xref: /linux/fs/jfs/jfs_dtree.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 /*
20  *	jfs_dtree.c: directory B+-tree manager
21  *
22  * B+-tree with variable length key directory:
23  *
24  * each directory page is structured as an array of 32-byte
25  * directory entry slots initialized as a freelist
26  * to avoid search/compaction of free space at insertion.
27  * when an entry is inserted, a number of slots are allocated
28  * from the freelist as required to store variable length data
29  * of the entry; when the entry is deleted, slots of the entry
30  * are returned to freelist.
31  *
32  * leaf entry stores full name as key and file serial number
33  * (aka inode number) as data.
34  * internal/router entry stores sufffix compressed name
35  * as key and simple extent descriptor as data.
36  *
37  * each directory page maintains a sorted entry index table
38  * which stores the start slot index of sorted entries
39  * to allow binary search on the table.
40  *
41  * directory starts as a root/leaf page in on-disk inode
42  * inline data area.
43  * when it becomes full, it starts a leaf of a external extent
44  * of length of 1 block. each time the first leaf becomes full,
45  * it is extended rather than split (its size is doubled),
46  * until its length becoms 4 KBytes, from then the extent is split
47  * with new 4 Kbyte extent when it becomes full
48  * to reduce external fragmentation of small directories.
49  *
50  * blah, blah, blah, for linear scan of directory in pieces by
51  * readdir().
52  *
53  *
54  *	case-insensitive directory file system
55  *
56  * names are stored in case-sensitive way in leaf entry.
57  * but stored, searched and compared in case-insensitive (uppercase) order
58  * (i.e., both search key and entry key are folded for search/compare):
59  * (note that case-sensitive order is BROKEN in storage, e.g.,
60  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61  *
62  *  entries which folds to the same key makes up a equivalent class
63  *  whose members are stored as contiguous cluster (may cross page boundary)
64  *  but whose order is arbitrary and acts as duplicate, e.g.,
65  *  abc, Abc, aBc, abC)
66  *
67  * once match is found at leaf, requires scan forward/backward
68  * either for, in case-insensitive search, duplicate
69  * or for, in case-sensitive search, for exact match
70  *
71  * router entry must be created/stored in case-insensitive way
72  * in internal entry:
73  * (right most key of left page and left most key of right page
74  * are folded, and its suffix compression is propagated as router
75  * key in parent)
76  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77  * should be made the router key for the split)
78  *
79  * case-insensitive search:
80  *
81  *	fold search key;
82  *
83  *	case-insensitive search of B-tree:
84  *	for internal entry, router key is already folded;
85  *	for leaf entry, fold the entry key before comparison.
86  *
87  *	if (leaf entry case-insensitive match found)
88  *		if (next entry satisfies case-insensitive match)
89  *			return EDUPLICATE;
90  *		if (prev entry satisfies case-insensitive match)
91  *			return EDUPLICATE;
92  *		return match;
93  *	else
94  *		return no match;
95  *
96  *	serialization:
97  * target directory inode lock is being held on entry/exit
98  * of all main directory service routines.
99  *
100  *	log based recovery:
101  */
102 
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include <linux/slab.h>
106 #include "jfs_incore.h"
107 #include "jfs_superblock.h"
108 #include "jfs_filsys.h"
109 #include "jfs_metapage.h"
110 #include "jfs_dmap.h"
111 #include "jfs_unicode.h"
112 #include "jfs_debug.h"
113 
114 /* dtree split parameter */
115 struct dtsplit {
116 	struct metapage *mp;
117 	s16 index;
118 	s16 nslot;
119 	struct component_name *key;
120 	ddata_t *data;
121 	struct pxdlist *pxdlist;
122 };
123 
124 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
125 
126 /* get page buffer for specified block address */
127 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)				\
128 do {									\
129 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot);	\
130 	if (!(RC)) {							\
131 		if (((P)->header.nextindex >				\
132 		     (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
133 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) {	\
134 			BT_PUTPAGE(MP);					\
135 			jfs_error((IP)->i_sb,				\
136 				  "DT_GETPAGE: dtree page corrupt\n");	\
137 			MP = NULL;					\
138 			RC = -EIO;					\
139 		}							\
140 	}								\
141 } while (0)
142 
143 /* for consistency */
144 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
145 
146 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
147 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
148 
149 /*
150  * forward references
151  */
152 static int dtSplitUp(tid_t tid, struct inode *ip,
153 		     struct dtsplit * split, struct btstack * btstack);
154 
155 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
156 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
157 
158 static int dtExtendPage(tid_t tid, struct inode *ip,
159 			struct dtsplit * split, struct btstack * btstack);
160 
161 static int dtSplitRoot(tid_t tid, struct inode *ip,
162 		       struct dtsplit * split, struct metapage ** rmpp);
163 
164 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
165 		      dtpage_t * fp, struct btstack * btstack);
166 
167 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
168 
169 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
170 
171 static int dtReadNext(struct inode *ip,
172 		      loff_t * offset, struct btstack * btstack);
173 
174 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
175 
176 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
177 		     int flag);
178 
179 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
180 		     int flag);
181 
182 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
183 			      int ri, struct component_name * key, int flag);
184 
185 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
186 			  ddata_t * data, struct dt_lock **);
187 
188 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
189 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
190 			int do_index);
191 
192 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
193 
194 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
195 
196 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
197 
198 #define ciToUpper(c)	UniStrupr((c)->name)
199 
200 /*
201  *	read_index_page()
202  *
203  *	Reads a page of a directory's index table.
204  *	Having metadata mapped into the directory inode's address space
205  *	presents a multitude of problems.  We avoid this by mapping to
206  *	the absolute address space outside of the *_metapage routines
207  */
208 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
209 {
210 	int rc;
211 	s64 xaddr;
212 	int xflag;
213 	s32 xlen;
214 
215 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
216 	if (rc || (xaddr == 0))
217 		return NULL;
218 
219 	return read_metapage(inode, xaddr, PSIZE, 1);
220 }
221 
222 /*
223  *	get_index_page()
224  *
225  *	Same as get_index_page(), but get's a new page without reading
226  */
227 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
228 {
229 	int rc;
230 	s64 xaddr;
231 	int xflag;
232 	s32 xlen;
233 
234 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
235 	if (rc || (xaddr == 0))
236 		return NULL;
237 
238 	return get_metapage(inode, xaddr, PSIZE, 1);
239 }
240 
241 /*
242  *	find_index()
243  *
244  *	Returns dtree page containing directory table entry for specified
245  *	index and pointer to its entry.
246  *
247  *	mp must be released by caller.
248  */
249 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
250 					 struct metapage ** mp, s64 *lblock)
251 {
252 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
253 	s64 blkno;
254 	s64 offset;
255 	int page_offset;
256 	struct dir_table_slot *slot;
257 	static int maxWarnings = 10;
258 
259 	if (index < 2) {
260 		if (maxWarnings) {
261 			jfs_warn("find_entry called with index = %d", index);
262 			maxWarnings--;
263 		}
264 		return NULL;
265 	}
266 
267 	if (index >= jfs_ip->next_index) {
268 		jfs_warn("find_entry called with index >= next_index");
269 		return NULL;
270 	}
271 
272 	if (jfs_dirtable_inline(ip)) {
273 		/*
274 		 * Inline directory table
275 		 */
276 		*mp = NULL;
277 		slot = &jfs_ip->i_dirtable[index - 2];
278 	} else {
279 		offset = (index - 2) * sizeof(struct dir_table_slot);
280 		page_offset = offset & (PSIZE - 1);
281 		blkno = ((offset + 1) >> L2PSIZE) <<
282 		    JFS_SBI(ip->i_sb)->l2nbperpage;
283 
284 		if (*mp && (*lblock != blkno)) {
285 			release_metapage(*mp);
286 			*mp = NULL;
287 		}
288 		if (!(*mp)) {
289 			*lblock = blkno;
290 			*mp = read_index_page(ip, blkno);
291 		}
292 		if (!(*mp)) {
293 			jfs_err("free_index: error reading directory table");
294 			return NULL;
295 		}
296 
297 		slot =
298 		    (struct dir_table_slot *) ((char *) (*mp)->data +
299 					       page_offset);
300 	}
301 	return slot;
302 }
303 
304 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
305 			      u32 index)
306 {
307 	struct tlock *tlck;
308 	struct linelock *llck;
309 	struct lv *lv;
310 
311 	tlck = txLock(tid, ip, mp, tlckDATA);
312 	llck = (struct linelock *) tlck->lock;
313 
314 	if (llck->index >= llck->maxcnt)
315 		llck = txLinelock(llck);
316 	lv = &llck->lv[llck->index];
317 
318 	/*
319 	 *	Linelock slot size is twice the size of directory table
320 	 *	slot size.  512 entries per page.
321 	 */
322 	lv->offset = ((index - 2) & 511) >> 1;
323 	lv->length = 1;
324 	llck->index++;
325 }
326 
327 /*
328  *	add_index()
329  *
330  *	Adds an entry to the directory index table.  This is used to provide
331  *	each directory entry with a persistent index in which to resume
332  *	directory traversals
333  */
334 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
335 {
336 	struct super_block *sb = ip->i_sb;
337 	struct jfs_sb_info *sbi = JFS_SBI(sb);
338 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
339 	u64 blkno;
340 	struct dir_table_slot *dirtab_slot;
341 	u32 index;
342 	struct linelock *llck;
343 	struct lv *lv;
344 	struct metapage *mp;
345 	s64 offset;
346 	uint page_offset;
347 	struct tlock *tlck;
348 	s64 xaddr;
349 
350 	ASSERT(DO_INDEX(ip));
351 
352 	if (jfs_ip->next_index < 2) {
353 		jfs_warn("add_index: next_index = %d.  Resetting!",
354 			   jfs_ip->next_index);
355 		jfs_ip->next_index = 2;
356 	}
357 
358 	index = jfs_ip->next_index++;
359 
360 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
361 		/*
362 		 * i_size reflects size of index table, or 8 bytes per entry.
363 		 */
364 		ip->i_size = (loff_t) (index - 1) << 3;
365 
366 		/*
367 		 * dir table fits inline within inode
368 		 */
369 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
370 		dirtab_slot->flag = DIR_INDEX_VALID;
371 		dirtab_slot->slot = slot;
372 		DTSaddress(dirtab_slot, bn);
373 
374 		set_cflag(COMMIT_Dirtable, ip);
375 
376 		return index;
377 	}
378 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
379 		struct dir_table_slot temp_table[12];
380 
381 		/*
382 		 * It's time to move the inline table to an external
383 		 * page and begin to build the xtree
384 		 */
385 		if (dquot_alloc_block(ip, sbi->nbperpage))
386 			goto clean_up;
387 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
388 			dquot_free_block(ip, sbi->nbperpage);
389 			goto clean_up;
390 		}
391 
392 		/*
393 		 * Save the table, we're going to overwrite it with the
394 		 * xtree root
395 		 */
396 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
397 
398 		/*
399 		 * Initialize empty x-tree
400 		 */
401 		xtInitRoot(tid, ip);
402 
403 		/*
404 		 * Add the first block to the xtree
405 		 */
406 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
407 			/* This really shouldn't fail */
408 			jfs_warn("add_index: xtInsert failed!");
409 			memcpy(&jfs_ip->i_dirtable, temp_table,
410 			       sizeof (temp_table));
411 			dbFree(ip, xaddr, sbi->nbperpage);
412 			dquot_free_block(ip, sbi->nbperpage);
413 			goto clean_up;
414 		}
415 		ip->i_size = PSIZE;
416 
417 		mp = get_index_page(ip, 0);
418 		if (!mp) {
419 			jfs_err("add_index: get_metapage failed!");
420 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
421 			memcpy(&jfs_ip->i_dirtable, temp_table,
422 			       sizeof (temp_table));
423 			goto clean_up;
424 		}
425 		tlck = txLock(tid, ip, mp, tlckDATA);
426 		llck = (struct linelock *) & tlck->lock;
427 		ASSERT(llck->index == 0);
428 		lv = &llck->lv[0];
429 
430 		lv->offset = 0;
431 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
432 		llck->index++;
433 
434 		memcpy(mp->data, temp_table, sizeof(temp_table));
435 
436 		mark_metapage_dirty(mp);
437 		release_metapage(mp);
438 
439 		/*
440 		 * Logging is now directed by xtree tlocks
441 		 */
442 		clear_cflag(COMMIT_Dirtable, ip);
443 	}
444 
445 	offset = (index - 2) * sizeof(struct dir_table_slot);
446 	page_offset = offset & (PSIZE - 1);
447 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
448 	if (page_offset == 0) {
449 		/*
450 		 * This will be the beginning of a new page
451 		 */
452 		xaddr = 0;
453 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
454 			jfs_warn("add_index: xtInsert failed!");
455 			goto clean_up;
456 		}
457 		ip->i_size += PSIZE;
458 
459 		if ((mp = get_index_page(ip, blkno)))
460 			memset(mp->data, 0, PSIZE);	/* Just looks better */
461 		else
462 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
463 	} else
464 		mp = read_index_page(ip, blkno);
465 
466 	if (!mp) {
467 		jfs_err("add_index: get/read_metapage failed!");
468 		goto clean_up;
469 	}
470 
471 	lock_index(tid, ip, mp, index);
472 
473 	dirtab_slot =
474 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
475 	dirtab_slot->flag = DIR_INDEX_VALID;
476 	dirtab_slot->slot = slot;
477 	DTSaddress(dirtab_slot, bn);
478 
479 	mark_metapage_dirty(mp);
480 	release_metapage(mp);
481 
482 	return index;
483 
484       clean_up:
485 
486 	jfs_ip->next_index--;
487 
488 	return 0;
489 }
490 
491 /*
492  *	free_index()
493  *
494  *	Marks an entry to the directory index table as free.
495  */
496 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
497 {
498 	struct dir_table_slot *dirtab_slot;
499 	s64 lblock;
500 	struct metapage *mp = NULL;
501 
502 	dirtab_slot = find_index(ip, index, &mp, &lblock);
503 
504 	if (!dirtab_slot)
505 		return;
506 
507 	dirtab_slot->flag = DIR_INDEX_FREE;
508 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
509 	dirtab_slot->addr2 = cpu_to_le32(next);
510 
511 	if (mp) {
512 		lock_index(tid, ip, mp, index);
513 		mark_metapage_dirty(mp);
514 		release_metapage(mp);
515 	} else
516 		set_cflag(COMMIT_Dirtable, ip);
517 }
518 
519 /*
520  *	modify_index()
521  *
522  *	Changes an entry in the directory index table
523  */
524 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
525 			 int slot, struct metapage ** mp, s64 *lblock)
526 {
527 	struct dir_table_slot *dirtab_slot;
528 
529 	dirtab_slot = find_index(ip, index, mp, lblock);
530 
531 	if (!dirtab_slot)
532 		return;
533 
534 	DTSaddress(dirtab_slot, bn);
535 	dirtab_slot->slot = slot;
536 
537 	if (*mp) {
538 		lock_index(tid, ip, *mp, index);
539 		mark_metapage_dirty(*mp);
540 	} else
541 		set_cflag(COMMIT_Dirtable, ip);
542 }
543 
544 /*
545  *	read_index()
546  *
547  *	reads a directory table slot
548  */
549 static int read_index(struct inode *ip, u32 index,
550 		     struct dir_table_slot * dirtab_slot)
551 {
552 	s64 lblock;
553 	struct metapage *mp = NULL;
554 	struct dir_table_slot *slot;
555 
556 	slot = find_index(ip, index, &mp, &lblock);
557 	if (!slot) {
558 		return -EIO;
559 	}
560 
561 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
562 
563 	if (mp)
564 		release_metapage(mp);
565 
566 	return 0;
567 }
568 
569 /*
570  *	dtSearch()
571  *
572  * function:
573  *	Search for the entry with specified key
574  *
575  * parameter:
576  *
577  * return: 0 - search result on stack, leaf page pinned;
578  *	   errno - I/O error
579  */
580 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
581 	     struct btstack * btstack, int flag)
582 {
583 	int rc = 0;
584 	int cmp = 1;		/* init for empty page */
585 	s64 bn;
586 	struct metapage *mp;
587 	dtpage_t *p;
588 	s8 *stbl;
589 	int base, index, lim;
590 	struct btframe *btsp;
591 	pxd_t *pxd;
592 	int psize = 288;	/* initial in-line directory */
593 	ino_t inumber;
594 	struct component_name ciKey;
595 	struct super_block *sb = ip->i_sb;
596 
597 	ciKey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), GFP_NOFS);
598 	if (!ciKey.name) {
599 		rc = -ENOMEM;
600 		goto dtSearch_Exit2;
601 	}
602 
603 
604 	/* uppercase search key for c-i directory */
605 	UniStrcpy(ciKey.name, key->name);
606 	ciKey.namlen = key->namlen;
607 
608 	/* only uppercase if case-insensitive support is on */
609 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
610 		ciToUpper(&ciKey);
611 	}
612 	BT_CLR(btstack);	/* reset stack */
613 
614 	/* init level count for max pages to split */
615 	btstack->nsplit = 1;
616 
617 	/*
618 	 *	search down tree from root:
619 	 *
620 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
622 	 *
623 	 * if entry with search key K is not found
624 	 * internal page search find the entry with largest key Ki
625 	 * less than K which point to the child page to search;
626 	 * leaf page search find the entry with smallest key Kj
627 	 * greater than K so that the returned index is the position of
628 	 * the entry to be shifted right for insertion of new entry.
