", 1333 log, (unsigned long long)log->base, log->size); 1334 } 1335 1336 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE; 1337 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page); 1338 1339 /* 1340 * initialize for log append write mode 1341 */ 1342 /* establish current/end-of-log page/buffer */ 1343 if ((rc = lbmRead(log, log->page, &bp))) 1344 goto errout20; 1345 1346 lp = (struct logpage *) bp->l_ldata; 1347 1348 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d", 1349 le32_to_cpu(logsuper->end), log->page, log->eor, 1350 le16_to_cpu(lp->h.eor)); 1351 1352 log->bp = bp; 1353 bp->l_pn = log->page; 1354 bp->l_eor = log->eor; 1355 1356 /* if current page is full, move on to next page */ 1357 if (log->eor >= LOGPSIZE - LOGPTLRSIZE) 1358 lmNextPage(log); 1359 1360 /* 1361 * initialize log syncpoint 1362 */ 1363 /* 1364 * write the first SYNCPT record with syncpoint = 0 1365 * (i.e., log redo up to HERE !); 1366 * remove current page from lbm write queue at end of pageout 1367 * (to write log superblock update), but do not release to 1368 * freelist; 1369 */ 1370 lrd.logtid = 0; 1371 lrd.backchain = 0; 1372 lrd.type = cpu_to_le16(LOG_SYNCPT); 1373 lrd.length = 0; 1374 lrd.log.syncpt.sync = 0; 1375 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1376 bp = log->bp; 1377 bp->l_ceor = bp->l_eor; 1378 lp = (struct logpage *) bp->l_ldata; 1379 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1380 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0); 1381 if ((rc = lbmIOWait(bp, 0))) 1382 goto errout30; 1383 1384 /* 1385 * update/write superblock 1386 */ 1387 logsuper->state = cpu_to_le32(LOGMOUNT); 1388 log->serial = le32_to_cpu(logsuper->serial) + 1; 1389 logsuper->serial = cpu_to_le32(log->serial); 1390 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1391 if ((rc = lbmIOWait(bpsuper, lbmFREE))) 1392 goto errout30; 1393 } 1394 1395 /* initialize logsync parameters */ 1396 log->logsize = (log->size - 2) << L2LOGPSIZE; 1397 log->lsn = lsn; 1398 log->syncpt = lsn; 1399 log->sync = log->syncpt; 1400 log->nextsync = LOGSYNC_DELTA(log->logsize); 1401 1402 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x", 1403 log->lsn, log->syncpt, log->sync); 1404 1405 /* 1406 * initialize for lazy/group commit 1407 */ 1408 log->clsn = lsn; 1409 1410 return 0; 1411 1412 /* 1413 * unwind on error 1414 */ 1415 errout30: /* release log page */ 1416 log->wqueue = NULL; 1417 bp->l_wqnext = NULL; 1418 lbmFree(bp); 1419 1420 errout20: /* release log superblock */ 1421 lbmFree(bpsuper); 1422 1423 errout10: /* unwind lbmLogInit() */ 1424 lbmLogShutdown(log); 1425 1426 jfs_warn("lmLogInit: exit(%d)", rc); 1427 return rc; 1428 } 1429 1430 1431 /* 1432 * NAME: lmLogClose() 1433 * 1434 * FUNCTION: remove file system <ipmnt> from active list of log <iplog> 1435 * and close it on last close. 1436 * 1437 * PARAMETER: sb - superblock 1438 * 1439 * RETURN: errors from subroutines 1440 * 1441 * serialization: 1442 */ 1443 int lmLogClose(struct super_block *sb) 1444 { 1445 struct jfs_sb_info *sbi = JFS_SBI(sb); 1446 struct jfs_log *log = sbi->log; 1447 struct block_device *bdev; 1448 int rc = 0; 1449 1450 jfs_info("lmLogClose: log:0x%p", log); 1451 1452 mutex_lock(&jfs_log_mutex); 1453 LOG_LOCK(log); 1454 list_del(&sbi->log_list); 1455 LOG_UNLOCK(log); 1456 sbi->log = NULL; 1457 1458 /* 1459 * We need to make sure all of the "written" metapages 1460 * actually make it to disk 1461 */ 1462 sync_blockdev(sb->s_bdev); 1463 1464 if (test_bit(log_INLINELOG, &log->flag)) { 1465 /* 1466 * in-line log in host file system 1467 */ 1468 rc = lmLogShutdown(log); 1469 kfree(log); 1470 goto out; 1471 } 1472 1473 if (!log->no_integrity) 1474 lmLogFileSystem(log, sbi, 0); 1475 1476 if (!list_empty(&log->sb_list)) 1477 goto out; 1478 1479 /* 1480 * TODO: ensure that the dummy_log is in a state to allow 1481 * lbmLogShutdown to deallocate all the buffers and call 1482 * kfree against dummy_log. For now, leave dummy_log & its 1483 * buffers in memory, and resuse if another no-integrity mount 1484 * is requested. 