1 /* 2 * Copyright (C) International Business Machines Corp., 2000-2004 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 /* 20 * jfs_dtree.c: directory B+-tree manager 21 * 22 * B+-tree with variable length key directory: 23 * 24 * each directory page is structured as an array of 32-byte 25 * directory entry slots initialized as a freelist 26 * to avoid search/compaction of free space at insertion. 27 * when an entry is inserted, a number of slots are allocated 28 * from the freelist as required to store variable length data 29 * of the entry; when the entry is deleted, slots of the entry 30 * are returned to freelist. 31 * 32 * leaf entry stores full name as key and file serial number 33 * (aka inode number) as data. 34 * internal/router entry stores sufffix compressed name 35 * as key and simple extent descriptor as data. 36 * 37 * each directory page maintains a sorted entry index table 38 * which stores the start slot index of sorted entries 39 * to allow binary search on the table. 40 * 41 * directory starts as a root/leaf page in on-disk inode 42 * inline data area. 43 * when it becomes full, it starts a leaf of a external extent 44 * of length of 1 block. each time the first leaf becomes full, 45 * it is extended rather than split (its size is doubled), 46 * until its length becoms 4 KBytes, from then the extent is split 47 * with new 4 Kbyte extent when it becomes full 48 * to reduce external fragmentation of small directories. 49 * 50 * blah, blah, blah, for linear scan of directory in pieces by 51 * readdir(). 52 * 53 * 54 * case-insensitive directory file system 55 * 56 * names are stored in case-sensitive way in leaf entry. 57 * but stored, searched and compared in case-insensitive (uppercase) order 58 * (i.e., both search key and entry key are folded for search/compare): 59 * (note that case-sensitive order is BROKEN in storage, e.g., 60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad 61 * 62 * entries which folds to the same key makes up a equivalent class 63 * whose members are stored as contiguous cluster (may cross page boundary) 64 * but whose order is arbitrary and acts as duplicate, e.g., 65 * abc, Abc, aBc, abC) 66 * 67 * once match is found at leaf, requires scan forward/backward 68 * either for, in case-insensitive search, duplicate 69 * or for, in case-sensitive search, for exact match 70 * 71 * router entry must be created/stored in case-insensitive way 72 * in internal entry: 73 * (right most key of left page and left most key of right page 74 * are folded, and its suffix compression is propagated as router 75 * key in parent) 76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB> 77 * should be made the router key for the split) 78 * 79 * case-insensitive search: 80 * 81 * fold search key; 82 * 83 * case-insensitive search of B-tree: 84 * for internal entry, router key is already folded; 85 * for leaf entry, fold the entry key before comparison. 86 * 87 * if (leaf entry case-insensitive match found) 88 * if (next entry satisfies case-insensitive match) 89 * return EDUPLICATE; 90 * if (prev entry satisfies case-insensitive match) 91 * return EDUPLICATE; 92 * return match; 93 * else 94 * return no match; 95 * 96 * serialization: 97 * target directory inode lock is being held on entry/exit 98 * of all main directory service routines. 99 * 100 * log based recovery: 101 */ 102 103 #include <linux/fs.h> 104 #include <linux/quotaops.h> 105 #include <linux/slab.h> 106 #include "jfs_incore.h" 107 #include "jfs_superblock.h" 108 #include "jfs_filsys.h" 109 #include "jfs_metapage.h" 110 #include "jfs_dmap.h" 111 #include "jfs_unicode.h" 112 #include "jfs_debug.h" 113 114 /* dtree split parameter */ 115 struct dtsplit { 116 struct metapage *mp; 117 s16 index; 118 s16 nslot; 119 struct component_name *key; 120 ddata_t *data; 121 struct pxdlist *pxdlist; 122 }; 123 124 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot) 125 126 /* get page buffer for specified block address */ 127 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \ 128 do { \ 129 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \ 130 if (!(RC)) { \ 131 if (((P)->header.nextindex > \ 132 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \ 133 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) { \ 134 BT_PUTPAGE(MP); \ 135 jfs_error((IP)->i_sb, \ 136 "DT_GETPAGE: dtree page corrupt\n"); \ 137 MP = NULL; \ 138 RC = -EIO; \ 139 } \ 140 } \ 141 } while (0) 142 143 /* for consistency */ 144 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP) 145 146 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \ 147 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot) 148 149 /* 150 * forward references 151 */ 152 static int dtSplitUp(tid_t tid, struct inode *ip, 153 struct dtsplit * split, struct btstack * btstack); 154 155 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split, 156 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp); 157 158 static int dtExtendPage(tid_t tid, struct inode *ip, 159 struct dtsplit * split, struct btstack * btstack); 160 161 static int dtSplitRoot(tid_t tid, struct inode *ip, 162 struct dtsplit * split, struct metapage ** rmpp); 163 164 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp, 165 dtpage_t * fp, struct btstack * btstack); 166 167 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p); 168 169 static int dtReadFirst(struct inode *ip, struct btstack * btstack); 170 171 static int dtReadNext(struct inode *ip, 172 loff_t * offset, struct btstack * btstack); 173 174 static int dtCompare(struct component_name * key, dtpage_t * p, int si); 175 176 static int ciCompare(struct component_name * key, dtpage_t * p, int si, 177 int flag); 178 179 static void dtGetKey(dtpage_t * p, int i, struct component_name * key, 180 int flag); 181 182 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp, 183 int ri, struct component_name * key, int flag); 184 185 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key, 186 ddata_t * data, struct dt_lock **); 187 188 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp, 189 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock, 190 int do_index); 191 192 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock); 193 194 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock); 195 196 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock); 197 198 #define ciToUpper(c) UniStrupr((c)->name) 199 200 /* 201 * read_index_page() 202 * 203 * Reads a page of a directory's index table. 204 * Having metadata mapped into the directory inode's address space 205 * presents a multitude of problems. We avoid this by mapping to 206 * the absolute address space outside of the *_metapage routines 207 */ 208 static struct metapage *read_index_page(struct inode *inode, s64 blkno) 209 { 210 int rc; 211 s64 xaddr; 212 int xflag; 213 s32 xlen; 214 215 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1); 216 if (rc || (xaddr == 0)) 217 return NULL; 218 219 return read_metapage(inode, xaddr, PSIZE, 1); 220 } 221 222 /* 223 * get_index_page() 224 * 225 * Same as get_index_page(), but get's a new page without reading 226 */ 227 static struct metapage *get_index_page(struct inode *inode, s64 blkno) 228 { 229 int rc; 230 s64 xaddr; 231 int xflag; 232 s32 xlen; 233 234 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1); 235 if (rc || (xaddr == 0)) 236 return NULL; 237 238 return get_metapage(inode, xaddr, PSIZE, 1); 239 } 240 241 /* 242 * find_index() 243 * 244 * Returns dtree page containing directory table entry for specified 245 * index and pointer to its entry. 246 * 247 * mp must be released by caller. 248 */ 249 static struct dir_table_slot *find_index(struct inode *ip, u32 index, 250 struct metapage ** mp, s64 *lblock) 251 { 252 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 253 s64 blkno; 254 s64 offset; 255 int page_offset; 256 struct dir_table_slot *slot; 257 static int maxWarnings = 10; 258 259 if (index < 2) { 260 if (maxWarnings) { 261 jfs_warn("find_entry called with index = %d", index); 262 maxWarnings--; 263 } 264 return NULL; 265 } 266 267 if (index >= jfs_ip->next_index) { 268 jfs_warn("find_entry called with index >= next_index"); 269 return NULL; 270 } 271 272 if (jfs_dirtable_inline(ip)) { 273 /* 274 * Inline directory table 275 */ 276 *mp = NULL; 277 slot = &jfs_ip->i_dirtable[index - 2]; 278 } else { 279 offset = (index - 2) * sizeof(struct dir_table_slot); 280 page_offset = offset & (PSIZE - 1); 281 blkno = ((offset + 1) >> L2PSIZE) << 282 JFS_SBI(ip->i_sb)->l2nbperpage; 283 284 if (*mp && (*lblock != blkno)) { 285 release_metapage(*mp); 286 *mp = NULL; 287 } 288 if (!(*mp)) { 289 *lblock = blkno; 290 *mp = read_index_page(ip, blkno); 291 } 292 if (!(*mp)) { 293 jfs_err("free_index: error reading directory table"); 294 return NULL; 295 } 296 297 slot = 298 (struct dir_table_slot *) ((char *) (*mp)->data + 299 page_offset); 300 } 301 return slot; 302 } 303 304 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp, 305 u32 index) 306 { 307 struct tlock *tlck; 308 struct linelock *llck; 309 struct lv *lv; 310 311 tlck = txLock(tid, ip, mp, tlckDATA); 312 llck = (struct linelock *) tlck->lock; 313 314 if (llck->index >= llck->maxcnt) 315 llck = txLinelock(llck); 316 lv = &llck->lv[llck->index]; 317 318 /* 319 * Linelock slot size is twice the size of directory table 320 * slot size. 512 entries per page. 321 */ 322 lv->offset = ((index - 2) & 511) >> 1; 323 lv->length = 1; 324 llck->index++; 325 } 326 327 /* 328 * add_index() 329 * 330 * Adds an entry to the directory index table. This is used to provide 331 * each directory entry with a persistent index in which to resume 332 * directory traversals 333 */ 334 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot) 335 { 336 struct super_block *sb = ip->i_sb; 337 struct jfs_sb_info *sbi = JFS_SBI(sb); 338 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 339 u64 blkno; 340 struct dir_table_slot *dirtab_slot; 341 u32 index; 342 struct linelock *llck; 343 struct lv *lv; 344 struct metapage *mp; 345 s64 offset; 346 uint page_offset; 347 struct tlock *tlck; 348 s64 xaddr; 349 350 ASSERT(DO_INDEX(ip)); 351 352 if (jfs_ip->next_index < 2) { 353 jfs_warn("add_index: next_index = %d. Resetting!", 354 jfs_ip->next_index); 355 jfs_ip->next_index = 2; 356 } 357 358 index = jfs_ip->next_index++; 359 360 if (index <= MAX_INLINE_DIRTABLE_ENTRY) { 361 /* 362 * i_size reflects size of index table, or 8 bytes per entry. 363 */ 364 ip->i_size = (loff_t) (index - 1) << 3; 365 366 /* 367 * dir table fits inline within inode 368 */ 369 dirtab_slot = &jfs_ip->i_dirtable[index-2]; 370 dirtab_slot->flag = DIR_INDEX_VALID; 371 dirtab_slot->slot = slot; 372 DTSaddress(dirtab_slot, bn); 373 374 set_cflag(COMMIT_Dirtable, ip); 375 376 return index; 377 } 378 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) { 379 struct dir_table_slot temp_table[12]; 380 381 /* 382 * It's time to move the inline table to an external 383 * page and begin to build the xtree 384 */ 385 if (dquot_alloc_block(ip, sbi->nbperpage)) 386 goto clean_up; 387 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) { 388 dquot_free_block(ip, sbi->nbperpage); 389 goto clean_up; 390 } 391 392 /* 393 * Save the table, we're going to overwrite it with the 394 * xtree root 395 */ 396 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table)); 397 398 /* 399 * Initialize empty x-tree 400 */ 401 xtInitRoot(tid, ip); 402 403 /* 404 * Add the first block to the xtree 405 */ 406 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) { 407 /* This really shouldn't fail */ 408 jfs_warn("add_index: xtInsert failed!"); 409 memcpy(&jfs_ip->i_dirtable, temp_table, 410 sizeof (temp_table)); 411 dbFree(ip, xaddr, sbi->nbperpage); 412 dquot_free_block(ip, sbi->nbperpage); 413 goto clean_up; 414 } 415 ip->i_size = PSIZE; 416 417 mp = get_index_page(ip, 0); 418 if (!mp) { 419 jfs_err("add_index: get_metapage failed!"); 420 xtTruncate(tid, ip, 0, COMMIT_PWMAP); 421 memcpy(&jfs_ip->i_dirtable, temp_table, 422 sizeof (temp_table)); 423 goto clean_up; 424 } 425 tlck = txLock(tid, ip, mp, tlckDATA); 426 llck = (struct linelock *) & tlck->lock; 427 ASSERT(llck->index == 0); 428 lv = &llck->lv[0]; 429 430 lv->offset = 0; 431 lv->length = 6; /* tlckDATA slot size is 16 bytes */ 432 llck->index++; 433 434 memcpy(mp->data, temp_table, sizeof(temp_table)); 435 436 mark_metapage_dirty(mp); 437 release_metapage(mp); 438 439 /* 440 * Logging is now directed by xtree tlocks 441 */ 442 clear_cflag(COMMIT_Dirtable, ip); 443 } 444 445 offset = (index - 2) * sizeof(struct dir_table_slot); 446 page_offset = offset & (PSIZE - 1); 447 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage; 448 if (page_offset == 0) { 449 /* 450 * This will be the beginning of a new page 451 */ 452 xaddr = 0; 453 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) { 454 jfs_warn("add_index: xtInsert failed!"); 455 goto clean_up; 456 } 457 ip->i_size += PSIZE; 458 459 if ((mp = get_index_page(ip, blkno))) 460 memset(mp->data, 0, PSIZE); /* Just looks better */ 461 else 462 xtTruncate(tid, ip, offset, COMMIT_PWMAP); 463 } else 464 mp = read_index_page(ip, blkno); 465 466 if (!mp) { 467 jfs_err("add_index: get/read_metapage failed!"); 468 goto clean_up; 469 } 470 471 lock_index(tid, ip, mp, index); 472 473 dirtab_slot = 474 (struct dir_table_slot *) ((char *) mp->data + page_offset); 475 dirtab_slot->flag = DIR_INDEX_VALID; 476 dirtab_slot->slot = slot; 477 DTSaddress(dirtab_slot, bn); 478 479 mark_metapage_dirty(mp); 480 release_metapage(mp); 481 482 return index; 483 484 clean_up: 485 486 jfs_ip->next_index--; 487 488 return 0; 489 } 490 491 /* 492 * free_index() 493 * 494 * Marks an entry to the directory index table as free. 495 */ 496 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next) 497 { 498 struct dir_table_slot *dirtab_slot; 499 s64 lblock; 500 struct metapage *mp = NULL; 501 502 dirtab_slot = find_index(ip, index, &mp, &lblock); 503 504 if (!dirtab_slot) 505 return; 506 507 dirtab_slot->flag = DIR_INDEX_FREE; 508 dirtab_slot->slot = dirtab_slot->addr1 = 0; 509 dirtab_slot->addr2 = cpu_to_le32(next); 510 511 if (mp) { 512 lock_index(tid, ip, mp, index); 513 mark_metapage_dirty(mp); 514 release_metapage(mp); 515 } else 516 set_cflag(COMMIT_Dirtable, ip); 517 } 518 519 /* 520 * modify_index() 521 * 522 * Changes an entry in the directory index table 523 */ 524 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn, 