629 	 * for empty tree, search key is greater than any key of the tree.
630 	 *
631 	 * by convention, root bn = 0.
632 	 */
633 	for (bn = 0;;) {
634 		/* get/pin the page to search */
635 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
636 		if (rc)
637 			goto dtSearch_Exit1;
638 
639 		/* get sorted entry table of the page */
640 		stbl = DT_GETSTBL(p);
641 
642 		/*
643 		 * binary search with search key K on the current page.
644 		 */
645 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
646 			index = base + (lim >> 1);
647 
648 			if (p->header.flag & BT_LEAF) {
649 				/* uppercase leaf name to compare */
650 				cmp =
651 				    ciCompare(&ciKey, p, stbl[index],
652 					      JFS_SBI(sb)->mntflag);
653 			} else {
654 				/* router key is in uppercase */
655 
656 				cmp = dtCompare(&ciKey, p, stbl[index]);
657 
658 
659 			}
660 			if (cmp == 0) {
661 				/*
662 				 *	search hit
663 				 */
664 				/* search hit - leaf page:
665 				 * return the entry found
666 				 */
667 				if (p->header.flag & BT_LEAF) {
668 					inumber = le32_to_cpu(
669 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
670 
671 					/*
672 					 * search for JFS_LOOKUP
673 					 */
674 					if (flag == JFS_LOOKUP) {
675 						*data = inumber;
676 						rc = 0;
677 						goto out;
678 					}
679 
680 					/*
681 					 * search for JFS_CREATE
682 					 */
683 					if (flag == JFS_CREATE) {
684 						*data = inumber;
685 						rc = -EEXIST;
686 						goto out;
687 					}
688 
689 					/*
690 					 * search for JFS_REMOVE or JFS_RENAME
691 					 */
692 					if ((flag == JFS_REMOVE ||
693 					     flag == JFS_RENAME) &&
694 					    *data != inumber) {
695 						rc = -ESTALE;
696 						goto out;
697 					}
698 
699 					/*
700 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
701 					 */
702 					/* save search result */
703 					*data = inumber;
704 					btsp = btstack->top;
705 					btsp->bn = bn;
706 					btsp->index = index;
707 					btsp->mp = mp;
708 
709 					rc = 0;
710 					goto dtSearch_Exit1;
711 				}
712 
713 				/* search hit - internal page:
714 				 * descend/search its child page
715 				 */
716 				goto getChild;
717 			}
718 
719 			if (cmp > 0) {
720 				base = index + 1;
721 				--lim;
722 			}
723 		}
724 
725 		/*
726 		 *	search miss
727 		 *
728 		 * base is the smallest index with key (Kj) greater than
729 		 * search key (K) and may be zero or (maxindex + 1) index.
730 		 */
731 		/*
732 		 * search miss - leaf page
733 		 *
734 		 * return location of entry (base) where new entry with
735 		 * search key K is to be inserted.
736 		 */
737 		if (p->header.flag & BT_LEAF) {
738 			/*
739 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
740 			 */
741 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
742 			    flag == JFS_RENAME) {
743 				rc = -ENOENT;
744 				goto out;
745 			}
746 
747 			/*
748 			 * search for JFS_CREATE|JFS_FINDDIR:
749 			 *
750 			 * save search result
751 			 */
752 			*data = 0;
753 			btsp = btstack->top;
754 			btsp->bn = bn;
755 			btsp->index = base;
756 			btsp->mp = mp;
757 
758 			rc = 0;
759 			goto dtSearch_Exit1;
760 		}
761 
762 		/*
763 		 * search miss - internal page
764 		 *
765 		 * if base is non-zero, decrement base by one to get the parent
766 		 * entry of the child page to search.
767 		 */
768 		index = base ? base - 1 : base;
769 
770 		/*
771 		 * go down to child page
772 		 */
773 	      getChild:
774 		/* update max. number of pages to split */
775 		if (BT_STACK_FULL(btstack)) {
776 			/* Something's corrupted, mark filesystem dirty so
777 			 * chkdsk will fix it.
778 			 */
779 			jfs_error(sb, "stack overrun!\n");
780 			BT_STACK_DUMP(btstack);
781 			rc = -EIO;
782 			goto out;
783 		}
784 		btstack->nsplit++;
785 
786 		/* push (bn, index) of the parent page/entry */
787 		BT_PUSH(btstack, bn, index);
788 
789 		/* get the child page block number */
790 		pxd = (pxd_t *) & p->slot[stbl[index]];
791 		bn = addressPXD(pxd);
792 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
793 
794 		/* unpin the parent page */
795 		DT_PUTPAGE(mp);
796 	}
797 
798       out:
799 	DT_PUTPAGE(mp);
800 
801       dtSearch_Exit1:
802 
803 	kfree(ciKey.name);
804 
805       dtSearch_Exit2:
806 
807 	return rc;
808 }
809 
810 
811 /*
812  *	dtInsert()
813  *
814  * function: insert an entry to directory tree
815  *
816  * parameter:
817  *
818  * return: 0 - success;
819  *	   errno - failure;
820  */
821 int dtInsert(tid_t tid, struct inode *ip,
822 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
823 {
824 	int rc = 0;
825 	struct metapage *mp;	/* meta-page buffer */
826 	dtpage_t *p;		/* base B+-tree index page */
827 	s64 bn;
828 	int index;
829 	struct dtsplit split;	/* split information */
830 	ddata_t data;
831 	struct dt_lock *dtlck;
832 	int n;
833 	struct tlock *tlck;
834 	struct lv *lv;
835 
836 	/*
837 	 *	retrieve search result
838 	 *
839 	 * dtSearch() returns (leaf page pinned, index at which to insert).
840 	 * n.b. dtSearch() may return index of (maxindex + 1) of
841 	 * the full page.
842 	 */
843 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
844 
845 	/*
846 	 *	insert entry for new key
847 	 */
848 	if (DO_INDEX(ip)) {
849 		if (JFS_IP(ip)->next_index == DIREND) {
850 			DT_PUTPAGE(mp);
851 			return -EMLINK;
852 		}
853 		n = NDTLEAF(name->namlen);
854 		data.leaf.tid = tid;
855 		data.leaf.ip = ip;
856 	} else {
857 		n = NDTLEAF_LEGACY(name->namlen);
858 		data.leaf.ip = NULL;	/* signifies legacy directory format */
859 	}
860 	data.leaf.ino = *fsn;
861 
862 	/*
863 	 *	leaf page does not have enough room for new entry:
864 	 *
865 	 *	extend/split the leaf page;
866 	 *
867 	 * dtSplitUp() will insert the entry and unpin the leaf page.
868 	 */
869 	if (n > p->header.freecnt) {
870 		split.mp = mp;
871 		split.index = index;
872 		split.nslot = n;
873 		split.key = name;
874 		split.data = &data;
875 		rc = dtSplitUp(tid, ip, &split, btstack);
876 		return rc;
877 	}
878 
879 	/*
880 	 *	leaf page does have enough room for new entry:
881 	 *
882 	 *	insert the new data entry into the leaf page;
883 	 */
884 	BT_MARK_DIRTY(mp, ip);
885 	/*
886 	 * acquire a transaction lock on the leaf page
887 	 */
888 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
889 	dtlck = (struct dt_lock *) & tlck->lock;
890 	ASSERT(dtlck->index == 0);
891 	lv = & dtlck->lv[0];
892 
893 	/* linelock header */
894 	lv->offset = 0;
895 	lv->length = 1;
896 	dtlck->index++;
897 
898 	dtInsertEntry(p, index, name, &data, &dtlck);
899 
900 	/* linelock stbl of non-root leaf page */
901 	if (!(p->header.flag & BT_ROOT)) {
902 		if (dtlck->index >= dtlck->maxcnt)
903 			dtlck = (struct dt_lock *) txLinelock(dtlck);
904 		lv = & dtlck->lv[dtlck->index];
905 		n = index >> L2DTSLOTSIZE;
906 		lv->offset = p->header.stblindex + n;
907 		lv->length =
908 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
909 		dtlck->index++;
910 	}
911 
912 	/* unpin the leaf page */
913 	DT_PUTPAGE(mp);
914 
915 	return 0;
916 }
917 
918 
919 /*
920  *	dtSplitUp()
921  *
922  * function: propagate insertion bottom up;
923  *
924  * parameter:
925  *
926  * return: 0 - success;
927  *	   errno - failure;
928  *	leaf page unpinned;
929  */
930 static int dtSplitUp(tid_t tid,
931 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
932 {
933 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
934 	int rc = 0;
935 	struct metapage *smp;
936 	dtpage_t *sp;		/* split page */
937 	struct metapage *rmp;
938 	dtpage_t *rp;		/* new right page split from sp */
939 	pxd_t rpxd;		/* new right page extent descriptor */
940 	struct metapage *lmp;
941 	dtpage_t *lp;		/* left child page */
942 	int skip;		/* index of entry of insertion */
943 	struct btframe *parent;	/* parent page entry on traverse stack */
944 	s64 xaddr, nxaddr;
945 	int xlen, xsize;
946 	struct pxdlist pxdlist;
947 	pxd_t *pxd;
948 	struct component_name key = { 0, NULL };
949 	ddata_t *data = split->data;
950 	int n;
951 	struct dt_lock *dtlck;
952 	struct tlock *tlck;
953 	struct lv *lv;
954 	int quota_allocation = 0;
955 
956 	/* get split page */
957 	smp = split->mp;
958 	sp = DT_PAGE(ip, smp);
959 
960 	key.name = kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t), GFP_NOFS);
961 	if (!key.name) {
962 		DT_PUTPAGE(smp);
963 		rc = -ENOMEM;
964 		goto dtSplitUp_Exit;
965 	}
966 
967 	/*
968 	 *	split leaf page
969 	 *
970 	 * The split routines insert the new entry, and
971 	 * acquire txLock as appropriate.
972 	 */
973 	/*
974 	 *	split root leaf page:
975 	 */
976 	if (sp->header.flag & BT_ROOT) {
977 		/*
978 		 * allocate a single extent child page
979 		 */
980 		xlen = 1;
981 		n = sbi->bsize >> L2DTSLOTSIZE;
982 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
983 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
984 		if (n <= split->nslot)
985 			xlen++;
986 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
987 			DT_PUTPAGE(smp);
988 			goto freeKeyName;
989 		}
990 
991 		pxdlist.maxnpxd = 1;
992 		pxdlist.npxd = 0;
993 		pxd = &pxdlist.pxd[0];
994 		PXDaddress(pxd, xaddr);
995 		PXDlength(pxd, xlen);
996 		split->pxdlist = &pxdlist;
997 		rc = dtSplitRoot(tid, ip, split, &rmp);
998 
999 		if (rc)
1000 			dbFree(ip, xaddr, xlen);
1001 		else
1002 			DT_PUTPAGE(rmp);
1003 
1004 		DT_PUTPAGE(smp);
1005 
1006 		if (!DO_INDEX(ip))
1007 			ip->i_size = xlen << sbi->l2bsize;
1008 
1009 		goto freeKeyName;
1010 	}
1011 
1012 	/*
1013 	 *	extend first leaf page
1014 	 *
1015 	 * extend the 1st extent if less than buffer page size
1016 	 * (dtExtendPage() reurns leaf page unpinned)
1017 	 */
1018 	pxd = &sp->header.self;
1019 	xlen = lengthPXD(pxd);
1020 	xsize = xlen << sbi->l2bsize;
1021 	if (xsize < PSIZE) {
1022 		xaddr = addressPXD(pxd);
1023 		n = xsize >> L2DTSLOTSIZE;
1024 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1025 		if ((n + sp->header.freecnt) <= split->nslot)
1026 			n = xlen + (xlen << 1);
1027 		else
1028 			n = xlen;
1029 
1030 		/* Allocate blocks to quota. */
1031 		rc = dquot_alloc_block(ip, n);
1032 		if (rc)
1033 			goto extendOut;
1034 		quota_allocation += n;
1035 
1036 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1037 				    (s64) n, &nxaddr)))
1038 			goto extendOut;
1039 
1040 		pxdlist.maxnpxd = 1;
1041 		pxdlist.npxd = 0;
1042 		pxd = &pxdlist.pxd[0];
1043 		PXDaddress(pxd, nxaddr);
1044 		PXDlength(pxd, xlen + n);
1045 		split->pxdlist = &pxdlist;
1046 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1047 			nxaddr = addressPXD(pxd);
1048 			if (xaddr != nxaddr) {
1049 				/* free relocated extent */
1050 				xlen = lengthPXD(pxd);
1051 				dbFree(ip, nxaddr, (s64) xlen);
1052 			} else {
1053 				/* free extended delta */
1054 				xlen = lengthPXD(pxd) - n;
1055 				xaddr = addressPXD(pxd) + xlen;
1056 				dbFree(ip, xaddr, (s64) n);
1057 			}
1058 		} else if (!DO_INDEX(ip))
1059 			ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1060 
1061 
1062 	      extendOut:
1063 		DT_PUTPAGE(smp);
1064 		goto freeKeyName;
1065 	}
1066 
1067 	/*
1068 	 *	split leaf page <sp> into <sp> and a new right page <rp>.
1069 	 *
1070 	 * return <rp> pinned and its extent descriptor <rpxd>
1071 	 */
1072 	/*
1073 	 * allocate new directory page extent and
1074 	 * new index page(s) to cover page split(s)
1075 	 *
1076 	 * allocation hint: ?
1077 	 */
1078 	n = btstack->nsplit;
1079 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1080 	xlen = sbi->nbperpage;
1081 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1082 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1083 			PXDaddress(pxd, xaddr);
1084 			PXDlength(pxd, xlen);
1085 			pxdlist.maxnpxd++;
1086 			continue;
1087 		}
1088 
1089 		DT_PUTPAGE(smp);
1090 
1091 		/* undo allocation */
1092 		goto splitOut;
1093 	}
1094 
1095 	split->pxdlist = &pxdlist;
1096 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1097 		DT_PUTPAGE(smp);
1098 
1099 		/* undo allocation */
1100 		goto splitOut;
1101 	}
1102 
1103 	if (!DO_INDEX(ip))
1104 		ip->i_size += PSIZE;
1105 
1106 	/*
1107 	 * propagate up the router entry for the leaf page just split
1108 	 *
1109 	 * insert a router entry for the new page into the parent page,
1110 	 * propagate the insert/split up the tree by walking back the stack
1111 	 * of (bn of parent page, index of child page entry in parent page)
1112 	 * that were traversed during the search for the page that split.
1113 	 *
1114 	 * the propagation of insert/split up the tree stops if the root
1115 	 * splits or the page inserted into doesn't have to split to hold
1116 	 * the new entry.
1117 	 *
1118 	 * the parent entry for the split page remains the same, and
1119 	 * a new entry is inserted at its right with the first key and
1120 	 * block number of the new right page.
1121 	 *
1122 	 * There are a maximum of 4 pages pinned at any time:
1123 	 * two children, left parent and right parent (when the parent splits).
1124 	 * keep the child pages pinned while working on the parent.
1125 	 * make sure that all pins are released at exit.
1126 	 */
1127 	while ((parent = BT_POP(btstack)) != NULL) {
1128 		/* parent page specified by stack frame <parent> */
1129 
1130 		/* keep current child pages (<lp>, <rp>) pinned */
1131 		lmp = smp;
1132 		lp = sp;
1133 
1134 		/*
1135 		 * insert router entry in parent for new right child page <rp>
1136 		 */
1137 		/* get the parent page <sp> */
1138 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1139 		if (rc) {
1140 			DT_PUTPAGE(lmp);
1141 			DT_PUTPAGE(rmp);
1142 			goto splitOut;
1143 		}
1144 
1145 		/*
1146 		 * The new key entry goes ONE AFTER the index of parent entry,
1147 		 * because the split was to the right.
1148 		 */
1149 		skip = parent->index + 1;
1150 
1151 		/*
1152 		 * compute the key for the router entry
1153 		 *
1154 		 * key suffix compression:
1155 		 * for internal pages that have leaf pages as children,
1156 		 * retain only what's needed to distinguish between
1157 		 * the new entry and the entry on the page to its left.
1158 		 * If the keys compare equal, retain the entire key.
1159 		 *
1160 		 * note that compression is performed only at computing
1161 		 * router key at the lowest internal level.
1162 		 * further compression of the key between pairs of higher
1163 		 * level internal pages loses too much information and
1164 		 * the search may fail.
1165 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1166 		 * results in two adjacent parent entries (a)(xx).
1167 		 * if split occurs between these two entries, and
1168 		 * if compression is applied, the router key of parent entry
1169 		 * of right page (x) will divert search for x into right
1170 		 * subtree and miss x in the left subtree.)
1171 		 *
1172 		 * the entire key must be retained for the next-to-leftmost
1173 		 * internal key at any level of the tree, or search may fail
1174 		 * (e.g., ?)