1485 */ 1486 if (log->no_integrity) 1487 goto out; 1488 1489 /* 1490 * external log as separate logical volume 1491 */ 1492 list_del(&log->journal_list); 1493 bdev = log->bdev; 1494 rc = lmLogShutdown(log); 1495 1496 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1497 1498 kfree(log); 1499 1500 out: 1501 mutex_unlock(&jfs_log_mutex); 1502 jfs_info("lmLogClose: exit(%d)", rc); 1503 return rc; 1504 } 1505 1506 1507 /* 1508 * NAME: jfs_flush_journal() 1509 * 1510 * FUNCTION: initiate write of any outstanding transactions to the journal 1511 * and optionally wait until they are all written to disk 1512 * 1513 * wait == 0 flush until latest txn is committed, don't wait 1514 * wait == 1 flush until latest txn is committed, wait 1515 * wait > 1 flush until all txn's are complete, wait 1516 */ 1517 void jfs_flush_journal(struct jfs_log *log, int wait) 1518 { 1519 int i; 1520 struct tblock *target = NULL; 1521 1522 /* jfs_write_inode may call us during read-only mount */ 1523 if (!log) 1524 return; 1525 1526 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait); 1527 1528 LOGGC_LOCK(log); 1529 1530 if (!list_empty(&log->cqueue)) { 1531 /* 1532 * This ensures that we will keep writing to the journal as long 1533 * as there are unwritten commit records 1534 */ 1535 target = list_entry(log->cqueue.prev, struct tblock, cqueue); 1536 1537 if (test_bit(log_FLUSH, &log->flag)) { 1538 /* 1539 * We're already flushing. 1540 * if flush_tblk is NULL, we are flushing everything, 1541 * so leave it that way. Otherwise, update it to the 1542 * latest transaction 1543 */ 1544 if (log->flush_tblk) 1545 log->flush_tblk = target; 1546 } else { 1547 /* Only flush until latest transaction is committed */ 1548 log->flush_tblk = target; 1549 set_bit(log_FLUSH, &log->flag); 1550 1551 /* 1552 * Initiate I/O on outstanding transactions 1553 */ 1554 if (!(log->cflag & logGC_PAGEOUT)) { 1555 log->cflag |= logGC_PAGEOUT; 1556 lmGCwrite(log, 0); 1557 } 1558 } 1559 } 1560 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) { 1561 /* Flush until all activity complete */ 1562 set_bit(log_FLUSH, &log->flag); 1563 log->flush_tblk = NULL; 1564 } 1565 1566 if (wait && target && !(target->flag & tblkGC_COMMITTED)) { 1567 DECLARE_WAITQUEUE(__wait, current); 1568 1569 add_wait_queue(&target->gcwait, &__wait); 1570 set_current_state(TASK_UNINTERRUPTIBLE); 1571 LOGGC_UNLOCK(log); 1572 schedule(); 1573 LOGGC_LOCK(log); 1574 remove_wait_queue(&target->gcwait, &__wait); 1575 } 1576 LOGGC_UNLOCK(log); 1577 1578 if (wait < 2) 1579 return; 1580 1581 write_special_inodes(log, filemap_fdatawrite); 1582 1583 /* 1584 * If there was recent activity, we may need to wait 1585 * for the lazycommit thread to catch up 1586 */ 1587 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) { 1588 for (i = 0; i < 200; i++) { /* Too much? */ 1589 msleep(250); 1590 write_special_inodes(log, filemap_fdatawrite); 1591 if (list_empty(&log->cqueue) && 1592 list_empty(&log->synclist)) 1593 break; 1594 } 1595 } 1596 assert(list_empty(&log->cqueue)); 1597 1598 #ifdef CONFIG_JFS_DEBUG 1599 if (!list_empty(&log->synclist)) { 1600 struct logsyncblk *lp; 1601 1602 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n"); 1603 list_for_each_entry(lp, &log->synclist, synclist) { 1604 if (lp->xflag & COMMIT_PAGE) { 1605 struct metapage *mp = (struct metapage *)lp; 1606 print_hex_dump(KERN_ERR, "metapage: ", 1607 DUMP_PREFIX_ADDRESS, 16, 4, 1608 mp, sizeof(struct metapage), 0); 1609 print_hex_dump(KERN_ERR, "page: ", 1610 DUMP_PREFIX_ADDRESS, 16, 1611 sizeof(long), mp->page, 1612 sizeof(struct page), 0); 1613 } else 1614 print_hex_dump(KERN_ERR, "tblock:", 1615 DUMP_PREFIX_ADDRESS, 16, 4, 1616 lp, sizeof(struct tblock), 0); 1617 } 1618 } 1619 #else 1620 WARN_ON(!list_empty(&log->synclist)); 1621 #endif 1622 clear_bit(log_FLUSH, &log->flag); 1623 } 1624 1625 /* 1626 * NAME: lmLogShutdown() 1627 * 1628 * FUNCTION: log shutdown at last LogClose(). 