xref: /linux/fs/jfs/jfs_dtree.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  */
5 
6 /*
7  *	jfs_dtree.c: directory B+-tree manager
8  *
9  * B+-tree with variable length key directory:
10  *
11  * each directory page is structured as an array of 32-byte
12  * directory entry slots initialized as a freelist
13  * to avoid search/compaction of free space at insertion.
14  * when an entry is inserted, a number of slots are allocated
15  * from the freelist as required to store variable length data
16  * of the entry; when the entry is deleted, slots of the entry
17  * are returned to freelist.
18  *
19  * leaf entry stores full name as key and file serial number
20  * (aka inode number) as data.
21  * internal/router entry stores sufffix compressed name
22  * as key and simple extent descriptor as data.
23  *
24  * each directory page maintains a sorted entry index table
25  * which stores the start slot index of sorted entries
26  * to allow binary search on the table.
27  *
28  * directory starts as a root/leaf page in on-disk inode
29  * inline data area.
30  * when it becomes full, it starts a leaf of a external extent
31  * of length of 1 block. each time the first leaf becomes full,
32  * it is extended rather than split (its size is doubled),
33  * until its length becoms 4 KBytes, from then the extent is split
34  * with new 4 Kbyte extent when it becomes full
35  * to reduce external fragmentation of small directories.
36  *
37  * blah, blah, blah, for linear scan of directory in pieces by
38  * readdir().
39  *
40  *
41  *	case-insensitive directory file system
42  *
43  * names are stored in case-sensitive way in leaf entry.
44  * but stored, searched and compared in case-insensitive (uppercase) order
45  * (i.e., both search key and entry key are folded for search/compare):
46  * (note that case-sensitive order is BROKEN in storage, e.g.,
47  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48  *
49  *  entries which folds to the same key makes up a equivalent class
50  *  whose members are stored as contiguous cluster (may cross page boundary)
51  *  but whose order is arbitrary and acts as duplicate, e.g.,
52  *  abc, Abc, aBc, abC)
53  *
54  * once match is found at leaf, requires scan forward/backward
55  * either for, in case-insensitive search, duplicate
56  * or for, in case-sensitive search, for exact match
57  *
58  * router entry must be created/stored in case-insensitive way
59  * in internal entry:
60  * (right most key of left page and left most key of right page
61  * are folded, and its suffix compression is propagated as router
62  * key in parent)
63  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64  * should be made the router key for the split)
65  *
66  * case-insensitive search:
67  *
68  *	fold search key;
69  *
70  *	case-insensitive search of B-tree:
71  *	for internal entry, router key is already folded;
72  *	for leaf entry, fold the entry key before comparison.
73  *
74  *	if (leaf entry case-insensitive match found)
75  *		if (next entry satisfies case-insensitive match)
76  *			return EDUPLICATE;
77  *		if (prev entry satisfies case-insensitive match)
78  *			return EDUPLICATE;
79  *		return match;
80  *	else
81  *		return no match;
82  *
83  *	serialization:
84  * target directory inode lock is being held on entry/exit
85  * of all main directory service routines.
86  *
87  *	log based recovery:
88  */
89 
90 #include <linux/fs.h>
91 #include <linux/quotaops.h>
92 #include <linux/slab.h>
93 #include "jfs_incore.h"
94 #include "jfs_superblock.h"
95 #include "jfs_filsys.h"
96 #include "jfs_metapage.h"
97 #include "jfs_dmap.h"
98 #include "jfs_unicode.h"
99 #include "jfs_debug.h"
100 
101 /* dtree split parameter */
102 struct dtsplit {
103 	struct metapage *mp;
104 	s16 index;
105 	s16 nslot;
106 	struct component_name *key;
107 	ddata_t *data;
108 	struct pxdlist *pxdlist;
109 };
110 
111 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112 
113 /* get page buffer for specified block address */
114 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)				\
115 do {									\
116 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot);	\
117 	if (!(RC)) {							\
118 		if (((P)->header.nextindex >				\
119 		     (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) {	\
121 			BT_PUTPAGE(MP);					\
122 			jfs_error((IP)->i_sb,				\
123 				  "DT_GETPAGE: dtree page corrupt\n");	\
124 			MP = NULL;					\
125 			RC = -EIO;					\
126 		}							\
127 	}								\
128 } while (0)
129 
130 /* for consistency */
131 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
132 
133 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
134 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
135 
136 /*
137  * forward references
138  */
139 static int dtSplitUp(tid_t tid, struct inode *ip,
140 		     struct dtsplit * split, struct btstack * btstack);
141 
142 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
143 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
144 
145 static int dtExtendPage(tid_t tid, struct inode *ip,
146 			struct dtsplit * split, struct btstack * btstack);
147 
148 static int dtSplitRoot(tid_t tid, struct inode *ip,
149 		       struct dtsplit * split, struct metapage ** rmpp);
150 
151 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
152 		      dtpage_t * fp, struct btstack * btstack);
153 
154 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
155 
156 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
157 
158 static int dtReadNext(struct inode *ip,
159 		      loff_t * offset, struct btstack * btstack);
160 
161 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
162 
163 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
164 		     int flag);
165 
166 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
167 		     int flag);
168 
169 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
170 			      int ri, struct component_name * key, int flag);
171 
172 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
173 			  ddata_t * data, struct dt_lock **);
174 
175 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
176 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
177 			int do_index);
178 
179 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
180 
181 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
182 
183 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
184 
185 #define ciToUpper(c)	UniStrupr((c)->name)
186 
187 /*
188  *	read_index_page()
189  *
190  *	Reads a page of a directory's index table.
191  *	Having metadata mapped into the directory inode's address space
192  *	presents a multitude of problems.  We avoid this by mapping to
193  *	the absolute address space outside of the *_metapage routines
194  */
195 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
196 {
197 	int rc;
198 	s64 xaddr;
199 	int xflag;
200 	s32 xlen;
201 
202 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
203 	if (rc || (xaddr == 0))
204 		return NULL;
205 
206 	return read_metapage(inode, xaddr, PSIZE, 1);
207 }
208 
209 /*
210  *	get_index_page()
211  *
212  *	Same as get_index_page(), but get's a new page without reading
213  */
214 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
215 {
216 	int rc;
217 	s64 xaddr;
218 	int xflag;
219 	s32 xlen;
220 
221 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
222 	if (rc || (xaddr == 0))
223 		return NULL;
224 
225 	return get_metapage(inode, xaddr, PSIZE, 1);
226 }
227 
228 /*
229  *	find_index()
230  *
231  *	Returns dtree page containing directory table entry for specified
232  *	index and pointer to its entry.
233  *
234  *	mp must be released by caller.
235  */
236 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
237 					 struct metapage ** mp, s64 *lblock)
238 {
239 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
240 	s64 blkno;
241 	s64 offset;
242 	int page_offset;
243 	struct dir_table_slot *slot;
244 	static int maxWarnings = 10;
245 
246 	if (index < 2) {
247 		if (maxWarnings) {
248 			jfs_warn("find_entry called with index = %d", index);
249 			maxWarnings--;
250 		}
251 		return NULL;
252 	}
253 
254 	if (index >= jfs_ip->next_index) {
255 		jfs_warn("find_entry called with index >= next_index");
256 		return NULL;
257 	}
258 
259 	if (jfs_dirtable_inline(ip)) {
260 		/*
261 		 * Inline directory table
262 		 */
263 		*mp = NULL;
264 		slot = &jfs_ip->i_dirtable[index - 2];
265 	} else {
266 		offset = (index - 2) * sizeof(struct dir_table_slot);
267 		page_offset = offset & (PSIZE - 1);
268 		blkno = ((offset + 1) >> L2PSIZE) <<
269 		    JFS_SBI(ip->i_sb)->l2nbperpage;
270 
271 		if (*mp && (*lblock != blkno)) {
272 			release_metapage(*mp);
273 			*mp = NULL;
274 		}
275 		if (!(*mp)) {
276 			*lblock = blkno;
277 			*mp = read_index_page(ip, blkno);
278 		}
279 		if (!(*mp)) {
280 			jfs_err("free_index: error reading directory table");
281 			return NULL;
282 		}
283 
284 		slot =
285 		    (struct dir_table_slot *) ((char *) (*mp)->data +
286 					       page_offset);
287 	}
288 	return slot;
289 }
290 
291 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
292 			      u32 index)
293 {
294 	struct tlock *tlck;
295 	struct linelock *llck;
296 	struct lv *lv;
297 
298 	tlck = txLock(tid, ip, mp, tlckDATA);
299 	llck = (struct linelock *) tlck->lock;
300 
301 	if (llck->index >= llck->maxcnt)
302 		llck = txLinelock(llck);
303 	lv = &llck->lv[llck->index];
304 
305 	/*
306 	 *	Linelock slot size is twice the size of directory table
307 	 *	slot size.  512 entries per page.
308 	 */
309 	lv->offset = ((index - 2) & 511) >> 1;
310 	lv->length = 1;
311 	llck->index++;
312 }
313 
314 /*
315  *	add_index()
316  *
317  *	Adds an entry to the directory index table.  This is used to provide
318  *	each directory entry with a persistent index in which to resume
319  *	directory traversals
320  */
321 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
322 {
323 	struct super_block *sb = ip->i_sb;
324 	struct jfs_sb_info *sbi = JFS_SBI(sb);
325 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
326 	u64 blkno;
327 	struct dir_table_slot *dirtab_slot;
328 	u32 index;
329 	struct linelock *llck;
330 	struct lv *lv;
331 	struct metapage *mp;
332 	s64 offset;
333 	uint page_offset;
334 	struct tlock *tlck;
335 	s64 xaddr;
336 
337 	ASSERT(DO_INDEX(ip));
338 
339 	if (jfs_ip->next_index < 2) {
340 		jfs_warn("add_index: next_index = %d.  Resetting!",
341 			   jfs_ip->next_index);
342 		jfs_ip->next_index = 2;
343 	}
344 
345 	index = jfs_ip->next_index++;
346 
347 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
348 		/*
349 		 * i_size reflects size of index table, or 8 bytes per entry.