525 int slot, struct metapage ** mp, s64 *lblock) 526 { 527 struct dir_table_slot *dirtab_slot; 528 529 dirtab_slot = find_index(ip, index, mp, lblock); 530 531 if (!dirtab_slot) 532 return; 533 534 DTSaddress(dirtab_slot, bn); 535 dirtab_slot->slot = slot; 536 537 if (*mp) { 538 lock_index(tid, ip, *mp, index); 539 mark_metapage_dirty(*mp); 540 } else 541 set_cflag(COMMIT_Dirtable, ip); 542 } 543 544 /* 545 * read_index() 546 * 547 * reads a directory table slot 548 */ 549 static int read_index(struct inode *ip, u32 index, 550 struct dir_table_slot * dirtab_slot) 551 { 552 s64 lblock; 553 struct metapage *mp = NULL; 554 struct dir_table_slot *slot; 555 556 slot = find_index(ip, index, &mp, &lblock); 557 if (!slot) { 558 return -EIO; 559 } 560 561 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot)); 562 563 if (mp) 564 release_metapage(mp); 565 566 return 0; 567 } 568 569 /* 570 * dtSearch() 571 * 572 * function: 573 * Search for the entry with specified key 574 * 575 * parameter: 576 * 577 * return: 0 - search result on stack, leaf page pinned; 578 * errno - I/O error 579 */ 580 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data, 581 struct btstack * btstack, int flag) 582 { 583 int rc = 0; 584 int cmp = 1; /* init for empty page */ 585 s64 bn; 586 struct metapage *mp; 587 dtpage_t *p; 588 s8 *stbl; 589 int base, index, lim; 590 struct btframe *btsp; 591 pxd_t *pxd; 592 int psize = 288; /* initial in-line directory */ 593 ino_t inumber; 594 struct component_name ciKey; 595 struct super_block *sb = ip->i_sb; 596 597 ciKey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), GFP_NOFS); 598 if (!ciKey.name) { 599 rc = -ENOMEM; 600 goto dtSearch_Exit2; 601 } 602 603 604 /* uppercase search key for c-i directory */ 605 UniStrcpy(ciKey.name, key->name); 606 ciKey.namlen = key->namlen; 607 608 /* only uppercase if case-insensitive support is on */ 609 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) { 610 ciToUpper(&ciKey); 611 } 612 BT_CLR(btstack); /* reset stack */ 613 614 /* init level count for max pages to split */ 615 btstack->nsplit = 1; 616 617 /* 618 * search down tree from root: 619 * 620 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of 621 * internal page, child page Pi contains entry with k, Ki <= K < Kj. 622 * 623 * if entry with search key K is not found 624 * internal page search find the entry with largest key Ki 625 * less than K which point to the child page to search; 626 * leaf page search find the entry with smallest key Kj 627 * greater than K so that the returned index is the position of 628 * the entry to be shifted right for insertion of new entry. 629 * for empty tree, search key is greater than any key of the tree. 630 * 631 * by convention, root bn = 0. 632 */ 633 for (bn = 0;;) { 634 /* get/pin the page to search */ 635 DT_GETPAGE(ip, bn, mp, psize, p, rc); 636 if (rc) 637 goto dtSearch_Exit1; 638 639 /* get sorted entry table of the page */ 640 stbl = DT_GETSTBL(p); 641 642 /* 643 * binary search with search key K on the current page. 644 */ 645 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) { 646 index = base + (lim >> 1); 647 648 if (p->header.flag & BT_LEAF) { 649 /* uppercase leaf name to compare */ 650 cmp = 651 ciCompare(&ciKey, p, stbl[index], 652 JFS_SBI(sb)->mntflag); 653 } else { 654 /* router key is in uppercase */ 655 656 cmp = dtCompare(&ciKey, p, stbl[index]); 657 658 659 } 660 if (cmp == 0) { 661 /* 662 * search hit 663 */ 664 /* search hit - leaf page: 665 * return the entry found 666 */ 667 if (p->header.flag & BT_LEAF) { 668 inumber = le32_to_cpu( 669 ((struct ldtentry *) & p->slot[stbl[index]])->inumber); 670 671 /* 672 * search for JFS_LOOKUP 673 */ 674 if (flag == JFS_LOOKUP) { 675 *data = inumber; 676 rc = 0; 677 goto out; 678 } 679 680 /* 681 * search for JFS_CREATE 682 */ 683 if (flag == JFS_CREATE) { 684 *data = inumber; 685 rc = -EEXIST; 686 goto out; 687 } 688 689 /* 690 * search for JFS_REMOVE or JFS_RENAME 691 */ 692 if ((flag == JFS_REMOVE || 693 flag == JFS_RENAME) && 694 *data != inumber) { 695 rc = -ESTALE; 696 goto out; 697 } 698 699 /* 700 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME 701 */ 702 /* save search result */ 703 *data = inumber; 704 btsp = btstack->top; 705 btsp->bn = bn; 706 btsp->index = index; 707 btsp->mp = mp; 708 709 rc = 0; 710 goto dtSearch_Exit1; 711 } 712 713 /* search hit - internal page: 714 * descend/search its child page 715 */ 716 goto getChild; 717 } 718 719 if (cmp > 0) { 720 base = index + 1; 721 --lim; 722 } 723 } 724 725 /* 726 * search miss 727 * 728 * base is the smallest index with key (Kj) greater than 729 * search key (K) and may be zero or (maxindex + 1) index. 730 */ 731 /* 732 * search miss - leaf page 733 * 734 * return location of entry (base) where new entry with 735 * search key K is to be inserted. 736 */ 737 if (p->header.flag & BT_LEAF) { 738 /* 739 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME 740 */ 741 if (flag == JFS_LOOKUP || flag == JFS_REMOVE || 742 flag == JFS_RENAME) { 743 rc = -ENOENT; 744 goto out; 745 } 746 747 /* 748 * search for JFS_CREATE|JFS_FINDDIR: 749 * 750 * save search result 751 */ 752 *data = 0; 753 btsp = btstack->top; 754 btsp->bn = bn; 755 btsp->index = base; 756 btsp->mp = mp; 757 758 rc = 0; 759 goto dtSearch_Exit1; 760 } 761 762 /* 763 * search miss - internal page 764 * 765 * if base is non-zero, decrement base by one to get the parent 766 * entry of the child page to search. 767 */ 768 index = base ? base - 1 : base; 769 770 /* 771 * go down to child page 772 */ 773 getChild: 774 /* update max. number of pages to split */ 775 if (BT_STACK_FULL(btstack)) { 776 /* Something's corrupted, mark filesystem dirty so 777 * chkdsk will fix it. 778 */ 779 jfs_error(sb, "stack overrun!\n"); 780 BT_STACK_DUMP(btstack); 781 rc = -EIO; 782 goto out; 783 } 784 btstack->nsplit++; 785 786 /* push (bn, index) of the parent page/entry */ 787 BT_PUSH(btstack, bn, index); 788 789 /* get the child page block number */ 790 pxd = (pxd_t *) & p->slot[stbl[index]]; 791 bn = addressPXD(pxd); 792 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize; 793 794 /* unpin the parent page */ 795 DT_PUTPAGE(mp); 796 } 797 798 out: 799 DT_PUTPAGE(mp); 800 801 dtSearch_Exit1: 802 803 kfree(ciKey.name); 804 805 dtSearch_Exit2: 806 807 return rc; 808 } 809 810 811 /* 812 * dtInsert() 813 * 814 * function: insert an entry to directory tree 815 * 816 * parameter: 817 * 818 * return: 0 - success; 819 * errno - failure; 820 */ 821 int dtInsert(tid_t tid, struct inode *ip, 822 struct component_name * name, ino_t * fsn, struct btstack * btstack) 823 { 824 int rc = 0; 825 struct metapage *mp; /* meta-page buffer */ 826 dtpage_t *p; /* base B+-tree index page */ 827 s64 bn; 828 int index; 829 struct dtsplit split; /* split information */ 830 ddata_t data; 831 struct dt_lock *dtlck; 832 int n; 833 struct tlock *tlck; 834 struct lv *lv; 835 836 /* 837 * retrieve search result 838 * 839 * dtSearch() returns (leaf page pinned, index at which to insert). 840 * n.b. dtSearch() may return index of (maxindex + 1) of 841 * the full page. 842 */ 843 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index); 844 845 /* 846 * insert entry for new key 847 */ 848 if (DO_INDEX(ip)) { 849 if (JFS_IP(ip)->next_index == DIREND) { 850 DT_PUTPAGE(mp); 851 return -EMLINK; 852 } 853 n = NDTLEAF(name->namlen); 854 data.leaf.tid = tid; 855 data.leaf.ip = ip; 856 } else { 857 n = NDTLEAF_LEGACY(name->namlen); 858 data.leaf.ip = NULL; /* signifies legacy directory format */ 859 } 860 data.leaf.ino = *fsn; 861 862 /* 863 * leaf page does not have enough room for new entry: 864 * 865 * extend/split the leaf page; 866 * 867 * dtSplitUp() will insert the entry and unpin the leaf page. 868 */ 869 if (n > p->header.freecnt) { 870 split.mp = mp; 871 split.index = index; 872 split.nslot = n; 873 split.key = name; 874 split.data = &data; 875 rc = dtSplitUp(tid, ip, &split, btstack); 876 return rc; 877 } 878 879 /* 880 * leaf page does have enough room for new entry: 881 * 882 * insert the new data entry into the leaf page; 883 */ 884 BT_MARK_DIRTY(mp, ip); 885 /* 886 * acquire a transaction lock on the leaf page 887 */ 888 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 889 dtlck = (struct dt_lock *) & tlck->lock; 890 ASSERT(dtlck->index == 0); 891 lv = & dtlck->lv[0]; 892 893 /* linelock header */ 894 lv->offset = 0; 895 lv->length = 1; 896 dtlck->index++; 897 898 dtInsertEntry(p, index, name, &data, &dtlck); 899 900 /* linelock stbl of non-root leaf page */ 901 if (!(p->header.flag & BT_ROOT)) { 902 if (dtlck->index >= dtlck->maxcnt) 903 dtlck = (struct dt_lock *) txLinelock(dtlck); 904 lv = & dtlck->lv[dtlck->index]; 905 n = index >> L2DTSLOTSIZE; 906 lv->offset = p->header.stblindex + n; 907 lv->length = 908 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1; 909 dtlck->index++; 910 } 911 912 /* unpin the leaf page */ 913 DT_PUTPAGE(mp); 914 915 return 0; 916 } 917 918 919 /* 920 * dtSplitUp() 921 * 922 * function: propagate insertion bottom up; 923 * 924 * parameter: 925 * 926 * return: 0 - success; 927 * errno - failure; 928 * leaf page unpinned; 929 */ 930 static int dtSplitUp(tid_t tid, 931 struct inode *ip, struct dtsplit * split, struct btstack * btstack) 932 { 933 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb); 934 int rc = 0; 935 struct metapage *smp; 936 dtpage_t *sp; /* split page */ 937 struct metapage *rmp; 938 dtpage_t *rp; /* new right page split from sp */ 939 pxd_t rpxd; /* new right page extent descriptor */ 940 struct metapage *lmp; 941 dtpage_t *lp; /* left child page */ 942 int skip; /* index of entry of insertion */ 943 struct btframe *parent; /* parent page entry on traverse stack */ 944 s64 xaddr, nxaddr; 945 int xlen, xsize; 946 struct pxdlist pxdlist; 947 pxd_t *pxd; 948 struct component_name key = { 0, NULL }; 949 ddata_t *data = split->data; 950 int n; 951 struct dt_lock *dtlck; 952 struct tlock *tlck; 953 struct lv *lv; 954 int quota_allocation = 0; 955 956 /* get split page */ 957 smp = split->mp; 958 sp = DT_PAGE(ip, smp); 959 960 key.name = kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t), GFP_NOFS); 961 if (!key.name) { 962 DT_PUTPAGE(smp); 963 rc = -ENOMEM; 964 goto dtSplitUp_Exit; 965 } 966 967 /* 968 * split leaf page 969 * 970 * The split routines insert the new entry, and 971 * acquire txLock as appropriate. 972 */ 973 /* 974 * split root leaf page: 975 */ 976 if (sp->header.flag & BT_ROOT) { 977 /* 978 * allocate a single extent child page 979 */ 980 xlen = 1; 981 n = sbi->bsize >> L2DTSLOTSIZE; 982 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */ 983 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */ 984 if (n <= split->nslot) 985 xlen++; 986 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) { 987 DT_PUTPAGE(smp); 988 goto freeKeyName; 989 } 990 991 pxdlist.maxnpxd = 1; 992 pxdlist.npxd = 0; 993 pxd = &pxdlist.pxd[0]; 994 PXDaddress(pxd, xaddr); 995 PXDlength(pxd, xlen); 996 split->pxdlist = &pxdlist; 997 rc = dtSplitRoot(tid, ip, split, &rmp); 998 999 if (rc) 1000 dbFree(ip, xaddr, xlen); 1001 else 1002 DT_PUTPAGE(rmp); 1003 1004 DT_PUTPAGE(smp); 1005 1006 if (!DO_INDEX(ip)) 1007 ip->i_size = xlen << sbi->l2bsize; 1008 1009 goto freeKeyName; 1010 } 1011 1012 /* 1013 * extend first leaf page 1014 * 1015 * extend the 1st extent if less than buffer page size 1016 * (dtExtendPage() reurns leaf page unpinned) 1017 */ 1018 pxd = &sp->header.self; 1019 xlen = lengthPXD(pxd); 1020 xsize = xlen << sbi->l2bsize; 1021 if (xsize < PSIZE) { 1022 xaddr = addressPXD(pxd); 1023 n = xsize >> L2DTSLOTSIZE; 1024 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */ 1025 if ((n + sp->header.freecnt) <= split->nslot) 1026 n = xlen + (xlen << 1); 1027 else 1028 n = xlen; 1029 1030 /* Allocate blocks to quota. */ 1031 rc = dquot_alloc_block(ip, n); 1032 if (rc) 1033 goto extendOut; 1034 quota_allocation += n; 1035 1036 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen, 1037 (s64) n, &nxaddr))) 1038 goto extendOut; 1039 1040 pxdlist.maxnpxd = 1; 1041 pxdlist.npxd = 0; 1042 pxd = &pxdlist.pxd[0]; 1043 PXDaddress(pxd, nxaddr) 1044 PXDlength(pxd, xlen + n); 1045 split->pxdlist = &pxdlist; 1046 if ((rc = dtExtendPage(tid, ip, split, btstack))) { 1047 nxaddr = addressPXD(pxd); 1048 if (xaddr != nxaddr) { 1049 /* free relocated extent */ 1050 xlen = lengthPXD(pxd); 1051 dbFree(ip, nxaddr, (s64) xlen); 1052 } else { 1053 /* free extended delta */ 1054 xlen = lengthPXD(pxd) - n; 1055 xaddr = addressPXD(pxd) + xlen; 1056 dbFree(ip, xaddr, (s64) n); 1057 } 1058 } else if (!DO_INDEX(ip)) 1059 ip->i_size = lengthPXD(pxd) << sbi->l2bsize; 1060 1061 1062 extendOut: 1063 DT_PUTPAGE(smp); 1064 goto freeKeyName; 1065 } 1066 1067 /* 1068 * split leaf page <sp> into <sp> and a new right page <rp>. 1069 * 1070 * return <rp> pinned and its extent descriptor <rpxd> 1071 */ 1072 /* 1073 * allocate new directory page extent and 1074 * new index page(s) to cover page split(s) 1075 * 1076 * allocation hint: ? 1077 */ 1078 n = btstack->nsplit; 1079 pxdlist.maxnpxd = pxdlist.npxd = 0; 1080 xlen = sbi->nbperpage; 1081 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) { 1082 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) { 1083 PXDaddress(pxd, xaddr); 1084 PXDlength(pxd, xlen); 1085 pxdlist.maxnpxd++; 1086 continue; 1087 } 1088 1089 DT_PUTPAGE(smp); 1090 1091 /* undo allocation */ 1092 goto splitOut; 1093 } 1094 1095 split->pxdlist = &pxdlist; 1096 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) { 1097 DT_PUTPAGE(smp); 1098 1099 /* undo allocation */ 1100 goto splitOut; 1101 } 1102 1103 if (!DO_INDEX(ip)) 1104 ip->i_size += PSIZE; 1105 1106 /* 1107 * propagate up the router entry for the leaf page just split 1108 * 1109 * insert a router entry for the new page into the parent page, 1110 * propagate the insert/split up the tree by walking back the stack 1111 * of (bn of parent page, index of child page entry in parent page) 1112 * that were traversed during the search for the page that split. 1113 * 1114 * the propagation of insert/split up the tree stops if the root 1115 * splits or the page inserted into doesn't have to split to hold 1116 * the new entry. 1117 * 1118 * the parent entry for the split page remains the same, and 1119 * a new entry is inserted at its right with the first key and 1120 * block number of the new right page. 1121 * 1122 * There are a maximum of 4 pages pinned at any time: 1123 * two children, left parent and right parent (when the parent splits). 