1629 * 1630 * write log syncpt record. 1631 * update super block to set redone flag to 0. 1632 * 1633 * PARAMETER: log - log inode 1634 * 1635 * RETURN: 0 - success 1636 * 1637 * serialization: single last close thread 1638 */ 1639 int lmLogShutdown(struct jfs_log * log) 1640 { 1641 int rc; 1642 struct lrd lrd; 1643 int lsn; 1644 struct logsuper *logsuper; 1645 struct lbuf *bpsuper; 1646 struct lbuf *bp; 1647 struct logpage *lp; 1648 1649 jfs_info("lmLogShutdown: log:0x%p", log); 1650 1651 jfs_flush_journal(log, 2); 1652 1653 /* 1654 * write the last SYNCPT record with syncpoint = 0 1655 * (i.e., log redo up to HERE !) 1656 */ 1657 lrd.logtid = 0; 1658 lrd.backchain = 0; 1659 lrd.type = cpu_to_le16(LOG_SYNCPT); 1660 lrd.length = 0; 1661 lrd.log.syncpt.sync = 0; 1662 1663 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1664 bp = log->bp; 1665 lp = (struct logpage *) bp->l_ldata; 1666 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1667 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0); 1668 lbmIOWait(log->bp, lbmFREE); 1669 log->bp = NULL; 1670 1671 /* 1672 * synchronous update log superblock 1673 * mark log state as shutdown cleanly 1674 * (i.e., Log does not need to be replayed). 1675 */ 1676 if ((rc = lbmRead(log, 1, &bpsuper))) 1677 goto out; 1678 1679 logsuper = (struct logsuper *) bpsuper->l_ldata; 1680 logsuper->state = cpu_to_le32(LOGREDONE); 1681 logsuper->end = cpu_to_le32(lsn); 1682 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1683 rc = lbmIOWait(bpsuper, lbmFREE); 1684 1685 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d", 1686 lsn, log->page, log->eor); 1687 1688 out: 1689 /* 1690 * shutdown per log i/o 1691 */ 1692 lbmLogShutdown(log); 1693 1694 if (rc) { 1695 jfs_warn("lmLogShutdown: exit(%d)", rc); 1696 } 1697 return rc; 1698 } 1699 1700 1701 /* 1702 * NAME: lmLogFileSystem() 1703 * 1704 * FUNCTION: insert (<activate> = true)/remove (<activate> = false) 1705 * file system into/from log active file system list. 1706 * 1707 * PARAMETE: log - pointer to logs inode. 1708 * fsdev - kdev_t of filesystem. 1709 * serial - pointer to returned log serial number 1710 * activate - insert/remove device from active list. 1711 * 1712 * RETURN: 0 - success 1713 * errors returned by vms_iowait(). 1714 */ 1715 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 1716 int activate) 1717 { 1718 int rc = 0; 1719 int i; 1720 struct logsuper *logsuper; 1721 struct lbuf *bpsuper; 1722 uuid_t *uuid = &sbi->uuid; 1723 1724 /* 1725 * insert/remove file system device to log active file system list. 1726 */ 1727 if ((rc = lbmRead(log, 1, &bpsuper))) 1728 return rc; 1729 1730 logsuper = (struct logsuper *) bpsuper->l_ldata; 1731 if (activate) { 1732 for (i = 0; i < MAX_ACTIVE; i++) 1733 if (uuid_is_null(&logsuper->active[i].uuid)) { 1734 uuid_copy(&logsuper->active[i].uuid, uuid); 1735 sbi->aggregate = i; 1736 break; 1737 } 1738 if (i == MAX_ACTIVE) { 1739 jfs_warn("Too many file systems sharing journal!"); 1740 lbmFree(bpsuper); 1741 return -EMFILE; /* Is there a better rc? */ 1742 } 1743 } else { 1744 for (i = 0; i < MAX_ACTIVE; i++) 1745 if (uuid_equal(&logsuper->active[i].uuid, uuid)) { 1746 uuid_copy(&logsuper->active[i].uuid, 1747 &uuid_null); 1748 break; 1749 } 1750 if (i == MAX_ACTIVE) { 1751 jfs_warn("Somebody stomped on the journal!"); 1752 lbmFree(bpsuper); 1753 return -EIO; 1754 } 1755 1756 } 1757 1758 /* 1759 * synchronous write log superblock: 1760 * 1761 * write sidestream bypassing write queue: 1762 * at file system mount, log super block is updated for 1763 * activation of the file system before any log record 1764 * (MOUNT record) of the file system, and at file system 1765 * unmount, all meta data for the file system has been 1766 * flushed before log super block is updated for deactivation 1767 * of the file system. 