350 		 */
351 		ip->i_size = (loff_t) (index - 1) << 3;
352 
353 		/*
354 		 * dir table fits inline within inode
355 		 */
356 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
357 		dirtab_slot->flag = DIR_INDEX_VALID;
358 		dirtab_slot->slot = slot;
359 		DTSaddress(dirtab_slot, bn);
360 
361 		set_cflag(COMMIT_Dirtable, ip);
362 
363 		return index;
364 	}
365 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
366 		struct dir_table_slot temp_table[12];
367 
368 		/*
369 		 * It's time to move the inline table to an external
370 		 * page and begin to build the xtree
371 		 */
372 		if (dquot_alloc_block(ip, sbi->nbperpage))
373 			goto clean_up;
374 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
375 			dquot_free_block(ip, sbi->nbperpage);
376 			goto clean_up;
377 		}
378 
379 		/*
380 		 * Save the table, we're going to overwrite it with the
381 		 * xtree root
382 		 */
383 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
384 
385 		/*
386 		 * Initialize empty x-tree
387 		 */
388 		xtInitRoot(tid, ip);
389 
390 		/*
391 		 * Add the first block to the xtree
392 		 */
393 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
394 			/* This really shouldn't fail */
395 			jfs_warn("add_index: xtInsert failed!");
396 			memcpy(&jfs_ip->i_dirtable, temp_table,
397 			       sizeof (temp_table));
398 			dbFree(ip, xaddr, sbi->nbperpage);
399 			dquot_free_block(ip, sbi->nbperpage);
400 			goto clean_up;
401 		}
402 		ip->i_size = PSIZE;
403 
404 		mp = get_index_page(ip, 0);
405 		if (!mp) {
406 			jfs_err("add_index: get_metapage failed!");
407 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
408 			memcpy(&jfs_ip->i_dirtable, temp_table,
409 			       sizeof (temp_table));
410 			goto clean_up;
411 		}
412 		tlck = txLock(tid, ip, mp, tlckDATA);
413 		llck = (struct linelock *) & tlck->lock;
414 		ASSERT(llck->index == 0);
415 		lv = &llck->lv[0];
416 
417 		lv->offset = 0;
418 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
419 		llck->index++;
420 
421 		memcpy(mp->data, temp_table, sizeof(temp_table));
422 
423 		mark_metapage_dirty(mp);
424 		release_metapage(mp);
425 
426 		/*
427 		 * Logging is now directed by xtree tlocks
428 		 */
429 		clear_cflag(COMMIT_Dirtable, ip);
430 	}
431 
432 	offset = (index - 2) * sizeof(struct dir_table_slot);
433 	page_offset = offset & (PSIZE - 1);
434 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
435 	if (page_offset == 0) {
436 		/*
437 		 * This will be the beginning of a new page
438 		 */
439 		xaddr = 0;
440 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
441 			jfs_warn("add_index: xtInsert failed!");
442 			goto clean_up;
443 		}
444 		ip->i_size += PSIZE;
445 
446 		if ((mp = get_index_page(ip, blkno)))
447 			memset(mp->data, 0, PSIZE);	/* Just looks better */
448 		else
449 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
450 	} else
451 		mp = read_index_page(ip, blkno);
452 
453 	if (!mp) {
454 		jfs_err("add_index: get/read_metapage failed!");
455 		goto clean_up;
456 	}
457 
458 	lock_index(tid, ip, mp, index);
459 
460 	dirtab_slot =
461 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
462 	dirtab_slot->flag = DIR_INDEX_VALID;
463 	dirtab_slot->slot = slot;
464 	DTSaddress(dirtab_slot, bn);
465 
466 	mark_metapage_dirty(mp);
467 	release_metapage(mp);
468 
469 	return index;
470 
471       clean_up:
472 
473 	jfs_ip->next_index--;
474 
475 	return 0;
476 }
477 
478 /*
479  *	free_index()
480  *
481  *	Marks an entry to the directory index table as free.
482  */
483 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
484 {
485 	struct dir_table_slot *dirtab_slot;
486 	s64 lblock;
487 	struct metapage *mp = NULL;
488 
489 	dirtab_slot = find_index(ip, index, &mp, &lblock);
490 
491 	if (!dirtab_slot)
492 		return;
493 
494 	dirtab_slot->flag = DIR_INDEX_FREE;
495 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
496 	dirtab_slot->addr2 = cpu_to_le32(next);
497 
498 	if (mp) {
499 		lock_index(tid, ip, mp, index);
500 		mark_metapage_dirty(mp);
501 		release_metapage(mp);
502 	} else
503 		set_cflag(COMMIT_Dirtable, ip);
504 }
505 
506 /*
507  *	modify_index()
508  *
509  *	Changes an entry in the directory index table
510  */
511 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
512 			 int slot, struct metapage ** mp, s64 *lblock)
513 {
514 	struct dir_table_slot *dirtab_slot;
515 
516 	dirtab_slot = find_index(ip, index, mp, lblock);
517 
518 	if (!dirtab_slot)
519 		return;
520 
521 	DTSaddress(dirtab_slot, bn);
522 	dirtab_slot->slot = slot;
523 
524 	if (*mp) {
525 		lock_index(tid, ip, *mp, index);
526 		mark_metapage_dirty(*mp);
527 	} else
528 		set_cflag(COMMIT_Dirtable, ip);
529 }
530 
531 /*
532  *	read_index()
533  *
534  *	reads a directory table slot
535  */
536 static int read_index(struct inode *ip, u32 index,
537 		     struct dir_table_slot * dirtab_slot)
538 {
539 	s64 lblock;
540 	struct metapage *mp = NULL;
541 	struct dir_table_slot *slot;
542 
543 	slot = find_index(ip, index, &mp, &lblock);
544 	if (!slot) {
545 		return -EIO;
546 	}
547 
548 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
549 
550 	if (mp)
551 		release_metapage(mp);
552 
553 	return 0;
554 }
555 
556 /*
557  *	dtSearch()
558  *
559  * function:
560  *	Search for the entry with specified key
561  *
562  * parameter:
563  *
564  * return: 0 - search result on stack, leaf page pinned;
565  *	   errno - I/O error
566  */
567 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
568 	     struct btstack * btstack, int flag)
569 {
570 	int rc = 0;
571 	int cmp = 1;		/* init for empty page */
572 	s64 bn;
573 	struct metapage *mp;
574 	dtpage_t *p;
575 	s8 *stbl;
576 	int base, index, lim;
577 	struct btframe *btsp;
578 	pxd_t *pxd;
579 	int psize = 288;	/* initial in-line directory */
580 	ino_t inumber;
581 	struct component_name ciKey;
582 	struct super_block *sb = ip->i_sb;
583 
584 	ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
585 				   GFP_NOFS);
586 	if (!ciKey.name) {
587 		rc = -ENOMEM;
588 		goto dtSearch_Exit2;
589 	}
590 
591 
592 	/* uppercase search key for c-i directory */
593 	UniStrcpy(ciKey.name, key->name);
594 	ciKey.namlen = key->namlen;
595 
596 	/* only uppercase if case-insensitive support is on */
597 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
598 		ciToUpper(&ciKey);
599 	}
600 	BT_CLR(btstack);	/* reset stack */
601 
602 	/* init level count for max pages to split */
603 	btstack->nsplit = 1;
604 
605 	/*
606 	 *	search down tree from root:
607 	 *
608 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
609 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
610 	 *
611 	 * if entry with search key K is not found
612 	 * internal page search find the entry with largest key Ki
613 	 * less than K which point to the child page to search;
614 	 * leaf page search find the entry with smallest key Kj
615 	 * greater than K so that the returned index is the position of
616 	 * the entry to be shifted right for insertion of new entry.
617 	 * for empty tree, search key is greater than any key of the tree.
618 	 *
619 	 * by convention, root bn = 0.
620 	 */
621 	for (bn = 0;;) {
622 		/* get/pin the page to search */
623 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
624 		if (rc)
625 			goto dtSearch_Exit1;
626 
627 		/* get sorted entry table of the page */
628 		stbl = DT_GETSTBL(p);
629 
630 		/*
631 		 * binary search with search key K on the current page.
632 		 */
633 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
634 			index = base + (lim >> 1);
635 
636 			if (p->header.flag & BT_LEAF) {
637 				/* uppercase leaf name to compare */
638 				cmp =
639 				    ciCompare(&ciKey, p, stbl[index],
640 					      JFS_SBI(sb)->mntflag);
641 			} else {
642 				/* router key is in uppercase */
643 
644 				cmp = dtCompare(&ciKey, p, stbl[index]);
645 
646 
647 			}
648 			if (cmp == 0) {
649 				/*
650 				 *	search hit
651 				 */
652 				/* search hit - leaf page:
653 				 * return the entry found
654 				 */
655 				if (p->header.flag & BT_LEAF) {
656 					inumber = le32_to_cpu(
657 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
658 
659 					/*
660 					 * search for JFS_LOOKUP
661 					 */
662 					if (flag == JFS_LOOKUP) {
663 						*data = inumber;
664 						rc = 0;
665 						goto out;
666 					}
667 
668 					/*
669 					 * search for JFS_CREATE
670 					 */
671 					if (flag == JFS_CREATE) {
672 						*data = inumber;
673 						rc = -EEXIST;
674 						goto out;
675 					}
676 
677 					/*
678 					 * search for JFS_REMOVE or JFS_RENAME
679 					 */
680 					if ((flag == JFS_REMOVE ||
681 					     flag == JFS_RENAME) &&
682 					    *data != inumber) {
683 						rc = -ESTALE;
684 						goto out;
685 					}
686 
687 					/*
688 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
689 					 */
690 					/* save search result */
691 					*data = inumber;
692 					btsp = btstack->top;
693 					btsp->bn = bn;
694 					btsp->index = index;
695 					btsp->mp = mp;
696 
697 					rc = 0;
698 					goto dtSearch_Exit1;
699 				}
700 
701 				/* search hit - internal page:
702 				 * descend/search its child page
703 				 */
704 				goto getChild;
705 			}
706 
707 			if (cmp > 0) {
708 				base = index + 1;
709 				--lim;
710 			}
711 		}
712 
713 		/*
714 		 *	search miss
715 		 *
716 		 * base is the smallest index with key (Kj) greater than
717 		 * search key (K) and may be zero or (maxindex + 1) index.