1124 * keep the child pages pinned while working on the parent. 1125 * make sure that all pins are released at exit. 1126 */ 1127 while ((parent = BT_POP(btstack)) != NULL) { 1128 /* parent page specified by stack frame <parent> */ 1129 1130 /* keep current child pages (<lp>, <rp>) pinned */ 1131 lmp = smp; 1132 lp = sp; 1133 1134 /* 1135 * insert router entry in parent for new right child page <rp> 1136 */ 1137 /* get the parent page <sp> */ 1138 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc); 1139 if (rc) { 1140 DT_PUTPAGE(lmp); 1141 DT_PUTPAGE(rmp); 1142 goto splitOut; 1143 } 1144 1145 /* 1146 * The new key entry goes ONE AFTER the index of parent entry, 1147 * because the split was to the right. 1148 */ 1149 skip = parent->index + 1; 1150 1151 /* 1152 * compute the key for the router entry 1153 * 1154 * key suffix compression: 1155 * for internal pages that have leaf pages as children, 1156 * retain only what's needed to distinguish between 1157 * the new entry and the entry on the page to its left. 1158 * If the keys compare equal, retain the entire key. 1159 * 1160 * note that compression is performed only at computing 1161 * router key at the lowest internal level. 1162 * further compression of the key between pairs of higher 1163 * level internal pages loses too much information and 1164 * the search may fail. 1165 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,} 1166 * results in two adjacent parent entries (a)(xx). 1167 * if split occurs between these two entries, and 1168 * if compression is applied, the router key of parent entry 1169 * of right page (x) will divert search for x into right 1170 * subtree and miss x in the left subtree.) 1171 * 1172 * the entire key must be retained for the next-to-leftmost 1173 * internal key at any level of the tree, or search may fail 1174 * (e.g., ?) 1175 */ 1176 switch (rp->header.flag & BT_TYPE) { 1177 case BT_LEAF: 1178 /* 1179 * compute the length of prefix for suffix compression 1180 * between last entry of left page and first entry 1181 * of right page 1182 */ 1183 if ((sp->header.flag & BT_ROOT && skip > 1) || 1184 sp->header.prev != 0 || skip > 1) { 1185 /* compute uppercase router prefix key */ 1186 rc = ciGetLeafPrefixKey(lp, 1187 lp->header.nextindex-1, 1188 rp, 0, &key, 1189 sbi->mntflag); 1190 if (rc) { 1191 DT_PUTPAGE(lmp); 1192 DT_PUTPAGE(rmp); 1193 DT_PUTPAGE(smp); 1194 goto splitOut; 1195 } 1196 } else { 1197 /* next to leftmost entry of 1198 lowest internal level */ 1199 1200 /* compute uppercase router key */ 1201 dtGetKey(rp, 0, &key, sbi->mntflag); 1202 key.name[key.namlen] = 0; 1203 1204 if ((sbi->mntflag & JFS_OS2) == JFS_OS2) 1205 ciToUpper(&key); 1206 } 1207 1208 n = NDTINTERNAL(key.namlen); 1209 break; 1210 1211 case BT_INTERNAL: 1212 dtGetKey(rp, 0, &key, sbi->mntflag); 1213 n = NDTINTERNAL(key.namlen); 1214 break; 1215 1216 default: 1217 jfs_err("dtSplitUp(): UFO!"); 1218 break; 1219 } 1220 1221 /* unpin left child page */ 1222 DT_PUTPAGE(lmp); 1223 1224 /* 1225 * compute the data for the router entry 1226 */ 1227 data->xd = rpxd; /* child page xd */ 1228 1229 /* 1230 * parent page is full - split the parent page 1231 */ 1232 if (n > sp->header.freecnt) { 1233 /* init for parent page split */ 1234 split->mp = smp; 1235 split->index = skip; /* index at insert */ 1236 split->nslot = n; 1237 split->key = &key; 1238 /* split->data = data; */ 1239 1240 /* unpin right child page */ 1241 DT_PUTPAGE(rmp); 1242 1243 /* The split routines insert the new entry, 1244 * acquire txLock as appropriate. 1245 * return <rp> pinned and its block number <rbn>. 1246 */ 1247 rc = (sp->header.flag & BT_ROOT) ? 1248 dtSplitRoot(tid, ip, split, &rmp) : 1249 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd); 1250 if (rc) { 1251 DT_PUTPAGE(smp); 1252 goto splitOut; 1253 } 1254 1255 /* smp and rmp are pinned */ 1256 } 1257 /* 1258 * parent page is not full - insert router entry in parent page 1259 */ 1260 else { 1261 BT_MARK_DIRTY(smp, ip); 1262 /* 1263 * acquire a transaction lock on the parent page 1264 */ 1265 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY); 1266 dtlck = (struct dt_lock *) & tlck->lock; 1267 ASSERT(dtlck->index == 0); 1268 lv = & dtlck->lv[0]; 1269 1270 /* linelock header */ 1271 lv->offset = 0; 1272 lv->length = 1; 1273 dtlck->index++; 1274 1275 /* linelock stbl of non-root parent page */ 1276 if (!(sp->header.flag & BT_ROOT)) { 1277 lv++; 1278 n = skip >> L2DTSLOTSIZE; 1279 lv->offset = sp->header.stblindex + n; 1280 lv->length = 1281 ((sp->header.nextindex - 1282 1) >> L2DTSLOTSIZE) - n + 1; 1283 dtlck->index++; 1284 } 1285 1286 dtInsertEntry(sp, skip, &key, data, &dtlck); 1287 1288 /* exit propagate up */ 1289 break; 1290 } 1291 } 1292 1293 /* unpin current split and its right page */ 1294 DT_PUTPAGE(smp); 1295 DT_PUTPAGE(rmp); 1296 1297 /* 1298 * free remaining extents allocated for split 1299 */ 1300 splitOut: 1301 n = pxdlist.npxd; 1302 pxd = &pxdlist.pxd[n]; 1303 for (; n < pxdlist.maxnpxd; n++, pxd++) 1304 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd)); 1305 1306 freeKeyName: 1307 kfree(key.name); 1308 1309 /* Rollback quota allocation */ 1310 if (rc && quota_allocation) 1311 dquot_free_block(ip, quota_allocation); 1312 1313 dtSplitUp_Exit: 1314 1315 return rc; 1316 } 1317 1318 1319 /* 1320 * dtSplitPage() 1321 * 1322 * function: Split a non-root page of a btree. 1323 * 1324 * parameter: 1325 * 1326 * return: 0 - success; 1327 * errno - failure; 1328 * return split and new page pinned; 1329 */ 1330 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split, 1331 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp) 1332 { 1333 int rc = 0; 1334 struct metapage *smp; 1335 dtpage_t *sp; 1336 struct metapage *rmp; 1337 dtpage_t *rp; /* new right page allocated */ 1338 s64 rbn; /* new right page block number */ 1339 struct metapage *mp; 1340 dtpage_t *p; 1341 s64 nextbn; 1342 struct pxdlist *pxdlist; 1343 pxd_t *pxd; 1344 int skip, nextindex, half, left, nxt, off, si; 1345 struct ldtentry *ldtentry; 1346 struct idtentry *idtentry; 1347 u8 *stbl; 1348 struct dtslot *f; 1349 int fsi, stblsize; 1350 int n; 1351 struct dt_lock *sdtlck, *rdtlck; 1352 struct tlock *tlck; 1353 struct dt_lock *dtlck; 1354 struct lv *slv, *rlv, *lv; 1355 1356 /* get split page */ 1357 smp = split->mp; 1358 sp = DT_PAGE(ip, smp); 1359 1360 /* 1361 * allocate the new right page for the split 1362 */ 1363 pxdlist = split->pxdlist; 1364 pxd = &pxdlist->pxd[pxdlist->npxd]; 1365 pxdlist->npxd++; 1366 rbn = addressPXD(pxd); 1367 rmp = get_metapage(ip, rbn, PSIZE, 1); 1368 if (rmp == NULL) 1369 return -EIO; 1370 1371 /* Allocate blocks to quota. */ 1372 rc = dquot_alloc_block(ip, lengthPXD(pxd)); 1373 if (rc) { 1374 release_metapage(rmp); 1375 return rc; 1376 } 1377 1378 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp); 1379 1380 BT_MARK_DIRTY(rmp, ip); 1381 /* 1382 * acquire a transaction lock on the new right page 1383 */ 1384 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW); 1385 rdtlck = (struct dt_lock *) & tlck->lock; 1386 1387 rp = (dtpage_t *) rmp->data; 1388 *rpp = rp; 1389 rp->header.self = *pxd; 1390 1391 BT_MARK_DIRTY(smp, ip); 1392 /* 1393 * acquire a transaction lock on the split page 1394 * 1395 * action: 1396 */ 1397 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY); 1398 sdtlck = (struct dt_lock *) & tlck->lock; 1399 1400 /* linelock header of split page */ 1401 ASSERT(sdtlck->index == 0); 1402 slv = & sdtlck->lv[0]; 1403 slv->offset = 0; 1404 slv->length = 1; 1405 sdtlck->index++; 1406 1407 /* 1408 * initialize/update sibling pointers between sp and rp 1409 */ 1410 nextbn = le64_to_cpu(sp->header.next); 1411 rp->header.next = cpu_to_le64(nextbn); 1412 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self)); 1413 sp->header.next = cpu_to_le64(rbn); 1414 1415 /* 1416 * initialize new right page 1417 */ 1418 rp->header.flag = sp->header.flag; 1419 1420 /* compute sorted entry table at start of extent data area */ 1421 rp->header.nextindex = 0; 1422 rp->header.stblindex = 1; 1423 1424 n = PSIZE >> L2DTSLOTSIZE; 1425 rp->header.maxslot = n; 1426 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */ 1427 1428 /* init freelist */ 1429 fsi = rp->header.stblindex + stblsize; 1430 rp->header.freelist = fsi; 1431 rp->header.freecnt = rp->header.maxslot - fsi; 1432 1433 /* 1434 * sequential append at tail: append without split 1435 * 1436 * If splitting the last page on a level because of appending 1437 * a entry to it (skip is maxentry), it's likely that the access is 1438 * sequential. Adding an empty page on the side of the level is less 1439 * work and can push the fill factor much higher than normal. 1440 * If we're wrong it's no big deal, we'll just do the split the right 1441 * way next time. 1442 * (It may look like it's equally easy to do a similar hack for 1443 * reverse sorted data, that is, split the tree left, 1444 * but it's not. Be my guest.) 1445 */ 1446 if (nextbn == 0 && split->index == sp->header.nextindex) { 1447 /* linelock header + stbl (first slot) of new page */ 1448 rlv = & rdtlck->lv[rdtlck->index]; 1449 rlv->offset = 0; 1450 rlv->length = 2; 1451 rdtlck->index++; 1452 1453 /* 1454 * initialize freelist of new right page 1455 */ 1456 f = &rp->slot[fsi]; 1457 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1458 f->next = fsi; 1459 f->next = -1; 1460 1461 /* insert entry at the first entry of the new right page */ 1462 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck); 1463 1464 goto out; 1465 } 1466 1467 /* 1468 * non-sequential insert (at possibly middle page) 1469 */ 1470 1471 /* 1472 * update prev pointer of previous right sibling page; 1473 */ 1474 if (nextbn != 0) { 1475 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc); 1476 if (rc) { 1477 discard_metapage(rmp); 1478 return rc; 1479 } 1480 1481 BT_MARK_DIRTY(mp, ip); 1482 /* 1483 * acquire a transaction lock on the next page 1484 */ 1485 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 1486 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p", 1487 tlck, ip, mp); 1488 dtlck = (struct dt_lock *) & tlck->lock; 1489 1490 /* linelock header of previous right sibling page */ 1491 lv = & dtlck->lv[dtlck->index]; 1492 lv->offset = 0; 1493 lv->length = 1; 1494 dtlck->index++; 1495 1496 p->header.prev = cpu_to_le64(rbn); 1497 1498 DT_PUTPAGE(mp); 1499 } 1500 1501 /* 1502 * split the data between the split and right pages. 1503 */ 1504 skip = split->index; 1505 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */ 1506 left = 0; 1507 1508 /* 1509 * compute fill factor for split pages 1510 * 1511 * <nxt> traces the next entry to move to rp 1512 * <off> traces the next entry to stay in sp 1513 */ 1514 stbl = (u8 *) & sp->slot[sp->header.stblindex]; 1515 nextindex = sp->header.nextindex; 1516 for (nxt = off = 0; nxt < nextindex; ++off) { 1517 if (off == skip) 1518 /* check for fill factor with new entry size */ 1519 n = split->nslot; 1520 else { 1521 si = stbl[nxt]; 1522 switch (sp->header.flag & BT_TYPE) { 1523 case BT_LEAF: 1524 ldtentry = (struct ldtentry *) & sp->slot[si]; 1525 if (DO_INDEX(ip)) 1526 n = NDTLEAF(ldtentry->namlen); 1527 else 1528 n = NDTLEAF_LEGACY(ldtentry-> 1529 namlen); 1530 break; 1531 1532 case BT_INTERNAL: 1533 idtentry = (struct idtentry *) & sp->slot[si]; 1534 n = NDTINTERNAL(idtentry->namlen); 1535 break; 1536 1537 default: 1538 break; 1539 } 1540 1541 ++nxt; /* advance to next entry to move in sp */ 1542 } 1543 1544 left += n; 1545 if (left >= half) 1546 break; 1547 } 1548 1549 /* <nxt> poins to the 1st entry to move */ 1550 1551 /* 1552 * move entries to right page 1553 * 1554 * dtMoveEntry() initializes rp and reserves entry for insertion 1555 * 1556 * split page moved out entries are linelocked; 1557 * new/right page moved in entries are linelocked; 1558 */ 1559 /* linelock header + stbl of new right page */ 1560 rlv = & rdtlck->lv[rdtlck->index]; 1561 rlv->offset = 0; 1562 rlv->length = 5; 1563 rdtlck->index++; 1564 1565 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip)); 1566 1567 sp->header.nextindex = nxt; 1568 1569 /* 1570 * finalize freelist of new right page 1571 */ 1572 fsi = rp->header.freelist; 1573 f = &rp->slot[fsi]; 1574 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1575 f->next = fsi; 1576 f->next = -1; 1577 1578 /* 1579 * Update directory index table for entries now in right page 1580 */ 1581 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) { 1582 s64 lblock; 1583 1584 mp = NULL; 1585 stbl = DT_GETSTBL(rp); 1586 for (n = 0; n < rp->header.nextindex; n++) { 1587 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]]; 1588 modify_index(tid, ip, le32_to_cpu(ldtentry->index), 1589 rbn, n, &mp, &lblock); 1590 } 1591 if (mp) 1592 release_metapage(mp); 1593 } 1594 1595 /* 1596 * the skipped index was on the left page, 1597 */ 1598 if (skip <= off) { 1599 /* insert the new entry in the split page */ 1600 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck); 1601 1602 /* linelock stbl of split page */ 1603 if (sdtlck->index >= sdtlck->maxcnt) 1604 sdtlck = (struct dt_lock *) txLinelock(sdtlck); 1605 slv = & sdtlck->lv[sdtlck->index]; 1606 n = skip >> L2DTSLOTSIZE; 1607 slv->offset = sp->header.stblindex + n; 1608 slv->length = 1609 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1; 1610 sdtlck->index++; 1611 } 1612 /* 1613 * the skipped index was on the right page, 1614 */ 1615 else { 1616 /* adjust the skip index to reflect the new position */ 1617 skip -= nxt; 1618 1619 /* insert the new entry in the right page */ 1620 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck); 1621 } 1622 1623 out: 1624 *rmpp = rmp; 1625 *rpxdp = *pxd; 1626 1627 return rc; 1628 } 1629 1630 1631 /* 1632 * dtExtendPage() 1633 * 1634 * function: extend 1st/only directory leaf page 1635 * 1636 * parameter: 1637 * 1638 * return: 0 - success; 1639 * errno - failure; 1640 * return extended page pinned; 1641 */ 1642 static int dtExtendPage(tid_t tid, 1643 struct inode *ip, struct dtsplit * split, struct btstack * btstack) 1644 { 1645 struct super_block *sb = ip->i_sb; 1646 int rc; 1647 struct metapage *smp, *pmp, *mp; 1648 dtpage_t *sp, *pp; 1649 struct pxdlist *pxdlist; 1650 pxd_t *pxd, *tpxd; 1651 int xlen, xsize; 1652 int newstblindex, newstblsize; 1653 int oldstblindex, oldstblsize; 1654 int