1768 */ 1769 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1770 rc = lbmIOWait(bpsuper, lbmFREE); 1771 1772 return rc; 1773 } 1774 1775 /* 1776 * log buffer manager (lbm) 1777 * ------------------------ 1778 * 1779 * special purpose buffer manager supporting log i/o requirements. 1780 * 1781 * per log write queue: 1782 * log pageout occurs in serial order by fifo write queue and 1783 * restricting to a single i/o in pregress at any one time. 1784 * a circular singly-linked list 1785 * (log->wrqueue points to the tail, and buffers are linked via 1786 * bp->wrqueue field), and 1787 * maintains log page in pageout ot waiting for pageout in serial pageout. 1788 */ 1789 1790 /* 1791 * lbmLogInit() 1792 * 1793 * initialize per log I/O setup at lmLogInit() 1794 */ 1795 static int lbmLogInit(struct jfs_log * log) 1796 { /* log inode */ 1797 int i; 1798 struct lbuf *lbuf; 1799 1800 jfs_info("lbmLogInit: log:0x%p", log); 1801 1802 /* initialize current buffer cursor */ 1803 log->bp = NULL; 1804 1805 /* initialize log device write queue */ 1806 log->wqueue = NULL; 1807 1808 /* 1809 * Each log has its own buffer pages allocated to it. These are 1810 * not managed by the page cache. This ensures that a transaction 1811 * writing to the log does not block trying to allocate a page from 1812 * the page cache (for the log). This would be bad, since page 1813 * allocation waits on the kswapd thread that may be committing inodes 1814 * which would cause log activity. Was that clear? I'm trying to 1815 * avoid deadlock here. 1816 */ 1817 init_waitqueue_head(&log->free_wait); 1818 1819 log->lbuf_free = NULL; 1820 1821 for (i = 0; i < LOGPAGES;) { 1822 char *buffer; 1823 uint offset; 1824 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); 1825 1826 if (!page) 1827 goto error; 1828 buffer = page_address(page); 1829 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) { 1830 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL); 1831 if (lbuf == NULL) { 1832 if (offset == 0) 1833 __free_page(page); 1834 goto error; 1835 } 1836 if (offset) /* we already have one reference */ 1837 get_page(page); 1838 lbuf->l_offset = offset; 1839 lbuf->l_ldata = buffer + offset; 1840 lbuf->l_page = page; 1841 lbuf->l_log = log; 1842 init_waitqueue_head(&lbuf->l_ioevent); 1843 1844 lbuf->l_freelist = log->lbuf_free; 1845 log->lbuf_free = lbuf; 1846 i++; 1847 } 1848 } 1849 1850 return (0); 1851 1852 error: 1853 lbmLogShutdown(log); 1854 return -ENOMEM; 1855 } 1856 1857 1858 /* 1859 * lbmLogShutdown() 1860 * 1861 * finalize per log I/O setup at lmLogShutdown() 1862 */ 1863 static void lbmLogShutdown(struct jfs_log * log) 1864 { 1865 struct lbuf *lbuf; 1866 1867 jfs_info("lbmLogShutdown: log:0x%p", log); 1868 1869 lbuf = log->lbuf_free; 1870 while (lbuf) { 1871 struct lbuf *next = lbuf->l_freelist; 1872 __free_page(lbuf->l_page); 1873 kfree(lbuf); 1874 lbuf = next; 1875 } 1876 } 1877 1878 1879 /* 1880 * lbmAllocate() 1881 * 1882 * allocate an empty log buffer 1883 */ 1884 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn) 1885 { 1886 struct lbuf *bp; 1887 unsigned long flags; 1888 1889 /* 1890 * recycle from log buffer freelist if any 1891 */ 1892 LCACHE_LOCK(flags); 1893 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags); 1894 log->lbuf_free = bp->l_freelist; 1895 LCACHE_UNLOCK(flags); 1896 1897 bp->l_flag = 0; 1898 1899 bp->l_wqnext = NULL; 1900 bp->l_freelist = NULL; 1901 1902 bp->l_pn = pn; 1903 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize)); 