718 		 */
719 		/*
720 		 * search miss - leaf page
721 		 *
722 		 * return location of entry (base) where new entry with
723 		 * search key K is to be inserted.
724 		 */
725 		if (p->header.flag & BT_LEAF) {
726 			/*
727 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
728 			 */
729 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
730 			    flag == JFS_RENAME) {
731 				rc = -ENOENT;
732 				goto out;
733 			}
734 
735 			/*
736 			 * search for JFS_CREATE|JFS_FINDDIR:
737 			 *
738 			 * save search result
739 			 */
740 			*data = 0;
741 			btsp = btstack->top;
742 			btsp->bn = bn;
743 			btsp->index = base;
744 			btsp->mp = mp;
745 
746 			rc = 0;
747 			goto dtSearch_Exit1;
748 		}
749 
750 		/*
751 		 * search miss - internal page
752 		 *
753 		 * if base is non-zero, decrement base by one to get the parent
754 		 * entry of the child page to search.
755 		 */
756 		index = base ? base - 1 : base;
757 
758 		/*
759 		 * go down to child page
760 		 */
761 	      getChild:
762 		/* update max. number of pages to split */
763 		if (BT_STACK_FULL(btstack)) {
764 			/* Something's corrupted, mark filesystem dirty so
765 			 * chkdsk will fix it.
766 			 */
767 			jfs_error(sb, "stack overrun!\n");
768 			BT_STACK_DUMP(btstack);
769 			rc = -EIO;
770 			goto out;
771 		}
772 		btstack->nsplit++;
773 
774 		/* push (bn, index) of the parent page/entry */
775 		BT_PUSH(btstack, bn, index);
776 
777 		/* get the child page block number */
778 		pxd = (pxd_t *) & p->slot[stbl[index]];
779 		bn = addressPXD(pxd);
780 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
781 
782 		/* unpin the parent page */
783 		DT_PUTPAGE(mp);
784 	}
785 
786       out:
787 	DT_PUTPAGE(mp);
788 
789       dtSearch_Exit1:
790 
791 	kfree(ciKey.name);
792 
793       dtSearch_Exit2:
794 
795 	return rc;
796 }
797 
798 
799 /*
800  *	dtInsert()
801  *
802  * function: insert an entry to directory tree
803  *
804  * parameter:
805  *
806  * return: 0 - success;
807  *	   errno - failure;
808  */
809 int dtInsert(tid_t tid, struct inode *ip,
810 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
811 {
812 	int rc = 0;
813 	struct metapage *mp;	/* meta-page buffer */
814 	dtpage_t *p;		/* base B+-tree index page */
815 	s64 bn;
816 	int index;
817 	struct dtsplit split;	/* split information */
818 	ddata_t data;
819 	struct dt_lock *dtlck;
820 	int n;
821 	struct tlock *tlck;
822 	struct lv *lv;
823 
824 	/*
825 	 *	retrieve search result
826 	 *
827 	 * dtSearch() returns (leaf page pinned, index at which to insert).
828 	 * n.b. dtSearch() may return index of (maxindex + 1) of
829 	 * the full page.
830 	 */
831 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
832 
833 	/*
834 	 *	insert entry for new key
835 	 */
836 	if (DO_INDEX(ip)) {
837 		if (JFS_IP(ip)->next_index == DIREND) {
838 			DT_PUTPAGE(mp);
839 			return -EMLINK;
840 		}
841 		n = NDTLEAF(name->namlen);
842 		data.leaf.tid = tid;
843 		data.leaf.ip = ip;
844 	} else {
845 		n = NDTLEAF_LEGACY(name->namlen);
846 		data.leaf.ip = NULL;	/* signifies legacy directory format */
847 	}
848 	data.leaf.ino = *fsn;
849 
850 	/*
851 	 *	leaf page does not have enough room for new entry:
852 	 *
853 	 *	extend/split the leaf page;
854 	 *
855 	 * dtSplitUp() will insert the entry and unpin the leaf page.
856 	 */
857 	if (n > p->header.freecnt) {
858 		split.mp = mp;
859 		split.index = index;
860 		split.nslot = n;
861 		split.key = name;
862 		split.data = &data;
863 		rc = dtSplitUp(tid, ip, &split, btstack);
864 		return rc;
865 	}
866 
867 	/*
868 	 *	leaf page does have enough room for new entry:
869 	 *
870 	 *	insert the new data entry into the leaf page;
871 	 */
872 	BT_MARK_DIRTY(mp, ip);
873 	/*
874 	 * acquire a transaction lock on the leaf page
875 	 */
876 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
877 	dtlck = (struct dt_lock *) & tlck->lock;
878 	ASSERT(dtlck->index == 0);
879 	lv = & dtlck->lv[0];
880 
881 	/* linelock header */
882 	lv->offset = 0;
883 	lv->length = 1;
884 	dtlck->index++;
885 
886 	dtInsertEntry(p, index, name, &data, &dtlck);
887 
888 	/* linelock stbl of non-root leaf page */
889 	if (!(p->header.flag & BT_ROOT)) {
890 		if (dtlck->index >= dtlck->maxcnt)
891 			dtlck = (struct dt_lock *) txLinelock(dtlck);
892 		lv = & dtlck->lv[dtlck->index];
893 		n = index >> L2DTSLOTSIZE;
894 		lv->offset = p->header.stblindex + n;
895 		lv->length =
896 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
897 		dtlck->index++;
898 	}
899 
900 	/* unpin the leaf page */
901 	DT_PUTPAGE(mp);
902 
903 	return 0;
904 }
905 
906 
907 /*
908  *	dtSplitUp()
909  *
910  * function: propagate insertion bottom up;
911  *
912  * parameter:
913  *
914  * return: 0 - success;
915  *	   errno - failure;
916  *	leaf page unpinned;
917  */
918 static int dtSplitUp(tid_t tid,
919 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
920 {
921 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
922 	int rc = 0;
923 	struct metapage *smp;
924 	dtpage_t *sp;		/* split page */
925 	struct metapage *rmp;
926 	dtpage_t *rp;		/* new right page split from sp */
927 	pxd_t rpxd;		/* new right page extent descriptor */
928 	struct metapage *lmp;
929 	dtpage_t *lp;		/* left child page */
930 	int skip;		/* index of entry of insertion */
931 	struct btframe *parent;	/* parent page entry on traverse stack */
932 	s64 xaddr, nxaddr;
933 	int xlen, xsize;
934 	struct pxdlist pxdlist;
935 	pxd_t *pxd;
936 	struct component_name key = { 0, NULL };
937 	ddata_t *data = split->data;
938 	int n;
939 	struct dt_lock *dtlck;
940 	struct tlock *tlck;
941 	struct lv *lv;
942 	int quota_allocation = 0;
943 
944 	/* get split page */
945 	smp = split->mp;
946 	sp = DT_PAGE(ip, smp);
947 
948 	key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS);
949 	if (!key.name) {
950 		DT_PUTPAGE(smp);
951 		rc = -ENOMEM;
952 		goto dtSplitUp_Exit;
953 	}
954 
955 	/*
956 	 *	split leaf page
957 	 *
958 	 * The split routines insert the new entry, and
959 	 * acquire txLock as appropriate.
960 	 */
961 	/*
962 	 *	split root leaf page:
963 	 */
964 	if (sp->header.flag & BT_ROOT) {
965 		/*
966 		 * allocate a single extent child page
967 		 */
968 		xlen = 1;
969 		n = sbi->bsize >> L2DTSLOTSIZE;
970 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
971 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
972 		if (n <= split->nslot)
973 			xlen++;
974 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
975 			DT_PUTPAGE(smp);
976 			goto freeKeyName;
977 		}
978 
979 		pxdlist.maxnpxd = 1;
980 		pxdlist.npxd = 0;
981 		pxd = &pxdlist.pxd[0];
982 		PXDaddress(pxd, xaddr);
983 		PXDlength(pxd, xlen);
984 		split->pxdlist = &pxdlist;
985 		rc = dtSplitRoot(tid, ip, split, &rmp);
986 
987 		if (rc)
988 			dbFree(ip, xaddr, xlen);
989 		else
990 			DT_PUTPAGE(rmp);
991 
992 		DT_PUTPAGE(smp);
993 
994 		if (!DO_INDEX(ip))
995 			ip->i_size = xlen << sbi->l2bsize;
996 
997 		goto freeKeyName;
998 	}
999 
1000 	/*
1001 	 *	extend first leaf page
1002 	 *
1003 	 * extend the 1st extent if less than buffer page size
1004 	 * (dtExtendPage() reurns leaf page unpinned)
1005 	 */
1006 	pxd = &sp->header.self;
1007 	xlen = lengthPXD(pxd);
1008 	xsize = xlen << sbi->l2bsize;
1009 	if (xsize < PSIZE) {
1010 		xaddr = addressPXD(pxd);
1011 		n = xsize >> L2DTSLOTSIZE;
1012 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1013 		if ((n + sp->header.freecnt) <= split->nslot)
1014 			n = xlen + (xlen << 1);
1015 		else
1016 			n = xlen;
1017 
1018 		/* Allocate blocks to quota. */
1019 		rc = dquot_alloc_block(ip, n);
1020 		if (rc)
1021 			goto extendOut;
1022 		quota_allocation += n;
1023 
1024 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1025 				    (s64) n, &nxaddr)))
1026 			goto extendOut;
1027 
1028 		pxdlist.maxnpxd = 1;
1029 		pxdlist.npxd = 0;
1030 		pxd = &pxdlist.pxd[0];
1031 		PXDaddress(pxd, nxaddr);
1032 		PXDlength(pxd, xlen + n);
1033 		split->pxdlist = &pxdlist;
1034 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1035 			nxaddr = addressPXD(pxd);
1036 			if (xaddr != nxaddr) {
1037 				/* free relocated extent */
1038 				xlen = lengthPXD(pxd);
1039 				dbFree(ip, nxaddr, (s64) xlen);
1040 			} else {
1041 				/* free extended delta */
1042 				xlen = lengthPXD(pxd) - n;
1043 				xaddr = addressPXD(pxd) + xlen;
1044 				dbFree(ip, xaddr, (s64) n);
1045 			}
1046 		} else if (!DO_INDEX(ip))
1047 			ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1048 
1049 
1050 	      extendOut:
1051 		DT_PUTPAGE(smp);
1052 		goto freeKeyName;
1053 	}
1054 
1055 	/*
1056 	 *	split leaf page <sp> into <sp> and a new right page <rp>.