fsi, last; 1655 struct dtslot *f; 1656 struct btframe *parent; 1657 int n; 1658 struct dt_lock *dtlck; 1659 s64 xaddr, txaddr; 1660 struct tlock *tlck; 1661 struct pxd_lock *pxdlock; 1662 struct lv *lv; 1663 uint type; 1664 struct ldtentry *ldtentry; 1665 u8 *stbl; 1666 1667 /* get page to extend */ 1668 smp = split->mp; 1669 sp = DT_PAGE(ip, smp); 1670 1671 /* get parent/root page */ 1672 parent = BT_POP(btstack); 1673 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc); 1674 if (rc) 1675 return (rc); 1676 1677 /* 1678 * extend the extent 1679 */ 1680 pxdlist = split->pxdlist; 1681 pxd = &pxdlist->pxd[pxdlist->npxd]; 1682 pxdlist->npxd++; 1683 1684 xaddr = addressPXD(pxd); 1685 tpxd = &sp->header.self; 1686 txaddr = addressPXD(tpxd); 1687 /* in-place extension */ 1688 if (xaddr == txaddr) { 1689 type = tlckEXTEND; 1690 } 1691 /* relocation */ 1692 else { 1693 type = tlckNEW; 1694 1695 /* save moved extent descriptor for later free */ 1696 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE); 1697 pxdlock = (struct pxd_lock *) & tlck->lock; 1698 pxdlock->flag = mlckFREEPXD; 1699 pxdlock->pxd = sp->header.self; 1700 pxdlock->index = 1; 1701 1702 /* 1703 * Update directory index table to reflect new page address 1704 */ 1705 if (DO_INDEX(ip)) { 1706 s64 lblock; 1707 1708 mp = NULL; 1709 stbl = DT_GETSTBL(sp); 1710 for (n = 0; n < sp->header.nextindex; n++) { 1711 ldtentry = 1712 (struct ldtentry *) & sp->slot[stbl[n]]; 1713 modify_index(tid, ip, 1714 le32_to_cpu(ldtentry->index), 1715 xaddr, n, &mp, &lblock); 1716 } 1717 if (mp) 1718 release_metapage(mp); 1719 } 1720 } 1721 1722 /* 1723 * extend the page 1724 */ 1725 sp->header.self = *pxd; 1726 1727 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp); 1728 1729 BT_MARK_DIRTY(smp, ip); 1730 /* 1731 * acquire a transaction lock on the extended/leaf page 1732 */ 1733 tlck = txLock(tid, ip, smp, tlckDTREE | type); 1734 dtlck = (struct dt_lock *) & tlck->lock; 1735 lv = & dtlck->lv[0]; 1736 1737 /* update buffer extent descriptor of extended page */ 1738 xlen = lengthPXD(pxd); 1739 xsize = xlen << JFS_SBI(sb)->l2bsize; 1740 1741 /* 1742 * copy old stbl to new stbl at start of extended area 1743 */ 1744 oldstblindex = sp->header.stblindex; 1745 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE; 1746 newstblindex = sp->header.maxslot; 1747 n = xsize >> L2DTSLOTSIZE; 1748 newstblsize = (n + 31) >> L2DTSLOTSIZE; 1749 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex], 1750 sp->header.nextindex); 1751 1752 /* 1753 * in-line extension: linelock old area of extended page 1754 */ 1755 if (type == tlckEXTEND) { 1756 /* linelock header */ 1757 lv->offset = 0; 1758 lv->length = 1; 1759 dtlck->index++; 1760 lv++; 1761 1762 /* linelock new stbl of extended page */ 1763 lv->offset = newstblindex; 1764 lv->length = newstblsize; 1765 } 1766 /* 1767 * relocation: linelock whole relocated area 1768 */ 1769 else { 1770 lv->offset = 0; 1771 lv->length = sp->header.maxslot + newstblsize; 1772 } 1773 1774 dtlck->index++; 1775 1776 sp->header.maxslot = n; 1777 sp->header.stblindex = newstblindex; 1778 /* sp->header.nextindex remains the same */ 1779 1780 /* 1781 * add old stbl region at head of freelist 1782 */ 1783 fsi = oldstblindex; 1784 f = &sp->slot[fsi]; 1785 last = sp->header.freelist; 1786 for (n = 0; n < oldstblsize; n++, fsi++, f++) { 1787 f->next = last; 1788 last = fsi; 1789 } 1790 sp->header.freelist = last; 1791 sp->header.freecnt += oldstblsize; 1792 1793 /* 1794 * append free region of newly extended area at tail of freelist 1795 */ 1796 /* init free region of newly extended area */ 1797 fsi = n = newstblindex + newstblsize; 1798 f = &sp->slot[fsi]; 1799 for (fsi++; fsi < sp->header.maxslot; f++, fsi++) 1800 f->next = fsi; 1801 f->next = -1; 1802 1803 /* append new free region at tail of old freelist */ 1804 fsi = sp->header.freelist; 1805 if (fsi == -1) 1806 sp->header.freelist = n; 1807 else { 1808 do { 1809 f = &sp->slot[fsi]; 1810 fsi = f->next; 1811 } while (fsi != -1); 1812 1813 f->next = n; 1814 } 1815 1816 sp->header.freecnt += sp->header.maxslot - n; 1817 1818 /* 1819 * insert the new entry 1820 */ 1821 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck); 1822 1823 BT_MARK_DIRTY(pmp, ip); 1824 /* 1825 * linelock any freeslots residing in old extent 1826 */ 1827 if (type == tlckEXTEND) { 1828 n = sp->header.maxslot >> 2; 1829 if (sp->header.freelist < n) 1830 dtLinelockFreelist(sp, n, &dtlck); 1831 } 1832 1833 /* 1834 * update parent entry on the parent/root page 1835 */ 1836 /* 1837 * acquire a transaction lock on the parent/root page 1838 */ 1839 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY); 1840 dtlck = (struct dt_lock *) & tlck->lock; 1841 lv = & dtlck->lv[dtlck->index]; 1842 1843 /* linelock parent entry - 1st slot */ 1844 lv->offset = 1; 1845 lv->length = 1; 1846 dtlck->index++; 1847 1848 /* update the parent pxd for page extension */ 1849 tpxd = (pxd_t *) & pp->slot[1]; 1850 *tpxd = *pxd; 1851 1852 DT_PUTPAGE(pmp); 1853 return 0; 1854 } 1855 1856 1857 /* 1858 * dtSplitRoot() 1859 * 1860 * function: 1861 * split the full root page into 1862 * original/root/split page and new right page 1863 * i.e., root remains fixed in tree anchor (inode) and 1864 * the root is copied to a single new right child page 1865 * since root page << non-root page, and 1866 * the split root page contains a single entry for the 1867 * new right child page. 1868 * 1869 * parameter: 1870 * 1871 * return: 0 - success; 1872 * errno - failure; 1873 * return new page pinned; 1874 */ 1875 static int dtSplitRoot(tid_t tid, 1876 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp) 1877 { 1878 struct super_block *sb = ip->i_sb; 1879 struct metapage *smp; 1880 dtroot_t *sp; 1881 struct metapage *rmp; 1882 dtpage_t *rp; 1883 s64 rbn; 1884 int xlen; 1885 int xsize; 1886 struct dtslot *f; 1887 s8 *stbl; 1888 int fsi, stblsize, n; 1889 struct idtentry *s; 1890 pxd_t *ppxd; 1891 struct pxdlist *pxdlist; 1892 pxd_t *pxd; 1893 struct dt_lock *dtlck; 1894 struct tlock *tlck; 1895 struct lv *lv; 1896 int rc; 1897 1898 /* get split root page */ 1899 smp = split->mp; 1900 sp = &JFS_IP(ip)->i_dtroot; 1901 1902 /* 1903 * allocate/initialize a single (right) child page 1904 * 1905 * N.B. at first split, a one (or two) block to fit new entry 1906 * is allocated; at subsequent split, a full page is allocated; 1907 */ 1908 pxdlist = split->pxdlist; 1909 pxd = &pxdlist->pxd[pxdlist->npxd]; 1910 pxdlist->npxd++; 1911 rbn = addressPXD(pxd); 1912 xlen = lengthPXD(pxd); 1913 xsize = xlen << JFS_SBI(sb)->l2bsize; 1914 rmp = get_metapage(ip, rbn, xsize, 1); 1915 if (!rmp) 1916 return -EIO; 1917 1918 rp = rmp->data; 1919 1920 /* Allocate blocks to quota. */ 1921 rc = dquot_alloc_block(ip, lengthPXD(pxd)); 1922 if (rc) { 1923 release_metapage(rmp); 1924 return rc; 1925 } 1926 1927 BT_MARK_DIRTY(rmp, ip); 1928 /* 1929 * acquire a transaction lock on the new right page 1930 */ 1931 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW); 1932 dtlck = (struct dt_lock *) & tlck->lock; 1933 1934 rp->header.flag = 1935 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL; 1936 rp->header.self = *pxd; 1937 1938 /* initialize sibling pointers */ 1939 rp->header.next = 0; 1940 rp->header.prev = 0; 1941 1942 /* 1943 * move in-line root page into new right page extent 1944 */ 1945 /* linelock header + copied entries + new stbl (1st slot) in new page */ 1946 ASSERT(dtlck->index == 0); 1947 lv = & dtlck->lv[0]; 1948 lv->offset = 0; 1949 lv->length = 10; /* 1 + 8 + 1 */ 1950 dtlck->index++; 1951 1952 n = xsize >> L2DTSLOTSIZE; 1953 rp->header.maxslot = n; 1954 stblsize = (n + 31) >> L2DTSLOTSIZE; 1955 1956 /* copy old stbl to new stbl at start of extended area */ 1957 rp->header.stblindex = DTROOTMAXSLOT; 1958 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT]; 1959 memcpy(stbl, sp->header.stbl, sp->header.nextindex); 1960 rp->header.nextindex = sp->header.nextindex; 1961 1962 /* copy old data area to start of new data area */ 1963 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE); 1964 1965 /* 1966 * append free region of newly extended area at tail of freelist 1967 */ 1968 /* init free region of newly extended area */ 1969 fsi = n = DTROOTMAXSLOT + stblsize; 1970 f = &rp->slot[fsi]; 1971 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1972 f->next = fsi; 1973 f->next = -1; 1974 1975 /* append new free region at tail of old freelist */ 1976 fsi = sp->header.freelist; 1977 if (fsi == -1) 1978 rp->header.freelist = n; 1979 else { 1980 rp->header.freelist = fsi; 1981 1982 do { 1983 f = &rp->slot[fsi]; 1984 fsi = f->next; 1985 } while (fsi != -1); 1986 1987 f->next = n; 1988 } 1989 1990 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n; 1991 1992 /* 1993 * Update directory index table for entries now in right page 1994 */ 1995 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) { 1996 s64 lblock; 1997 struct metapage *mp = NULL; 1998 struct ldtentry *ldtentry; 1999 2000 stbl = DT_GETSTBL(rp); 2001 for (n = 0; n < rp->header.nextindex; n++) { 2002 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]]; 2003 modify_index(tid, ip, le32_to_cpu(ldtentry->index), 2004 rbn, n, &mp, &lblock); 2005 } 2006 if (mp) 2007 release_metapage(mp); 2008 } 2009 /* 2010 * insert the new entry into the new right/child page 2011 * (skip index in the new right page will not change) 2012 */ 2013 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck); 2014 2015 /* 2016 * reset parent/root page 2017 * 2018 * set the 1st entry offset to 0, which force the left-most key 2019 * at any level of the tree to be less than any search key. 2020 * 2021 * The btree comparison code guarantees that the left-most key on any 2022 * level of the tree is never used, so it doesn't need to be filled in. 2023 */ 2024 BT_MARK_DIRTY(smp, ip); 2025 /* 2026 * acquire a transaction lock on the root page (in-memory inode) 2027 */ 2028 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT); 2029 dtlck = (struct dt_lock *) & tlck->lock; 2030 2031 /* linelock root */ 2032 ASSERT(dtlck->index == 0); 2033 lv = & dtlck->lv[0]; 2034 lv->offset = 0; 2035 lv->length = DTROOTMAXSLOT; 2036 dtlck->index++; 2037 2038 /* update page header of root */ 2039 if (sp->header.flag & BT_LEAF) { 2040 sp->header.flag &= ~BT_LEAF; 2041 sp->header.flag |= BT_INTERNAL; 2042 } 2043 2044 /* init the first entry */ 2045 s = (struct idtentry *) & sp->slot[DTENTRYSTART]; 2046 ppxd = (pxd_t *) s; 2047 *ppxd = *pxd; 2048 s->next = -1; 2049 s->namlen = 0; 2050 2051 stbl = sp->header.stbl; 2052 stbl[0] = DTENTRYSTART; 2053 sp->header.nextindex = 1; 2054 2055 /* init freelist */ 2056 fsi = DTENTRYSTART + 1; 2057 f = &sp->slot[fsi]; 2058 2059 /* init free region of remaining area */ 2060 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++) 2061 f->next = fsi; 2062 f->next = -1; 2063 2064 sp->header.freelist = DTENTRYSTART + 1; 2065 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1); 2066 2067 *rmpp = rmp; 2068 2069 return 0; 2070 } 2071 2072 2073 /* 2074 * dtDelete() 2075 * 2076 * function: delete the entry(s) referenced by a key. 2077 * 2078 * parameter: 2079 * 2080 * return: 2081 */ 2082 int dtDelete(tid_t tid, 2083 struct inode *ip, struct component_name * key, ino_t * ino, int flag) 2084 { 2085 int rc = 0; 2086 s64 bn; 2087 struct metapage *mp, *imp; 2088 dtpage_t *p; 2089 int index; 2090 struct btstack btstack; 2091 struct dt_lock *dtlck; 2092 struct tlock *tlck; 2093 struct lv *lv; 2094 int i; 2095 struct ldtentry *ldtentry; 2096 u8 *stbl; 2097 u32 table_index, next_index; 2098 struct metapage *nmp; 2099 dtpage_t *np; 2100 2101 /* 2102 * search for the entry to delete: 2103 * 2104 * dtSearch() returns (leaf page pinned, index at which to delete). 2105 */ 2106 if ((rc = dtSearch(ip, key, ino, &btstack, flag))) 2107 return rc; 2108 2109 /* retrieve search result */ 2110 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 2111 2112 /* 2113 * We need to find put the index of the next entry into the 2114 * directory index table in order to resume a readdir from this 2115 * entry. 2116 */ 2117 if (DO_INDEX(ip)) { 2118 stbl = DT_GETSTBL(p); 2119 ldtentry = (struct ldtentry *) & p->slot[stbl[index]]; 2120 table_index = le32_to_cpu(ldtentry->index); 2121 if (index == (p->header.nextindex - 1)) { 2122 /* 2123 * Last entry in this leaf page 2124 */ 2125 if ((p->header.flag & BT_ROOT) 2126 || (p->header.next == 0)) 2127 next_index = -1; 2128 else { 2129 /* Read next leaf page */ 2130 DT_GETPAGE(ip, le64_to_cpu(p->header.next), 2131 nmp, PSIZE, np, rc); 2132 if (rc) 2133 next_index = -1; 2134 else { 2135 stbl = DT_GETSTBL(np); 2136 ldtentry = 2137 (struct ldtentry *) & np-> 2138 slot[stbl[0]]; 2139 next_index = 2140 le32_to_cpu(ldtentry->index); 2141 DT_PUTPAGE(nmp); 2142 } 2143 } 2144 } else { 2145 ldtentry = 2146 (struct ldtentry *) & p->slot[stbl[index + 1]]; 2147 next_index = le32_to_cpu(ldtentry->index); 2148 } 2149 free_index(tid, ip, table_index, next_index); 2150 } 2151 /* 2152 * the leaf page becomes empty, delete the page 2153 */ 2154 if (p->header.nextindex == 1) { 2155 /* delete empty page */ 2156 rc = dtDeleteUp(tid, ip, mp, p, &btstack); 2157 } 2158 /* 2159 * the leaf page has other entries remaining: 2160 * 2161 * delete the entry from the leaf page. 2162 */ 2163 else { 2164 BT_MARK_DIRTY(mp, ip); 2165 /* 2166 * acquire a transaction lock on the leaf page 2167 */ 2168 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 2169 dtlck = (struct dt_lock *) & tlck->lock; 2170 2171 /* 2172 * Do not assume that dtlck->index will be zero. During a 2173 * rename within a directory, this transaction may have 2174 * modified this page already when adding the new entry. 2175 */ 2176 2177 /* linelock header */ 2178 if (dtlck->index >= dtlck->maxcnt) 2179 dtlck = (struct dt_lock *) txLinelock(dtlck); 2180 lv = & dtlck->lv[dtlck->index]; 2181 lv->offset = 0; 2182 lv->length = 1; 2183 dtlck->index++; 2184 2185 /* linelock stbl of non-root leaf page */ 2186 if (!