1175 		 */
1176 		switch (rp->header.flag & BT_TYPE) {
1177 		case BT_LEAF:
1178 			/*
1179 			 * compute the length of prefix for suffix compression
1180 			 * between last entry of left page and first entry
1181 			 * of right page
1182 			 */
1183 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1184 			    sp->header.prev != 0 || skip > 1) {
1185 				/* compute uppercase router prefix key */
1186 				rc = ciGetLeafPrefixKey(lp,
1187 							lp->header.nextindex-1,
1188 							rp, 0, &key,
1189 							sbi->mntflag);
1190 				if (rc) {
1191 					DT_PUTPAGE(lmp);
1192 					DT_PUTPAGE(rmp);
1193 					DT_PUTPAGE(smp);
1194 					goto splitOut;
1195 				}
1196 			} else {
1197 				/* next to leftmost entry of
1198 				   lowest internal level */
1199 
1200 				/* compute uppercase router key */
1201 				dtGetKey(rp, 0, &key, sbi->mntflag);
1202 				key.name[key.namlen] = 0;
1203 
1204 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1205 					ciToUpper(&key);
1206 			}
1207 
1208 			n = NDTINTERNAL(key.namlen);
1209 			break;
1210 
1211 		case BT_INTERNAL:
1212 			dtGetKey(rp, 0, &key, sbi->mntflag);
1213 			n = NDTINTERNAL(key.namlen);
1214 			break;
1215 
1216 		default:
1217 			jfs_err("dtSplitUp(): UFO!");
1218 			break;
1219 		}
1220 
1221 		/* unpin left child page */
1222 		DT_PUTPAGE(lmp);
1223 
1224 		/*
1225 		 * compute the data for the router entry
1226 		 */
1227 		data->xd = rpxd;	/* child page xd */
1228 
1229 		/*
1230 		 * parent page is full - split the parent page
1231 		 */
1232 		if (n > sp->header.freecnt) {
1233 			/* init for parent page split */
1234 			split->mp = smp;
1235 			split->index = skip;	/* index at insert */
1236 			split->nslot = n;
1237 			split->key = &key;
1238 			/* split->data = data; */
1239 
1240 			/* unpin right child page */
1241 			DT_PUTPAGE(rmp);
1242 
1243 			/* The split routines insert the new entry,
1244 			 * acquire txLock as appropriate.
1245 			 * return <rp> pinned and its block number <rbn>.
1246 			 */
1247 			rc = (sp->header.flag & BT_ROOT) ?
1248 			    dtSplitRoot(tid, ip, split, &rmp) :
1249 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1250 			if (rc) {
1251 				DT_PUTPAGE(smp);
1252 				goto splitOut;
1253 			}
1254 
1255 			/* smp and rmp are pinned */
1256 		}
1257 		/*
1258 		 * parent page is not full - insert router entry in parent page
1259 		 */
1260 		else {
1261 			BT_MARK_DIRTY(smp, ip);
1262 			/*
1263 			 * acquire a transaction lock on the parent page
1264 			 */
1265 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1266 			dtlck = (struct dt_lock *) & tlck->lock;
1267 			ASSERT(dtlck->index == 0);
1268 			lv = & dtlck->lv[0];
1269 
1270 			/* linelock header */
1271 			lv->offset = 0;
1272 			lv->length = 1;
1273 			dtlck->index++;
1274 
1275 			/* linelock stbl of non-root parent page */
1276 			if (!(sp->header.flag & BT_ROOT)) {
1277 				lv++;
1278 				n = skip >> L2DTSLOTSIZE;
1279 				lv->offset = sp->header.stblindex + n;
1280 				lv->length =
1281 				    ((sp->header.nextindex -
1282 				      1) >> L2DTSLOTSIZE) - n + 1;
1283 				dtlck->index++;
1284 			}
1285 
1286 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1287 
1288 			/* exit propagate up */
1289 			break;
1290 		}
1291 	}
1292 
1293 	/* unpin current split and its right page */
1294 	DT_PUTPAGE(smp);
1295 	DT_PUTPAGE(rmp);
1296 
1297 	/*
1298 	 * free remaining extents allocated for split
1299 	 */
1300       splitOut:
1301 	n = pxdlist.npxd;
1302 	pxd = &pxdlist.pxd[n];
1303 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1304 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1305 
1306       freeKeyName:
1307 	kfree(key.name);
1308 
1309 	/* Rollback quota allocation */
1310 	if (rc && quota_allocation)
1311 		dquot_free_block(ip, quota_allocation);
1312 
1313       dtSplitUp_Exit:
1314 
1315 	return rc;
1316 }
1317 
1318 
1319 /*
1320  *	dtSplitPage()
1321  *
1322  * function: Split a non-root page of a btree.
1323  *
1324  * parameter:
1325  *
1326  * return: 0 - success;
1327  *	   errno - failure;
1328  *	return split and new page pinned;
1329  */
1330 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1331 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1332 {
1333 	int rc = 0;
1334 	struct metapage *smp;
1335 	dtpage_t *sp;
1336 	struct metapage *rmp;
1337 	dtpage_t *rp;		/* new right page allocated */
1338 	s64 rbn;		/* new right page block number */
1339 	struct metapage *mp;
1340 	dtpage_t *p;
1341 	s64 nextbn;
1342 	struct pxdlist *pxdlist;
1343 	pxd_t *pxd;
1344 	int skip, nextindex, half, left, nxt, off, si;
1345 	struct ldtentry *ldtentry;
1346 	struct idtentry *idtentry;
1347 	u8 *stbl;
1348 	struct dtslot *f;
1349 	int fsi, stblsize;
1350 	int n;
1351 	struct dt_lock *sdtlck, *rdtlck;
1352 	struct tlock *tlck;
1353 	struct dt_lock *dtlck;
1354 	struct lv *slv, *rlv, *lv;
1355 
1356 	/* get split page */
1357 	smp = split->mp;
1358 	sp = DT_PAGE(ip, smp);
1359 
1360 	/*
1361 	 * allocate the new right page for the split
1362 	 */
1363 	pxdlist = split->pxdlist;
1364 	pxd = &pxdlist->pxd[pxdlist->npxd];
1365 	pxdlist->npxd++;
1366 	rbn = addressPXD(pxd);
1367 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1368 	if (rmp == NULL)
1369 		return -EIO;
1370 
1371 	/* Allocate blocks to quota. */
1372 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1373 	if (rc) {
1374 		release_metapage(rmp);
1375 		return rc;
1376 	}
1377 
1378 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1379 
1380 	BT_MARK_DIRTY(rmp, ip);
1381 	/*
1382 	 * acquire a transaction lock on the new right page
1383 	 */
1384 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1385 	rdtlck = (struct dt_lock *) & tlck->lock;
1386 
1387 	rp = (dtpage_t *) rmp->data;
1388 	*rpp = rp;
1389 	rp->header.self = *pxd;
1390 
1391 	BT_MARK_DIRTY(smp, ip);
1392 	/*
1393 	 * acquire a transaction lock on the split page
1394 	 *
1395 	 * action:
1396 	 */
1397 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1398 	sdtlck = (struct dt_lock *) & tlck->lock;
1399 
1400 	/* linelock header of split page */
1401 	ASSERT(sdtlck->index == 0);
1402 	slv = & sdtlck->lv[0];
1403 	slv->offset = 0;
1404 	slv->length = 1;
1405 	sdtlck->index++;
1406 
1407 	/*
1408 	 * initialize/update sibling pointers between sp and rp
1409 	 */
1410 	nextbn = le64_to_cpu(sp->header.next);
1411 	rp->header.next = cpu_to_le64(nextbn);
1412 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1413 	sp->header.next = cpu_to_le64(rbn);
1414 
1415 	/*
1416 	 * initialize new right page
1417 	 */
1418 	rp->header.flag = sp->header.flag;
1419 
1420 	/* compute sorted entry table at start of extent data area */
1421 	rp->header.nextindex = 0;
1422 	rp->header.stblindex = 1;
1423 
1424 	n = PSIZE >> L2DTSLOTSIZE;
1425 	rp->header.maxslot = n;
1426 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1427 
1428 	/* init freelist */
1429 	fsi = rp->header.stblindex + stblsize;
1430 	rp->header.freelist = fsi;
1431 	rp->header.freecnt = rp->header.maxslot - fsi;
1432 
1433 	/*
1434 	 *	sequential append at tail: append without split
1435 	 *
1436 	 * If splitting the last page on a level because of appending
1437 	 * a entry to it (skip is maxentry), it's likely that the access is
1438 	 * sequential. Adding an empty page on the side of the level is less
1439 	 * work and can push the fill factor much higher than normal.
1440 	 * If we're wrong it's no big deal, we'll just do the split the right
1441 	 * way next time.
1442 	 * (It may look like it's equally easy to do a similar hack for
1443 	 * reverse sorted data, that is, split the tree left,
1444 	 * but it's not. Be my guest.)
1445 	 */
1446 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1447 		/* linelock header + stbl (first slot) of new page */
1448 		rlv = & rdtlck->lv[rdtlck->index];
1449 		rlv->offset = 0;
1450 		rlv->length = 2;
1451 		rdtlck->index++;
1452 
1453 		/*
1454 		 * initialize freelist of new right page
1455 		 */
1456 		f = &rp->slot[fsi];
1457 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1458 			f->next = fsi;
1459 		f->next = -1;
1460 
1461 		/* insert entry at the first entry of the new right page */
1462 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1463 
1464 		goto out;
1465 	}
1466 
1467 	/*
1468 	 *	non-sequential insert (at possibly middle page)
1469 	 */
1470 
1471 	/*
1472 	 * update prev pointer of previous right sibling page;
1473 	 */
1474 	if (nextbn != 0) {
1475 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1476 		if (rc) {
1477 			discard_metapage(rmp);
1478 			return rc;
1479 		}
1480 
1481 		BT_MARK_DIRTY(mp, ip);
1482 		/*
1483 		 * acquire a transaction lock on the next page
1484 		 */
1485 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1486 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1487 			tlck, ip, mp);
1488 		dtlck = (struct dt_lock *) & tlck->lock;
1489 
1490 		/* linelock header of previous right sibling page */
1491 		lv = & dtlck->lv[dtlck->index];
1492 		lv->offset = 0;
1493 		lv->length = 1;
1494 		dtlck->index++;
1495 
1496 		p->header.prev = cpu_to_le64(rbn);
1497 
1498 		DT_PUTPAGE(mp);
1499 	}
1500 
1501 	/*
1502 	 * split the data between the split and right pages.
1503 	 */
1504 	skip = split->index;
1505 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1506 	left = 0;
1507 
1508 	/*
1509 	 *	compute fill factor for split pages
1510 	 *
1511 	 * <nxt> traces the next entry to move to rp
1512 	 * <off> traces the next entry to stay in sp
1513 	 */
1514 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1515 	nextindex = sp->header.nextindex;
1516 	for (nxt = off = 0; nxt < nextindex; ++off) {
1517 		if (off == skip)
1518 			/* check for fill factor with new entry size */
1519 			n = split->nslot;
1520 		else {
1521 			si = stbl[nxt];
1522 			switch (sp->header.flag & BT_TYPE) {
1523 			case BT_LEAF:
1524 				ldtentry = (struct ldtentry *) & sp->slot[si];
1525 				if (DO_INDEX(ip))
1526 					n = NDTLEAF(ldtentry->namlen);
1527 				else
1528 					n = NDTLEAF_LEGACY(ldtentry->
1529 							   namlen);
1530 				break;
1531 
1532 			case BT_INTERNAL:
1533 				idtentry = (struct idtentry *) & sp->slot[si];
1534 				n = NDTINTERNAL(idtentry->namlen);
1535 				break;
1536 
1537 			default:
1538 				break;
1539 			}
1540 
1541 			++nxt;	/* advance to next entry to move in sp */
1542 		}
1543 
1544 		left += n;
1545 		if (left >= half)
1546 			break;
1547 	}
1548 
1549 	/* <nxt> poins to the 1st entry to move */
1550 
1551 	/*
1552 	 *	move entries to right page
1553 	 *
1554 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1555 	 *
1556 	 * split page moved out entries are linelocked;
1557 	 * new/right page moved in entries are linelocked;
1558 	 */
1559 	/* linelock header + stbl of new right page */
1560 	rlv = & rdtlck->lv[rdtlck->index];
1561 	rlv->offset = 0;
1562 	rlv->length = 5;
1563 	rdtlck->index++;
1564 
1565 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1566 
1567 	sp->header.nextindex = nxt;
1568 
1569 	/*
1570 	 * finalize freelist of new right page
1571 	 */
1572 	fsi = rp->header.freelist;
1573 	f = &rp->slot[fsi];
1574 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1575 		f->next = fsi;
1576 	f->next = -1;
1577 
1578 	/*
1579 	 * Update directory index table for entries now in right page
1580 	 */
1581 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1582 		s64 lblock;
1583 
1584 		mp = NULL;
1585 		stbl = DT_GETSTBL(rp);
1586 		for (n = 0; n < rp->header.nextindex; n++) {
1587 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1588 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1589 				     rbn, n, &mp, &lblock);
1590 		}
1591 		if (mp)
1592 			release_metapage(mp);
1593 	}
1594 
1595 	/*
1596 	 * the skipped index was on the left page,
1597 	 */
1598 	if (skip <= off) {
1599 		/* insert the new entry in the split page */
1600 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1601 
1602 		/* linelock stbl of split page */
1603 		if (sdtlck->index >= sdtlck->maxcnt)
1604 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1605 		slv = & sdtlck->lv[sdtlck->index];
1606 		n = skip >> L2DTSLOTSIZE;
1607 		slv->offset = sp->header.stblindex + n;
1608 		slv->length =
1609 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1610 		sdtlck->index++;
1611 	}
1612 	/*
1613 	 * the skipped index was on the right page,
1614 	 */
1615 	else {
1616 		/* adjust the skip index to reflect the new position */
1617 		skip -= nxt;
1618 
1619 		/* insert the new entry in the right page */
1620 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1621 	}
1622 
1623       out:
1624 	*rmpp = rmp;
1625 	*rpxdp = *pxd;
1626 
1627 	return rc;
1628 }
1629 
1630 
1631 /*
1632  *	dtExtendPage()
1633  *
1634  * function: extend 1st/only directory leaf page
1635  *
1636  * parameter:
1637  *
1638  * return: 0 - success;
1639  *	   errno - failure;
1640  *	return extended page pinned;
1641  */
1642 static int dtExtendPage(tid_t tid,
1643 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1644 {
1645 	struct super_block *sb = ip->i_sb;
1646 	int rc;
1647 	struct metapage *smp, *pmp, *mp;
1648 	dtpage_t *sp, *pp;
1649 	struct pxdlist *pxdlist;
1650 	pxd_t *pxd, *tpxd;
1651 	int xlen, xsize;
1652 	int newstblindex, newstblsize;
1653 	int oldstblindex, oldstblsize;
1654 	int fsi, last;
1655 	struct dtslot *f;
1656 	struct btframe *parent;
1657 	int n;
1658 	struct dt_lock *dtlck;
1659 	s64 xaddr, txaddr;
1660 	struct tlock *tlck;
1661 	struct pxd_lock *pxdlock;
1662 	struct lv *lv;
1663 	uint type;
1664 	struct ldtentry *ldtentry;
1665 	u8 *stbl;
1666 
1667 	/* get page to extend */
1668 	smp = split->mp;
1669 	sp = DT_PAGE(ip, smp);
1670 
1671 	/* get parent/root page */
1672 	parent = BT_POP(btstack);
1673 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1674 	if (rc)
1675 		return (rc);
1676 
1677 	/*
1678 	 *	extend the extent
1679 	 */
1680 	pxdlist = split->pxdlist;
1681 	pxd = &pxdlist->pxd[pxdlist->npxd];
1682 	pxdlist->npxd++;
1683 
1684 	xaddr = addressPXD(pxd);
1685 	tpxd = &sp->header.self;
1686 	txaddr = addressPXD(tpxd);
1687 	/* in-place extension */
1688 	if (xaddr == txaddr) {
1689 		type = tlckEXTEND;
1690 	}
1691 	/* relocation */
1692 	else {
1693 		type = tlckNEW;
1694 
1695 		/* save moved extent descriptor for later free */
1696 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1697 		pxdlock = (struct pxd_lock *) & tlck->lock;
1698 		pxdlock->flag = mlckFREEPXD;
1699 		pxdlock->pxd = sp->header.self;
1700 		pxdlock->index = 1;
1701 
1702 		/*
1703 		 * Update directory index table to reflect new page address
1704 		 */
1705 		if (DO_INDEX(ip)) {
1706 			s64 lblock;
1707 
1708 			mp = NULL;
1709 			stbl = DT_GETSTBL(sp);
1710 			for (n = 0; n < sp->header.nextindex; n++) {
1711 				ldtentry =
1712 				    (struct ldtentry *) & sp->slot[stbl[n]];
1713 				modify_index(tid, ip,
1714 					     le32_to_cpu(ldtentry->index),
1715 					     xaddr, n, &mp, &lblock);
1716 			}
1717 			if (mp)
1718 				release_metapage(mp);
1719 		}
1720 	}
1721 
1722 	/*
1723 	 *	extend the page
1724 	 */
1725 	sp->header.self = *pxd;
1726 
1727 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1728 
1729 	BT_MARK_DIRTY(smp, ip);
1730 	/*
1731 	 * acquire a transaction lock on the extended/leaf page
1732 	 */
1733 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1734 	dtlck = (struct dt_lock *) & tlck->lock;
1735 	lv = & dtlck->lv[0];
1736 
1737 	/* update buffer extent descriptor of extended page */
1738 	xlen = lengthPXD(pxd);
1739 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1740 
1741 	/*
1742 	 * copy old stbl to new stbl at start of extended area
1743 	 */
1744 	oldstblindex = sp->header.stblindex;
1745 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1746 	newstblindex = sp->header.maxslot;
1747 	n = xsize >> L2DTSLOTSIZE;
1748 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1749 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1750 	       sp->header.nextindex);
1751 
1752 	/*
1753 	 * in-line extension: linelock old area of extended page
1754 	 */
1755 	if (type == tlckEXTEND) {
1756 		/* linelock header */
1757 		lv->offset = 0;
1758 		lv->length = 1;
1759 		dtlck->index++;
1760 		lv++;
1761 
1762 		/* linelock new stbl of extended page */
1763 		lv->offset = newstblindex;
1764 		lv->length = newstblsize;
1765 	}
1766 	/*
1767 	 * relocation: linelock whole relocated area
1768 	 */
1769 	else {
1770 		lv->offset = 0;
1771 		lv->length = sp->header.maxslot + newstblsize;
1772 	}
1773 
1774 	dtlck->index++;
1775 
1776 	sp->header.maxslot = n;
1777 	sp->header.stblindex = newstblindex;
1778 	/* sp->header.nextindex remains the same */
1779 
1780 	/*
1781 	 * add old stbl region at head of freelist
1782 	 */
1783 	fsi = oldstblindex;
1784 	f = &sp->slot[fsi];
1785 	last = sp->header.freelist;
1786 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1787 		f->next = last;
1788 		last = fsi;
1789 	}
1790 	sp->header.freelist = last;
1791 	sp->header.freecnt += oldstblsize;
1792 
1793 	/*
1794 	 * append free region of newly extended area at tail of freelist
1795 	 */
1796 	/* init free region of newly extended area */
1797 	fsi = n = newstblindex + newstblsize;
1798 	f = &sp->slot[fsi];
1799 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1800 		f->next = fsi;
1801 	f->next = -1;
1802 
1803 	/* append new free region at tail of old freelist */
1804 	fsi = sp->header.freelist;
1805 	if (fsi == -1)
1806 		sp->header.freelist = n;
1807 	else {
1808 		do {
1809 			f = &sp->slot[fsi];
1810 			fsi = f->next;
1811 		} while (fsi != -1);
1812 
1813 		f->next = n;
1814 	}
1815 
1816 	sp->header.freecnt += sp->header.maxslot - n;
1817 
1818 	/*
1819 	 * insert the new entry
1820 	 */
1821 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1822 
1823 	BT_MARK_DIRTY(pmp, ip);
1824 	/*
1825 	 * linelock any freeslots residing in old extent
1826 	 */
1827 	if (type == tlckEXTEND) {
1828 		n = sp->header.maxslot >> 2;
1829 		if (sp->header.freelist < n)
1830 			dtLinelockFreelist(sp, n, &dtlck);
1831 	}
1832 
1833 	/*
1834 	 *	update parent entry on the parent/root page
1835 	 */
1836 	/*
1837 	 * acquire a transaction lock on the parent/root page
1838 	 */
1839 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1840 	dtlck = (struct dt_lock *) & tlck->lock;
1841 	lv = & dtlck->lv[dtlck->index];
1842 
1843 	/* linelock parent entry - 1st slot */
1844 	lv->offset = 1;
1845 	lv->length = 1;
1846 	dtlck->index++;
1847 
1848 	/* update the parent pxd for page extension */
1849 	tpxd = (pxd_t *) & pp->slot[1];
1850 	*tpxd = *pxd;
1851 
1852 	DT_PUTPAGE(pmp);
1853 	return 0;
1854 }
1855 
1856 
1857 /*
1858  *	dtSplitRoot()
1859  *
1860  * function:
1861  *	split the full root page into
1862  *	original/root/split page and new right page
1863  *	i.e., root remains fixed in tree anchor (inode) and
1864  *	the root is copied to a single new right child page
1865  *	since root page << non-root page, and
1866  *	the split root page contains a single entry for the
1867  *	new right child page.