1057 	 *
1058 	 * return <rp> pinned and its extent descriptor <rpxd>
1059 	 */
1060 	/*
1061 	 * allocate new directory page extent and
1062 	 * new index page(s) to cover page split(s)
1063 	 *
1064 	 * allocation hint: ?
1065 	 */
1066 	n = btstack->nsplit;
1067 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1068 	xlen = sbi->nbperpage;
1069 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1070 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1071 			PXDaddress(pxd, xaddr);
1072 			PXDlength(pxd, xlen);
1073 			pxdlist.maxnpxd++;
1074 			continue;
1075 		}
1076 
1077 		DT_PUTPAGE(smp);
1078 
1079 		/* undo allocation */
1080 		goto splitOut;
1081 	}
1082 
1083 	split->pxdlist = &pxdlist;
1084 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1085 		DT_PUTPAGE(smp);
1086 
1087 		/* undo allocation */
1088 		goto splitOut;
1089 	}
1090 
1091 	if (!DO_INDEX(ip))
1092 		ip->i_size += PSIZE;
1093 
1094 	/*
1095 	 * propagate up the router entry for the leaf page just split
1096 	 *
1097 	 * insert a router entry for the new page into the parent page,
1098 	 * propagate the insert/split up the tree by walking back the stack
1099 	 * of (bn of parent page, index of child page entry in parent page)
1100 	 * that were traversed during the search for the page that split.
1101 	 *
1102 	 * the propagation of insert/split up the tree stops if the root
1103 	 * splits or the page inserted into doesn't have to split to hold
1104 	 * the new entry.
1105 	 *
1106 	 * the parent entry for the split page remains the same, and
1107 	 * a new entry is inserted at its right with the first key and
1108 	 * block number of the new right page.
1109 	 *
1110 	 * There are a maximum of 4 pages pinned at any time:
1111 	 * two children, left parent and right parent (when the parent splits).
1112 	 * keep the child pages pinned while working on the parent.
1113 	 * make sure that all pins are released at exit.
1114 	 */
1115 	while ((parent = BT_POP(btstack)) != NULL) {
1116 		/* parent page specified by stack frame <parent> */
1117 
1118 		/* keep current child pages (<lp>, <rp>) pinned */
1119 		lmp = smp;
1120 		lp = sp;
1121 
1122 		/*
1123 		 * insert router entry in parent for new right child page <rp>
1124 		 */
1125 		/* get the parent page <sp> */
1126 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1127 		if (rc) {
1128 			DT_PUTPAGE(lmp);
1129 			DT_PUTPAGE(rmp);
1130 			goto splitOut;
1131 		}
1132 
1133 		/*
1134 		 * The new key entry goes ONE AFTER the index of parent entry,
1135 		 * because the split was to the right.
1136 		 */
1137 		skip = parent->index + 1;
1138 
1139 		/*
1140 		 * compute the key for the router entry
1141 		 *
1142 		 * key suffix compression:
1143 		 * for internal pages that have leaf pages as children,
1144 		 * retain only what's needed to distinguish between
1145 		 * the new entry and the entry on the page to its left.
1146 		 * If the keys compare equal, retain the entire key.
1147 		 *
1148 		 * note that compression is performed only at computing
1149 		 * router key at the lowest internal level.
1150 		 * further compression of the key between pairs of higher
1151 		 * level internal pages loses too much information and
1152 		 * the search may fail.
1153 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1154 		 * results in two adjacent parent entries (a)(xx).
1155 		 * if split occurs between these two entries, and
1156 		 * if compression is applied, the router key of parent entry
1157 		 * of right page (x) will divert search for x into right
1158 		 * subtree and miss x in the left subtree.)
1159 		 *
1160 		 * the entire key must be retained for the next-to-leftmost
1161 		 * internal key at any level of the tree, or search may fail
1162 		 * (e.g., ?)
1163 		 */
1164 		switch (rp->header.flag & BT_TYPE) {
1165 		case BT_LEAF:
1166 			/*
1167 			 * compute the length of prefix for suffix compression
1168 			 * between last entry of left page and first entry
1169 			 * of right page
1170 			 */
1171 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1172 			    sp->header.prev != 0 || skip > 1) {
1173 				/* compute uppercase router prefix key */
1174 				rc = ciGetLeafPrefixKey(lp,
1175 							lp->header.nextindex-1,
1176 							rp, 0, &key,
1177 							sbi->mntflag);
1178 				if (rc) {
1179 					DT_PUTPAGE(lmp);
1180 					DT_PUTPAGE(rmp);
1181 					DT_PUTPAGE(smp);
1182 					goto splitOut;
1183 				}
1184 			} else {
1185 				/* next to leftmost entry of
1186 				   lowest internal level */
1187 
1188 				/* compute uppercase router key */
1189 				dtGetKey(rp, 0, &key, sbi->mntflag);
1190 				key.name[key.namlen] = 0;
1191 
1192 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1193 					ciToUpper(&key);
1194 			}
1195 
1196 			n = NDTINTERNAL(key.namlen);
1197 			break;
1198 
1199 		case BT_INTERNAL:
1200 			dtGetKey(rp, 0, &key, sbi->mntflag);
1201 			n = NDTINTERNAL(key.namlen);
1202 			break;
1203 
1204 		default:
1205 			jfs_err("dtSplitUp(): UFO!");
1206 			break;
1207 		}
1208 
1209 		/* unpin left child page */
1210 		DT_PUTPAGE(lmp);
1211 
1212 		/*
1213 		 * compute the data for the router entry
1214 		 */
1215 		data->xd = rpxd;	/* child page xd */
1216 
1217 		/*
1218 		 * parent page is full - split the parent page
1219 		 */
1220 		if (n > sp->header.freecnt) {
1221 			/* init for parent page split */
1222 			split->mp = smp;
1223 			split->index = skip;	/* index at insert */
1224 			split->nslot = n;
1225 			split->key = &key;
1226 			/* split->data = data; */
1227 
1228 			/* unpin right child page */
1229 			DT_PUTPAGE(rmp);
1230 
1231 			/* The split routines insert the new entry,
1232 			 * acquire txLock as appropriate.
1233 			 * return <rp> pinned and its block number <rbn>.
1234 			 */
1235 			rc = (sp->header.flag & BT_ROOT) ?
1236 			    dtSplitRoot(tid, ip, split, &rmp) :
1237 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1238 			if (rc) {
1239 				DT_PUTPAGE(smp);
1240 				goto splitOut;
1241 			}
1242 
1243 			/* smp and rmp are pinned */
1244 		}
1245 		/*
1246 		 * parent page is not full - insert router entry in parent page
1247 		 */
1248 		else {
1249 			BT_MARK_DIRTY(smp, ip);
1250 			/*
1251 			 * acquire a transaction lock on the parent page
1252 			 */
1253 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1254 			dtlck = (struct dt_lock *) & tlck->lock;
1255 			ASSERT(dtlck->index == 0);
1256 			lv = & dtlck->lv[0];
1257 
1258 			/* linelock header */
1259 			lv->offset = 0;
1260 			lv->length = 1;
1261 			dtlck->index++;
1262 
1263 			/* linelock stbl of non-root parent page */
1264 			if (!(sp->header.flag & BT_ROOT)) {
1265 				lv++;
1266 				n = skip >> L2DTSLOTSIZE;
1267 				lv->offset = sp->header.stblindex + n;
1268 				lv->length =
1269 				    ((sp->header.nextindex -
1270 				      1) >> L2DTSLOTSIZE) - n + 1;
1271 				dtlck->index++;
1272 			}
1273 
1274 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1275 
1276 			/* exit propagate up */
1277 			break;
1278 		}
1279 	}
1280 
1281 	/* unpin current split and its right page */
1282 	DT_PUTPAGE(smp);
1283 	DT_PUTPAGE(rmp);
1284 
1285 	/*
1286 	 * free remaining extents allocated for split
1287 	 */
1288       splitOut:
1289 	n = pxdlist.npxd;
1290 	pxd = &pxdlist.pxd[n];
1291 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1292 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1293 
1294       freeKeyName:
1295 	kfree(key.name);
1296 
1297 	/* Rollback quota allocation */
1298 	if (rc && quota_allocation)
1299 		dquot_free_block(ip, quota_allocation);
1300 
1301       dtSplitUp_Exit:
1302 
1303 	return rc;
1304 }
1305 
1306 
1307 /*
1308  *	dtSplitPage()
1309  *
1310  * function: Split a non-root page of a btree.