(p->header.flag & BT_ROOT)) { 2187 if (dtlck->index >= dtlck->maxcnt) 2188 dtlck = (struct dt_lock *) txLinelock(dtlck); 2189 lv = & dtlck->lv[dtlck->index]; 2190 i = index >> L2DTSLOTSIZE; 2191 lv->offset = p->header.stblindex + i; 2192 lv->length = 2193 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - 2194 i + 1; 2195 dtlck->index++; 2196 } 2197 2198 /* free the leaf entry */ 2199 dtDeleteEntry(p, index, &dtlck); 2200 2201 /* 2202 * Update directory index table for entries moved in stbl 2203 */ 2204 if (DO_INDEX(ip) && index < p->header.nextindex) { 2205 s64 lblock; 2206 2207 imp = NULL; 2208 stbl = DT_GETSTBL(p); 2209 for (i = index; i < p->header.nextindex; i++) { 2210 ldtentry = 2211 (struct ldtentry *) & p->slot[stbl[i]]; 2212 modify_index(tid, ip, 2213 le32_to_cpu(ldtentry->index), 2214 bn, i, &imp, &lblock); 2215 } 2216 if (imp) 2217 release_metapage(imp); 2218 } 2219 2220 DT_PUTPAGE(mp); 2221 } 2222 2223 return rc; 2224 } 2225 2226 2227 /* 2228 * dtDeleteUp() 2229 * 2230 * function: 2231 * free empty pages as propagating deletion up the tree 2232 * 2233 * parameter: 2234 * 2235 * return: 2236 */ 2237 static int dtDeleteUp(tid_t tid, struct inode *ip, 2238 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack) 2239 { 2240 int rc = 0; 2241 struct metapage *mp; 2242 dtpage_t *p; 2243 int index, nextindex; 2244 int xlen; 2245 struct btframe *parent; 2246 struct dt_lock *dtlck; 2247 struct tlock *tlck; 2248 struct lv *lv; 2249 struct pxd_lock *pxdlock; 2250 int i; 2251 2252 /* 2253 * keep the root leaf page which has become empty 2254 */ 2255 if (BT_IS_ROOT(fmp)) { 2256 /* 2257 * reset the root 2258 * 2259 * dtInitRoot() acquires txlock on the root 2260 */ 2261 dtInitRoot(tid, ip, PARENT(ip)); 2262 2263 DT_PUTPAGE(fmp); 2264 2265 return 0; 2266 } 2267 2268 /* 2269 * free the non-root leaf page 2270 */ 2271 /* 2272 * acquire a transaction lock on the page 2273 * 2274 * write FREEXTENT|NOREDOPAGE log record 2275 * N.B. linelock is overlaid as freed extent descriptor, and 2276 * the buffer page is freed; 2277 */ 2278 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE); 2279 pxdlock = (struct pxd_lock *) & tlck->lock; 2280 pxdlock->flag = mlckFREEPXD; 2281 pxdlock->pxd = fp->header.self; 2282 pxdlock->index = 1; 2283 2284 /* update sibling pointers */ 2285 if ((rc = dtRelink(tid, ip, fp))) { 2286 BT_PUTPAGE(fmp); 2287 return rc; 2288 } 2289 2290 xlen = lengthPXD(&fp->header.self); 2291 2292 /* Free quota allocation. */ 2293 dquot_free_block(ip, xlen); 2294 2295 /* free/invalidate its buffer page */ 2296 discard_metapage(fmp); 2297 2298 /* 2299 * propagate page deletion up the directory tree 2300 * 2301 * If the delete from the parent page makes it empty, 2302 * continue all the way up the tree. 2303 * stop if the root page is reached (which is never deleted) or 2304 * if the entry deletion does not empty the page. 2305 */ 2306 while ((parent = BT_POP(btstack)) != NULL) { 2307 /* pin the parent page <sp> */ 2308 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc); 2309 if (rc) 2310 return rc; 2311 2312 /* 2313 * free the extent of the child page deleted 2314 */ 2315 index = parent->index; 2316 2317 /* 2318 * delete the entry for the child page from parent 2319 */ 2320 nextindex = p->header.nextindex; 2321 2322 /* 2323 * the parent has the single entry being deleted: 2324 * 2325 * free the parent page which has become empty. 2326 */ 2327 if (nextindex == 1) { 2328 /* 2329 * keep the root internal page which has become empty 2330 */ 2331 if (p->header.flag & BT_ROOT) { 2332 /* 2333 * reset the root 2334 * 2335 * dtInitRoot() acquires txlock on the root 2336 */ 2337 dtInitRoot(tid, ip, PARENT(ip)); 2338 2339 DT_PUTPAGE(mp); 2340 2341 return 0; 2342 } 2343 /* 2344 * free the parent page 2345 */ 2346 else { 2347 /* 2348 * acquire a transaction lock on the page 2349 * 2350 * write FREEXTENT|NOREDOPAGE log record 2351 */ 2352 tlck = 2353 txMaplock(tid, ip, 2354 tlckDTREE | tlckFREE); 2355 pxdlock = (struct pxd_lock *) & tlck->lock; 2356 pxdlock->flag = mlckFREEPXD; 2357 pxdlock->pxd = p->header.self; 2358 pxdlock->index = 1; 2359 2360 /* update sibling pointers */ 2361 if ((rc = dtRelink(tid, ip, p))) { 2362 DT_PUTPAGE(mp); 2363 return rc; 2364 } 2365 2366 xlen = lengthPXD(&p->header.self); 2367 2368 /* Free quota allocation */ 2369 dquot_free_block(ip, xlen); 2370 2371 /* free/invalidate its buffer page */ 2372 discard_metapage(mp); 2373 2374 /* propagate up */ 2375 continue; 2376 } 2377 } 2378 2379 /* 2380 * the parent has other entries remaining: 2381 * 2382 * delete the router entry from the parent page. 2383 */ 2384 BT_MARK_DIRTY(mp, ip); 2385 /* 2386 * acquire a transaction lock on the page 2387 * 2388 * action: router entry deletion 2389 */ 2390 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 2391 dtlck = (struct dt_lock *) & tlck->lock; 2392 2393 /* linelock header */ 2394 if (dtlck->index >= dtlck->maxcnt) 2395 dtlck = (struct dt_lock *) txLinelock(dtlck); 2396 lv = & dtlck->lv[dtlck->index]; 2397 lv->offset = 0; 2398 lv->length = 1; 2399 dtlck->index++; 2400 2401 /* linelock stbl of non-root leaf page */ 2402 if (!(p->header.flag & BT_ROOT)) { 2403 if (dtlck->index < dtlck->maxcnt) 2404 lv++; 2405 else { 2406 dtlck = (struct dt_lock *) txLinelock(dtlck); 2407 lv = & dtlck->lv[0]; 2408 } 2409 i = index >> L2DTSLOTSIZE; 2410 lv->offset = p->header.stblindex + i; 2411 lv->length = 2412 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - 2413 i + 1; 2414 dtlck->index++; 2415 } 2416 2417 /* free the router entry */ 2418 dtDeleteEntry(p, index, &dtlck); 2419 2420 /* reset key of new leftmost entry of level (for consistency) */ 2421 if (index == 0 && 2422 ((p->header.flag & BT_ROOT) || p->header.prev == 0)) 2423 dtTruncateEntry(p, 0, &dtlck); 2424 2425 /* unpin the parent page */ 2426 DT_PUTPAGE(mp); 2427 2428 /* exit propagation up */ 2429 break; 2430 } 2431 2432 if (!DO_INDEX(ip)) 2433 ip->i_size -= PSIZE; 2434 2435 return 0; 2436 } 2437 2438 #ifdef _NOTYET 2439 /* 2440 * NAME: dtRelocate() 2441 * 2442 * FUNCTION: relocate dtpage (internal or leaf) of directory; 2443 * This function is mainly used by defragfs utility. 2444 */ 2445 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd, 2446 s64 nxaddr) 2447 { 2448 int rc = 0; 2449 struct metapage *mp, *pmp, *lmp, *rmp; 2450 dtpage_t *p, *pp, *rp = 0, *lp= 0; 2451 s64 bn; 2452 int index; 2453 struct btstack btstack; 2454 pxd_t *pxd; 2455 s64 oxaddr, nextbn, prevbn; 2456 int xlen, xsize; 2457 struct tlock *tlck; 2458 struct dt_lock *dtlck; 2459 struct pxd_lock *pxdlock; 2460 s8 *stbl; 2461 struct lv *lv; 2462 2463 oxaddr = addressPXD(opxd); 2464 xlen = lengthPXD(opxd); 2465 2466 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d", 2467 (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr, 2468 xlen); 2469 2470 /* 2471 * 1. get the internal parent dtpage covering 2472 * router entry for the tartget page to be relocated; 2473 */ 2474 rc = dtSearchNode(ip, lmxaddr, opxd, &btstack); 2475 if (rc) 2476 return rc; 2477 2478 /* retrieve search result */ 2479 DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index); 2480 jfs_info("dtRelocate: parent router entry validated."); 2481 2482 /* 2483 * 2. relocate the target dtpage 2484 */ 2485 /* read in the target page from src extent */ 2486 DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc); 2487 if (rc) { 2488 /* release the pinned parent page */ 2489 DT_PUTPAGE(pmp); 2490 return rc; 2491 } 2492 2493 /* 2494 * read in sibling pages if any to update sibling pointers; 2495 */ 2496 rmp = NULL; 2497 if (p->header.next) { 2498 nextbn = le64_to_cpu(p->header.next); 2499 DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc); 2500 if (rc) { 2501 DT_PUTPAGE(mp); 2502 DT_PUTPAGE(pmp); 2503 return (rc); 2504 } 2505 } 2506 2507 lmp = NULL; 2508 if (p->header.prev) { 2509 prevbn = le64_to_cpu(p->header.prev); 2510 DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc); 2511 if (rc) { 2512 DT_PUTPAGE(mp); 2513 DT_PUTPAGE(pmp); 2514 if (rmp) 2515 DT_PUTPAGE(rmp); 2516 return (rc); 2517 } 2518 } 2519 2520 /* at this point, all xtpages to be updated are in memory */ 2521 2522 /* 2523 * update sibling pointers of sibling dtpages if any; 2524 */ 2525 if (lmp) { 2526 tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK); 2527 dtlck = (struct dt_lock *) & tlck->lock; 2528 /* linelock header */ 2529 ASSERT(dtlck->index == 0); 2530 lv = & dtlck->lv[0]; 2531 lv->offset = 0; 2532 lv->length = 1; 2533 dtlck->index++; 2534 2535 lp->header.next = cpu_to_le64(nxaddr); 2536 DT_PUTPAGE(lmp); 2537 } 2538 2539 if (rmp) { 2540 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK); 2541 dtlck = (struct dt_lock *) & tlck->lock; 2542 /* linelock header */ 2543 ASSERT(dtlck->index == 0); 2544 lv = & dtlck->lv[0]; 2545 lv->offset = 0; 2546 lv->length = 1; 2547 dtlck->index++; 2548 2549 rp->header.prev = cpu_to_le64(nxaddr); 2550 DT_PUTPAGE(rmp); 2551 } 2552 2553 /* 2554 * update the target dtpage to be relocated 2555 * 2556 * write LOG_REDOPAGE of LOG_NEW type for dst page 2557 * for the whole target page (logredo() will apply 2558 * after image and update bmap for allocation of the 2559 * dst extent), and update bmap for allocation of 2560 * the dst extent; 2561 */ 2562 tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW); 2563 dtlck = (struct dt_lock *) & tlck->lock; 2564 /* linelock header */ 2565 ASSERT(dtlck->index == 0); 2566 lv = & dtlck->lv[0]; 2567 2568 /* update the self address in the dtpage header */ 2569 pxd = &p->header.self; 2570 PXDaddress(pxd, nxaddr); 2571 2572 /* the dst page is the same as the src page, i.e., 2573 * linelock for afterimage of the whole page; 2574 */ 2575 lv->offset = 0; 2576 lv->length = p->header.maxslot; 2577 dtlck->index++; 2578 2579 /* update the buffer extent descriptor of the dtpage */ 2580 xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize; 2581 2582 /* unpin the relocated page */ 2583 DT_PUTPAGE(mp); 2584 jfs_info("dtRelocate: target dtpage relocated."); 2585 2586 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec 2587 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec 2588 * will also force a bmap update ). 2589 */ 2590 2591 /* 2592 * 3. acquire maplock for the source extent to be freed; 2593 */ 2594 /* for dtpage relocation, write a LOG_NOREDOPAGE record 2595 * for the source dtpage (logredo() will init NoRedoPage 2596 * filter and will also update bmap for free of the source 2597 * dtpage), and upadte bmap for free of the source dtpage; 2598 */ 2599 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE); 2600 pxdlock = (struct pxd_lock *) & tlck->lock; 2601 pxdlock->flag = mlckFREEPXD; 2602 PXDaddress(&pxdlock->pxd, oxaddr); 2603 PXDlength(&pxdlock->pxd, xlen); 2604 pxdlock->index = 1; 2605 2606 /* 2607 * 4. update the parent router entry for relocation; 2608 * 2609 * acquire tlck for the parent entry covering the target dtpage; 2610 * write LOG_REDOPAGE to apply after image only; 2611 */ 2612 jfs_info("dtRelocate: update parent router entry."); 2613 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY); 2614 dtlck = (struct dt_lock *) & tlck->lock; 2615 lv = & dtlck->lv[dtlck->index]; 2616 2617 /* update the PXD with the new address */ 2618 stbl = DT_GETSTBL(pp); 2619 pxd = (pxd_t *) & pp->slot[stbl[index]]; 2620 PXDaddress(pxd, nxaddr); 2621 lv->offset = stbl[index]; 2622 lv->length = 1; 2623 dtlck->index++; 2624 2625 /* unpin the parent dtpage */ 2626 DT_PUTPAGE(pmp); 2627 2628 return rc; 2629 } 2630 2631 /* 2632 * NAME: dtSearchNode() 2633 * 2634 * FUNCTION: Search for an dtpage containing a specified address 2635 * This function is mainly used by defragfs utility. 2636 * 2637 * NOTE: Search result on stack, the found page is pinned at exit. 2638 * The result page must be an internal dtpage. 2639 * lmxaddr give the address of the left most page of the 2640 * dtree level, in which the required dtpage resides. 2641 */ 2642 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd, 2643 struct btstack * btstack) 2644 { 2645 int rc = 0; 2646 s64 bn; 2647 struct metapage *mp; 2648 dtpage_t *p; 2649 int psize = 288; /* initial in-line directory */ 2650 s8 *stbl; 2651 int i; 2652 pxd_t *pxd; 2653 struct btframe *btsp; 2654 2655 BT_CLR(btstack); /* reset stack */ 2656 2657 /* 2658 * descend tree to the level with specified leftmost page 2659 * 2660 * by convention, root bn = 0. 2661 */ 2662 for (bn = 0;;) { 2663 /* get/pin the page to search */ 2664 DT_GETPAGE(ip, bn, mp, psize, p, rc); 2665 if (rc) 2666 return rc; 2667 2668 /* does the xaddr of leftmost page of the levevl 2669 * matches levevl search key ? 2670 */ 2671 if (p->header.flag & BT_ROOT) { 2672 if (lmxaddr == 0) 2673 break; 2674 } else if (addressPXD(&p->header.self) == lmxaddr) 2675 break; 2676 2677 /* 2678 * descend down to leftmost child page 2679 */ 2680 if (p->header.flag & BT_LEAF) { 2681 DT_PUTPAGE(mp); 2682 return -ESTALE; 2683 } 2684 2685 /* get the leftmost entry */ 2686 stbl = DT_GETSTBL(p); 2687 pxd = (pxd_t *) & p->slot[stbl[0]]; 2688 2689 /* get the child page block address */ 2690 bn = addressPXD(pxd); 2691 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize; 2692 /* unpin the parent page */ 2693 DT_PUTPAGE(mp); 2694 } 2695 2696 /* 2697 * search each page at the current levevl 2698 */ 2699 loop: 2700 stbl = DT_GETSTBL(p); 2701 for (i = 0; i < p->header.nextindex; i++) { 2702 pxd = (pxd_t *) & p->slot[stbl[i]]; 2703 2704 /* found the specified router entry */ 2705 if (addressPXD(pxd) == addressPXD(kpxd) && 2706 lengthPXD(pxd) == lengthPXD(kpxd)) { 2707 btsp = btstack->top; 2708 btsp->bn = bn; 2709 btsp->index = i; 2710 btsp->mp = mp; 2711 2712 return 0; 2713 } 2714 } 2715 2716 /* get the right sibling page if any */ 2717 if (p->header.next) 2718 bn = le64_to_cpu(p->header.next); 2719 else { 2720 DT_PUTPAGE(mp); 2721 return -ESTALE; 2722 } 2723 2724 /* unpin current page */ 2725 DT_PUTPAGE(mp); 2726 2727 /* get the right sibling page */ 2728 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 2729 if (rc) 2730 return rc; 2731 2732 goto loop; 2733 } 2734 #endif /* _NOTYET */ 2735 2736 /* 2737 * dtRelink() 2738 * 2739 * function: 2740 * link around a freed page. 2741 * 2742 * parameter: 2743 * fp: page to be freed 2744 * 2745 * return: 2746 */ 2747 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p) 2748 { 2749 int rc; 2750 struct metapage *mp; 2751 s64 nextbn, prevbn; 2752 struct tlock *tlck; 2753 struct dt_lock *dtlck; 2754 struct lv *lv; 2755 2756 nextbn = le64_to_cpu(p->header.next); 2757 prevbn = le64_to_cpu(p->header.prev); 2758 2759 /* update prev pointer of the next page */ 2760 if (nextbn != 0) { 2761 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc); 2762 if (rc) 2763 return rc; 2764 2765 BT_MARK_DIRTY(mp, ip); 2766 /* 2767 * acquire a transaction lock on the next page 2768 * 2769 * action: update prev pointer; 2770 */ 2771 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 2772 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p", 2773 tlck, ip, mp); 2774 dtlck = (struct dt_lock *) & tlck->lock; 2775 2776 /* linelock header */ 2777 if (dtlck->index >= dtlck->maxcnt) 2778 dtlck = (struct dt_lock *) txLinelock(dtlck); 2779 lv = & dtlck->lv[dtlck->index]; 2780 lv->offset = 0; 2781 lv->length = 1; 2782 dtlck->index++; 2783 2784 p->header.prev = cpu_to_le64(prevbn); 2785 DT_PUTPAGE(mp); 2786 } 2787 2788 /* update next pointer of the previous page */ 2789 if (prevbn != 0) { 2790 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc); 2791 if (rc) 2792 return rc; 2793 2794 BT_MARK_DIRTY(mp, ip); 2795 /* 2796 * acquire a transaction lock on the prev page 2797 * 2798 * action: update next pointer; 2799 */ 2800 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 2801 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p", 2802 tlck, ip, mp); 2803 dtlck = (struct dt_lock *) & tlck->lock; 2804 2805 /* linelock header */ 2806 if (dtlck->index >= dtlck->maxcnt) 2807 dtlck = (struct dt_lock *) txLinelock(dtlck); 2808 lv = & dtlck->lv[dtlck->index]; 2809 lv->offset = 0; 2810 lv->length = 1; 2811 dtlck->index++; 2812 2813 p->header.next = cpu_to_le64(nextbn); 2814 DT_PUTPAGE(mp); 2815 } 2816 2817 return 0; 2818 } 2819 2820 2821 /* 2822 * dtInitRoot() 2823 * 2824 * initialize directory root (inline in inode) 2825 */ 2826 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot) 2827 { 2828 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 2829 dtroot_t *p; 2830 int fsi; 2831 struct dtslot *f; 2832 struct tlock *tlck; 2833 struct dt_lock *dtlck; 2834 struct lv *lv; 2835 u16 xflag_save; 2836 2837 /* 2838 * If this was previously an non-empty directory, we need to remove 2839 * the old directory table. 