1904 bp->l_ceor = 0; 1905 1906 return bp; 1907 } 1908 1909 1910 /* 1911 * lbmFree() 1912 * 1913 * release a log buffer to freelist 1914 */ 1915 static void lbmFree(struct lbuf * bp) 1916 { 1917 unsigned long flags; 1918 1919 LCACHE_LOCK(flags); 1920 1921 lbmfree(bp); 1922 1923 LCACHE_UNLOCK(flags); 1924 } 1925 1926 static void lbmfree(struct lbuf * bp) 1927 { 1928 struct jfs_log *log = bp->l_log; 1929 1930 assert(bp->l_wqnext == NULL); 1931 1932 /* 1933 * return the buffer to head of freelist 1934 */ 1935 bp->l_freelist = log->lbuf_free; 1936 log->lbuf_free = bp; 1937 1938 wake_up(&log->free_wait); 1939 return; 1940 } 1941 1942 1943 /* 1944 * NAME: lbmRedrive 1945 * 1946 * FUNCTION: add a log buffer to the log redrive list 1947 * 1948 * PARAMETER: 1949 * bp - log buffer 1950 * 1951 * NOTES: 1952 * Takes log_redrive_lock. 1953 */ 1954 static inline void lbmRedrive(struct lbuf *bp) 1955 { 1956 unsigned long flags; 1957 1958 spin_lock_irqsave(&log_redrive_lock, flags); 1959 bp->l_redrive_next = log_redrive_list; 1960 log_redrive_list = bp; 1961 spin_unlock_irqrestore(&log_redrive_lock, flags); 1962 1963 wake_up_process(jfsIOthread); 1964 } 1965 1966 1967 /* 1968 * lbmRead() 1969 */ 1970 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp) 1971 { 1972 struct bio *bio; 1973 struct lbuf *bp; 1974 1975 /* 1976 * allocate a log buffer 1977 */ 1978 *bpp = bp = lbmAllocate(log, pn); 1979 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn); 1980 1981 bp->l_flag |= lbmREAD; 1982 1983 bio = bio_alloc(log->bdev, 1, REQ_OP_READ, GFP_NOFS); 1984 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9); 1985 bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset); 1986 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE); 1987 1988 bio->bi_end_io = lbmIODone; 1989 bio->bi_private = bp; 1990 /*check if journaling to disk has been disabled*/ 1991 if (log->no_integrity) { 1992 bio->bi_iter.bi_size = 0; 1993 lbmIODone(bio); 1994 } else { 1995 submit_bio(bio); 1996 } 1997 1998 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD)); 1999 2000 return 0; 2001 } 2002 2003 2004 /* 2005 * lbmWrite() 2006 * 2007 * buffer at head of pageout queue stays after completion of 2008 * partial-page pageout and redriven by explicit initiation of 2009 * pageout by caller until full-page pageout is completed and 2010 * released. 2011 * 2012 * device driver i/o done redrives pageout of new buffer at 2013 * head of pageout queue when current buffer at head of pageout 2014 * queue is released at the completion of its full-page pageout. 2015 * 2016 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit(). 2017 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone() 2018 */ 2019 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, 2020 int cant_block) 2021 { 2022 struct lbuf *tail; 2023 unsigned long flags; 2024 2025 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn); 2026 2027 /* map the logical block address to physical block address */ 2028 bp->l_blkno = 2029 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2030 2031 LCACHE_LOCK(flags); /* disable+lock */ 2032 2033 /* 2034 * initialize buffer for device driver 2035 */ 2036 bp->l_flag = flag; 2037 2038 /* 2039 * insert bp at tail of write queue associated with log 2040 * 2041 * (request is either for bp already/currently at head of queue 2042 * or new bp to be inserted at tail) 2043 */ 2044 tail = log->wqueue; 2045 2046 /* is buffer not already on write queue ? */ 2047 if (bp->l_wqnext == NULL) { 2048 /* insert at tail of wqueue */ 2049 if (tail == NULL) { 2050 log->wqueue = bp; 2051 bp->l_wqnext = bp; 2052 } else { 2053 log->wqueue = bp; 2054 bp->l_wqnext = tail->l_wqnext; 2055 tail->l_wqnext = bp; 2056 } 2057 2058 tail = bp; 2059 } 2060 2061 /* is buffer at head of wqueue and for write ? */ 2062 