1311  *
1312  * parameter:
1313  *
1314  * return: 0 - success;
1315  *	   errno - failure;
1316  *	return split and new page pinned;
1317  */
1318 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1319 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1320 {
1321 	int rc = 0;
1322 	struct metapage *smp;
1323 	dtpage_t *sp;
1324 	struct metapage *rmp;
1325 	dtpage_t *rp;		/* new right page allocated */
1326 	s64 rbn;		/* new right page block number */
1327 	struct metapage *mp;
1328 	dtpage_t *p;
1329 	s64 nextbn;
1330 	struct pxdlist *pxdlist;
1331 	pxd_t *pxd;
1332 	int skip, nextindex, half, left, nxt, off, si;
1333 	struct ldtentry *ldtentry;
1334 	struct idtentry *idtentry;
1335 	u8 *stbl;
1336 	struct dtslot *f;
1337 	int fsi, stblsize;
1338 	int n;
1339 	struct dt_lock *sdtlck, *rdtlck;
1340 	struct tlock *tlck;
1341 	struct dt_lock *dtlck;
1342 	struct lv *slv, *rlv, *lv;
1343 
1344 	/* get split page */
1345 	smp = split->mp;
1346 	sp = DT_PAGE(ip, smp);
1347 
1348 	/*
1349 	 * allocate the new right page for the split
1350 	 */
1351 	pxdlist = split->pxdlist;
1352 	pxd = &pxdlist->pxd[pxdlist->npxd];
1353 	pxdlist->npxd++;
1354 	rbn = addressPXD(pxd);
1355 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1356 	if (rmp == NULL)
1357 		return -EIO;
1358 
1359 	/* Allocate blocks to quota. */
1360 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1361 	if (rc) {
1362 		release_metapage(rmp);
1363 		return rc;
1364 	}
1365 
1366 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1367 
1368 	BT_MARK_DIRTY(rmp, ip);
1369 	/*
1370 	 * acquire a transaction lock on the new right page
1371 	 */
1372 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1373 	rdtlck = (struct dt_lock *) & tlck->lock;
1374 
1375 	rp = (dtpage_t *) rmp->data;
1376 	*rpp = rp;
1377 	rp->header.self = *pxd;
1378 
1379 	BT_MARK_DIRTY(smp, ip);
1380 	/*
1381 	 * acquire a transaction lock on the split page
1382 	 *
1383 	 * action:
1384 	 */
1385 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1386 	sdtlck = (struct dt_lock *) & tlck->lock;
1387 
1388 	/* linelock header of split page */
1389 	ASSERT(sdtlck->index == 0);
1390 	slv = & sdtlck->lv[0];
1391 	slv->offset = 0;
1392 	slv->length = 1;
1393 	sdtlck->index++;
1394 
1395 	/*
1396 	 * initialize/update sibling pointers between sp and rp
1397 	 */
1398 	nextbn = le64_to_cpu(sp->header.next);
1399 	rp->header.next = cpu_to_le64(nextbn);
1400 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1401 	sp->header.next = cpu_to_le64(rbn);
1402 
1403 	/*
1404 	 * initialize new right page
1405 	 */
1406 	rp->header.flag = sp->header.flag;
1407 
1408 	/* compute sorted entry table at start of extent data area */
1409 	rp->header.nextindex = 0;
1410 	rp->header.stblindex = 1;
1411 
1412 	n = PSIZE >> L2DTSLOTSIZE;
1413 	rp->header.maxslot = n;
1414 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1415 
1416 	/* init freelist */
1417 	fsi = rp->header.stblindex + stblsize;
1418 	rp->header.freelist = fsi;
1419 	rp->header.freecnt = rp->header.maxslot - fsi;
1420 
1421 	/*
1422 	 *	sequential append at tail: append without split
1423 	 *
1424 	 * If splitting the last page on a level because of appending
1425 	 * a entry to it (skip is maxentry), it's likely that the access is
1426 	 * sequential. Adding an empty page on the side of the level is less
1427 	 * work and can push the fill factor much higher than normal.
1428 	 * If we're wrong it's no big deal, we'll just do the split the right
1429 	 * way next time.
1430 	 * (It may look like it's equally easy to do a similar hack for
1431 	 * reverse sorted data, that is, split the tree left,
1432 	 * but it's not. Be my guest.)
1433 	 */
1434 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1435 		/* linelock header + stbl (first slot) of new page */
1436 		rlv = & rdtlck->lv[rdtlck->index];
1437 		rlv->offset = 0;
1438 		rlv->length = 2;
1439 		rdtlck->index++;
1440 
1441 		/*
1442 		 * initialize freelist of new right page
1443 		 */
1444 		f = &rp->slot[fsi];
1445 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1446 			f->next = fsi;
1447 		f->next = -1;
1448 
1449 		/* insert entry at the first entry of the new right page */
1450 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1451 
1452 		goto out;
1453 	}
1454 
1455 	/*
1456 	 *	non-sequential insert (at possibly middle page)
1457 	 */
1458 
1459 	/*
1460 	 * update prev pointer of previous right sibling page;
1461 	 */
1462 	if (nextbn != 0) {
1463 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1464 		if (rc) {
1465 			discard_metapage(rmp);
1466 			return rc;
1467 		}
1468 
1469 		BT_MARK_DIRTY(mp, ip);
1470 		/*
1471 		 * acquire a transaction lock on the next page
1472 		 */
1473 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1474 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1475 			tlck, ip, mp);
1476 		dtlck = (struct dt_lock *) & tlck->lock;
1477 
1478 		/* linelock header of previous right sibling page */
1479 		lv = & dtlck->lv[dtlck->index];
1480 		lv->offset = 0;
1481 		lv->length = 1;
1482 		dtlck->index++;
1483 
1484 		p->header.prev = cpu_to_le64(rbn);
1485 
1486 		DT_PUTPAGE(mp);
1487 	}
1488 
1489 	/*
1490 	 * split the data between the split and right pages.
1491 	 */
1492 	skip = split->index;
1493 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1494 	left = 0;
1495 
1496 	/*
1497 	 *	compute fill factor for split pages
1498 	 *
1499 	 * <nxt> traces the next entry to move to rp
1500 	 * <off> traces the next entry to stay in sp
1501 	 */
1502 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1503 	nextindex = sp->header.nextindex;
1504 	for (nxt = off = 0; nxt < nextindex; ++off) {
1505 		if (off == skip)
1506 			/* check for fill factor with new entry size */
1507 			n = split->nslot;
1508 		else {
1509 			si = stbl[nxt];
1510 			switch (sp->header.flag & BT_TYPE) {
1511 			case BT_LEAF:
1512 				ldtentry = (struct ldtentry *) & sp->slot[si];
1513 				if (DO_INDEX(ip))
1514 					n = NDTLEAF(ldtentry->namlen);
1515 				else
1516 					n = NDTLEAF_LEGACY(ldtentry->
1517 							   namlen);
1518 				break;
1519 
1520 			case BT_INTERNAL:
1521 				idtentry = (struct idtentry *) & sp->slot[si];
1522 				n = NDTINTERNAL(idtentry->namlen);
1523 				break;
1524 
1525 			default:
1526 				break;
1527 			}
1528 
1529 			++nxt;	/* advance to next entry to move in sp */
1530 		}
1531 
1532 		left += n;
1533 		if (left >= half)
1534 			break;
1535 	}
1536 
1537 	/* <nxt> poins to the 1st entry to move */
1538 
1539 	/*
1540 	 *	move entries to right page
1541 	 *
1542 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1543 	 *
1544 	 * split page moved out entries are linelocked;
1545 	 * new/right page moved in entries are linelocked;
1546 	 */
1547 	/* linelock header + stbl of new right page */
1548 	rlv = & rdtlck->lv[rdtlck->index];
1549 	rlv->offset = 0;
1550 	rlv->length = 5;
1551 	rdtlck->index++;
1552 
1553 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1554 
1555 	sp->header.nextindex = nxt;
1556 
1557 	/*
1558 	 * finalize freelist of new right page
1559 	 */
1560 	fsi = rp->header.freelist;
1561 	f = &rp->slot[fsi];
1562 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1563 		f->next = fsi;
1564 	f->next = -1;
1565 
1566 	/*
1567 	 * Update directory index table for entries now in right page
1568 	 */
1569 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1570 		s64 lblock;
1571 
1572 		mp = NULL;
1573 		stbl = DT_GETSTBL(rp);
1574 		for (n = 0; n < rp->header.nextindex; n++) {
1575 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1576 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1577 				     rbn, n, &mp, &lblock);
1578 		}
1579 		if (mp)
1580 			release_metapage(mp);
1581 	}
1582 
1583 	/*
1584 	 * the skipped index was on the left page,
1585 	 */
1586 	if (skip <= off) {
1587 		/* insert the new entry in the split page */
1588 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1589 
1590 		/* linelock stbl of split page */
1591 		if (sdtlck->index >= sdtlck->maxcnt)
1592 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1593 		slv = & sdtlck->lv[sdtlck->index];
1594 		n = skip >> L2DTSLOTSIZE;
1595 		slv->offset = sp->header.stblindex + n;
1596 		slv->length =
1597 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1598 		sdtlck->index++;
1599 	}
1600 	/*
1601 	 * the skipped index was on the right page,
1602 	 */
1603 	else {
1604 		/* adjust the skip index to reflect the new position */
1605 		skip -= nxt;
1606 
1607 		/* insert the new entry in the right page */
1608 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1609 	}
1610 
1611       out:
1612 	*rmpp = rmp;
1613 	*rpxdp = *pxd;
1614 
1615 	return rc;
1616 }
1617 
1618 
1619 /*
1620  *	dtExtendPage()
1621  *
1622  * function: extend 1st/only directory leaf page
1623  *
1624  * parameter:
1625  *
1626  * return: 0 - success;
1627  *	   errno - failure;
1628  *	return extended page pinned;
1629  */
1630 static int dtExtendPage(tid_t tid,
1631 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1632 {
1633 	struct super_block *sb = ip->i_sb;
1634 	int rc;
1635 	struct metapage *smp, *pmp, *mp;
1636 	dtpage_t *sp, *pp;
1637 	struct pxdlist *pxdlist;
1638 	pxd_t *pxd, *tpxd;
1639 	int xlen, xsize;
1640 	int newstblindex, newstblsize;
1641 	int oldstblindex, oldstblsize;
1642 	int fsi, last;
1643 	struct dtslot *f;
1644 	struct btframe *parent;
1645 	int n;
1646 	struct dt_lock *dtlck;
1647 	s64 xaddr, txaddr;
1648 	struct tlock *tlck;
1649 	struct pxd_lock *pxdlock;
1650 	struct lv *lv;
1651 	uint type;
1652 	struct ldtentry *ldtentry;
1653 	u8 *stbl;
1654 
1655 	/* get page to extend */
1656 	smp = split->mp;
1657 	sp = DT_PAGE(ip, smp);
1658 