1868  *
1869  * parameter:
1870  *
1871  * return: 0 - success;
1872  *	   errno - failure;
1873  *	return new page pinned;
1874  */
1875 static int dtSplitRoot(tid_t tid,
1876 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1877 {
1878 	struct super_block *sb = ip->i_sb;
1879 	struct metapage *smp;
1880 	dtroot_t *sp;
1881 	struct metapage *rmp;
1882 	dtpage_t *rp;
1883 	s64 rbn;
1884 	int xlen;
1885 	int xsize;
1886 	struct dtslot *f;
1887 	s8 *stbl;
1888 	int fsi, stblsize, n;
1889 	struct idtentry *s;
1890 	pxd_t *ppxd;
1891 	struct pxdlist *pxdlist;
1892 	pxd_t *pxd;
1893 	struct dt_lock *dtlck;
1894 	struct tlock *tlck;
1895 	struct lv *lv;
1896 	int rc;
1897 
1898 	/* get split root page */
1899 	smp = split->mp;
1900 	sp = &JFS_IP(ip)->i_dtroot;
1901 
1902 	/*
1903 	 *	allocate/initialize a single (right) child page
1904 	 *
1905 	 * N.B. at first split, a one (or two) block to fit new entry
1906 	 * is allocated; at subsequent split, a full page is allocated;
1907 	 */
1908 	pxdlist = split->pxdlist;
1909 	pxd = &pxdlist->pxd[pxdlist->npxd];
1910 	pxdlist->npxd++;
1911 	rbn = addressPXD(pxd);
1912 	xlen = lengthPXD(pxd);
1913 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1914 	rmp = get_metapage(ip, rbn, xsize, 1);
1915 	if (!rmp)
1916 		return -EIO;
1917 
1918 	rp = rmp->data;
1919 
1920 	/* Allocate blocks to quota. */
1921 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1922 	if (rc) {
1923 		release_metapage(rmp);
1924 		return rc;
1925 	}
1926 
1927 	BT_MARK_DIRTY(rmp, ip);
1928 	/*
1929 	 * acquire a transaction lock on the new right page
1930 	 */
1931 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1932 	dtlck = (struct dt_lock *) & tlck->lock;
1933 
1934 	rp->header.flag =
1935 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1936 	rp->header.self = *pxd;
1937 
1938 	/* initialize sibling pointers */
1939 	rp->header.next = 0;
1940 	rp->header.prev = 0;
1941 
1942 	/*
1943 	 *	move in-line root page into new right page extent
1944 	 */
1945 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1946 	ASSERT(dtlck->index == 0);
1947 	lv = & dtlck->lv[0];
1948 	lv->offset = 0;
1949 	lv->length = 10;	/* 1 + 8 + 1 */
1950 	dtlck->index++;
1951 
1952 	n = xsize >> L2DTSLOTSIZE;
1953 	rp->header.maxslot = n;
1954 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1955 
1956 	/* copy old stbl to new stbl at start of extended area */
1957 	rp->header.stblindex = DTROOTMAXSLOT;
1958 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1959 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1960 	rp->header.nextindex = sp->header.nextindex;
1961 
1962 	/* copy old data area to start of new data area */
1963 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1964 
1965 	/*
1966 	 * append free region of newly extended area at tail of freelist
1967 	 */
1968 	/* init free region of newly extended area */
1969 	fsi = n = DTROOTMAXSLOT + stblsize;
1970 	f = &rp->slot[fsi];
1971 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1972 		f->next = fsi;
1973 	f->next = -1;
1974 
1975 	/* append new free region at tail of old freelist */
1976 	fsi = sp->header.freelist;
1977 	if (fsi == -1)
1978 		rp->header.freelist = n;
1979 	else {
1980 		rp->header.freelist = fsi;
1981 
1982 		do {
1983 			f = &rp->slot[fsi];
1984 			fsi = f->next;
1985 		} while (fsi != -1);
1986 
1987 		f->next = n;
1988 	}
1989 
1990 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1991 
1992 	/*
1993 	 * Update directory index table for entries now in right page
1994 	 */
1995 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1996 		s64 lblock;
1997 		struct metapage *mp = NULL;
1998 		struct ldtentry *ldtentry;
1999 
2000 		stbl = DT_GETSTBL(rp);
2001 		for (n = 0; n < rp->header.nextindex; n++) {
2002 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
2003 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2004 				     rbn, n, &mp, &lblock);
2005 		}
2006 		if (mp)
2007 			release_metapage(mp);
2008 	}
2009 	/*
2010 	 * insert the new entry into the new right/child page
2011 	 * (skip index in the new right page will not change)
2012 	 */
2013 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2014 
2015 	/*
2016 	 *	reset parent/root page
2017 	 *
2018 	 * set the 1st entry offset to 0, which force the left-most key
2019 	 * at any level of the tree to be less than any search key.
2020 	 *
2021 	 * The btree comparison code guarantees that the left-most key on any
2022 	 * level of the tree is never used, so it doesn't need to be filled in.
2023 	 */
2024 	BT_MARK_DIRTY(smp, ip);
2025 	/*
2026 	 * acquire a transaction lock on the root page (in-memory inode)
2027 	 */
2028 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2029 	dtlck = (struct dt_lock *) & tlck->lock;
2030 
2031 	/* linelock root */
2032 	ASSERT(dtlck->index == 0);
2033 	lv = & dtlck->lv[0];
2034 	lv->offset = 0;
2035 	lv->length = DTROOTMAXSLOT;
2036 	dtlck->index++;
2037 
2038 	/* update page header of root */
2039 	if (sp->header.flag & BT_LEAF) {
2040 		sp->header.flag &= ~BT_LEAF;
2041 		sp->header.flag |= BT_INTERNAL;
2042 	}
2043 
2044 	/* init the first entry */
2045 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2046 	ppxd = (pxd_t *) s;
2047 	*ppxd = *pxd;
2048 	s->next = -1;
2049 	s->namlen = 0;
2050 
2051 	stbl = sp->header.stbl;
2052 	stbl[0] = DTENTRYSTART;
2053 	sp->header.nextindex = 1;
2054 
2055 	/* init freelist */
2056 	fsi = DTENTRYSTART + 1;
2057 	f = &sp->slot[fsi];
2058 
2059 	/* init free region of remaining area */
2060 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2061 		f->next = fsi;
2062 	f->next = -1;
2063 
2064 	sp->header.freelist = DTENTRYSTART + 1;
2065 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2066 
2067 	*rmpp = rmp;
2068 
2069 	return 0;
2070 }
2071 
2072 
2073 /*
2074  *	dtDelete()
2075  *
2076  * function: delete the entry(s) referenced by a key.
2077  *
2078  * parameter:
2079  *
2080  * return:
2081  */
2082 int dtDelete(tid_t tid,
2083 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2084 {
2085 	int rc = 0;
2086 	s64 bn;
2087 	struct metapage *mp, *imp;
2088 	dtpage_t *p;
2089 	int index;
2090 	struct btstack btstack;
2091 	struct dt_lock *dtlck;
2092 	struct tlock *tlck;
2093 	struct lv *lv;
2094 	int i;
2095 	struct ldtentry *ldtentry;
2096 	u8 *stbl;
2097 	u32 table_index, next_index;
2098 	struct metapage *nmp;
2099 	dtpage_t *np;
2100 
2101 	/*
2102 	 *	search for the entry to delete:
2103 	 *
2104 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2105 	 */
2106 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2107 		return rc;
2108 
2109 	/* retrieve search result */
2110 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2111 
2112 	/*
2113 	 * We need to find put the index of the next entry into the
2114 	 * directory index table in order to resume a readdir from this
2115 	 * entry.
2116 	 */
2117 	if (DO_INDEX(ip)) {
2118 		stbl = DT_GETSTBL(p);
2119 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2120 		table_index = le32_to_cpu(ldtentry->index);
2121 		if (index == (p->header.nextindex - 1)) {
2122 			/*
2123 			 * Last entry in this leaf page
2124 			 */
2125 			if ((p->header.flag & BT_ROOT)
2126 			    || (p->header.next == 0))
2127 				next_index = -1;
2128 			else {
2129 				/* Read next leaf page */
2130 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2131 					   nmp, PSIZE, np, rc);
2132 				if (rc)
2133 					next_index = -1;
2134 				else {
2135 					stbl = DT_GETSTBL(np);
2136 					ldtentry =
2137 					    (struct ldtentry *) & np->
2138 					    slot[stbl[0]];
2139 					next_index =
2140 					    le32_to_cpu(ldtentry->index);
2141 					DT_PUTPAGE(nmp);
2142 				}
2143 			}
2144 		} else {
2145 			ldtentry =
2146 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2147 			next_index = le32_to_cpu(ldtentry->index);
2148 		}
2149 		free_index(tid, ip, table_index, next_index);
2150 	}
2151 	/*
2152 	 * the leaf page becomes empty, delete the page
2153 	 */
2154 	if (p->header.nextindex == 1) {
2155 		/* delete empty page */
2156 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2157 	}
2158 	/*
2159 	 * the leaf page has other entries remaining:
2160 	 *
2161 	 * delete the entry from the leaf page.
2162 	 */
2163 	else {
2164 		BT_MARK_DIRTY(mp, ip);
2165 		/*
2166 		 * acquire a transaction lock on the leaf page
2167 		 */
2168 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2169 		dtlck = (struct dt_lock *) & tlck->lock;
2170 
2171 		/*
2172 		 * Do not assume that dtlck->index will be zero.  During a
2173 		 * rename within a directory, this transaction may have
2174 		 * modified this page already when adding the new entry.
2175 		 */
2176 
2177 		/* linelock header */
2178 		if (dtlck->index >= dtlck->maxcnt)
2179 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2180 		lv = & dtlck->lv[dtlck->index];
2181 		lv->offset = 0;
2182 		lv->length = 1;
2183 		dtlck->index++;
2184 
2185 		/* linelock stbl of non-root leaf page */
2186 		if (!(p->header.flag & BT_ROOT)) {
2187 			if (dtlck->index >= dtlck->maxcnt)
2188 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2189 			lv = & dtlck->lv[dtlck->index];
2190 			i = index >> L2DTSLOTSIZE;
2191 			lv->offset = p->header.stblindex + i;
2192 			lv->length =
2193 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2194 			    i + 1;
2195 			dtlck->index++;
2196 		}
2197 
2198 		/* free the leaf entry */
2199 		dtDeleteEntry(p, index, &dtlck);
2200 
2201 		/*
2202 		 * Update directory index table for entries moved in stbl
2203 		 */
2204 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2205 			s64 lblock;
2206 
2207 			imp = NULL;
2208 			stbl = DT_GETSTBL(p);
2209 			for (i = index; i < p->header.nextindex; i++) {
2210 				ldtentry =
2211 				    (struct ldtentry *) & p->slot[stbl[i]];
2212 				modify_index(tid, ip,
2213 					     le32_to_cpu(ldtentry->index),
2214 					     bn, i, &imp, &lblock);
2215 			}
2216 			if (imp)
2217 				release_metapage(imp);
2218 		}
2219 
2220 		DT_PUTPAGE(mp);
2221 	}
2222 
2223 	return rc;
2224 }
2225 
2226 
2227 /*
2228  *	dtDeleteUp()
2229  *
2230  * function:
2231  *	free empty pages as propagating deletion up the tree
2232  *
2233  * parameter:
2234  *
2235  * return:
2236  */
2237 static int dtDeleteUp(tid_t tid, struct inode *ip,
2238 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2239 {
2240 	int rc = 0;
2241 	struct metapage *mp;
2242 	dtpage_t *p;
2243 	int index, nextindex;
2244 	int xlen;
2245 	struct btframe *parent;
2246 	struct dt_lock *dtlck;
2247 	struct tlock *tlck;
2248 	struct lv *lv;
2249 	struct pxd_lock *pxdlock;
2250 	int i;
2251 
2252 	/*
2253 	 *	keep the root leaf page which has become empty
2254 	 */
2255 	if (BT_IS_ROOT(fmp)) {
2256 		/*
2257 		 * reset the root
2258 		 *
2259 		 * dtInitRoot() acquires txlock on the root
2260 		 */
2261 		dtInitRoot(tid, ip, PARENT(ip));
2262 
2263 		DT_PUTPAGE(fmp);
2264 
2265 		return 0;
2266 	}
2267 
2268 	/*
2269 	 *	free the non-root leaf page
2270 	 */
2271 	/*
2272 	 * acquire a transaction lock on the page
2273 	 *
2274 	 * write FREEXTENT|NOREDOPAGE log record
2275 	 * N.B. linelock is overlaid as freed extent descriptor, and
2276 	 * the buffer page is freed;
2277 	 */
2278 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2279 	pxdlock = (struct pxd_lock *) & tlck->lock;
2280 	pxdlock->flag = mlckFREEPXD;
2281 	pxdlock->pxd = fp->header.self;
2282 	pxdlock->index = 1;
2283 
2284 	/* update sibling pointers */
2285 	if ((rc = dtRelink(tid, ip, fp))) {
2286 		BT_PUTPAGE(fmp);
2287 		return rc;
2288 	}
2289 
2290 	xlen = lengthPXD(&fp->header.self);
2291 
2292 	/* Free quota allocation. */
2293 	dquot_free_block(ip, xlen);
2294 
2295 	/* free/invalidate its buffer page */
2296 	discard_metapage(fmp);
2297 
2298 	/*
2299 	 *	propagate page deletion up the directory tree
2300 	 *
2301 	 * If the delete from the parent page makes it empty,
2302 	 * continue all the way up the tree.