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) { 2063 LCACHE_UNLOCK(flags); /* unlock+enable */ 2064 return; 2065 } 2066 2067 LCACHE_UNLOCK(flags); /* unlock+enable */ 2068 2069 if (cant_block) 2070 lbmRedrive(bp); 2071 else if (flag & lbmSYNC) 2072 lbmStartIO(bp); 2073 else { 2074 LOGGC_UNLOCK(log); 2075 lbmStartIO(bp); 2076 LOGGC_LOCK(log); 2077 } 2078 } 2079 2080 2081 /* 2082 * lbmDirectWrite() 2083 * 2084 * initiate pageout bypassing write queue for sidestream 2085 * (e.g., log superblock) write; 2086 */ 2087 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag) 2088 { 2089 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x", 2090 bp, flag, bp->l_pn); 2091 2092 /* 2093 * initialize buffer for device driver 2094 */ 2095 bp->l_flag = flag | lbmDIRECT; 2096 2097 /* map the logical block address to physical block address */ 2098 bp->l_blkno = 2099 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2100 2101 /* 2102 * initiate pageout of the page 2103 */ 2104 lbmStartIO(bp); 2105 } 2106 2107 2108 /* 2109 * NAME: lbmStartIO() 2110 * 2111 * FUNCTION: Interface to DD strategy routine 2112 * 2113 * RETURN: none 2114 * 2115 * serialization: LCACHE_LOCK() is NOT held during log i/o; 2116 */ 2117 static void lbmStartIO(struct lbuf * bp) 2118 { 2119 struct bio *bio; 2120 struct jfs_log *log = bp->l_log; 2121 2122 jfs_info("lbmStartIO"); 2123 2124 bio = bio_alloc(log->bdev, 1, REQ_OP_WRITE | REQ_SYNC, GFP_NOFS); 2125 bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9); 2126 bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset); 2127 BUG_ON(bio->bi_iter.bi_size != LOGPSIZE); 2128 2129 bio->bi_end_io = lbmIODone; 2130 bio->bi_private = bp; 2131 2132 /* check if journaling to disk has been disabled */ 2133 if (log->no_integrity) { 2134 bio->bi_iter.bi_size = 0; 2135 lbmIODone(bio); 2136 } else { 2137 submit_bio(bio); 2138 INCREMENT(lmStat.submitted); 2139 } 2140 } 2141 2142 2143 /* 2144 * lbmIOWait() 2145 */ 2146 static int lbmIOWait(struct lbuf * bp, int flag) 2147 { 2148 unsigned long flags; 2149 int rc = 0; 2150 2151 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2152 2153 LCACHE_LOCK(flags); /* disable+lock */ 2154 2155 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags); 2156 2157 rc = (bp->l_flag & lbmERROR) ? -EIO : 0; 2158 2159 if (flag & lbmFREE) 2160 lbmfree(bp); 2161 2162 LCACHE_UNLOCK(flags); /* unlock+enable */ 2163 2164 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2165 return rc; 2166 } 2167 2168 /* 2169 * lbmIODone() 2170 * 2171 * executed at INTIODONE level 2172 */ 2173 static void lbmIODone(struct bio *bio) 2174 { 2175 struct lbuf *bp = bio->bi_private; 2176 struct lbuf *nextbp, *tail; 2177 struct jfs_log *log; 2178 unsigned long flags; 2179 2180 /* 2181 * get back jfs buffer bound to the i/o buffer 2182 */ 2183 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag); 2184 2185 LCACHE_LOCK(flags); /* disable+lock */ 2186 2187 bp->l_flag |= lbmDONE; 2188 2189 if (bio->bi_status) { 2190 bp->l_flag |= lbmERROR; 2191 2192 jfs_err("lbmIODone: I/O error in JFS log"); 2193 } 2194 2195 bio_put(bio); 2196 2197 /* 2198 * pagein completion 2199 */ 2200 if (bp->l_flag & lbmREAD) { 2201 bp->l_flag &= ~lbmREAD; 2202 2203 LCACHE_UNLOCK(flags); /* unlock+enable */ 2204 2205 /* wakeup I/O initiator */ 2206 LCACHE_WAKEUP(&bp->l_ioevent); 2207 2208 return; 2209 } 2210 2211 /* 2212 * pageout completion 2213 * 2214 * the bp at the head of write queue has completed pageout. 2215 * 2216 * if single-commit/full-page pageout, remove the current buffer 2217 * from head of pageout queue, and redrive pageout with 2218 * the new buffer at head of pageout queue; 2219 * otherwise, the partial-page pageout buffer stays at 2220 * the head of pageout queue to be redriven for pageout 2221 * by lmGroupCommit() until full-page pageout is completed. 