1659 	/* get parent/root page */
1660 	parent = BT_POP(btstack);
1661 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1662 	if (rc)
1663 		return (rc);
1664 
1665 	/*
1666 	 *	extend the extent
1667 	 */
1668 	pxdlist = split->pxdlist;
1669 	pxd = &pxdlist->pxd[pxdlist->npxd];
1670 	pxdlist->npxd++;
1671 
1672 	xaddr = addressPXD(pxd);
1673 	tpxd = &sp->header.self;
1674 	txaddr = addressPXD(tpxd);
1675 	/* in-place extension */
1676 	if (xaddr == txaddr) {
1677 		type = tlckEXTEND;
1678 	}
1679 	/* relocation */
1680 	else {
1681 		type = tlckNEW;
1682 
1683 		/* save moved extent descriptor for later free */
1684 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1685 		pxdlock = (struct pxd_lock *) & tlck->lock;
1686 		pxdlock->flag = mlckFREEPXD;
1687 		pxdlock->pxd = sp->header.self;
1688 		pxdlock->index = 1;
1689 
1690 		/*
1691 		 * Update directory index table to reflect new page address
1692 		 */
1693 		if (DO_INDEX(ip)) {
1694 			s64 lblock;
1695 
1696 			mp = NULL;
1697 			stbl = DT_GETSTBL(sp);
1698 			for (n = 0; n < sp->header.nextindex; n++) {
1699 				ldtentry =
1700 				    (struct ldtentry *) & sp->slot[stbl[n]];
1701 				modify_index(tid, ip,
1702 					     le32_to_cpu(ldtentry->index),
1703 					     xaddr, n, &mp, &lblock);
1704 			}
1705 			if (mp)
1706 				release_metapage(mp);
1707 		}
1708 	}
1709 
1710 	/*
1711 	 *	extend the page
1712 	 */
1713 	sp->header.self = *pxd;
1714 
1715 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1716 
1717 	BT_MARK_DIRTY(smp, ip);
1718 	/*
1719 	 * acquire a transaction lock on the extended/leaf page
1720 	 */
1721 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1722 	dtlck = (struct dt_lock *) & tlck->lock;
1723 	lv = & dtlck->lv[0];
1724 
1725 	/* update buffer extent descriptor of extended page */
1726 	xlen = lengthPXD(pxd);
1727 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1728 
1729 	/*
1730 	 * copy old stbl to new stbl at start of extended area
1731 	 */
1732 	oldstblindex = sp->header.stblindex;
1733 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1734 	newstblindex = sp->header.maxslot;
1735 	n = xsize >> L2DTSLOTSIZE;
1736 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1737 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1738 	       sp->header.nextindex);
1739 
1740 	/*
1741 	 * in-line extension: linelock old area of extended page
1742 	 */
1743 	if (type == tlckEXTEND) {
1744 		/* linelock header */
1745 		lv->offset = 0;
1746 		lv->length = 1;
1747 		dtlck->index++;
1748 		lv++;
1749 
1750 		/* linelock new stbl of extended page */
1751 		lv->offset = newstblindex;
1752 		lv->length = newstblsize;
1753 	}
1754 	/*
1755 	 * relocation: linelock whole relocated area
1756 	 */
1757 	else {
1758 		lv->offset = 0;
1759 		lv->length = sp->header.maxslot + newstblsize;
1760 	}
1761 
1762 	dtlck->index++;
1763 
1764 	sp->header.maxslot = n;
1765 	sp->header.stblindex = newstblindex;
1766 	/* sp->header.nextindex remains the same */
1767 
1768 	/*
1769 	 * add old stbl region at head of freelist
1770 	 */
1771 	fsi = oldstblindex;
1772 	f = &sp->slot[fsi];
1773 	last = sp->header.freelist;
1774 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1775 		f->next = last;
1776 		last = fsi;
1777 	}
1778 	sp->header.freelist = last;
1779 	sp->header.freecnt += oldstblsize;
1780 
1781 	/*
1782 	 * append free region of newly extended area at tail of freelist
1783 	 */
1784 	/* init free region of newly extended area */
1785 	fsi = n = newstblindex + newstblsize;
1786 	f = &sp->slot[fsi];
1787 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1788 		f->next = fsi;
1789 	f->next = -1;
1790 
1791 	/* append new free region at tail of old freelist */
1792 	fsi = sp->header.freelist;
1793 	if (fsi == -1)
1794 		sp->header.freelist = n;
1795 	else {
1796 		do {
1797 			f = &sp->slot[fsi];
1798 			fsi = f->next;
1799 		} while (fsi != -1);
1800 
1801 		f->next = n;
1802 	}
1803 
1804 	sp->header.freecnt += sp->header.maxslot - n;
1805 
1806 	/*
1807 	 * insert the new entry
1808 	 */
1809 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1810 
1811 	BT_MARK_DIRTY(pmp, ip);
1812 	/*
1813 	 * linelock any freeslots residing in old extent
1814 	 */
1815 	if (type == tlckEXTEND) {
1816 		n = sp->header.maxslot >> 2;
1817 		if (sp->header.freelist < n)
1818 			dtLinelockFreelist(sp, n, &dtlck);
1819 	}
1820 
1821 	/*
1822 	 *	update parent entry on the parent/root page
1823 	 */
1824 	/*
1825 	 * acquire a transaction lock on the parent/root page
1826 	 */
1827 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1828 	dtlck = (struct dt_lock *) & tlck->lock;
1829 	lv = & dtlck->lv[dtlck->index];
1830 
1831 	/* linelock parent entry - 1st slot */
1832 	lv->offset = 1;
1833 	lv->length = 1;
1834 	dtlck->index++;
1835 
1836 	/* update the parent pxd for page extension */
1837 	tpxd = (pxd_t *) & pp->slot[1];
1838 	*tpxd = *pxd;
1839 
1840 	DT_PUTPAGE(pmp);
1841 	return 0;
1842 }
1843 
1844 
1845 /*
1846  *	dtSplitRoot()
1847  *
1848  * function:
1849  *	split the full root page into
1850  *	original/root/split page and new right page
1851  *	i.e., root remains fixed in tree anchor (inode) and
1852  *	the root is copied to a single new right child page
1853  *	since root page << non-root page, and
1854  *	the split root page contains a single entry for the
1855  *	new right child page.
1856  *
1857  * parameter:
1858  *
1859  * return: 0 - success;
1860  *	   errno - failure;
1861  *	return new page pinned;
1862  */
1863 static int dtSplitRoot(tid_t tid,
1864 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1865 {
1866 	struct super_block *sb = ip->i_sb;
1867 	struct metapage *smp;
1868 	dtroot_t *sp;
1869 	struct metapage *rmp;
1870 	dtpage_t *rp;
1871 	s64 rbn;
1872 	int xlen;
1873 	int xsize;
1874 	struct dtslot *f;
1875 	s8 *stbl;
1876 	int fsi, stblsize, n;
1877 	struct idtentry *s;
1878 	pxd_t *ppxd;
1879 	struct pxdlist *pxdlist;
1880 	pxd_t *pxd;
1881 	struct dt_lock *dtlck;
1882 	struct tlock *tlck;
1883 	struct lv *lv;
1884 	int rc;
1885 
1886 	/* get split root page */
1887 	smp = split->mp;
1888 	sp = &JFS_IP(ip)->i_dtroot;
1889 
1890 	/*
1891 	 *	allocate/initialize a single (right) child page
1892 	 *
1893 	 * N.B. at first split, a one (or two) block to fit new entry
1894 	 * is allocated; at subsequent split, a full page is allocated;
1895 	 */
1896 	pxdlist = split->pxdlist;
1897 	pxd = &pxdlist->pxd[pxdlist->npxd];
1898 	pxdlist->npxd++;
1899 	rbn = addressPXD(pxd);
1900 	xlen = lengthPXD(pxd);
1901 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1902 	rmp = get_metapage(ip, rbn, xsize, 1);
1903 	if (!rmp)
1904 		return -EIO;
1905 
1906 	rp = rmp->data;
1907 
1908 	/* Allocate blocks to quota. */
1909 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1910 	if (rc) {
1911 		release_metapage(rmp);
1912 		return rc;
1913 	}
1914 
1915 	BT_MARK_DIRTY(rmp, ip);
1916 	/*
1917 	 * acquire a transaction lock on the new right page
1918 	 */
1919 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1920 	dtlck = (struct dt_lock *) & tlck->lock;
1921 
1922 	rp->header.flag =
1923 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1924 	rp->header.self = *pxd;
1925 
1926 	/* initialize sibling pointers */
1927 	rp->header.next = 0;
1928 	rp->header.prev = 0;
1929 
1930 	/*
1931 	 *	move in-line root page into new right page extent
1932 	 */
1933 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1934 	ASSERT(dtlck->index == 0);
1935 	lv = & dtlck->lv[0];
1936 	lv->offset = 0;
1937 	lv->length = 10;	/* 1 + 8 + 1 */
1938 	dtlck->index++;
1939 
1940 	n = xsize >> L2DTSLOTSIZE;
1941 	rp->header.maxslot = n;
1942 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1943 
1944 	/* copy old stbl to new stbl at start of extended area */
1945 	rp->header.stblindex = DTROOTMAXSLOT;
1946 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1947 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1948 	rp->header.nextindex = sp->header.nextindex;
1949 
1950 	/* copy old data area to start of new data area */
1951 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1952 
1953 	/*
1954 	 * append free region of newly extended area at tail of freelist
1955 	 */
1956 	/* init free region of newly extended area */
1957 	fsi = n = DTROOTMAXSLOT + stblsize;
1958 	f = &rp->slot[fsi];
1959 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1960 		f->next = fsi;
1961 	f->next = -1;
1962 
1963 	/* append new free region at tail of old freelist */
1964 	fsi = sp->header.freelist;
1965 	if (fsi == -1)
1966 		rp->header.freelist = n;
1967 	else {
1968 		rp->header.freelist = fsi;
1969 
1970 		do {
1971 			f = &rp->slot[fsi];
1972 			fsi = f->next;
1973 		} while (fsi != -1);
1974 
1975 		f->next = n;
1976 	}
1977 
1978 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1979 
1980 	/*
1981 	 * Update directory index table for entries now in right page
1982 	 */
1983 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1984 		s64 lblock;
1985 		struct metapage *mp = NULL;
1986 		struct ldtentry *ldtentry;
1987 
1988 		stbl = DT_GETSTBL(rp);
1989 		for (n = 0; n < rp->header.nextindex; n++) {
1990 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1991 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1992 				     rbn, n, &mp, &lblock);
1993 		}
1994 		if (mp)
1995 			release_metapage(mp);
1996 	}
1997 	/*
1998 	 * insert the new entry into the new right/child page
1999 	 * (skip index in the new right page will not change)
2000 	 */
2001 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2002 
2003 	/*
2004 	 *	reset parent/root page
2005 	 *
2006 	 * set the 1st entry offset to 0, which force the left-most key
2007 	 * at any level of the tree to be less than any search key.