2840 */ 2841 if (DO_INDEX(ip)) { 2842 if (!jfs_dirtable_inline(ip)) { 2843 struct tblock *tblk = tid_to_tblock(tid); 2844 /* 2845 * We're playing games with the tid's xflag. If 2846 * we're removing a regular file, the file's xtree 2847 * is committed with COMMIT_PMAP, but we always 2848 * commit the directories xtree with COMMIT_PWMAP. 2849 */ 2850 xflag_save = tblk->xflag; 2851 tblk->xflag = 0; 2852 /* 2853 * xtTruncate isn't guaranteed to fully truncate 2854 * the xtree. The caller needs to check i_size 2855 * after committing the transaction to see if 2856 * additional truncation is needed. The 2857 * COMMIT_Stale flag tells caller that we 2858 * initiated the truncation. 2859 */ 2860 xtTruncate(tid, ip, 0, COMMIT_PWMAP); 2861 set_cflag(COMMIT_Stale, ip); 2862 2863 tblk->xflag = xflag_save; 2864 } else 2865 ip->i_size = 1; 2866 2867 jfs_ip->next_index = 2; 2868 } else 2869 ip->i_size = IDATASIZE; 2870 2871 /* 2872 * acquire a transaction lock on the root 2873 * 2874 * action: directory initialization; 2875 */ 2876 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag, 2877 tlckDTREE | tlckENTRY | tlckBTROOT); 2878 dtlck = (struct dt_lock *) & tlck->lock; 2879 2880 /* linelock root */ 2881 ASSERT(dtlck->index == 0); 2882 lv = & dtlck->lv[0]; 2883 lv->offset = 0; 2884 lv->length = DTROOTMAXSLOT; 2885 dtlck->index++; 2886 2887 p = &jfs_ip->i_dtroot; 2888 2889 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF; 2890 2891 p->header.nextindex = 0; 2892 2893 /* init freelist */ 2894 fsi = 1; 2895 f = &p->slot[fsi]; 2896 2897 /* init data area of root */ 2898 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++) 2899 f->next = fsi; 2900 f->next = -1; 2901 2902 p->header.freelist = 1; 2903 p->header.freecnt = 8; 2904 2905 /* init '..' entry */ 2906 p->header.idotdot = cpu_to_le32(idotdot); 2907 2908 return; 2909 } 2910 2911 /* 2912 * add_missing_indices() 2913 * 2914 * function: Fix dtree page in which one or more entries has an invalid index. 2915 * fsck.jfs should really fix this, but it currently does not. 2916 * Called from jfs_readdir when bad index is detected. 2917 */ 2918 static void add_missing_indices(struct inode *inode, s64 bn) 2919 { 2920 struct ldtentry *d; 2921 struct dt_lock *dtlck; 2922 int i; 2923 uint index; 2924 struct lv *lv; 2925 struct metapage *mp; 2926 dtpage_t *p; 2927 int rc; 2928 s8 *stbl; 2929 tid_t tid; 2930 struct tlock *tlck; 2931 2932 tid = txBegin(inode->i_sb, 0); 2933 2934 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc); 2935 2936 if (rc) { 2937 printk(KERN_ERR "DT_GETPAGE failed!\n"); 2938 goto end; 2939 } 2940 BT_MARK_DIRTY(mp, inode); 2941 2942 ASSERT(p->header.flag & BT_LEAF); 2943 2944 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY); 2945 if (BT_IS_ROOT(mp)) 2946 tlck->type |= tlckBTROOT; 2947 2948 dtlck = (struct dt_lock *) &tlck->lock; 2949 2950 stbl = DT_GETSTBL(p); 2951 for (i = 0; i < p->header.nextindex; i++) { 2952 d = (struct ldtentry *) &p->slot[stbl[i]]; 2953 index = le32_to_cpu(d->index); 2954 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) { 2955 d->index = cpu_to_le32(add_index(tid, inode, bn, i)); 2956 if (dtlck->index >= dtlck->maxcnt) 2957 dtlck = (struct dt_lock *) txLinelock(dtlck); 2958 lv = &dtlck->lv[dtlck->index]; 2959 lv->offset = stbl[i]; 2960 lv->length = 1; 2961 dtlck->index++; 2962 } 2963 } 2964 2965 DT_PUTPAGE(mp); 2966 (void) txCommit(tid, 1, &inode, 0); 2967 end: 2968 txEnd(tid); 2969 } 2970 2971 /* 2972 * Buffer to hold directory entry info while traversing a dtree page 2973 * before being fed to the filldir function 2974 */ 2975 struct jfs_dirent { 2976 loff_t position; 2977 int ino; 2978 u16 name_len; 2979 char name[0]; 2980 }; 2981 2982 /* 2983 * function to determine next variable-sized jfs_dirent in buffer 2984 */ 2985 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent) 2986 { 2987 return (struct jfs_dirent *) 2988 ((char *)dirent + 2989 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 + 2990 sizeof (loff_t) - 1) & 2991 ~(sizeof (loff_t) - 1))); 2992 } 2993 2994 /* 2995 * jfs_readdir() 2996 * 2997 * function: read directory entries sequentially 2998 * from the specified entry offset 2999 * 3000 * parameter: 3001 * 3002 * return: offset = (pn, index) of start entry 3003 * of next jfs_readdir()/dtRead() 3004 */ 3005 int jfs_readdir(struct file *file, struct dir_context *ctx) 3006 { 3007 struct inode *ip = file_inode(file); 3008 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab; 3009 int rc = 0; 3010 loff_t dtpos; /* legacy OS/2 style position */ 3011 struct dtoffset { 3012 s16 pn; 3013 s16 index; 3014 s32 unused; 3015 } *dtoffset = (struct dtoffset *) &dtpos; 3016 s64 bn; 3017 struct metapage *mp; 3018 dtpage_t *p; 3019 int index; 3020 s8 *stbl; 3021 struct btstack btstack; 3022 int i, next; 3023 struct ldtentry *d; 3024 struct dtslot *t; 3025 int d_namleft, len, outlen; 3026 unsigned long dirent_buf; 3027 char *name_ptr; 3028 u32 dir_index; 3029 int do_index = 0; 3030 uint loop_count = 0; 3031 struct jfs_dirent *jfs_dirent; 3032 int jfs_dirents; 3033 int overflow, fix_page, page_fixed = 0; 3034 static int unique_pos = 2; /* If we can't fix broken index */ 3035 3036 if (ctx->pos == DIREND) 3037 return 0; 3038 3039 if (DO_INDEX(ip)) { 3040 /* 3041 * persistent index is stored in directory entries. 3042 * Special cases: 0 = . 3043 * 1 = .. 3044 * -1 = End of directory 3045 */ 3046 do_index = 1; 3047 3048 dir_index = (u32) ctx->pos; 3049 3050 /* 3051 * NFSv4 reserves cookies 1 and 2 for . and .. so the value 3052 * we return to the vfs is one greater than the one we use 3053 * internally. 3054 */ 3055 if (dir_index) 3056 dir_index--; 3057 3058 if (dir_index > 1) { 3059 struct dir_table_slot dirtab_slot; 3060 3061 if (dtEmpty(ip) || 3062 (dir_index >= JFS_IP(ip)->next_index)) { 3063 /* Stale position. Directory has shrunk */ 3064 ctx->pos = DIREND; 3065 return 0; 3066 } 3067 repeat: 3068 rc = read_index(ip, dir_index, &dirtab_slot); 3069 if (rc) { 3070 ctx->pos = DIREND; 3071 return rc; 3072 } 3073 if (dirtab_slot.flag == DIR_INDEX_FREE) { 3074 if (loop_count++ > JFS_IP(ip)->next_index) { 3075 jfs_err("jfs_readdir detected " 3076 "infinite loop!"); 3077 ctx->pos = DIREND; 3078 return 0; 3079 } 3080 dir_index = le32_to_cpu(dirtab_slot.addr2); 3081 if (dir_index == -1) { 3082 ctx->pos = DIREND; 3083 return 0; 3084 } 3085 goto repeat; 3086 } 3087 bn = addressDTS(&dirtab_slot); 3088 index = dirtab_slot.slot; 3089 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3090 if (rc) { 3091 ctx->pos = DIREND; 3092 return 0; 3093 } 3094 if (p->header.flag & BT_INTERNAL) { 3095 jfs_err("jfs_readdir: bad index table"); 3096 DT_PUTPAGE(mp); 3097 ctx->pos = DIREND; 3098 return 0; 3099 } 3100 } else { 3101 if (dir_index == 0) { 3102 /* 3103 * self "." 3104 */ 3105 ctx->pos = 1; 3106 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR)) 3107 return 0; 3108 } 3109 /* 3110 * parent ".." 3111 */ 3112 ctx->pos = 2; 3113 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR)) 3114 return 0; 3115 3116 /* 3117 * Find first entry of left-most leaf 3118 */ 3119 if (dtEmpty(ip)) { 3120 ctx->pos = DIREND; 3121 return 0; 3122 } 3123 3124 if ((rc = dtReadFirst(ip, &btstack))) 3125 return rc; 3126 3127 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 3128 } 3129 } else { 3130 /* 3131 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6 3132 * 3133 * pn = 0; index = 1: First entry "." 3134 * pn = 0; index = 2: Second entry ".." 3135 * pn > 0: Real entries, pn=1 -> leftmost page 3136 * pn = index = -1: No more entries 3137 */ 3138 dtpos = ctx->pos; 3139 if (dtpos < 2) { 3140 /* build "." entry */ 3141 ctx->pos = 1; 3142 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR)) 3143 return 0; 3144 dtoffset->index = 2; 3145 ctx->pos = dtpos; 3146 } 3147 3148 if (dtoffset->pn == 0) { 3149 if (dtoffset->index == 2) { 3150 /* build ".." entry */ 3151 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR)) 3152 return 0; 3153 } else { 3154 jfs_err("jfs_readdir called with " 3155 "invalid offset!"); 3156 } 3157 dtoffset->pn = 1; 3158 dtoffset->index = 0; 3159 ctx->pos = dtpos; 3160 } 3161 3162 if (dtEmpty(ip)) { 3163 ctx->pos = DIREND; 3164 return 0; 3165 } 3166 3167 if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) { 3168 jfs_err("jfs_readdir: unexpected rc = %d " 3169 "from dtReadNext", rc); 3170 ctx->pos = DIREND; 3171 return 0; 3172 } 3173 /* get start leaf page and index */ 3174 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 3175 3176 /* offset beyond directory eof ? */ 3177 if (bn < 0) { 3178 ctx->pos = DIREND; 3179 return 0; 3180 } 3181 } 3182 3183 dirent_buf = __get_free_page(GFP_KERNEL); 3184 if (dirent_buf == 0) { 3185 DT_PUTPAGE(mp); 3186 jfs_warn("jfs_readdir: __get_free_page failed!"); 3187 ctx->pos = DIREND; 3188 return -ENOMEM; 3189 } 3190 3191 while (1) { 3192 jfs_dirent = (struct jfs_dirent *) dirent_buf; 3193 jfs_dirents = 0; 3194 overflow = fix_page = 0; 3195 3196 stbl = DT_GETSTBL(p); 3197 3198 for (i = index; i < p->header.nextindex; i++) { 3199 d = (struct ldtentry *) & p->slot[stbl[i]]; 3200 3201 if (((long) jfs_dirent + d->namlen + 1) > 3202 (dirent_buf + PAGE_SIZE)) { 3203 /* DBCS codepages could overrun dirent_buf */ 3204 index = i; 3205 overflow = 1; 3206 break; 3207 } 3208 3209 d_namleft = d->namlen; 3210 name_ptr = jfs_dirent->name; 3211 jfs_dirent->ino = le32_to_cpu(d->inumber); 3212 3213 if (do_index) { 3214 len = min(d_namleft, DTLHDRDATALEN); 3215 jfs_dirent->position = le32_to_cpu(d->index); 3216 /* 3217 * d->index should always be valid, but it 3218 * isn't. fsck.jfs doesn't create the 3219 * directory index for the lost+found 3220 * directory. Rather than let it go, 3221 * we can try to fix it. 3222 */ 3223 if ((jfs_dirent->position < 2) || 3224 (jfs_dirent->position >= 3225 JFS_IP(ip)->next_index)) { 3226 if (!page_fixed && !isReadOnly(ip)) { 3227 fix_page = 1; 3228 /* 3229 * setting overflow and setting 3230 * index to i will cause the 3231 * same page to be processed 3232 * again starting here 3233 */ 3234 overflow = 1; 3235 index = i; 3236 break; 3237 } 3238 jfs_dirent->position = unique_pos++; 3239 } 3240 /* 3241 * We add 1 to the index because we may 3242 * use a value of 2 internally, and NFSv4 3243 * doesn't like that. 3244 */ 3245 jfs_dirent->position++; 3246 } else { 3247 jfs_dirent->position = dtpos; 3248 len = min(d_namleft, DTLHDRDATALEN_LEGACY); 3249 } 3250 3251 /* copy the name of head/only segment */ 3252 outlen = jfs_strfromUCS_le(name_ptr, d->name, len, 3253 codepage); 3254 jfs_dirent->name_len = outlen; 3255 3256 /* copy name in the additional segment(s) */ 3257 next = d->next; 3258 while (next >= 0) { 3259 t = (struct dtslot *) & p->slot[next]; 3260 name_ptr += outlen; 3261 d_namleft -= len; 3262 /* Sanity Check */ 3263 if (d_namleft == 0) { 3264 jfs_error(ip->i_sb, 3265 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n", 3266 (long)ip->i_ino, 3267 (long long)bn, 3268 i); 3269 goto skip_one; 3270 } 3271 len = min(d_namleft, DTSLOTDATALEN); 3272 outlen = jfs_strfromUCS_le(name_ptr, t->name, 3273 len, codepage); 3274 jfs_dirent->name_len += outlen; 3275 3276 next = t->next; 3277 } 3278 3279 jfs_dirents++; 3280 jfs_dirent = next_jfs_dirent(jfs_dirent); 3281 skip_one: 3282 if (!do_index) 3283 dtoffset->index++; 3284 } 3285 3286 if (!overflow) { 3287 /* Point to next leaf page */ 3288 if (p->header.flag & BT_ROOT) 3289 bn = 0; 3290 else { 3291 bn = le64_to_cpu(p->header.next); 3292 index = 0; 3293 /* update offset (pn:index) for new page */ 3294 if (!do_index) { 3295 dtoffset->pn++; 3296 dtoffset->index = 0; 3297 } 3298 } 3299 page_fixed = 0; 3300 } 3301 3302 /* unpin previous leaf page */ 3303 DT_PUTPAGE(mp); 3304 3305 jfs_dirent = (struct jfs_dirent *) dirent_buf; 3306 while (jfs_dirents--) { 3307 ctx->pos = jfs_dirent->position; 3308 if (!dir_emit(ctx, jfs_dirent->name, 3309 jfs_dirent->name_len, 3310 jfs_dirent->ino, DT_UNKNOWN)) 3311 goto out; 3312 jfs_dirent = next_jfs_dirent(jfs_dirent); 3313 } 3314 3315 if (fix_page) { 3316 add_missing_indices(ip, bn); 3317 page_fixed = 1; 3318 } 3319 3320 if (!overflow && (bn == 0)) { 3321 ctx->pos = DIREND; 3322 break; 3323 } 3324 3325 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3326 if (rc) { 3327 free_page(dirent_buf); 3328 return rc; 3329 } 3330 } 3331 3332 out: 3333 free_page(dirent_buf); 3334 3335 return rc; 3336 } 3337 3338 3339 /* 3340 * dtReadFirst() 3341 * 3342 * function: get the leftmost page of the directory 3343 */ 3344 static int dtReadFirst(struct inode *ip, struct btstack * btstack) 3345 { 3346 int rc = 0; 3347 s64 bn; 3348 int psize = 288; /* initial in-line directory */ 3349 struct metapage *mp; 3350 dtpage_t *p; 3351 s8 *stbl; 3352 struct btframe *btsp; 3353 pxd_t *xd; 3354 3355 BT_CLR(btstack); /* reset stack */ 3356 3357 /* 3358 * descend leftmost path of the tree 3359 * 3360 * by convention, root bn = 0. 