2303 	 * stop if the root page is reached (which is never deleted) or
2304 	 * if the entry deletion does not empty the page.
2305 	 */
2306 	while ((parent = BT_POP(btstack)) != NULL) {
2307 		/* pin the parent page <sp> */
2308 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2309 		if (rc)
2310 			return rc;
2311 
2312 		/*
2313 		 * free the extent of the child page deleted
2314 		 */
2315 		index = parent->index;
2316 
2317 		/*
2318 		 * delete the entry for the child page from parent
2319 		 */
2320 		nextindex = p->header.nextindex;
2321 
2322 		/*
2323 		 * the parent has the single entry being deleted:
2324 		 *
2325 		 * free the parent page which has become empty.
2326 		 */
2327 		if (nextindex == 1) {
2328 			/*
2329 			 * keep the root internal page which has become empty
2330 			 */
2331 			if (p->header.flag & BT_ROOT) {
2332 				/*
2333 				 * reset the root
2334 				 *
2335 				 * dtInitRoot() acquires txlock on the root
2336 				 */
2337 				dtInitRoot(tid, ip, PARENT(ip));
2338 
2339 				DT_PUTPAGE(mp);
2340 
2341 				return 0;
2342 			}
2343 			/*
2344 			 * free the parent page
2345 			 */
2346 			else {
2347 				/*
2348 				 * acquire a transaction lock on the page
2349 				 *
2350 				 * write FREEXTENT|NOREDOPAGE log record
2351 				 */
2352 				tlck =
2353 				    txMaplock(tid, ip,
2354 					      tlckDTREE | tlckFREE);
2355 				pxdlock = (struct pxd_lock *) & tlck->lock;
2356 				pxdlock->flag = mlckFREEPXD;
2357 				pxdlock->pxd = p->header.self;
2358 				pxdlock->index = 1;
2359 
2360 				/* update sibling pointers */
2361 				if ((rc = dtRelink(tid, ip, p))) {
2362 					DT_PUTPAGE(mp);
2363 					return rc;
2364 				}
2365 
2366 				xlen = lengthPXD(&p->header.self);
2367 
2368 				/* Free quota allocation */
2369 				dquot_free_block(ip, xlen);
2370 
2371 				/* free/invalidate its buffer page */
2372 				discard_metapage(mp);
2373 
2374 				/* propagate up */
2375 				continue;
2376 			}
2377 		}
2378 
2379 		/*
2380 		 * the parent has other entries remaining:
2381 		 *
2382 		 * delete the router entry from the parent page.
2383 		 */
2384 		BT_MARK_DIRTY(mp, ip);
2385 		/*
2386 		 * acquire a transaction lock on the page
2387 		 *
2388 		 * action: router entry deletion
2389 		 */
2390 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2391 		dtlck = (struct dt_lock *) & tlck->lock;
2392 
2393 		/* linelock header */
2394 		if (dtlck->index >= dtlck->maxcnt)
2395 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2396 		lv = & dtlck->lv[dtlck->index];
2397 		lv->offset = 0;
2398 		lv->length = 1;
2399 		dtlck->index++;
2400 
2401 		/* linelock stbl of non-root leaf page */
2402 		if (!(p->header.flag & BT_ROOT)) {
2403 			if (dtlck->index < dtlck->maxcnt)
2404 				lv++;
2405 			else {
2406 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2407 				lv = & dtlck->lv[0];
2408 			}
2409 			i = index >> L2DTSLOTSIZE;
2410 			lv->offset = p->header.stblindex + i;
2411 			lv->length =
2412 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2413 			    i + 1;
2414 			dtlck->index++;
2415 		}
2416 
2417 		/* free the router entry */
2418 		dtDeleteEntry(p, index, &dtlck);
2419 
2420 		/* reset key of new leftmost entry of level (for consistency) */
2421 		if (index == 0 &&
2422 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2423 			dtTruncateEntry(p, 0, &dtlck);
2424 
2425 		/* unpin the parent page */
2426 		DT_PUTPAGE(mp);
2427 
2428 		/* exit propagation up */
2429 		break;
2430 	}
2431 
2432 	if (!DO_INDEX(ip))
2433 		ip->i_size -= PSIZE;
2434 
2435 	return 0;
2436 }
2437 
2438 #ifdef _NOTYET
2439 /*
2440  * NAME:	dtRelocate()
2441  *
2442  * FUNCTION:	relocate dtpage (internal or leaf) of directory;
2443  *		This function is mainly used by defragfs utility.
2444  */
2445 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2446 	       s64 nxaddr)
2447 {
2448 	int rc = 0;
2449 	struct metapage *mp, *pmp, *lmp, *rmp;
2450 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2451 	s64 bn;
2452 	int index;
2453 	struct btstack btstack;
2454 	pxd_t *pxd;
2455 	s64 oxaddr, nextbn, prevbn;
2456 	int xlen, xsize;
2457 	struct tlock *tlck;
2458 	struct dt_lock *dtlck;
2459 	struct pxd_lock *pxdlock;
2460 	s8 *stbl;
2461 	struct lv *lv;
2462 
2463 	oxaddr = addressPXD(opxd);
2464 	xlen = lengthPXD(opxd);
2465 
2466 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2467 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2468 		   xlen);
2469 
2470 	/*
2471 	 *	1. get the internal parent dtpage covering
2472 	 *	router entry for the tartget page to be relocated;
2473 	 */
2474 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2475 	if (rc)
2476 		return rc;
2477 
2478 	/* retrieve search result */
2479 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2480 	jfs_info("dtRelocate: parent router entry validated.");
2481 
2482 	/*
2483 	 *	2. relocate the target dtpage
2484 	 */
2485 	/* read in the target page from src extent */
2486 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2487 	if (rc) {
2488 		/* release the pinned parent page */
2489 		DT_PUTPAGE(pmp);
2490 		return rc;
2491 	}
2492 
2493 	/*
2494 	 * read in sibling pages if any to update sibling pointers;
2495 	 */
2496 	rmp = NULL;
2497 	if (p->header.next) {
2498 		nextbn = le64_to_cpu(p->header.next);
2499 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2500 		if (rc) {
2501 			DT_PUTPAGE(mp);
2502 			DT_PUTPAGE(pmp);
2503 			return (rc);
2504 		}
2505 	}
2506 
2507 	lmp = NULL;
2508 	if (p->header.prev) {
2509 		prevbn = le64_to_cpu(p->header.prev);
2510 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2511 		if (rc) {
2512 			DT_PUTPAGE(mp);
2513 			DT_PUTPAGE(pmp);
2514 			if (rmp)
2515 				DT_PUTPAGE(rmp);
2516 			return (rc);
2517 		}
2518 	}
2519 
2520 	/* at this point, all xtpages to be updated are in memory */
2521 
2522 	/*
2523 	 * update sibling pointers of sibling dtpages if any;
2524 	 */
2525 	if (lmp) {
2526 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2527 		dtlck = (struct dt_lock *) & tlck->lock;
2528 		/* linelock header */
2529 		ASSERT(dtlck->index == 0);
2530 		lv = & dtlck->lv[0];
2531 		lv->offset = 0;
2532 		lv->length = 1;
2533 		dtlck->index++;
2534 
2535 		lp->header.next = cpu_to_le64(nxaddr);
2536 		DT_PUTPAGE(lmp);
2537 	}
2538 
2539 	if (rmp) {
2540 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2541 		dtlck = (struct dt_lock *) & tlck->lock;
2542 		/* linelock header */
2543 		ASSERT(dtlck->index == 0);
2544 		lv = & dtlck->lv[0];
2545 		lv->offset = 0;
2546 		lv->length = 1;
2547 		dtlck->index++;
2548 
2549 		rp->header.prev = cpu_to_le64(nxaddr);
2550 		DT_PUTPAGE(rmp);
2551 	}
2552 
2553 	/*
2554 	 * update the target dtpage to be relocated
2555 	 *
2556 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2557 	 * for the whole target page (logredo() will apply
2558 	 * after image and update bmap for allocation of the
2559 	 * dst extent), and update bmap for allocation of
2560 	 * the dst extent;
2561 	 */
2562 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2563 	dtlck = (struct dt_lock *) & tlck->lock;
2564 	/* linelock header */
2565 	ASSERT(dtlck->index == 0);
2566 	lv = & dtlck->lv[0];
2567 
2568 	/* update the self address in the dtpage header */
2569 	pxd = &p->header.self;
2570 	PXDaddress(pxd, nxaddr);
2571 
2572 	/* the dst page is the same as the src page, i.e.,
2573 	 * linelock for afterimage of the whole page;
2574 	 */
2575 	lv->offset = 0;
2576 	lv->length = p->header.maxslot;
2577 	dtlck->index++;
2578 
2579 	/* update the buffer extent descriptor of the dtpage */
2580 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2581 
2582 	/* unpin the relocated page */
2583 	DT_PUTPAGE(mp);
2584 	jfs_info("dtRelocate: target dtpage relocated.");
2585 
2586 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2587 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2588 	 * will also force a bmap update ).
2589 	 */
2590 
2591 	/*
2592 	 *	3. acquire maplock for the source extent to be freed;
2593 	 */
2594 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2595 	 * for the source dtpage (logredo() will init NoRedoPage
2596 	 * filter and will also update bmap for free of the source
2597 	 * dtpage), and upadte bmap for free of the source dtpage;
2598 	 */
2599 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2600 	pxdlock = (struct pxd_lock *) & tlck->lock;
2601 	pxdlock->flag = mlckFREEPXD;
2602 	PXDaddress(&pxdlock->pxd, oxaddr);
2603 	PXDlength(&pxdlock->pxd, xlen);
2604 	pxdlock->index = 1;
2605 
2606 	/*
2607 	 *	4. update the parent router entry for relocation;
2608 	 *
2609 	 * acquire tlck for the parent entry covering the target dtpage;
2610 	 * write LOG_REDOPAGE to apply after image only;
2611 	 */
2612 	jfs_info("dtRelocate: update parent router entry.");
2613 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2614 	dtlck = (struct dt_lock *) & tlck->lock;
2615 	lv = & dtlck->lv[dtlck->index];
2616 
2617 	/* update the PXD with the new address */
2618 	stbl = DT_GETSTBL(pp);
2619 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2620 	PXDaddress(pxd, nxaddr);
2621 	lv->offset = stbl[index];
2622 	lv->length = 1;
2623 	dtlck->index++;
2624 
2625 	/* unpin the parent dtpage */
2626 	DT_PUTPAGE(pmp);
2627 
2628 	return rc;
2629 }
2630 
2631 /*
2632  * NAME:	dtSearchNode()
2633  *
2634  * FUNCTION:	Search for an dtpage containing a specified address
2635  *		This function is mainly used by defragfs utility.
2636  *
2637  * NOTE:	Search result on stack, the found page is pinned at exit.
2638  *		The result page must be an internal dtpage.
2639  *		lmxaddr give the address of the left most page of the
2640  *		dtree level, in which the required dtpage resides.
2641  */
2642 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2643 			struct btstack * btstack)
2644 {
2645 	int rc = 0;
2646 	s64 bn;
2647 	struct metapage *mp;
2648 	dtpage_t *p;
2649 	int psize = 288;	/* initial in-line directory */
2650 	s8 *stbl;
2651 	int i;
2652 	pxd_t *pxd;
2653 	struct btframe *btsp;
2654 
2655 	BT_CLR(btstack);	/* reset stack */
2656 
2657 	/*
2658 	 *	descend tree to the level with specified leftmost page
2659 	 *
2660 	 *  by convention, root bn = 0.
2661 	 */
2662 	for (bn = 0;;) {
2663 		/* get/pin the page to search */
2664 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2665 		if (rc)
2666 			return rc;
2667 
2668 		/* does the xaddr of leftmost page of the levevl
2669 		 * matches levevl search key ?
2670 		 */
2671 		if (p->header.flag & BT_ROOT) {
2672 			if (lmxaddr == 0)
2673 				break;
2674 		} else if (addressPXD(&p->header.self) == lmxaddr)
2675 			break;
2676 
2677 		/*
2678 		 * descend down to leftmost child page
2679 		 */
2680 		if (p->header.flag & BT_LEAF) {
2681 			DT_PUTPAGE(mp);
2682 			return -ESTALE;
2683 		}
2684 
2685 		/* get the leftmost entry */
2686 		stbl = DT_GETSTBL(p);
2687 		pxd = (pxd_t *) & p->slot[stbl[0]];
2688 
2689 		/* get the child page block address */
2690 		bn = addressPXD(pxd);
2691 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2692 		/* unpin the parent page */
2693 		DT_PUTPAGE(mp);
2694 	}
2695 
2696 	/*
2697 	 *	search each page at the current levevl
2698 	 */
2699       loop:
2700 	stbl = DT_GETSTBL(p);
2701 	for (i = 0; i < p->header.nextindex; i++) {
2702 		pxd = (pxd_t *) & p->slot[stbl[i]];
2703 
2704 		/* found the specified router entry */
2705 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2706 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2707 			btsp = btstack->top;
2708 			btsp->bn = bn;
2709 			btsp->index = i;
2710 			btsp->mp = mp;
2711 
2712 			return 0;
2713 		}
2714 	}
2715 
2716 	/* get the right sibling page if any */
2717 	if (p->header.next)
2718 		bn = le64_to_cpu(p->header.next);
2719 	else {
2720 		DT_PUTPAGE(mp);
2721 		return -ESTALE;
2722 	}
2723 
2724 	/* unpin current page */
2725 	DT_PUTPAGE(mp);
2726 
2727 	/* get the right sibling page */
2728 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2729 	if (rc)
2730 		return rc;
2731 
2732 	goto loop;
2733 }
2734 #endif /* _NOTYET */
2735 
2736 /*
2737  *	dtRelink()
2738  *
2739  * function:
2740  *	link around a freed page.
2741  *
2742  * parameter:
2743  *	fp:	page to be freed
2744  *
2745  * return:
2746  */
2747 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2748 {
2749 	int rc;
2750 	struct metapage *mp;
2751 	s64 nextbn, prevbn;
2752 	struct tlock *tlck;
2753 	struct dt_lock *dtlck;
2754 	struct lv *lv;
2755 
2756 	nextbn = le64_to_cpu(p->header.next);
2757 	prevbn = le64_to_cpu(p->header.prev);
2758 
2759 	/* update prev pointer of the next page */
2760 	if (nextbn != 0) {
2761 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2762 		if (rc)
2763 			return rc;
2764 
2765 		BT_MARK_DIRTY(mp, ip);
2766 		/*
2767 		 * acquire a transaction lock on the next page
2768 		 *
2769 		 * action: update prev pointer;
2770 		 */
2771 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2772 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2773 			tlck, ip, mp);
2774 		dtlck = (struct dt_lock *) & tlck->lock;
2775 
2776 		/* linelock header */
2777 		if (dtlck->index >= dtlck->maxcnt)
2778 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2779 		lv = & dtlck->lv[dtlck->index];
2780 		lv->offset = 0;
2781 		lv->length = 1;
2782 		dtlck->index++;
2783 
2784 		p->header.prev = cpu_to_le64(prevbn);
2785 		DT_PUTPAGE(mp);
2786 	}
2787 
2788 	/* update next pointer of the previous page */
2789 	if (prevbn != 0) {
2790 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2791 		if (rc)
2792 			return rc;
2793 
2794 		BT_MARK_DIRTY(mp, ip);
2795 		/*
2796 		 * acquire a transaction lock on the prev page
2797 		 *
2798 		 * action: update next pointer;
2799 		 */
2800 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2801 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2802 			tlck, ip, mp);
2803 		dtlck = (struct dt_lock *) & tlck->lock;
2804 
2805 		/* linelock header */
2806 		if (dtlck->index >= dtlck->maxcnt)
2807 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2808 		lv = & dtlck->lv[dtlck->index];
2809 		lv->offset = 0;
2810 		lv->length = 1;
2811 		dtlck->index++;
2812 
2813 		p->header.next = cpu_to_le64(nextbn);
2814 		DT_PUTPAGE(mp);
2815 	}
2816 
2817 	return 0;
2818 }
2819 
2820 
2821 /*
2822  *	dtInitRoot()
2823  *
2824  * initialize directory root (inline in inode)
2825  */
2826 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2827 {
2828 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2829 	dtroot_t *p;
2830 	int fsi;
2831 	struct dtslot *f;
2832 	struct tlock *tlck;
2833 	struct dt_lock *dtlck;
2834 	struct lv *lv;
2835 	u16 xflag_save;
2836 
2837 	/*
2838 	 * If this was previously an non-empty directory, we need to remove
2839 	 * the old directory table.
2840 	 */
2841 	if (DO_INDEX(ip)) {
2842 		if (!jfs_dirtable_inline(ip)) {
2843 			struct tblock *tblk = tid_to_tblock(tid);
2844 			/*
2845 			 * We're playing games with the tid's xflag.  If
2846 			 * we're removing a regular file, the file's xtree
2847 			 * is committed with COMMIT_PMAP, but we always
2848 			 * commit the directories xtree with COMMIT_PWMAP.
2849 			 */
2850 			xflag_save = tblk->xflag;
2851 			tblk->xflag = 0;
2852 			/*
2853 			 * xtTruncate isn't guaranteed to fully truncate
2854 			 * the xtree.  The caller needs to check i_size
2855 			 * after committing the transaction to see if
2856 			 * additional truncation is needed.  The
2857 			 * COMMIT_Stale flag tells caller that we
2858 			 * initiated the truncation.