2222 */ 2223 bp->l_flag &= ~lbmWRITE; 2224 INCREMENT(lmStat.pagedone); 2225 2226 /* update committed lsn */ 2227 log = bp->l_log; 2228 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor; 2229 2230 if (bp->l_flag & lbmDIRECT) { 2231 LCACHE_WAKEUP(&bp->l_ioevent); 2232 LCACHE_UNLOCK(flags); 2233 return; 2234 } 2235 2236 tail = log->wqueue; 2237 2238 /* single element queue */ 2239 if (bp == tail) { 2240 /* remove head buffer of full-page pageout 2241 * from log device write queue 2242 */ 2243 if (bp->l_flag & lbmRELEASE) { 2244 log->wqueue = NULL; 2245 bp->l_wqnext = NULL; 2246 } 2247 } 2248 /* multi element queue */ 2249 else { 2250 /* remove head buffer of full-page pageout 2251 * from log device write queue 2252 */ 2253 if (bp->l_flag & lbmRELEASE) { 2254 nextbp = tail->l_wqnext = bp->l_wqnext; 2255 bp->l_wqnext = NULL; 2256 2257 /* 2258 * redrive pageout of next page at head of write queue: 2259 * redrive next page without any bound tblk 2260 * (i.e., page w/o any COMMIT records), or 2261 * first page of new group commit which has been 2262 * queued after current page (subsequent pageout 2263 * is performed synchronously, except page without 2264 * any COMMITs) by lmGroupCommit() as indicated 2265 * by lbmWRITE flag; 2266 */ 2267 if (nextbp->l_flag & lbmWRITE) { 2268 /* 2269 * We can't do the I/O at interrupt time. 2270 * The jfsIO thread can do it 2271 */ 2272 lbmRedrive(nextbp); 2273 } 2274 } 2275 } 2276 2277 /* 2278 * synchronous pageout: 2279 * 2280 * buffer has not necessarily been removed from write queue 2281 * (e.g., synchronous write of partial-page with COMMIT): 2282 * leave buffer for i/o initiator to dispose 2283 */ 2284 if (bp->l_flag & lbmSYNC) { 2285 LCACHE_UNLOCK(flags); /* unlock+enable */ 2286 2287 /* wakeup I/O initiator */ 2288 LCACHE_WAKEUP(&bp->l_ioevent); 2289 } 2290 2291 /* 2292 * Group Commit pageout: 2293 */ 2294 else if (bp->l_flag & lbmGC) { 2295 LCACHE_UNLOCK(flags); 2296 lmPostGC(bp); 2297 } 2298 2299 /* 2300 * asynchronous pageout: 2301 * 2302 * buffer must have been removed from write queue: 2303 * insert buffer at head of freelist where it can be recycled 2304 */ 2305 else { 2306 assert(bp->l_flag & lbmRELEASE); 2307 assert(bp->l_flag & lbmFREE); 2308 lbmfree(bp); 2309 2310 LCACHE_UNLOCK(flags); /* unlock+enable */ 2311 } 2312 } 2313 2314 int jfsIOWait(void *arg) 2315 { 2316 struct lbuf *bp; 2317 2318 do { 2319 spin_lock_irq(&log_redrive_lock); 2320 while ((bp = log_redrive_list)) { 2321 log_redrive_list = bp->l_redrive_next; 2322 bp->l_redrive_next = NULL; 2323 spin_unlock_irq(&log_redrive_lock); 2324 lbmStartIO(bp); 2325 spin_lock_irq(&log_redrive_lock); 2326 } 2327 2328 if (freezing(current)) { 2329 spin_unlock_irq(&log_redrive_lock); 2330 try_to_freeze(); 2331 } else { 2332 set_current_state(TASK_INTERRUPTIBLE); 2333 spin_unlock_irq(&log_redrive_lock); 2334 schedule(); 2335 } 2336 } while (!kthread_should_stop()); 2337 2338 jfs_info("jfsIOWait being killed!"); 2339 return 0; 2340 } 2341 2342 /* 2343 * NAME: lmLogFormat()/jfs_logform() 2344 * 2345 * FUNCTION: format file system log 2346 * 2347 * PARAMETERS: 2348 * log - volume log 2349 * logAddress - start address of log space in FS block 2350 * logSize - length of log space in FS block; 2351 * 2352 * RETURN: 0 - success 2353 * -EIO - i/o error 2354 * 2355 * XXX: We're synchronously writing one page at a time. This needs to 2356 * be improved by writing multiple pages at once. 2357 */ 2358 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize) 2359 { 2360 int rc = -EIO; 2361 struct jfs_sb_info *sbi; 2362 struct logsuper *logsuper; 2363 struct logpage *lp; 2364 int lspn; /* log sequence page number */ 2365 struct lrd *lrd_ptr; 2366 int npages = 0; 2367 struct lbuf *bp; 2368 2369 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d", 2370 (long long)logAddress, logSize); 2371 2372 