2008 	 *
2009 	 * The btree comparison code guarantees that the left-most key on any
2010 	 * level of the tree is never used, so it doesn't need to be filled in.
2011 	 */
2012 	BT_MARK_DIRTY(smp, ip);
2013 	/*
2014 	 * acquire a transaction lock on the root page (in-memory inode)
2015 	 */
2016 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2017 	dtlck = (struct dt_lock *) & tlck->lock;
2018 
2019 	/* linelock root */
2020 	ASSERT(dtlck->index == 0);
2021 	lv = & dtlck->lv[0];
2022 	lv->offset = 0;
2023 	lv->length = DTROOTMAXSLOT;
2024 	dtlck->index++;
2025 
2026 	/* update page header of root */
2027 	if (sp->header.flag & BT_LEAF) {
2028 		sp->header.flag &= ~BT_LEAF;
2029 		sp->header.flag |= BT_INTERNAL;
2030 	}
2031 
2032 	/* init the first entry */
2033 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2034 	ppxd = (pxd_t *) s;
2035 	*ppxd = *pxd;
2036 	s->next = -1;
2037 	s->namlen = 0;
2038 
2039 	stbl = sp->header.stbl;
2040 	stbl[0] = DTENTRYSTART;
2041 	sp->header.nextindex = 1;
2042 
2043 	/* init freelist */
2044 	fsi = DTENTRYSTART + 1;
2045 	f = &sp->slot[fsi];
2046 
2047 	/* init free region of remaining area */
2048 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2049 		f->next = fsi;
2050 	f->next = -1;
2051 
2052 	sp->header.freelist = DTENTRYSTART + 1;
2053 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2054 
2055 	*rmpp = rmp;
2056 
2057 	return 0;
2058 }
2059 
2060 
2061 /*
2062  *	dtDelete()
2063  *
2064  * function: delete the entry(s) referenced by a key.
2065  *
2066  * parameter:
2067  *
2068  * return:
2069  */
2070 int dtDelete(tid_t tid,
2071 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2072 {
2073 	int rc = 0;
2074 	s64 bn;
2075 	struct metapage *mp, *imp;
2076 	dtpage_t *p;
2077 	int index;
2078 	struct btstack btstack;
2079 	struct dt_lock *dtlck;
2080 	struct tlock *tlck;
2081 	struct lv *lv;
2082 	int i;
2083 	struct ldtentry *ldtentry;
2084 	u8 *stbl;
2085 	u32 table_index, next_index;
2086 	struct metapage *nmp;
2087 	dtpage_t *np;
2088 
2089 	/*
2090 	 *	search for the entry to delete:
2091 	 *
2092 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2093 	 */
2094 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2095 		return rc;
2096 
2097 	/* retrieve search result */
2098 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2099 
2100 	/*
2101 	 * We need to find put the index of the next entry into the
2102 	 * directory index table in order to resume a readdir from this
2103 	 * entry.
2104 	 */
2105 	if (DO_INDEX(ip)) {
2106 		stbl = DT_GETSTBL(p);
2107 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2108 		table_index = le32_to_cpu(ldtentry->index);
2109 		if (index == (p->header.nextindex - 1)) {
2110 			/*
2111 			 * Last entry in this leaf page
2112 			 */
2113 			if ((p->header.flag & BT_ROOT)
2114 			    || (p->header.next == 0))
2115 				next_index = -1;
2116 			else {
2117 				/* Read next leaf page */
2118 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2119 					   nmp, PSIZE, np, rc);
2120 				if (rc)
2121 					next_index = -1;
2122 				else {
2123 					stbl = DT_GETSTBL(np);
2124 					ldtentry =
2125 					    (struct ldtentry *) & np->
2126 					    slot[stbl[0]];
2127 					next_index =
2128 					    le32_to_cpu(ldtentry->index);
2129 					DT_PUTPAGE(nmp);
2130 				}
2131 			}
2132 		} else {
2133 			ldtentry =
2134 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2135 			next_index = le32_to_cpu(ldtentry->index);
2136 		}
2137 		free_index(tid, ip, table_index, next_index);
2138 	}
2139 	/*
2140 	 * the leaf page becomes empty, delete the page
2141 	 */
2142 	if (p->header.nextindex == 1) {
2143 		/* delete empty page */
2144 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2145 	}
2146 	/*
2147 	 * the leaf page has other entries remaining:
2148 	 *
2149 	 * delete the entry from the leaf page.
2150 	 */
2151 	else {
2152 		BT_MARK_DIRTY(mp, ip);
2153 		/*
2154 		 * acquire a transaction lock on the leaf page
2155 		 */
2156 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2157 		dtlck = (struct dt_lock *) & tlck->lock;
2158 
2159 		/*
2160 		 * Do not assume that dtlck->index will be zero.  During a
2161 		 * rename within a directory, this transaction may have
2162 		 * modified this page already when adding the new entry.
2163 		 */
2164 
2165 		/* linelock header */
2166 		if (dtlck->index >= dtlck->maxcnt)
2167 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2168 		lv = & dtlck->lv[dtlck->index];
2169 		lv->offset = 0;
2170 		lv->length = 1;
2171 		dtlck->index++;
2172 
2173 		/* linelock stbl of non-root leaf page */
2174 		if (!(p->header.flag & BT_ROOT)) {
2175 			if (dtlck->index >= dtlck->maxcnt)
2176 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2177 			lv = & dtlck->lv[dtlck->index];
2178 			i = index >> L2DTSLOTSIZE;
2179 			lv->offset = p->header.stblindex + i;
2180 			lv->length =
2181 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2182 			    i + 1;
2183 			dtlck->index++;
2184 		}
2185 
2186 		/* free the leaf entry */
2187 		dtDeleteEntry(p, index, &dtlck);
2188 
2189 		/*
2190 		 * Update directory index table for entries moved in stbl
2191 		 */
2192 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2193 			s64 lblock;
2194 
2195 			imp = NULL;
2196 			stbl = DT_GETSTBL(p);
2197 			for (i = index; i < p->header.nextindex; i++) {
2198 				ldtentry =
2199 				    (struct ldtentry *) & p->slot[stbl[i]];
2200 				modify_index(tid, ip,
2201 					     le32_to_cpu(ldtentry->index),
2202 					     bn, i, &imp, &lblock);
2203 			}
2204 			if (imp)
2205 				release_metapage(imp);
2206 		}
2207 
2208 		DT_PUTPAGE(mp);
2209 	}
2210 
2211 	return rc;
2212 }
2213 
2214 
2215 /*
2216  *	dtDeleteUp()
2217  *
2218  * function:
2219  *	free empty pages as propagating deletion up the tree
2220  *
2221  * parameter:
2222  *
2223  * return:
2224  */
2225 static int dtDeleteUp(tid_t tid, struct inode *ip,
2226 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2227 {
2228 	int rc = 0;
2229 	struct metapage *mp;
2230 	dtpage_t *p;
2231 	int index, nextindex;
2232 	int xlen;
2233 	struct btframe *parent;
2234 	struct dt_lock *dtlck;
2235 	struct tlock *tlck;
2236 	struct lv *lv;
2237 	struct pxd_lock *pxdlock;
2238 	int i;
2239 
2240 	/*
2241 	 *	keep the root leaf page which has become empty
2242 	 */
2243 	if (BT_IS_ROOT(fmp)) {
2244 		/*
2245 		 * reset the root
2246 		 *
2247 		 * dtInitRoot() acquires txlock on the root
2248 		 */
2249 		dtInitRoot(tid, ip, PARENT(ip));
2250 
2251 		DT_PUTPAGE(fmp);
2252 
2253 		return 0;
2254 	}
2255 
2256 	/*
2257 	 *	free the non-root leaf page
2258 	 */
2259 	/*
2260 	 * acquire a transaction lock on the page
2261 	 *
2262 	 * write FREEXTENT|NOREDOPAGE log record
2263 	 * N.B. linelock is overlaid as freed extent descriptor, and
2264 	 * the buffer page is freed;
2265 	 */
2266 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2267 	pxdlock = (struct pxd_lock *) & tlck->lock;
2268 	pxdlock->flag = mlckFREEPXD;
2269 	pxdlock->pxd = fp->header.self;
2270 	pxdlock->index = 1;
2271 
2272 	/* update sibling pointers */
2273 	if ((rc = dtRelink(tid, ip, fp))) {
2274 		BT_PUTPAGE(fmp);
2275 		return rc;
2276 	}
2277 
2278 	xlen = lengthPXD(&fp->header.self);
2279 
2280 	/* Free quota allocation. */
2281 	dquot_free_block(ip, xlen);
2282 
2283 	/* free/invalidate its buffer page */
2284 	discard_metapage(fmp);
2285 
2286 	/*
2287 	 *	propagate page deletion up the directory tree
2288 	 *
2289 	 * If the delete from the parent page makes it empty,
2290 	 * continue all the way up the tree.