2859 			 */
2860 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2861 			set_cflag(COMMIT_Stale, ip);
2862 
2863 			tblk->xflag = xflag_save;
2864 		} else
2865 			ip->i_size = 1;
2866 
2867 		jfs_ip->next_index = 2;
2868 	} else
2869 		ip->i_size = IDATASIZE;
2870 
2871 	/*
2872 	 * acquire a transaction lock on the root
2873 	 *
2874 	 * action: directory initialization;
2875 	 */
2876 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2877 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2878 	dtlck = (struct dt_lock *) & tlck->lock;
2879 
2880 	/* linelock root */
2881 	ASSERT(dtlck->index == 0);
2882 	lv = & dtlck->lv[0];
2883 	lv->offset = 0;
2884 	lv->length = DTROOTMAXSLOT;
2885 	dtlck->index++;
2886 
2887 	p = &jfs_ip->i_dtroot;
2888 
2889 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2890 
2891 	p->header.nextindex = 0;
2892 
2893 	/* init freelist */
2894 	fsi = 1;
2895 	f = &p->slot[fsi];
2896 
2897 	/* init data area of root */
2898 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2899 		f->next = fsi;
2900 	f->next = -1;
2901 
2902 	p->header.freelist = 1;
2903 	p->header.freecnt = 8;
2904 
2905 	/* init '..' entry */
2906 	p->header.idotdot = cpu_to_le32(idotdot);
2907 
2908 	return;
2909 }
2910 
2911 /*
2912  *	add_missing_indices()
2913  *
2914  * function: Fix dtree page in which one or more entries has an invalid index.
2915  *	     fsck.jfs should really fix this, but it currently does not.
2916  *	     Called from jfs_readdir when bad index is detected.
2917  */
2918 static void add_missing_indices(struct inode *inode, s64 bn)
2919 {
2920 	struct ldtentry *d;
2921 	struct dt_lock *dtlck;
2922 	int i;
2923 	uint index;
2924 	struct lv *lv;
2925 	struct metapage *mp;
2926 	dtpage_t *p;
2927 	int rc;
2928 	s8 *stbl;
2929 	tid_t tid;
2930 	struct tlock *tlck;
2931 
2932 	tid = txBegin(inode->i_sb, 0);
2933 
2934 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2935 
2936 	if (rc) {
2937 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2938 		goto end;
2939 	}
2940 	BT_MARK_DIRTY(mp, inode);
2941 
2942 	ASSERT(p->header.flag & BT_LEAF);
2943 
2944 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2945 	if (BT_IS_ROOT(mp))
2946 		tlck->type |= tlckBTROOT;
2947 
2948 	dtlck = (struct dt_lock *) &tlck->lock;
2949 
2950 	stbl = DT_GETSTBL(p);
2951 	for (i = 0; i < p->header.nextindex; i++) {
2952 		d = (struct ldtentry *) &p->slot[stbl[i]];
2953 		index = le32_to_cpu(d->index);
2954 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2955 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2956 			if (dtlck->index >= dtlck->maxcnt)
2957 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2958 			lv = &dtlck->lv[dtlck->index];
2959 			lv->offset = stbl[i];
2960 			lv->length = 1;
2961 			dtlck->index++;
2962 		}
2963 	}
2964 
2965 	DT_PUTPAGE(mp);
2966 	(void) txCommit(tid, 1, &inode, 0);
2967 end:
2968 	txEnd(tid);
2969 }
2970 
2971 /*
2972  * Buffer to hold directory entry info while traversing a dtree page
2973  * before being fed to the filldir function
2974  */
2975 struct jfs_dirent {
2976 	loff_t position;
2977 	int ino;
2978 	u16 name_len;
2979 	char name[0];
2980 };
2981 
2982 /*
2983  * function to determine next variable-sized jfs_dirent in buffer
2984  */
2985 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2986 {
2987 	return (struct jfs_dirent *)
2988 		((char *)dirent +
2989 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2990 		   sizeof (loff_t) - 1) &
2991 		  ~(sizeof (loff_t) - 1)));
2992 }
2993 
2994 /*
2995  *	jfs_readdir()
2996  *
2997  * function: read directory entries sequentially
2998  *	from the specified entry offset
2999  *
3000  * parameter:
3001  *
3002  * return: offset = (pn, index) of start entry
3003  *	of next jfs_readdir()/dtRead()
3004  */
3005 int jfs_readdir(struct file *file, struct dir_context *ctx)
3006 {
3007 	struct inode *ip = file_inode(file);
3008 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3009 	int rc = 0;
3010 	loff_t dtpos;	/* legacy OS/2 style position */
3011 	struct dtoffset {
3012 		s16 pn;
3013 		s16 index;
3014 		s32 unused;
3015 	} *dtoffset = (struct dtoffset *) &dtpos;
3016 	s64 bn;
3017 	struct metapage *mp;
3018 	dtpage_t *p;
3019 	int index;
3020 	s8 *stbl;
3021 	struct btstack btstack;
3022 	int i, next;
3023 	struct ldtentry *d;
3024 	struct dtslot *t;
3025 	int d_namleft, len, outlen;
3026 	unsigned long dirent_buf;
3027 	char *name_ptr;
3028 	u32 dir_index;
3029 	int do_index = 0;
3030 	uint loop_count = 0;
3031 	struct jfs_dirent *jfs_dirent;
3032 	int jfs_dirents;
3033 	int overflow, fix_page, page_fixed = 0;
3034 	static int unique_pos = 2;	/* If we can't fix broken index */
3035 
3036 	if (ctx->pos == DIREND)
3037 		return 0;
3038 
3039 	if (DO_INDEX(ip)) {
3040 		/*
3041 		 * persistent index is stored in directory entries.
3042 		 * Special cases:	 0 = .
3043 		 *			 1 = ..
3044 		 *			-1 = End of directory
3045 		 */
3046 		do_index = 1;
3047 
3048 		dir_index = (u32) ctx->pos;
3049 
3050 		/*
3051 		 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
3052 		 * we return to the vfs is one greater than the one we use
3053 		 * internally.
3054 		 */
3055 		if (dir_index)
3056 			dir_index--;
3057 
3058 		if (dir_index > 1) {
3059 			struct dir_table_slot dirtab_slot;
3060 
3061 			if (dtEmpty(ip) ||
3062 			    (dir_index >= JFS_IP(ip)->next_index)) {
3063 				/* Stale position.  Directory has shrunk */
3064 				ctx->pos = DIREND;
3065 				return 0;
3066 			}
3067 		      repeat:
3068 			rc = read_index(ip, dir_index, &dirtab_slot);
3069 			if (rc) {
3070 				ctx->pos = DIREND;
3071 				return rc;
3072 			}
3073 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3074 				if (loop_count++ > JFS_IP(ip)->next_index) {
3075 					jfs_err("jfs_readdir detected infinite loop!");
3076 					ctx->pos = DIREND;
3077 					return 0;
3078 				}
3079 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3080 				if (dir_index == -1) {
3081 					ctx->pos = DIREND;
3082 					return 0;
3083 				}
3084 				goto repeat;
3085 			}
3086 			bn = addressDTS(&dirtab_slot);
3087 			index = dirtab_slot.slot;
3088 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3089 			if (rc) {
3090 				ctx->pos = DIREND;
3091 				return 0;
3092 			}
3093 			if (p->header.flag & BT_INTERNAL) {
3094 				jfs_err("jfs_readdir: bad index table");
3095 				DT_PUTPAGE(mp);
3096 				ctx->pos = DIREND;
3097 				return 0;
3098 			}
3099 		} else {
3100 			if (dir_index == 0) {
3101 				/*
3102 				 * self "."
3103 				 */
3104 				ctx->pos = 1;
3105 				if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3106 					return 0;
3107 			}
3108 			/*
3109 			 * parent ".."
3110 			 */
3111 			ctx->pos = 2;
3112 			if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3113 				return 0;
3114 
3115 			/*
3116 			 * Find first entry of left-most leaf
3117 			 */
3118 			if (dtEmpty(ip)) {
3119 				ctx->pos = DIREND;
3120 				return 0;
3121 			}
3122 
3123 			if ((rc = dtReadFirst(ip, &btstack)))
3124 				return rc;
3125 
3126 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3127 		}
3128 	} else {
3129 		/*
3130 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3131 		 *
3132 		 * pn = 0; index = 1:	First entry "."
3133 		 * pn = 0; index = 2:	Second entry ".."
3134 		 * pn > 0:		Real entries, pn=1 -> leftmost page
3135 		 * pn = index = -1:	No more entries
3136 		 */
3137 		dtpos = ctx->pos;
3138 		if (dtpos < 2) {
3139 			/* build "." entry */
3140 			ctx->pos = 1;
3141 			if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3142 				return 0;
3143 			dtoffset->index = 2;
3144 			ctx->pos = dtpos;
3145 		}
3146 
3147 		if (dtoffset->pn == 0) {
3148 			if (dtoffset->index == 2) {
3149 				/* build ".." entry */
3150 				if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3151 					return 0;
3152 			} else {
3153 				jfs_err("jfs_readdir called with invalid offset!");
3154 			}
3155 			dtoffset->pn = 1;
3156 			dtoffset->index = 0;
3157 			ctx->pos = dtpos;
3158 		}
3159 
3160 		if (dtEmpty(ip)) {
3161 			ctx->pos = DIREND;
3162 			return 0;
3163 		}
3164 
3165 		if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
3166 			jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
3167 				rc);
3168 			ctx->pos = DIREND;
3169 			return 0;
3170 		}
3171 		/* get start leaf page and index */
3172 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3173 
3174 		/* offset beyond directory eof ? */
3175 		if (bn < 0) {
3176 			ctx->pos = DIREND;
3177 			return 0;
3178 		}
3179 	}
3180 
3181 	dirent_buf = __get_free_page(GFP_KERNEL);
3182 	if (dirent_buf == 0) {
3183 		DT_PUTPAGE(mp);
3184 		jfs_warn("jfs_readdir: __get_free_page failed!");
3185 		ctx->pos = DIREND;
3186 		return -ENOMEM;
3187 	}
3188 
3189 	while (1) {
3190 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3191 		jfs_dirents = 0;
3192 		overflow = fix_page = 0;
3193 
3194 		stbl = DT_GETSTBL(p);
3195 
3196 		for (i = index; i < p->header.nextindex; i++) {
3197 			d = (struct ldtentry *) & p->slot[stbl[i]];
3198 
3199 			if (((long) jfs_dirent + d->namlen + 1) >
3200 			    (dirent_buf + PAGE_SIZE)) {
3201 				/* DBCS codepages could overrun dirent_buf */
3202 				index = i;
3203 				overflow = 1;
3204 				break;
3205 			}
3206 
3207 			d_namleft = d->namlen;
3208 			name_ptr = jfs_dirent->name;
3209 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3210 
3211 			if (do_index) {
3212 				len = min(d_namleft, DTLHDRDATALEN);
3213 				jfs_dirent->position = le32_to_cpu(d->index);
3214 				/*
3215 				 * d->index should always be valid, but it
3216 				 * isn't.  fsck.jfs doesn't create the
3217 				 * directory index for the lost+found
3218 				 * directory.  Rather than let it go,
3219 				 * we can try to fix it.
3220 				 */
3221 				if ((jfs_dirent->position < 2) ||
3222 				    (jfs_dirent->position >=
3223 				     JFS_IP(ip)->next_index)) {
3224 					if (!page_fixed && !isReadOnly(ip)) {
3225 						fix_page = 1;
3226 						/*
3227 						 * setting overflow and setting
3228 						 * index to i will cause the
3229 						 * same page to be processed
3230 						 * again starting here
3231 						 */
3232 						overflow = 1;
3233 						index = i;
3234 						break;
3235 					}
3236 					jfs_dirent->position = unique_pos++;
3237 				}
3238 				/*
3239 				 * We add 1 to the index because we may
3240 				 * use a value of 2 internally, and NFSv4
3241 				 * doesn't like that.
3242 				 */
3243 				jfs_dirent->position++;
3244 			} else {
3245 				jfs_dirent->position = dtpos;
3246 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3247 			}
3248 
3249 			/* copy the name of head/only segment */
3250 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3251 						   codepage);
3252 			jfs_dirent->name_len = outlen;
3253 
3254 			/* copy name in the additional segment(s) */
3255 			next = d->next;
3256 			while (next >= 0) {
3257 				t = (struct dtslot *) & p->slot[next];
3258 				name_ptr += outlen;
3259 				d_namleft -= len;
3260 				/* Sanity Check */
3261 				if (d_namleft == 0) {
3262 					jfs_error(ip->i_sb,
3263 						  "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
3264 						  (long)ip->i_ino,
3265 						  (long long)bn,
3266 						  i);
3267 					goto skip_one;
3268 				}
3269 				len = min(d_namleft, DTSLOTDATALEN);
3270 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3271 							   len, codepage);
3272 				jfs_dirent->name_len += outlen;
3273 
3274 				next = t->next;
3275 			}
3276 
3277 			jfs_dirents++;
3278 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3279 skip_one:
3280 			if (!do_index)
3281 				dtoffset->index++;
3282 		}
3283 
3284 		if (!overflow) {
3285 			/* Point to next leaf page */
3286 			if (p->header.flag & BT_ROOT)
3287 				bn = 0;
3288 			else {
3289 				bn = le64_to_cpu(p->header.next);
3290 				index = 0;
3291 				/* update offset (pn:index) for new page */
3292 				if (!do_index) {
3293 					dtoffset->pn++;
3294 					dtoffset->index = 0;
3295 				}
3296 			}
3297 			page_fixed = 0;
3298 		}
3299 
3300 		/* unpin previous leaf page */
3301 		DT_PUTPAGE(mp);
3302 
3303 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3304 		while (jfs_dirents--) {
3305 			ctx->pos = jfs_dirent->position;
3306 			if (!dir_emit(ctx, jfs_dirent->name,
3307 				    jfs_dirent->name_len,
3308 				    jfs_dirent->ino, DT_UNKNOWN))
3309 				goto out;
3310 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3311 		}
3312 
3313 		if (fix_page) {
3314 			add_missing_indices(ip, bn);
3315 			page_fixed = 1;
3316 		}
3317 
3318 		if (!overflow && (bn == 0)) {
3319 			ctx->pos = DIREND;
3320 			break;
3321 		}
3322 
3323 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3324 		if (rc) {
3325 			free_page(dirent_buf);
3326 			return rc;
3327 		}
3328 	}
3329 
3330       out:
3331 	free_page(dirent_buf);
3332 
3333 	return rc;
3334 }
3335 
3336 
3337 /*
3338  *	dtReadFirst()
3339  *
3340  * function: get the leftmost page of the directory
3341  */
3342 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3343 {
3344 	int rc = 0;
3345 	s64 bn;
3346 	int psize = 288;	/* initial in-line directory */
3347 	struct metapage *mp;
3348 	dtpage_t *p;
3349 	s8 *stbl;
3350 	struct btframe *btsp;
3351 	pxd_t *xd;
3352 
3353 	BT_CLR(btstack);	/* reset stack */
3354 
3355 	/*
3356 	 *	descend leftmost path of the tree
3357 	 *
3358 	 * by convention, root bn = 0.