3361 */ 3362 for (bn = 0;;) { 3363 DT_GETPAGE(ip, bn, mp, psize, p, rc); 3364 if (rc) 3365 return rc; 3366 3367 /* 3368 * leftmost leaf page 3369 */ 3370 if (p->header.flag & BT_LEAF) { 3371 /* return leftmost entry */ 3372 btsp = btstack->top; 3373 btsp->bn = bn; 3374 btsp->index = 0; 3375 btsp->mp = mp; 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * descend down to leftmost child page 3382 */ 3383 if (BT_STACK_FULL(btstack)) { 3384 DT_PUTPAGE(mp); 3385 jfs_error(ip->i_sb, "btstack overrun\n"); 3386 BT_STACK_DUMP(btstack); 3387 return -EIO; 3388 } 3389 /* push (bn, index) of the parent page/entry */ 3390 BT_PUSH(btstack, bn, 0); 3391 3392 /* get the leftmost entry */ 3393 stbl = DT_GETSTBL(p); 3394 xd = (pxd_t *) & p->slot[stbl[0]]; 3395 3396 /* get the child page block address */ 3397 bn = addressPXD(xd); 3398 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize; 3399 3400 /* unpin the parent page */ 3401 DT_PUTPAGE(mp); 3402 } 3403 } 3404 3405 3406 /* 3407 * dtReadNext() 3408 * 3409 * function: get the page of the specified offset (pn:index) 3410 * 3411 * return: if (offset > eof), bn = -1; 3412 * 3413 * note: if index > nextindex of the target leaf page, 3414 * start with 1st entry of next leaf page; 3415 */ 3416 static int dtReadNext(struct inode *ip, loff_t * offset, 3417 struct btstack * btstack) 3418 { 3419 int rc = 0; 3420 struct dtoffset { 3421 s16 pn; 3422 s16 index; 3423 s32 unused; 3424 } *dtoffset = (struct dtoffset *) offset; 3425 s64 bn; 3426 struct metapage *mp; 3427 dtpage_t *p; 3428 int index; 3429 int pn; 3430 s8 *stbl; 3431 struct btframe *btsp, *parent; 3432 pxd_t *xd; 3433 3434 /* 3435 * get leftmost leaf page pinned 3436 */ 3437 if ((rc = dtReadFirst(ip, btstack))) 3438 return rc; 3439 3440 /* get leaf page */ 3441 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index); 3442 3443 /* get the start offset (pn:index) */ 3444 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */ 3445 index = dtoffset->index; 3446 3447 /* start at leftmost page ? */ 3448 if (pn == 0) { 3449 /* offset beyond eof ? */ 3450 if (index < p->header.nextindex) 3451 goto out; 3452 3453 if (p->header.flag & BT_ROOT) { 3454 bn = -1; 3455 goto out; 3456 } 3457 3458 /* start with 1st entry of next leaf page */ 3459 dtoffset->pn++; 3460 dtoffset->index = index = 0; 3461 goto a; 3462 } 3463 3464 /* start at non-leftmost page: scan parent pages for large pn */ 3465 if (p->header.flag & BT_ROOT) { 3466 bn = -1; 3467 goto out; 3468 } 3469 3470 /* start after next leaf page ? */ 3471 if (pn > 1) 3472 goto b; 3473 3474 /* get leaf page pn = 1 */ 3475 a: 3476 bn = le64_to_cpu(p->header.next); 3477 3478 /* unpin leaf page */ 3479 DT_PUTPAGE(mp); 3480 3481 /* offset beyond eof ? */ 3482 if (bn == 0) { 3483 bn = -1; 3484 goto out; 3485 } 3486 3487 goto c; 3488 3489 /* 3490 * scan last internal page level to get target leaf page 3491 */ 3492 b: 3493 /* unpin leftmost leaf page */ 3494 DT_PUTPAGE(mp); 3495 3496 /* get left most parent page */ 3497 btsp = btstack->top; 3498 parent = btsp - 1; 3499 bn = parent->bn; 3500 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3501 if (rc) 3502 return rc; 3503 3504 /* scan parent pages at last internal page level */ 3505 while (pn >= p->header.nextindex) { 3506 pn -= p->header.nextindex; 3507 3508 /* get next parent page address */ 3509 bn = le64_to_cpu(p->header.next); 3510 3511 /* unpin current parent page */ 3512 DT_PUTPAGE(mp); 3513 3514 /* offset beyond eof ? */ 3515 if (bn == 0) { 3516 bn = -1; 3517 goto out; 3518 } 3519 3520 /* get next parent page */ 3521 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3522 if (rc) 3523 return rc; 3524 3525 /* update parent page stack frame */ 3526 parent->bn = bn; 3527 } 3528 3529 /* get leaf page address */ 3530 stbl = DT_GETSTBL(p); 3531 xd = (pxd_t *) & p->slot[stbl[pn]]; 3532 bn = addressPXD(xd); 3533 3534 /* unpin parent page */ 3535 DT_PUTPAGE(mp); 3536 3537 /* 3538 * get target leaf page 3539 */ 3540 c: 3541 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3542 if (rc) 3543 return rc; 3544 3545 /* 3546 * leaf page has been completed: 3547 * start with 1st entry of next leaf page 3548 */ 3549 if (index >= p->header.nextindex) { 3550 bn = le64_to_cpu(p->header.next); 3551 3552 /* unpin leaf page */ 3553 DT_PUTPAGE(mp); 3554 3555 /* offset beyond eof ? */ 3556 if (bn == 0) { 3557 bn = -1; 3558 goto out; 3559 } 3560 3561 /* get next leaf page */ 3562 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3563 if (rc) 3564 return rc; 3565 3566 /* start with 1st entry of next leaf page */ 3567 dtoffset->pn++; 3568 dtoffset->index = 0; 3569 } 3570 3571 out: 3572 /* return target leaf page pinned */ 3573 btsp = btstack->top; 3574 btsp->bn = bn; 3575 btsp->index = dtoffset->index; 3576 btsp->mp = mp; 3577 3578 return 0; 3579 } 3580 3581 3582 /* 3583 * dtCompare() 3584 * 3585 * function: compare search key with an internal entry 3586 * 3587 * return: 3588 * < 0 if k is < record 3589 * = 0 if k is = record 3590 * > 0 if k is > record 3591 */ 3592 static int dtCompare(struct component_name * key, /* search key */ 3593 dtpage_t * p, /* directory page */ 3594 int si) 3595 { /* entry slot index */ 3596 wchar_t *kname; 3597 __le16 *name; 3598 int klen, namlen, len, rc; 3599 struct idtentry *ih; 3600 struct dtslot *t; 3601 3602 /* 3603 * force the left-most key on internal pages, at any level of 3604 * the tree, to be less than any search key. 3605 * this obviates having to update the leftmost key on an internal 3606 * page when the user inserts a new key in the tree smaller than 3607 * anything that has been stored. 3608 * 3609 * (? if/when dtSearch() narrows down to 1st entry (index = 0), 3610 * at any internal page at any level of the tree, 3611 * it descends to child of the entry anyway - 3612 * ? make the entry as min size dummy entry) 3613 * 3614 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF)) 3615 * return (1); 3616 */ 3617 3618 kname = key->name; 3619 klen = key->namlen; 3620 3621 ih = (struct idtentry *) & p->slot[si]; 3622 si = ih->next; 3623 name = ih->name; 3624 namlen = ih->namlen; 3625 len = min(namlen, DTIHDRDATALEN); 3626 3627 /* compare with head/only segment */ 3628 len = min(klen, len); 3629 if ((rc = UniStrncmp_le(kname, name, len))) 3630 return rc; 3631 3632 klen -= len; 3633 namlen -= len; 3634 3635 /* compare with additional segment(s) */ 3636 kname += len; 3637 while (klen > 0 && namlen > 0) { 3638 /* compare with next name segment */ 3639 t = (struct dtslot *) & p->slot[si]; 3640 len = min(namlen, DTSLOTDATALEN); 3641 len = min(klen, len); 3642 name = t->name; 3643 if ((rc = UniStrncmp_le(kname, name, len))) 3644 return rc; 3645 3646 klen -= len; 3647 namlen -= len; 3648 kname += len; 3649 si = t->next; 3650 } 3651 3652 return (klen - namlen); 3653 } 3654 3655 3656 3657 3658 /* 3659 * ciCompare() 3660 * 3661 * function: compare search key with an (leaf/internal) entry 3662 * 3663 * return: 3664 * < 0 if k is < record 3665 * = 0 if k is = record 3666 * > 0 if k is > record 3667 */ 3668 static int ciCompare(struct component_name * key, /* search key */ 3669 dtpage_t * p, /* directory page */ 3670 int si, /* entry slot index */ 3671 int flag) 3672 { 3673 wchar_t *kname, x; 3674 __le16 *name; 3675 int klen, namlen, len, rc; 3676 struct ldtentry *lh; 3677 struct idtentry *ih; 3678 struct dtslot *t; 3679 int i; 3680 3681 /* 3682 * force the left-most key on internal pages, at any level of 3683 * the tree, to be less than any search key. 3684 * this obviates having to update the leftmost key on an internal 3685 * page when the user inserts a new key in the tree smaller than 3686 * anything that has been stored. 3687 * 3688 * (? if/when dtSearch() narrows down to 1st entry (index = 0), 3689 * at any internal page at any level of the tree, 3690 * it descends to child of the entry anyway - 3691 * ? make the entry as min size dummy entry) 3692 * 3693 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF)) 3694 * return (1); 3695 */ 3696 3697 kname = key->name; 3698 klen = key->namlen; 3699 3700 /* 3701 * leaf page entry 3702 */ 3703 if (p->header.flag & BT_LEAF) { 3704 lh = (struct ldtentry *) & p->slot[si]; 3705 si = lh->next; 3706 name = lh->name; 3707 namlen = lh->namlen; 3708 if (flag & JFS_DIR_INDEX) 3709 len = min(namlen, DTLHDRDATALEN); 3710 else 3711 len = min(namlen, DTLHDRDATALEN_LEGACY); 3712 } 3713 /* 3714 * internal page entry 3715 */ 3716 else { 3717 ih = (struct idtentry *) & p->slot[si]; 3718 si = ih->next; 3719 name = ih->name; 3720 namlen = ih->namlen; 3721 len = min(namlen, DTIHDRDATALEN); 3722 } 3723 3724 /* compare with head/only segment */ 3725 len = min(klen, len); 3726 for (i = 0; i < len; i++, kname++, name++) { 3727 /* only uppercase if case-insensitive support is on */ 3728 if ((flag & JFS_OS2) == JFS_OS2) 3729 x = UniToupper(le16_to_cpu(*name)); 3730 else 3731 x = le16_to_cpu(*name); 3732 if ((rc = *kname - x)) 3733 return rc; 3734 } 3735 3736 klen -= len; 3737 namlen -= len; 3738 3739 /* compare with additional segment(s) */ 3740 while (klen > 0 && namlen > 0) { 3741 /* compare with next name segment */ 3742 t = (struct dtslot *) & p->slot[si]; 3743 len = min(namlen, DTSLOTDATALEN); 3744 len = min(klen, len); 3745 name = t->name; 3746 for (i = 0; i < len; i++, kname++, name++) { 3747 /* only uppercase if case-insensitive support is on */ 3748 if ((flag & JFS_OS2) == JFS_OS2) 3749 x = UniToupper(le16_to_cpu(*name)); 3750 else 3751 x = le16_to_cpu(*name); 3752 3753 if ((rc = *kname - x)) 3754 return rc; 3755 } 3756 3757 klen -= len; 3758 namlen -= len; 3759 si = t->next; 3760 } 3761 3762 return (klen - namlen); 3763 } 3764 3765 3766 /* 3767 * ciGetLeafPrefixKey() 3768 * 3769 * function: compute prefix of suffix compression 3770 * from two adjacent leaf entries 3771 * across page boundary 3772 * 3773 * return: non-zero on error 3774 * 3775 */ 3776 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp, 3777 int ri, struct component_name * key, int flag) 3778 { 3779 int klen, namlen; 3780 wchar_t *pl, *pr, *kname; 3781 struct component_name lkey; 3782 struct component_name rkey; 3783 3784 lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), 3785 GFP_KERNEL); 3786 if (lkey.name == NULL) 3787 return -ENOMEM; 3788 3789 rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), 3790 GFP_KERNEL); 3791 if (rkey.name == NULL) { 3792 kfree(lkey.name); 3793 return -ENOMEM; 3794 } 3795 3796 /* get left and right key */ 3797 dtGetKey(lp, li, &lkey, flag); 3798 lkey.name[lkey.namlen] = 0; 3799 3800 if ((flag & JFS_OS2) == JFS_OS2) 3801 ciToUpper(&lkey); 3802 3803 dtGetKey(rp, ri, &rkey, flag); 3804 rkey.name[rkey.namlen] = 0; 3805 3806 3807 if ((flag & JFS_OS2) == JFS_OS2) 3808 ciToUpper(&rkey); 3809 3810 /* compute prefix */ 3811 klen = 0; 3812 kname = key->name; 3813 namlen = min(lkey.namlen, rkey.namlen); 3814 for (pl = lkey.name, pr = rkey.name; 3815 namlen; pl++, pr++, namlen--, klen++, kname++) { 3816 *kname = *pr; 3817 if (*pl != *pr) { 3818 key->namlen = klen + 1; 3819 goto free_names; 3820 } 3821 } 3822 3823 /* l->namlen <= r->namlen since l <= r */ 3824 if (lkey.namlen < rkey.namlen) { 3825 *kname = *pr; 3826 key->namlen = klen + 1; 3827 } else /* l->namelen == r->namelen */ 3828 key->namlen = klen; 3829 3830 free_names: 3831 kfree(lkey.name); 3832 kfree(rkey.name); 3833 return 0; 3834 } 3835 3836 3837 3838 /* 3839 * dtGetKey() 3840 * 3841 * function: get key of the entry 3842 */ 3843 static void dtGetKey(dtpage_t * p, int i, /* entry index */ 3844 struct component_name * key, int flag) 3845 { 3846 int si; 3847 s8 *stbl; 3848 struct ldtentry *lh; 3849 struct idtentry *ih; 3850 struct dtslot *t; 3851 int namlen, len; 3852 wchar_t *kname; 3853 __le16 *name; 3854 3855 /* get entry */ 3856 stbl = DT_GETSTBL(p); 3857 si = stbl[i]; 3858 if (p->header.flag & BT_LEAF) { 3859 lh = (struct ldtentry *) & p->slot[si]; 3860 si = lh->next; 3861 namlen = lh->namlen; 3862 name = lh->name; 3863 if (flag & JFS_DIR_INDEX) 3864 len = min(namlen, DTLHDRDATALEN); 3865 else 3866 len = min(namlen, DTLHDRDATALEN_LEGACY); 3867 } else { 3868 ih = (struct idtentry *) & p->slot[si]; 3869 si = ih->next; 3870 namlen = ih->namlen; 3871 name = ih->name; 3872 len = min(namlen, DTIHDRDATALEN); 3873 } 3874 3875 key->namlen = namlen; 3876 kname = key->name; 3877 3878 /* 3879 * move head/only segment 3880 */ 3881 UniStrncpy_from_le(kname, name, len); 3882 3883 /* 3884 * move additional segment(s) 3885 */ 3886 while (si >= 0) { 3887 /* get next segment */ 3888 t = &p->slot[si]; 3889 kname += len; 3890 namlen -= len; 3891 len = min(namlen, DTSLOTDATALEN); 3892 UniStrncpy_from_le(kname, t->name, len); 3893 3894 si = t->next; 3895 } 3896 } 3897 3898 3899 /* 3900 * dtInsertEntry() 3901 * 3902 * function: allocate free slot(s) and 3903 * write a leaf/internal entry 3904 * 3905 * return: entry slot index 3906 */ 3907 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key, 3908 ddata_t * data, struct dt_lock ** dtlock) 3909 { 3910 struct dtslot *h, *t; 3911 struct ldtentry *lh = NULL; 3912 struct idtentry *ih = NULL; 3913 int hsi, fsi, klen, len, nextindex; 3914 wchar_t *kname; 3915 __le16 *name; 3916 s8 *stbl; 3917 pxd_t *xd; 3918 struct dt_lock *dtlck = *dtlock; 3919 struct lv *lv; 3920 int xsi, n; 3921 s64 bn = 0; 3922 struct metapage *mp = NULL; 3923 3924 klen = key->namlen; 3925 kname = key->name; 3926 3927 /* allocate a free slot */ 3928 hsi = fsi = p->header.freelist; 3929 h = &p->slot[fsi]; 3930 p->header.freelist = h->next; 3931 --p->header.freecnt; 3932 3933 /* open new linelock */ 3934 if (dtlck->index >= dtlck->maxcnt) 3935 dtlck = (struct dt_lock *) txLinelock(dtlck); 3936 3937 lv = & dtlck->lv[dtlck->index]; 3938 lv->offset = hsi; 3939 3940 /* write head/only segment */ 3941 if (p->header.flag & BT_LEAF) { 3942 lh = (struct ldtentry *) h; 3943 lh->next = h->next; 3944 lh->inumber = cpu_to_le32(data->leaf.ino); 3945 lh->namlen = klen; 3946 name = lh->name; 3947 if (data->leaf.ip) { 3948 len = min(klen, DTLHDRDATALEN); 3949 if (!