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list); 2373 2374 /* allocate a log buffer */ 2375 bp = lbmAllocate(log, 1); 2376 2377 npages = logSize >> sbi->l2nbperpage; 2378 2379 /* 2380 * log space: 2381 * 2382 * page 0 - reserved; 2383 * page 1 - log superblock; 2384 * page 2 - log data page: A SYNC log record is written 2385 * into this page at logform time; 2386 * pages 3-N - log data page: set to empty log data pages; 2387 */ 2388 /* 2389 * init log superblock: log page 1 2390 */ 2391 logsuper = (struct logsuper *) bp->l_ldata; 2392 2393 logsuper->magic = cpu_to_le32(LOGMAGIC); 2394 logsuper->version = cpu_to_le32(LOGVERSION); 2395 logsuper->state = cpu_to_le32(LOGREDONE); 2396 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */ 2397 logsuper->size = cpu_to_le32(npages); 2398 logsuper->bsize = cpu_to_le32(sbi->bsize); 2399 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize); 2400 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE); 2401 2402 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2403 bp->l_blkno = logAddress + sbi->nbperpage; 2404 lbmStartIO(bp); 2405 if ((rc = lbmIOWait(bp, 0))) 2406 goto exit; 2407 2408 /* 2409 * init pages 2 to npages-1 as log data pages: 2410 * 2411 * log page sequence number (lpsn) initialization: 2412 * 2413 * pn: 0 1 2 3 n-1 2414 * +-----+-----+=====+=====+===.....===+=====+ 2415 * lspn: N-1 0 1 N-2 2416 * <--- N page circular file ----> 2417 * 2418 * the N (= npages-2) data pages of the log is maintained as 2419 * a circular file for the log records; 2420 * lpsn grows by 1 monotonically as each log page is written 2421 * to the circular file of the log; 2422 * and setLogpage() will not reset the page number even if 2423 * the eor is equal to LOGPHDRSIZE. In order for binary search 2424 * still work in find log end process, we have to simulate the 2425 * log wrap situation at the log format time. 2426 * The 1st log page written will have the highest lpsn. Then 2427 * the succeeding log pages will have ascending order of 2428 * the lspn starting from 0, ... (N-2) 2429 */ 2430 lp = (struct logpage *) bp->l_ldata; 2431 /* 2432 * initialize 1st log page to be written: lpsn = N - 1, 2433 * write a SYNCPT log record is written to this page 2434 */ 2435 lp->h.page = lp->t.page = cpu_to_le32(npages - 3); 2436 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE); 2437 2438 lrd_ptr = (struct lrd *) &lp->data; 2439 lrd_ptr->logtid = 0; 2440 lrd_ptr->backchain = 0; 2441 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT); 2442 lrd_ptr->length = 0; 2443 lrd_ptr->log.syncpt.sync = 0; 2444 2445 bp->l_blkno += sbi->nbperpage; 2446 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2447 lbmStartIO(bp); 2448 if ((rc = lbmIOWait(bp, 0))) 2449 goto exit; 2450 2451 /* 2452 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2) 2453 */ 2454 for (lspn = 0; lspn < npages - 3; lspn++) { 2455 lp->h.page = lp->t.page = cpu_to_le32(lspn); 2456 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 2457 2458 bp->l_blkno += sbi->nbperpage; 2459 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2460 lbmStartIO(bp); 2461 if ((rc = lbmIOWait(bp, 0))) 2462 goto exit; 2463 } 2464 2465 rc = 0; 2466 exit: 2467 /* 2468 * finalize log 2469 */ 2470 /* release the buffer */ 2471 lbmFree(bp); 2472 2473 return rc; 2474 } 2475 2476 #ifdef CONFIG_JFS_STATISTICS 2477 int jfs_lmstats_proc_show(struct seq_file *m, void *v) 2478 { 2479 seq_printf(m, 2480 "JFS Logmgr stats\n" 2481 "================\n" 2482 "commits = %d\n" 2483 "writes submitted = %d\n" 2484 "writes completed = %d\n" 2485 "full pages submitted = %d\n" 2486 "partial pages submitted = %d\n", 2487 lmStat.commit, 2488 lmStat.submitted, 2489 lmStat.pagedone, 2490 lmStat.full_page, 2491 lmStat.partial_page); 2492 return 0; 2493 } 2494 #endif /* CONFIG_JFS_STATISTICS */ 2495