3359 	 */
3360 	for (bn = 0;;) {
3361 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3362 		if (rc)
3363 			return rc;
3364 
3365 		/*
3366 		 * leftmost leaf page
3367 		 */
3368 		if (p->header.flag & BT_LEAF) {
3369 			/* return leftmost entry */
3370 			btsp = btstack->top;
3371 			btsp->bn = bn;
3372 			btsp->index = 0;
3373 			btsp->mp = mp;
3374 
3375 			return 0;
3376 		}
3377 
3378 		/*
3379 		 * descend down to leftmost child page
3380 		 */
3381 		if (BT_STACK_FULL(btstack)) {
3382 			DT_PUTPAGE(mp);
3383 			jfs_error(ip->i_sb, "btstack overrun\n");
3384 			BT_STACK_DUMP(btstack);
3385 			return -EIO;
3386 		}
3387 		/* push (bn, index) of the parent page/entry */
3388 		BT_PUSH(btstack, bn, 0);
3389 
3390 		/* get the leftmost entry */
3391 		stbl = DT_GETSTBL(p);
3392 		xd = (pxd_t *) & p->slot[stbl[0]];
3393 
3394 		/* get the child page block address */
3395 		bn = addressPXD(xd);
3396 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3397 
3398 		/* unpin the parent page */
3399 		DT_PUTPAGE(mp);
3400 	}
3401 }
3402 
3403 
3404 /*
3405  *	dtReadNext()
3406  *
3407  * function: get the page of the specified offset (pn:index)
3408  *
3409  * return: if (offset > eof), bn = -1;
3410  *
3411  * note: if index > nextindex of the target leaf page,
3412  * start with 1st entry of next leaf page;
3413  */
3414 static int dtReadNext(struct inode *ip, loff_t * offset,
3415 		      struct btstack * btstack)
3416 {
3417 	int rc = 0;
3418 	struct dtoffset {
3419 		s16 pn;
3420 		s16 index;
3421 		s32 unused;
3422 	} *dtoffset = (struct dtoffset *) offset;
3423 	s64 bn;
3424 	struct metapage *mp;
3425 	dtpage_t *p;
3426 	int index;
3427 	int pn;
3428 	s8 *stbl;
3429 	struct btframe *btsp, *parent;
3430 	pxd_t *xd;
3431 
3432 	/*
3433 	 * get leftmost leaf page pinned
3434 	 */
3435 	if ((rc = dtReadFirst(ip, btstack)))
3436 		return rc;
3437 
3438 	/* get leaf page */
3439 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3440 
3441 	/* get the start offset (pn:index) */
3442 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3443 	index = dtoffset->index;
3444 
3445 	/* start at leftmost page ? */
3446 	if (pn == 0) {
3447 		/* offset beyond eof ? */
3448 		if (index < p->header.nextindex)
3449 			goto out;
3450 
3451 		if (p->header.flag & BT_ROOT) {
3452 			bn = -1;
3453 			goto out;
3454 		}
3455 
3456 		/* start with 1st entry of next leaf page */
3457 		dtoffset->pn++;
3458 		dtoffset->index = index = 0;
3459 		goto a;
3460 	}
3461 
3462 	/* start at non-leftmost page: scan parent pages for large pn */
3463 	if (p->header.flag & BT_ROOT) {
3464 		bn = -1;
3465 		goto out;
3466 	}
3467 
3468 	/* start after next leaf page ? */
3469 	if (pn > 1)
3470 		goto b;
3471 
3472 	/* get leaf page pn = 1 */
3473       a:
3474 	bn = le64_to_cpu(p->header.next);
3475 
3476 	/* unpin leaf page */
3477 	DT_PUTPAGE(mp);
3478 
3479 	/* offset beyond eof ? */
3480 	if (bn == 0) {
3481 		bn = -1;
3482 		goto out;
3483 	}
3484 
3485 	goto c;
3486 
3487 	/*
3488 	 * scan last internal page level to get target leaf page
3489 	 */
3490       b:
3491 	/* unpin leftmost leaf page */
3492 	DT_PUTPAGE(mp);
3493 
3494 	/* get left most parent page */
3495 	btsp = btstack->top;
3496 	parent = btsp - 1;
3497 	bn = parent->bn;
3498 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3499 	if (rc)
3500 		return rc;
3501 
3502 	/* scan parent pages at last internal page level */
3503 	while (pn >= p->header.nextindex) {
3504 		pn -= p->header.nextindex;
3505 
3506 		/* get next parent page address */
3507 		bn = le64_to_cpu(p->header.next);
3508 
3509 		/* unpin current parent page */
3510 		DT_PUTPAGE(mp);
3511 
3512 		/* offset beyond eof ? */
3513 		if (bn == 0) {
3514 			bn = -1;
3515 			goto out;
3516 		}
3517 
3518 		/* get next parent page */
3519 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3520 		if (rc)
3521 			return rc;
3522 
3523 		/* update parent page stack frame */
3524 		parent->bn = bn;
3525 	}
3526 
3527 	/* get leaf page address */
3528 	stbl = DT_GETSTBL(p);
3529 	xd = (pxd_t *) & p->slot[stbl[pn]];
3530 	bn = addressPXD(xd);
3531 
3532 	/* unpin parent page */
3533 	DT_PUTPAGE(mp);
3534 
3535 	/*
3536 	 * get target leaf page
3537 	 */
3538       c:
3539 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3540 	if (rc)
3541 		return rc;
3542 
3543 	/*
3544 	 * leaf page has been completed:
3545 	 * start with 1st entry of next leaf page
3546 	 */
3547 	if (index >= p->header.nextindex) {
3548 		bn = le64_to_cpu(p->header.next);
3549 
3550 		/* unpin leaf page */
3551 		DT_PUTPAGE(mp);
3552 
3553 		/* offset beyond eof ? */
3554 		if (bn == 0) {
3555 			bn = -1;
3556 			goto out;
3557 		}
3558 
3559 		/* get next leaf page */
3560 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3561 		if (rc)
3562 			return rc;
3563 
3564 		/* start with 1st entry of next leaf page */
3565 		dtoffset->pn++;
3566 		dtoffset->index = 0;
3567 	}
3568 
3569       out:
3570 	/* return target leaf page pinned */
3571 	btsp = btstack->top;
3572 	btsp->bn = bn;
3573 	btsp->index = dtoffset->index;
3574 	btsp->mp = mp;
3575 
3576 	return 0;
3577 }
3578 
3579 
3580 /*
3581  *	dtCompare()
3582  *
3583  * function: compare search key with an internal entry
3584  *
3585  * return:
3586  *	< 0 if k is < record
3587  *	= 0 if k is = record
3588  *	> 0 if k is > record
3589  */
3590 static int dtCompare(struct component_name * key,	/* search key */
3591 		     dtpage_t * p,	/* directory page */
3592 		     int si)
3593 {				/* entry slot index */
3594 	wchar_t *kname;
3595 	__le16 *name;
3596 	int klen, namlen, len, rc;
3597 	struct idtentry *ih;
3598 	struct dtslot *t;
3599 
3600 	/*
3601 	 * force the left-most key on internal pages, at any level of
3602 	 * the tree, to be less than any search key.
3603 	 * this obviates having to update the leftmost key on an internal
3604 	 * page when the user inserts a new key in the tree smaller than
3605 	 * anything that has been stored.
3606 	 *
3607 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3608 	 * at any internal page at any level of the tree,
3609 	 * it descends to child of the entry anyway -
3610 	 * ? make the entry as min size dummy entry)
3611 	 *
3612 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3613 	 * return (1);
3614 	 */
3615 
3616 	kname = key->name;
3617 	klen = key->namlen;
3618 
3619 	ih = (struct idtentry *) & p->slot[si];
3620 	si = ih->next;
3621 	name = ih->name;
3622 	namlen = ih->namlen;
3623 	len = min(namlen, DTIHDRDATALEN);
3624 
3625 	/* compare with head/only segment */
3626 	len = min(klen, len);
3627 	if ((rc = UniStrncmp_le(kname, name, len)))
3628 		return rc;
3629 
3630 	klen -= len;
3631 	namlen -= len;
3632 
3633 	/* compare with additional segment(s) */
3634 	kname += len;
3635 	while (klen > 0 && namlen > 0) {
3636 		/* compare with next name segment */
3637 		t = (struct dtslot *) & p->slot[si];
3638 		len = min(namlen, DTSLOTDATALEN);
3639 		len = min(klen, len);
3640 		name = t->name;
3641 		if ((rc = UniStrncmp_le(kname, name, len)))
3642 			return rc;
3643 
3644 		klen -= len;
3645 		namlen -= len;
3646 		kname += len;
3647 		si = t->next;
3648 	}
3649 
3650 	return (klen - namlen);
3651 }
3652 
3653 
3654 
3655 
3656 /*
3657  *	ciCompare()
3658  *
3659  * function: compare search key with an (leaf/internal) entry
3660  *
3661  * return:
3662  *	< 0 if k is < record
3663  *	= 0 if k is = record
3664  *	> 0 if k is > record
3665  */
3666 static int ciCompare(struct component_name * key,	/* search key */
3667 		     dtpage_t * p,	/* directory page */
3668 		     int si,	/* entry slot index */
3669 		     int flag)
3670 {
3671 	wchar_t *kname, x;
3672 	__le16 *name;
3673 	int klen, namlen, len, rc;
3674 	struct ldtentry *lh;
3675 	struct idtentry *ih;
3676 	struct dtslot *t;
3677 	int i;
3678 
3679 	/*
3680 	 * force the left-most key on internal pages, at any level of
3681 	 * the tree, to be less than any search key.
3682 	 * this obviates having to update the leftmost key on an internal
3683 	 * page when the user inserts a new key in the tree smaller than
3684 	 * anything that has been stored.
3685 	 *
3686 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3687 	 * at any internal page at any level of the tree,
3688 	 * it descends to child of the entry anyway -
3689 	 * ? make the entry as min size dummy entry)
3690 	 *
3691 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3692 	 * return (1);
3693 	 */
3694 
3695 	kname = key->name;
3696 	klen = key->namlen;
3697 
3698 	/*
3699 	 * leaf page entry
3700 	 */
3701 	if (p->header.flag & BT_LEAF) {
3702 		lh = (struct ldtentry *) & p->slot[si];
3703 		si = lh->next;
3704 		name = lh->name;
3705 		namlen = lh->namlen;
3706 		if (flag & JFS_DIR_INDEX)
3707 			len = min(namlen, DTLHDRDATALEN);
3708 		else
3709 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3710 	}
3711 	/*
3712 	 * internal page entry
3713 	 */
3714 	else {
3715 		ih = (struct idtentry *) & p->slot[si];
3716 		si = ih->next;
3717 		name = ih->name;
3718 		namlen = ih->namlen;
3719 		len = min(namlen, DTIHDRDATALEN);
3720 	}
3721 
3722 	/* compare with head/only segment */
3723 	len = min(klen, len);
3724 	for (i = 0; i < len; i++, kname++, name++) {
3725 		/* only uppercase if case-insensitive support is on */
3726 		if ((flag & JFS_OS2) == JFS_OS2)
3727 			x = UniToupper(le16_to_cpu(*name));
3728 		else
3729 			x = le16_to_cpu(*name);
3730 		if ((rc = *kname - x))
3731 			return rc;
3732 	}
3733 
3734 	klen -= len;
3735 	namlen -= len;
3736 
3737 	/* compare with additional segment(s) */
3738 	while (klen > 0 && namlen > 0) {
3739 		/* compare with next name segment */
3740 		t = (struct dtslot *) & p->slot[si];
3741 		len = min(namlen, DTSLOTDATALEN);
3742 		len = min(klen, len);
3743 		name = t->name;
3744 		for (i = 0; i < len; i++, kname++, name++) {
3745 			/* only uppercase if case-insensitive support is on */
3746 			if ((flag & JFS_OS2) == JFS_OS2)
3747 				x = UniToupper(le16_to_cpu(*name));
3748 			else
3749 				x = le16_to_cpu(*name);
3750 
3751 			if ((rc = *kname - x))
3752 				return rc;
3753 		}
3754 
3755 		klen -= len;
3756 		namlen -= len;
3757 		si = t->next;
3758 	}
3759 
3760 	return (klen - namlen);
3761 }
3762 
3763 
3764 /*
3765  *	ciGetLeafPrefixKey()
3766  *
3767  * function: compute prefix of suffix compression
3768  *	     from two adjacent leaf entries
3769  *	     across page boundary
3770  *
3771  * return: non-zero on error
3772  *
3773  */
3774 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3775 			       int ri, struct component_name * key, int flag)
3776 {
3777 	int klen, namlen;
3778 	wchar_t *pl, *pr, *kname;
3779 	struct component_name lkey;
3780 	struct component_name rkey;
3781 
3782 	lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3783 					GFP_KERNEL);
3784 	if (lkey.name == NULL)
3785 		return -ENOMEM;
3786 
3787 	rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3788 					GFP_KERNEL);
3789 	if (rkey.name == NULL) {
3790 		kfree(lkey.name);
3791 		return -ENOMEM;
3792 	}
3793 
3794 	/* get left and right key */
3795 	dtGetKey(lp, li, &lkey, flag);
3796 	lkey.name[lkey.namlen] = 0;
3797 
3798 	if ((flag & JFS_OS2) == JFS_OS2)
3799 		ciToUpper(&lkey);
3800 
3801 	dtGetKey(rp, ri, &rkey, flag);
3802 	rkey.name[rkey.namlen] = 0;
3803 
3804 
3805 	if ((flag & JFS_OS2) == JFS_OS2)
3806 		ciToUpper(&rkey);
3807 
3808 	/* compute prefix */
3809 	klen = 0;
3810 	kname = key->name;
3811 	namlen = min(lkey.namlen, rkey.namlen);
3812 	for (pl = lkey.name, pr = rkey.name;
3813 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3814 		*kname = *pr;
3815 		if (*pl != *pr) {
3816 			key->namlen = klen + 1;
3817 			goto free_names;
3818 		}
3819 	}
3820 
3821 	/* l->namlen <= r->namlen since l <= r */
3822 	if (lkey.namlen < rkey.namlen) {
3823 		*kname = *pr;
3824 		key->namlen = klen + 1;
3825 	} else			/* l->namelen == r->namelen */
3826 		key->namlen = klen;
3827 
3828 free_names:
3829 	kfree(lkey.name);
3830 	kfree(rkey.name);
3831 	return 0;
3832 }
3833 
3834 
3835 
3836 /*
3837  *	dtGetKey()
3838  *
3839  * function: get key of the entry
3840  */
3841 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3842 		     struct component_name * key, int flag)
3843 {
3844 	int si;
3845 	s8 *stbl;
3846 	struct ldtentry *lh;
3847 	struct idtentry *ih;
3848 	struct dtslot *t;
3849 	int namlen, len;
3850 	wchar_t *kname;
3851 	__le16 *name;
3852 
3853 	/* get entry */
3854 	stbl = DT_GETSTBL(p);
3855 	si = stbl[i];
3856 	if (p->header.flag & BT_LEAF) {
3857 		lh = (struct ldtentry *) & p->slot[si];
3858 		si = lh->next;
3859 		namlen = lh->namlen;
3860 		name = lh->name;
3861 		if (flag & JFS_DIR_INDEX)
3862 			len = min(namlen, DTLHDRDATALEN);
3863 		else
3864 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3865 	} else {
3866 		ih = (struct idtentry *) & p->slot[si];
3867 		si = ih->next;
3868 		namlen = ih->namlen;
3869 		name = ih->name;
3870 		len = min(namlen, DTIHDRDATALEN);
3871 	}
3872 
3873 	key->namlen = namlen;
3874 	kname = key->name;
3875 
3876 	/*
3877 	 * move head/only segment
3878 	 */
3879 	UniStrncpy_from_le(kname, name, len);
3880 
3881 	/*
3882 	 * move additional segment(s)
3883 	 */
3884 	while (si >= 0) {
3885 		/* get next segment */
3886 		t = &p->slot[si];
3887 		kname += len;
3888 		namlen -= len;
3889 		len = min(namlen, DTSLOTDATALEN);
3890 		UniStrncpy_from_le(kname, t->name, len);
3891 
3892 		si = t->next;
3893 	}
3894 }
3895 
3896 
3897 /*
3898  *	dtInsertEntry()
3899  *
3900  * function: allocate free slot(s) and
3901  *	     write a leaf/internal entry
3902  *
3903  * return: entry slot index
3904  */
3905 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3906 			  ddata_t * data, struct dt_lock ** dtlock)
3907 {
3908 	struct dtslot *h, *t;
3909 	struct ldtentry *lh = NULL;
3910 	struct idtentry *ih = NULL;
3911 	int hsi, fsi, klen, len, nextindex;
3912 	wchar_t *kname;
3913 	__le16 *name;
3914 	s8 *stbl;
3915 	pxd_t *xd;
3916 	struct dt_lock *dtlck = *dtlock;
3917 	struct lv *lv;
3918 	int xsi, n;
3919 	s64 bn = 0;
3920 	struct metapage *mp = NULL;
3921 
3922 	klen = key->namlen;
3923 	kname = key->name;
3924 
3925 	/* allocate a free slot */
3926 	hsi = fsi = p->header.freelist;
3927 	h = &p->slot[fsi];
3928 	p->header.freelist = h->next;
3929 	--p->header.freecnt;
3930 
3931 	/* open new linelock */
3932 	if (dtlck->index >= dtlck->maxcnt)
3933 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3934 
3935 	lv = & dtlck->lv[dtlck->index];
3936 	lv->offset = hsi;
3937 
3938 	/* write head/only segment */
3939 	if (p->header.flag & BT_LEAF) {
3940 		lh = (struct ldtentry *) h;
3941 		lh->next = h->next;
3942 		lh->inumber = cpu_to_le32(data->leaf.ino);
3943 		lh->namlen = klen;
3944 		name = lh->name;
3945 		if (data->leaf.ip) {
3946 			len = min(klen, DTLHDRDATALEN);
3947 			if (!(p->header.flag & BT_ROOT))
3948 				bn = addressPXD(&p->header.self);
3949 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3950 							  data->leaf.ip,
3951 							  bn, index));
3952 		} else
3953 			len = min(klen, DTLHDRDATALEN_LEGACY);
3954 	} else {
3955 		ih = (struct idtentry *) h;
3956 		ih->next = h->next;
3957 		xd = (pxd_t *) ih;
3958 		*xd = data->xd;
3959 		ih->namlen = klen;
3960 		name = ih->name;
3961 		len = min(klen, DTIHDRDATALEN);
3962 	}
3963 
3964 	UniStrncpy_to_le(name, kname, len);
3965 
3966 	n = 1;
3967 	xsi = hsi;
3968 
3969 	/* write additional segment(s) */
3970 	t = h;
3971 	klen -= len;
3972 	while (klen) {
3973 		/* get free slot */
3974 		fsi = p->header.freelist;
3975 		t = &p->slot[fsi];
3976 		p->header.freelist = t->next;
3977 		--p->header.freecnt;
3978 
3979 		/* is next slot contiguous ? */
3980 		if (fsi != xsi + 1) {
3981 			/* close current linelock */
3982 			lv->length = n;
3983 			dtlck->index++;
3984 
3985 			/* open new linelock */
3986 			if (dtlck->index < dtlck->maxcnt)
3987 				lv++;
3988 			else {
3989 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3990 				lv = & dtlck->lv[0];
3991 			}
3992 
3993 			lv->offset = fsi;
3994 			n = 0;
3995 		}
3996 
3997 		kname += len;
3998 		len = min(klen, DTSLOTDATALEN);
3999 		UniStrncpy_to_le(t->name, kname, len);
4000 
4001 		n++;
4002 		xsi = fsi;
4003 		klen -= len;
4004 	}
4005 
4006 	/* close current linelock */
4007 	lv->length = n;
4008 	dtlck->index++;
4009 
4010 	*dtlock = dtlck;
4011 
4012 	/* terminate last/only segment */
4013 	if (h == t) {
4014 		/* single segment entry */
4015 		if (p->header.flag & BT_LEAF)
4016 			lh->next = -1;
4017 		else
4018 			ih->next = -1;
4019 	} else
4020 		/* multi-segment entry */
4021 		t->next = -1;
4022 
4023 	/* if insert into middle, shift right succeeding entries in stbl */
4024 	stbl = DT_GETSTBL(p);
4025 	nextindex = p->header.nextindex;
4026 	if (index < nextindex) {
4027 		memmove(stbl + index + 1, stbl + index, nextindex - index);
4028 
4029 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4030 			s64 lblock;
4031 
4032 			/*
4033 			 * Need to update slot number for entries that moved
4034 			 * in the stbl
4035 			 */
4036 			mp = NULL;
4037 			for (n = index + 1; n <= nextindex; n++) {
4038 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4039 				modify_index(data->leaf.tid, data->leaf.ip,
4040 					     le32_to_cpu(lh->index), bn, n,
4041 					     &mp, &lblock);
4042 			}
4043 			if (mp)
4044 				release_metapage(mp);
4045 		}
4046 	}
4047 
4048 	stbl[index] = hsi;
4049 
4050 	/* advance next available entry index of stbl */
4051 	++p->header.nextindex;
4052 }
4053 
4054 
4055 /*
4056  *	dtMoveEntry()
4057  *
4058  * function: move entries from split/left page to new/right page
4059  *
4060  *	nextindex of dst page and freelist/freecnt of both pages
4061  *	are updated.