(p->header.flag & BT_ROOT)) 3950 bn = addressPXD(&p->header.self); 3951 lh->index = cpu_to_le32(add_index(data->leaf.tid, 3952 data->leaf.ip, 3953 bn, index)); 3954 } else 3955 len = min(klen, DTLHDRDATALEN_LEGACY); 3956 } else { 3957 ih = (struct idtentry *) h; 3958 ih->next = h->next; 3959 xd = (pxd_t *) ih; 3960 *xd = data->xd; 3961 ih->namlen = klen; 3962 name = ih->name; 3963 len = min(klen, DTIHDRDATALEN); 3964 } 3965 3966 UniStrncpy_to_le(name, kname, len); 3967 3968 n = 1; 3969 xsi = hsi; 3970 3971 /* write additional segment(s) */ 3972 t = h; 3973 klen -= len; 3974 while (klen) { 3975 /* get free slot */ 3976 fsi = p->header.freelist; 3977 t = &p->slot[fsi]; 3978 p->header.freelist = t->next; 3979 --p->header.freecnt; 3980 3981 /* is next slot contiguous ? */ 3982 if (fsi != xsi + 1) { 3983 /* close current linelock */ 3984 lv->length = n; 3985 dtlck->index++; 3986 3987 /* open new linelock */ 3988 if (dtlck->index < dtlck->maxcnt) 3989 lv++; 3990 else { 3991 dtlck = (struct dt_lock *) txLinelock(dtlck); 3992 lv = & dtlck->lv[0]; 3993 } 3994 3995 lv->offset = fsi; 3996 n = 0; 3997 } 3998 3999 kname += len; 4000 len = min(klen, DTSLOTDATALEN); 4001 UniStrncpy_to_le(t->name, kname, len); 4002 4003 n++; 4004 xsi = fsi; 4005 klen -= len; 4006 } 4007 4008 /* close current linelock */ 4009 lv->length = n; 4010 dtlck->index++; 4011 4012 *dtlock = dtlck; 4013 4014 /* terminate last/only segment */ 4015 if (h == t) { 4016 /* single segment entry */ 4017 if (p->header.flag & BT_LEAF) 4018 lh->next = -1; 4019 else 4020 ih->next = -1; 4021 } else 4022 /* multi-segment entry */ 4023 t->next = -1; 4024 4025 /* if insert into middle, shift right succeeding entries in stbl */ 4026 stbl = DT_GETSTBL(p); 4027 nextindex = p->header.nextindex; 4028 if (index < nextindex) { 4029 memmove(stbl + index + 1, stbl + index, nextindex - index); 4030 4031 if ((p->header.flag & BT_LEAF) && data->leaf.ip) { 4032 s64 lblock; 4033 4034 /* 4035 * Need to update slot number for entries that moved 4036 * in the stbl 4037 */ 4038 mp = NULL; 4039 for (n = index + 1; n <= nextindex; n++) { 4040 lh = (struct ldtentry *) & (p->slot[stbl[n]]); 4041 modify_index(data->leaf.tid, data->leaf.ip, 4042 le32_to_cpu(lh->index), bn, n, 4043 &mp, &lblock); 4044 } 4045 if (mp) 4046 release_metapage(mp); 4047 } 4048 } 4049 4050 stbl[index] = hsi; 4051 4052 /* advance next available entry index of stbl */ 4053 ++p->header.nextindex; 4054 } 4055 4056 4057 /* 4058 * dtMoveEntry() 4059 * 4060 * function: move entries from split/left page to new/right page 4061 * 4062 * nextindex of dst page and freelist/freecnt of both pages 4063 * are updated. 4064 */ 4065 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp, 4066 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock, 4067 int do_index) 4068 { 4069 int ssi, next; /* src slot index */ 4070 int di; /* dst entry index */ 4071 int dsi; /* dst slot index */ 4072 s8 *sstbl, *dstbl; /* sorted entry table */ 4073 int snamlen, len; 4074 struct ldtentry *slh, *dlh = NULL; 4075 struct idtentry *sih, *dih = NULL; 4076 struct dtslot *h, *s, *d; 4077 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock; 4078 struct lv *slv, *dlv; 4079 int xssi, ns, nd; 4080 int sfsi; 4081 4082 sstbl = (s8 *) & sp->slot[sp->header.stblindex]; 4083 dstbl = (s8 *) & dp->slot[dp->header.stblindex]; 4084 4085 dsi = dp->header.freelist; /* first (whole page) free slot */ 4086 sfsi = sp->header.freelist; 4087 4088 /* linelock destination entry slot */ 4089 dlv = & ddtlck->lv[ddtlck->index]; 4090 dlv->offset = dsi; 4091 4092 /* linelock source entry slot */ 4093 slv = & sdtlck->lv[sdtlck->index]; 4094 slv->offset = sstbl[si]; 4095 xssi = slv->offset - 1; 4096 4097 /* 4098 * move entries 4099 */ 4100 ns = nd = 0; 4101 for (di = 0; si < sp->header.nextindex; si++, di++) { 4102 ssi = sstbl[si]; 4103 dstbl[di] = dsi; 4104 4105 /* is next slot contiguous ? */ 4106 if (ssi != xssi + 1) { 4107 /* close current linelock */ 4108 slv->length = ns; 4109 sdtlck->index++; 4110 4111 /* open new linelock */ 4112 if (sdtlck->index < sdtlck->maxcnt) 4113 slv++; 4114 else { 4115 sdtlck = (struct dt_lock *) txLinelock(sdtlck); 4116 slv = & sdtlck->lv[0]; 4117 } 4118 4119 slv->offset = ssi; 4120 ns = 0; 4121 } 4122 4123 /* 4124 * move head/only segment of an entry 4125 */ 4126 /* get dst slot */ 4127 h = d = &dp->slot[dsi]; 4128 4129 /* get src slot and move */ 4130 s = &sp->slot[ssi]; 4131 if (sp->header.flag & BT_LEAF) { 4132 /* get source entry */ 4133 slh = (struct ldtentry *) s; 4134 dlh = (struct ldtentry *) h; 4135 snamlen = slh->namlen; 4136 4137 if (do_index) { 4138 len = min(snamlen, DTLHDRDATALEN); 4139 dlh->index = slh->index; /* little-endian */ 4140 } else 4141 len = min(snamlen, DTLHDRDATALEN_LEGACY); 4142 4143 memcpy(dlh, slh, 6 + len * 2); 4144 4145 next = slh->next; 4146 4147 /* update dst head/only segment next field */ 4148 dsi++; 4149 dlh->next = dsi; 4150 } else { 4151 sih = (struct idtentry *) s; 4152 snamlen = sih->namlen; 4153 4154 len = min(snamlen, DTIHDRDATALEN); 4155 dih = (struct idtentry *) h; 4156 memcpy(dih, sih, 10 + len * 2); 4157 next = sih->next; 4158 4159 dsi++; 4160 dih->next = dsi; 4161 } 4162 4163 /* free src head/only segment */ 4164 s->next = sfsi; 4165 s->cnt = 1; 4166 sfsi = ssi; 4167 4168 ns++; 4169 nd++; 4170 xssi = ssi; 4171 4172 /* 4173 * move additional segment(s) of the entry 4174 */ 4175 snamlen -= len; 4176 while ((ssi = next) >= 0) { 4177 /* is next slot contiguous ? */ 4178 if (ssi != xssi + 1) { 4179 /* close current linelock */ 4180 slv->length = ns; 4181 sdtlck->index++; 4182 4183 /* open new linelock */ 4184 if (sdtlck->index < sdtlck->maxcnt) 4185 slv++; 4186 else { 4187 sdtlck = 4188 (struct dt_lock *) 4189 txLinelock(sdtlck); 4190 slv = & sdtlck->lv[0]; 4191 } 4192 4193 slv->offset = ssi; 4194 ns = 0; 4195 } 4196 4197 /* get next source segment */ 4198 s = &sp->slot[ssi]; 4199 4200 /* get next destination free slot */ 4201 d++; 4202 4203 len = min(snamlen, DTSLOTDATALEN); 4204 UniStrncpy_le(d->name, s->name, len); 4205 4206 ns++; 4207 nd++; 4208 xssi = ssi; 4209 4210 dsi++; 4211 d->next = dsi; 4212 4213 /* free source segment */ 4214 next = s->next; 4215 s->next = sfsi; 4216 s->cnt = 1; 4217 sfsi = ssi; 4218 4219 snamlen -= len; 4220 } /* end while */ 4221 4222 /* terminate dst last/only segment */ 4223 if (h == d) { 4224 /* single segment entry */ 4225 if (dp->header.flag & BT_LEAF) 4226 dlh->next = -1; 4227 else 4228 dih->next = -1; 4229 } else 4230 /* multi-segment entry */ 4231 d->next = -1; 4232 } /* end for */ 4233 4234 /* close current linelock */ 4235 slv->length = ns; 4236 sdtlck->index++; 4237 *sdtlock = sdtlck; 4238 4239 dlv->length = nd; 4240 ddtlck->index++; 4241 *ddtlock = ddtlck; 4242 4243 /* update source header */ 4244 sp->header.freelist = sfsi; 4245 sp->header.freecnt += nd; 4246 4247 /* update destination header */ 4248 dp->header.nextindex = di; 4249 4250 dp->header.freelist = dsi; 4251 dp->header.freecnt -= nd; 4252 } 4253 4254 4255 /* 4256 * dtDeleteEntry() 4257 * 4258 * function: free a (leaf/internal) entry 4259 * 4260 * log freelist header, stbl, and each segment slot of entry 4261 * (even though last/only segment next field is modified, 4262 * physical image logging requires all segment slots of 4263 * the entry logged to avoid applying previous updates 4264 * to the same slots) 4265 */ 4266 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock) 4267 { 4268 int fsi; /* free entry slot index */ 4269 s8 *stbl; 4270 struct dtslot *t; 4271 int si, freecnt; 4272 struct dt_lock *dtlck = *dtlock; 4273 struct lv *lv; 4274 int xsi, n; 4275 4276 /* get free entry slot index */ 4277 stbl = DT_GETSTBL(p); 4278 fsi = stbl[fi]; 4279 4280 /* open new linelock */ 4281 if (dtlck->index >= dtlck->maxcnt) 4282 dtlck = (struct dt_lock *) txLinelock(dtlck); 4283 lv = & dtlck->lv[dtlck->index]; 4284 4285 lv->offset = fsi; 4286 4287 /* get the head/only segment */ 4288 t = &p->slot[fsi]; 4289 if (p->header.flag & BT_LEAF) 4290 si = ((struct ldtentry *) t)->next; 4291 else 4292 si = ((struct idtentry *) t)->next; 4293 t->next = si; 4294 t->cnt = 1; 4295 4296 n = freecnt = 1; 4297 xsi = fsi; 4298 4299 /* find the last/only segment */ 4300 while (si >= 0) { 4301 /* is next slot contiguous ? */ 4302 if (si != xsi + 1) { 4303 /* close current linelock */ 4304 lv->length = n; 4305 dtlck->index++; 4306 4307 /* open new linelock */ 4308 if (dtlck->index < dtlck->maxcnt) 4309 lv++; 4310 else { 4311 dtlck = (struct dt_lock *) txLinelock(dtlck); 4312 lv = & dtlck->lv[0]; 4313 } 4314 4315 lv->offset = si; 4316 n = 0; 4317 } 4318 4319 n++; 4320 xsi = si; 4321 freecnt++; 4322 4323 t = &p->slot[si]; 4324 t->cnt = 1; 4325 si = t->next; 4326 } 4327 4328 /* close current linelock */ 4329 lv->length = n; 4330 dtlck->index++; 4331 4332 *dtlock = dtlck; 4333 4334 /* update freelist */ 4335 t->next = p->header.freelist; 4336 p->header.freelist = fsi; 4337 p->header.freecnt += freecnt; 4338 4339 /* if delete from middle, 4340 * shift left the succedding entries in the stbl 4341 */ 4342 si = p->header.nextindex; 4343 if (fi < si - 1) 4344 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1); 4345 4346 p->header.nextindex--; 4347 } 4348 4349 4350 /* 4351 * dtTruncateEntry() 4352 * 4353 * function: truncate a (leaf/internal) entry 4354 * 4355 * log freelist header, stbl, and each segment slot of entry 4356 * (even though last/only segment next field is modified, 4357 * physical image logging requires all segment slots of 4358 * the entry logged to avoid applying previous updates 4359 * to the same slots) 4360 */ 4361 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock) 4362 { 4363 int tsi; /* truncate entry slot index */ 4364 s8 *stbl; 4365 struct dtslot *t; 4366 int si, freecnt; 4367 struct dt_lock *dtlck = *dtlock; 4368 struct lv *lv; 4369 int fsi, xsi, n; 4370 4371 /* get free entry slot index */ 4372 stbl = DT_GETSTBL(p); 4373 tsi = stbl[ti]; 4374 4375 /* open new linelock */ 4376 if (dtlck->index >= dtlck->maxcnt) 4377 dtlck = (struct dt_lock *) txLinelock(dtlck); 4378 lv = & dtlck->lv[dtlck->index]; 4379 4380 lv->offset = tsi; 4381 4382 /* get the head/only segment */ 4383 t = &p->slot[tsi]; 4384 ASSERT(p->header.flag & BT_INTERNAL); 4385 ((struct idtentry *) t)->namlen = 0; 4386 si = ((struct idtentry *) t)->next; 4387 ((struct idtentry *) t)->next = -1; 4388 4389 n = 1; 4390 freecnt = 0; 4391 fsi = si; 4392 xsi = tsi; 4393 4394 /* find the last/only segment */ 4395 while (si >= 0) { 4396 /* is next slot contiguous ? */ 4397 if (si != xsi + 1) { 4398 /* close current linelock */ 4399 lv->length = n; 4400 dtlck->index++; 4401 4402 /* open new linelock */ 4403 if (dtlck->index < dtlck->maxcnt) 4404 lv++; 4405 else { 4406 dtlck = (struct dt_lock *) txLinelock(dtlck); 4407 lv = & dtlck->lv[0]; 4408 } 4409 4410 lv->offset = si; 4411 n = 0; 4412 } 4413 4414 n++; 4415 xsi = si; 4416 freecnt++; 4417 4418 t = &p->slot[si]; 4419 t->cnt = 1; 4420 si = t->next; 4421 } 4422 4423 /* close current linelock */ 4424 lv->length = n; 4425 dtlck->index++; 4426 4427 *dtlock = dtlck; 4428 4429 /* update freelist */ 4430 if (freecnt == 0) 4431 return; 4432 t->next = p->header.freelist; 4433 p->header.freelist = fsi; 4434 p->header.freecnt += freecnt; 4435 } 4436 4437 4438 /* 4439 * dtLinelockFreelist() 4440 */ 4441 static void dtLinelockFreelist(dtpage_t * p, /* directory page */ 4442 int m, /* max slot index */ 4443 struct dt_lock ** dtlock) 4444 { 4445 int fsi; /* free entry slot index */ 4446 struct dtslot *t; 4447 int si; 4448 struct dt_lock *dtlck = *dtlock; 4449 struct lv *lv; 4450 int xsi, n; 4451 4452 /* get free entry slot index */ 4453 fsi = p->header.freelist; 4454 4455 /* open new linelock */ 4456 if (dtlck->index >= dtlck->maxcnt) 4457 dtlck = (struct dt_lock *) txLinelock(dtlck); 4458 lv = & dtlck->lv[dtlck->index]; 4459 4460 lv->offset = fsi; 4461 4462 n = 1; 4463 xsi = fsi; 4464 4465 t = &p->slot[fsi]; 4466 si = t->next; 4467 4468 /* find the last/only segment */ 4469 while (si < m && si >= 0) { 4470 /* is next slot contiguous ? */ 4471 if (si != xsi + 1) { 4472 /* close current linelock */ 4473 lv->length = n; 4474 dtlck->index++; 4475 4476 /* open new linelock */ 4477 if (dtlck->index < dtlck->maxcnt) 4478 lv++; 4479 else { 4480 dtlck = (struct dt_lock *) txLinelock(dtlck); 4481 lv = & dtlck->lv[0]; 4482 } 4483 4484 lv->offset = si; 4485 n = 0; 4486 } 4487 4488 n++; 4489 xsi = si; 4490 4491 t = &p->slot[si]; 4492 si = t->next; 4493 } 4494 4495 /* close current linelock */ 4496 lv->length = n; 4497 dtlck->index++; 4498 4499 *dtlock = dtlck; 4500 } 4501 4502 4503 /* 4504 * NAME: dtModify 4505 * 4506 * FUNCTION: Modify the inode number part of a directory entry 4507 * 4508 * PARAMETERS: 4509 * tid - Transaction id 4510 * ip - Inode of parent directory 4511 * key - Name of entry to be modified 4512 * orig_ino - Original inode number expected in entry 4513 * new_ino - New inode number to put into entry 4514 * flag - JFS_RENAME 4515 * 4516 * RETURNS: 4517 * -ESTALE - If entry found does not match orig_ino passed in 4518 * -ENOENT - If no entry can be found to match key 4519 * 0 - If successfully modified entry 4520 */ 4521 int dtModify(tid_t tid, struct inode *ip, 4522 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag) 4523 { 4524 int rc; 4525 s64 bn; 4526 struct metapage *mp; 4527 dtpage_t *p; 4528 int index; 4529 struct btstack btstack; 4530 struct tlock *tlck; 4531 struct dt_lock *dtlck; 4532 struct lv *lv; 4533 s8 *stbl; 4534 int entry_si; /* entry slot index */ 4535 struct ldtentry *entry; 4536 4537 /* 4538 * search for the entry to modify: 4539 * 4540 * dtSearch() returns (leaf page pinned, index at which to modify). 4541 */ 4542 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag))) 4543 return rc; 4544 4545 /* retrieve search result */ 4546 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 4547 4548 BT_MARK_DIRTY(mp, ip); 4549 /* 4550 * acquire a transaction lock on the leaf page of named entry 4551 */ 4552 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 4553 dtlck = (struct dt_lock *) & tlck->lock; 4554 4555 /* get slot index of the entry */ 4556 stbl = DT_GETSTBL(p); 4557 entry_si = stbl[index]; 4558 4559 /* linelock entry */ 4560 ASSERT(dtlck->index == 0); 4561 lv = & dtlck->lv[0]; 4562 lv->offset = entry_si; 4563 lv->length = 1; 4564 dtlck->index++; 4565 4566 /* get the head/only segment */ 4567 entry = (struct ldtentry *) & p->slot[entry_si]; 4568 4569 /* substitute the inode number of the entry */ 4570 entry->inumber = cpu_to_le32(new_ino); 4571 4572 /* unpin the leaf page */ 4573 DT_PUTPAGE(mp); 4574 4575 return 0; 4576 } 4577