4062  */
4063 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4064 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4065 			int do_index)
4066 {
4067 	int ssi, next;		/* src slot index */
4068 	int di;			/* dst entry index */
4069 	int dsi;		/* dst slot index */
4070 	s8 *sstbl, *dstbl;	/* sorted entry table */
4071 	int snamlen, len;
4072 	struct ldtentry *slh, *dlh = NULL;
4073 	struct idtentry *sih, *dih = NULL;
4074 	struct dtslot *h, *s, *d;
4075 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4076 	struct lv *slv, *dlv;
4077 	int xssi, ns, nd;
4078 	int sfsi;
4079 
4080 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4081 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4082 
4083 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4084 	sfsi = sp->header.freelist;
4085 
4086 	/* linelock destination entry slot */
4087 	dlv = & ddtlck->lv[ddtlck->index];
4088 	dlv->offset = dsi;
4089 
4090 	/* linelock source entry slot */
4091 	slv = & sdtlck->lv[sdtlck->index];
4092 	slv->offset = sstbl[si];
4093 	xssi = slv->offset - 1;
4094 
4095 	/*
4096 	 * move entries
4097 	 */
4098 	ns = nd = 0;
4099 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4100 		ssi = sstbl[si];
4101 		dstbl[di] = dsi;
4102 
4103 		/* is next slot contiguous ? */
4104 		if (ssi != xssi + 1) {
4105 			/* close current linelock */
4106 			slv->length = ns;
4107 			sdtlck->index++;
4108 
4109 			/* open new linelock */
4110 			if (sdtlck->index < sdtlck->maxcnt)
4111 				slv++;
4112 			else {
4113 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4114 				slv = & sdtlck->lv[0];
4115 			}
4116 
4117 			slv->offset = ssi;
4118 			ns = 0;
4119 		}
4120 
4121 		/*
4122 		 * move head/only segment of an entry
4123 		 */
4124 		/* get dst slot */
4125 		h = d = &dp->slot[dsi];
4126 
4127 		/* get src slot and move */
4128 		s = &sp->slot[ssi];
4129 		if (sp->header.flag & BT_LEAF) {
4130 			/* get source entry */
4131 			slh = (struct ldtentry *) s;
4132 			dlh = (struct ldtentry *) h;
4133 			snamlen = slh->namlen;
4134 
4135 			if (do_index) {
4136 				len = min(snamlen, DTLHDRDATALEN);
4137 				dlh->index = slh->index; /* little-endian */
4138 			} else
4139 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4140 
4141 			memcpy(dlh, slh, 6 + len * 2);
4142 
4143 			next = slh->next;
4144 
4145 			/* update dst head/only segment next field */
4146 			dsi++;
4147 			dlh->next = dsi;
4148 		} else {
4149 			sih = (struct idtentry *) s;
4150 			snamlen = sih->namlen;
4151 
4152 			len = min(snamlen, DTIHDRDATALEN);
4153 			dih = (struct idtentry *) h;
4154 			memcpy(dih, sih, 10 + len * 2);
4155 			next = sih->next;
4156 
4157 			dsi++;
4158 			dih->next = dsi;
4159 		}
4160 
4161 		/* free src head/only segment */
4162 		s->next = sfsi;
4163 		s->cnt = 1;
4164 		sfsi = ssi;
4165 
4166 		ns++;
4167 		nd++;
4168 		xssi = ssi;
4169 
4170 		/*
4171 		 * move additional segment(s) of the entry
4172 		 */
4173 		snamlen -= len;
4174 		while ((ssi = next) >= 0) {
4175 			/* is next slot contiguous ? */
4176 			if (ssi != xssi + 1) {
4177 				/* close current linelock */
4178 				slv->length = ns;
4179 				sdtlck->index++;
4180 
4181 				/* open new linelock */
4182 				if (sdtlck->index < sdtlck->maxcnt)
4183 					slv++;
4184 				else {
4185 					sdtlck =
4186 					    (struct dt_lock *)
4187 					    txLinelock(sdtlck);
4188 					slv = & sdtlck->lv[0];
4189 				}
4190 
4191 				slv->offset = ssi;
4192 				ns = 0;
4193 			}
4194 
4195 			/* get next source segment */
4196 			s = &sp->slot[ssi];
4197 
4198 			/* get next destination free slot */
4199 			d++;
4200 
4201 			len = min(snamlen, DTSLOTDATALEN);
4202 			UniStrncpy_le(d->name, s->name, len);
4203 
4204 			ns++;
4205 			nd++;
4206 			xssi = ssi;
4207 
4208 			dsi++;
4209 			d->next = dsi;
4210 
4211 			/* free source segment */
4212 			next = s->next;
4213 			s->next = sfsi;
4214 			s->cnt = 1;
4215 			sfsi = ssi;
4216 
4217 			snamlen -= len;
4218 		}		/* end while */
4219 
4220 		/* terminate dst last/only segment */
4221 		if (h == d) {
4222 			/* single segment entry */
4223 			if (dp->header.flag & BT_LEAF)
4224 				dlh->next = -1;
4225 			else
4226 				dih->next = -1;
4227 		} else
4228 			/* multi-segment entry */
4229 			d->next = -1;
4230 	}			/* end for */
4231 
4232 	/* close current linelock */
4233 	slv->length = ns;
4234 	sdtlck->index++;
4235 	*sdtlock = sdtlck;
4236 
4237 	dlv->length = nd;
4238 	ddtlck->index++;
4239 	*ddtlock = ddtlck;
4240 
4241 	/* update source header */
4242 	sp->header.freelist = sfsi;
4243 	sp->header.freecnt += nd;
4244 
4245 	/* update destination header */
4246 	dp->header.nextindex = di;
4247 
4248 	dp->header.freelist = dsi;
4249 	dp->header.freecnt -= nd;
4250 }
4251 
4252 
4253 /*
4254  *	dtDeleteEntry()
4255  *
4256  * function: free a (leaf/internal) entry
4257  *
4258  * log freelist header, stbl, and each segment slot of entry
4259  * (even though last/only segment next field is modified,
4260  * physical image logging requires all segment slots of
4261  * the entry logged to avoid applying previous updates
4262  * to the same slots)
4263  */
4264 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4265 {
4266 	int fsi;		/* free entry slot index */
4267 	s8 *stbl;
4268 	struct dtslot *t;
4269 	int si, freecnt;
4270 	struct dt_lock *dtlck = *dtlock;
4271 	struct lv *lv;
4272 	int xsi, n;
4273 
4274 	/* get free entry slot index */
4275 	stbl = DT_GETSTBL(p);
4276 	fsi = stbl[fi];
4277 
4278 	/* open new linelock */
4279 	if (dtlck->index >= dtlck->maxcnt)
4280 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4281 	lv = & dtlck->lv[dtlck->index];
4282 
4283 	lv->offset = fsi;
4284 
4285 	/* get the head/only segment */
4286 	t = &p->slot[fsi];
4287 	if (p->header.flag & BT_LEAF)
4288 		si = ((struct ldtentry *) t)->next;
4289 	else
4290 		si = ((struct idtentry *) t)->next;
4291 	t->next = si;
4292 	t->cnt = 1;
4293 
4294 	n = freecnt = 1;
4295 	xsi = fsi;
4296 
4297 	/* find the last/only segment */
4298 	while (si >= 0) {
4299 		/* is next slot contiguous ? */
4300 		if (si != xsi + 1) {
4301 			/* close current linelock */
4302 			lv->length = n;
4303 			dtlck->index++;
4304 
4305 			/* open new linelock */
4306 			if (dtlck->index < dtlck->maxcnt)
4307 				lv++;
4308 			else {
4309 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4310 				lv = & dtlck->lv[0];
4311 			}
4312 
4313 			lv->offset = si;
4314 			n = 0;
4315 		}
4316 
4317 		n++;
4318 		xsi = si;
4319 		freecnt++;
4320 
4321 		t = &p->slot[si];
4322 		t->cnt = 1;
4323 		si = t->next;
4324 	}
4325 
4326 	/* close current linelock */
4327 	lv->length = n;
4328 	dtlck->index++;
4329 
4330 	*dtlock = dtlck;
4331 
4332 	/* update freelist */
4333 	t->next = p->header.freelist;
4334 	p->header.freelist = fsi;
4335 	p->header.freecnt += freecnt;
4336 
4337 	/* if delete from middle,
4338 	 * shift left the succedding entries in the stbl
4339 	 */
4340 	si = p->header.nextindex;
4341 	if (fi < si - 1)
4342 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4343 
4344 	p->header.nextindex--;
4345 }
4346 
4347 
4348 /*
4349  *	dtTruncateEntry()
4350  *
4351  * function: truncate a (leaf/internal) entry
4352  *
4353  * log freelist header, stbl, and each segment slot of entry
4354  * (even though last/only segment next field is modified,
4355  * physical image logging requires all segment slots of
4356  * the entry logged to avoid applying previous updates
4357  * to the same slots)
4358  */
4359 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4360 {
4361 	int tsi;		/* truncate entry slot index */
4362 	s8 *stbl;
4363 	struct dtslot *t;
4364 	int si, freecnt;
4365 	struct dt_lock *dtlck = *dtlock;
4366 	struct lv *lv;
4367 	int fsi, xsi, n;
4368 
4369 	/* get free entry slot index */
4370 	stbl = DT_GETSTBL(p);
4371 	tsi = stbl[ti];
4372 
4373 	/* open new linelock */
4374 	if (dtlck->index >= dtlck->maxcnt)
4375 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4376 	lv = & dtlck->lv[dtlck->index];
4377 
4378 	lv->offset = tsi;
4379 
4380 	/* get the head/only segment */
4381 	t = &p->slot[tsi];
4382 	ASSERT(p->header.flag & BT_INTERNAL);
4383 	((struct idtentry *) t)->namlen = 0;
4384 	si = ((struct idtentry *) t)->next;
4385 	((struct idtentry *) t)->next = -1;
4386 
4387 	n = 1;
4388 	freecnt = 0;
4389 	fsi = si;
4390 	xsi = tsi;
4391 
4392 	/* find the last/only segment */
4393 	while (si >= 0) {
4394 		/* is next slot contiguous ? */
4395 		if (si != xsi + 1) {
4396 			/* close current linelock */
4397 			lv->length = n;
4398 			dtlck->index++;
4399 
4400 			/* open new linelock */
4401 			if (dtlck->index < dtlck->maxcnt)
4402 				lv++;
4403 			else {
4404 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4405 				lv = & dtlck->lv[0];
4406 			}
4407 
4408 			lv->offset = si;
4409 			n = 0;
4410 		}
4411 
4412 		n++;
4413 		xsi = si;
4414 		freecnt++;
4415 
4416 		t = &p->slot[si];
4417 		t->cnt = 1;
4418 		si = t->next;
4419 	}
4420 
4421 	/* close current linelock */
4422 	lv->length = n;
4423 	dtlck->index++;
4424 
4425 	*dtlock = dtlck;
4426 
4427 	/* update freelist */
4428 	if (freecnt == 0)
4429 		return;
4430 	t->next = p->header.freelist;
4431 	p->header.freelist = fsi;
4432 	p->header.freecnt += freecnt;
4433 }
4434 
4435 
4436 /*
4437  *	dtLinelockFreelist()
4438  */
4439 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4440 			       int m,	/* max slot index */
4441 			       struct dt_lock ** dtlock)
4442 {
4443 	int fsi;		/* free entry slot index */
4444 	struct dtslot *t;
4445 	int si;
4446 	struct dt_lock *dtlck = *dtlock;
4447 	struct lv *lv;
4448 	int xsi, n;
4449 
4450 	/* get free entry slot index */
4451 	fsi = p->header.freelist;
4452 
4453 	/* open new linelock */
4454 	if (dtlck->index >= dtlck->maxcnt)
4455 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4456 	lv = & dtlck->lv[dtlck->index];
4457 
4458 	lv->offset = fsi;
4459 
4460 	n = 1;
4461 	xsi = fsi;
4462 
4463 	t = &p->slot[fsi];
4464 	si = t->next;
4465 
4466 	/* find the last/only segment */
4467 	while (si < m && si >= 0) {
4468 		/* is next slot contiguous ? */
4469 		if (si != xsi + 1) {
4470 			/* close current linelock */
4471 			lv->length = n;
4472 			dtlck->index++;
4473 
4474 			/* open new linelock */
4475 			if (dtlck->index < dtlck->maxcnt)
4476 				lv++;
4477 			else {
4478 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4479 				lv = & dtlck->lv[0];
4480 			}
4481 
4482 			lv->offset = si;
4483 			n = 0;
4484 		}
4485 
4486 		n++;
4487 		xsi = si;
4488 
4489 		t = &p->slot[si];
4490 		si = t->next;
4491 	}
4492 
4493 	/* close current linelock */
4494 	lv->length = n;
4495 	dtlck->index++;
4496 
4497 	*dtlock = dtlck;
4498 }
4499 
4500 
4501 /*
4502  * NAME: dtModify
4503  *
4504  * FUNCTION: Modify the inode number part of a directory entry
4505  *
4506  * PARAMETERS:
4507  *	tid	- Transaction id
4508  *	ip	- Inode of parent directory
4509  *	key	- Name of entry to be modified
4510  *	orig_ino	- Original inode number expected in entry
4511  *	new_ino	- New inode number to put into entry
4512  *	flag	- JFS_RENAME
4513  *
4514  * RETURNS:
4515  *	-ESTALE	- If entry found does not match orig_ino passed in
4516  *	-ENOENT	- If no entry can be found to match key
4517  *	0	- If successfully modified entry
4518  */
4519 int dtModify(tid_t tid, struct inode *ip,
4520 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4521 {
4522 	int rc;
4523 	s64 bn;
4524 	struct metapage *mp;
4525 	dtpage_t *p;
4526 	int index;
4527 	struct btstack btstack;
4528 	struct tlock *tlck;
4529 	struct dt_lock *dtlck;
4530 	struct lv *lv;
4531 	s8 *stbl;
4532 	int entry_si;		/* entry slot index */
4533 	struct ldtentry *entry;
4534 
4535 	/*
4536 	 *	search for the entry to modify:
4537 	 *
4538 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4539 	 */
4540 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4541 		return rc;
4542 
4543 	/* retrieve search result */
4544 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4545 
4546 	BT_MARK_DIRTY(mp, ip);
4547 	/*
4548 	 * acquire a transaction lock on the leaf page of named entry
4549 	 */
4550 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4551 	dtlck = (struct dt_lock *) & tlck->lock;
4552 
4553 	/* get slot index of the entry */
4554 	stbl = DT_GETSTBL(p);
4555 	entry_si = stbl[index];
4556 
4557 	/* linelock entry */
4558 	ASSERT(dtlck->index == 0);
4559 	lv = & dtlck->lv[0];
4560 	lv->offset = entry_si;
4561 	lv->length = 1;
4562 	dtlck->index++;
4563 
4564 	/* get the head/only segment */
4565 	entry = (struct ldtentry *) & p->slot[entry_si];
4566 
4567 	/* substitute the inode number of the entry */
4568 	entry->inumber = cpu_to_le32(new_ino);
4569 
4570 	/* unpin the leaf page */
4571 	DT_PUTPAGE(mp);
4572 
4573 	return 0;
4574 }
4575