2291 	 * stop if the root page is reached (which is never deleted) or
2292 	 * if the entry deletion does not empty the page.
2293 	 */
2294 	while ((parent = BT_POP(btstack)) != NULL) {
2295 		/* pin the parent page <sp> */
2296 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2297 		if (rc)
2298 			return rc;
2299 
2300 		/*
2301 		 * free the extent of the child page deleted
2302 		 */
2303 		index = parent->index;
2304 
2305 		/*
2306 		 * delete the entry for the child page from parent
2307 		 */
2308 		nextindex = p->header.nextindex;
2309 
2310 		/*
2311 		 * the parent has the single entry being deleted:
2312 		 *
2313 		 * free the parent page which has become empty.
2314 		 */
2315 		if (nextindex == 1) {
2316 			/*
2317 			 * keep the root internal page which has become empty
2318 			 */
2319 			if (p->header.flag & BT_ROOT) {
2320 				/*
2321 				 * reset the root
2322 				 *
2323 				 * dtInitRoot() acquires txlock on the root
2324 				 */
2325 				dtInitRoot(tid, ip, PARENT(ip));
2326 
2327 				DT_PUTPAGE(mp);
2328 
2329 				return 0;
2330 			}
2331 			/*
2332 			 * free the parent page
2333 			 */
2334 			else {
2335 				/*
2336 				 * acquire a transaction lock on the page
2337 				 *
2338 				 * write FREEXTENT|NOREDOPAGE log record
2339 				 */
2340 				tlck =
2341 				    txMaplock(tid, ip,
2342 					      tlckDTREE | tlckFREE);
2343 				pxdlock = (struct pxd_lock *) & tlck->lock;
2344 				pxdlock->flag = mlckFREEPXD;
2345 				pxdlock->pxd = p->header.self;
2346 				pxdlock->index = 1;
2347 
2348 				/* update sibling pointers */
2349 				if ((rc = dtRelink(tid, ip, p))) {
2350 					DT_PUTPAGE(mp);
2351 					return rc;
2352 				}
2353 
2354 				xlen = lengthPXD(&p->header.self);
2355 
2356 				/* Free quota allocation */
2357 				dquot_free_block(ip, xlen);
2358 
2359 				/* free/invalidate its buffer page */
2360 				discard_metapage(mp);
2361 
2362 				/* propagate up */
2363 				continue;
2364 			}
2365 		}
2366 
2367 		/*
2368 		 * the parent has other entries remaining:
2369 		 *
2370 		 * delete the router entry from the parent page.
2371 		 */
2372 		BT_MARK_DIRTY(mp, ip);
2373 		/*
2374 		 * acquire a transaction lock on the page
2375 		 *
2376 		 * action: router entry deletion
2377 		 */
2378 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2379 		dtlck = (struct dt_lock *) & tlck->lock;
2380 
2381 		/* linelock header */
2382 		if (dtlck->index >= dtlck->maxcnt)
2383 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2384 		lv = & dtlck->lv[dtlck->index];
2385 		lv->offset = 0;
2386 		lv->length = 1;
2387 		dtlck->index++;
2388 
2389 		/* linelock stbl of non-root leaf page */
2390 		if (!(p->header.flag & BT_ROOT)) {
2391 			if (dtlck->index < dtlck->maxcnt)
2392 				lv++;
2393 			else {
2394 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2395 				lv = & dtlck->lv[0];
2396 			}
2397 			i = index >> L2DTSLOTSIZE;
2398 			lv->offset = p->header.stblindex + i;
2399 			lv->length =
2400 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2401 			    i + 1;
2402 			dtlck->index++;
2403 		}
2404 
2405 		/* free the router entry */
2406 		dtDeleteEntry(p, index, &dtlck);
2407 
2408 		/* reset key of new leftmost entry of level (for consistency) */
2409 		if (index == 0 &&
2410 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2411 			dtTruncateEntry(p, 0, &dtlck);
2412 
2413 		/* unpin the parent page */
2414 		DT_PUTPAGE(mp);
2415 
2416 		/* exit propagation up */
2417 		break;
2418 	}
2419 
2420 	if (!DO_INDEX(ip))
2421 		ip->i_size -= PSIZE;
2422 
2423 	return 0;
2424 }
2425 
2426 /*
2427  *	dtRelink()
2428  *
2429  * function:
2430  *	link around a freed page.
2431  *
2432  * parameter:
2433  *	fp:	page to be freed
2434  *
2435  * return:
2436  */
2437 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2438 {
2439 	int rc;
2440 	struct metapage *mp;
2441 	s64 nextbn, prevbn;
2442 	struct tlock *tlck;
2443 	struct dt_lock *dtlck;
2444 	struct lv *lv;
2445 
2446 	nextbn = le64_to_cpu(p->header.next);
2447 	prevbn = le64_to_cpu(p->header.prev);
2448 
2449 	/* update prev pointer of the next page */
2450 	if (nextbn != 0) {
2451 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2452 		if (rc)
2453 			return rc;
2454 
2455 		BT_MARK_DIRTY(mp, ip);
2456 		/*
2457 		 * acquire a transaction lock on the next page
2458 		 *
2459 		 * action: update prev pointer;
2460 		 */
2461 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2462 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2463 			tlck, ip, mp);
2464 		dtlck = (struct dt_lock *) & tlck->lock;
2465 
2466 		/* linelock header */
2467 		if (dtlck->index >= dtlck->maxcnt)
2468 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2469 		lv = & dtlck->lv[dtlck->index];
2470 		lv->offset = 0;
2471 		lv->length = 1;
2472 		dtlck->index++;
2473 
2474 		p->header.prev = cpu_to_le64(prevbn);
2475 		DT_PUTPAGE(mp);
2476 	}
2477 
2478 	/* update next pointer of the previous page */
2479 	if (prevbn != 0) {
2480 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2481 		if (rc)
2482 			return rc;
2483 
2484 		BT_MARK_DIRTY(mp, ip);
2485 		/*
2486 		 * acquire a transaction lock on the prev page
2487 		 *
2488 		 * action: update next pointer;
2489 		 */
2490 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2491 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2492 			tlck, ip, mp);
2493 		dtlck = (struct dt_lock *) & tlck->lock;
2494 
2495 		/* linelock header */
2496 		if (dtlck->index >= dtlck->maxcnt)
2497 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2498 		lv = & dtlck->lv[dtlck->index];
2499 		lv->offset = 0;
2500 		lv->length = 1;
2501 		dtlck->index++;
2502 
2503 		p->header.next = cpu_to_le64(nextbn);
2504 		DT_PUTPAGE(mp);
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 
2511 /*
2512  *	dtInitRoot()
2513  *
2514  * initialize directory root (inline in inode)
2515  */
2516 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2517 {
2518 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2519 	dtroot_t *p;
2520 	int fsi;
2521 	struct dtslot *f;
2522 	struct tlock *tlck;
2523 	struct dt_lock *dtlck;
2524 	struct lv *lv;
2525 	u16 xflag_save;
2526 
2527 	/*
2528 	 * If this was previously an non-empty directory, we need to remove
2529 	 * the old directory table.
2530 	 */
2531 	if (DO_INDEX(ip)) {
2532 		if (!jfs_dirtable_inline(ip)) {
2533 			struct tblock *tblk = tid_to_tblock(tid);
2534 			/*
2535 			 * We're playing games with the tid's xflag.  If
2536 			 * we're removing a regular file, the file's xtree
2537 			 * is committed with COMMIT_PMAP, but we always
2538 			 * commit the directories xtree with COMMIT_PWMAP.
2539 			 */
2540 			xflag_save = tblk->xflag;
2541 			tblk->xflag = 0;
2542 			/*
2543 			 * xtTruncate isn't guaranteed to fully truncate
2544 			 * the xtree.  The caller needs to check i_size
2545 			 * after committing the transaction to see if
2546 			 * additional truncation is needed.  The
2547 			 * COMMIT_Stale flag tells caller that we
2548 			 * initiated the truncation.
2549 			 */
2550 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2551 			set_cflag(COMMIT_Stale, ip);
2552 
2553 			tblk->xflag = xflag_save;
2554 		} else
2555 			ip->i_size = 1;
2556 
2557 		jfs_ip->next_index = 2;
2558 	} else
2559 		ip->i_size = IDATASIZE;
2560 
2561 	/*
2562 	 * acquire a transaction lock on the root
2563 	 *
2564 	 * action: directory initialization;
2565 	 */
2566 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2567 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2568 	dtlck = (struct dt_lock *) & tlck->lock;
2569 
2570 	/* linelock root */
2571 	ASSERT(dtlck->index == 0);
2572 	lv = & dtlck->lv[0];
2573 	lv->offset = 0;
2574 	lv->length = DTROOTMAXSLOT;
2575 	dtlck->index++;
2576 
2577 	p = &jfs_ip->i_dtroot;
2578 
2579 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2580 
2581 	p->header.nextindex = 0;
2582 
2583 	/* init freelist */
2584 	fsi = 1;
2585 	f = &p->slot[fsi];
2586 
2587 	/* init data area of root */
2588 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2589 		f->next = fsi;
2590 	f->next = -1;
2591 
2592 	p->header.freelist = 1;
2593 	p->header.freecnt = 8;
2594 
2595 	/* init '..' entry */
2596 	p->header.idotdot = cpu_to_le32(idotdot);
2597 
2598 	return;
2599 }
2600 
2601 /*
2602  *	add_missing_indices()
2603  *
2604  * function: Fix dtree page in which one or more entries has an invalid index.
2605  *	     fsck.jfs should really fix this, but it currently does not.
2606  *	     Called from jfs_readdir when bad index is detected.
2607  */
2608 static void add_missing_indices(struct inode *inode, s64 bn)
2609 {
2610 	struct ldtentry *d;
2611 	struct dt_lock *dtlck;
2612 	int i;
2613 	uint index;
2614 	struct lv *lv;
2615 	struct metapage *mp;
2616 	dtpage_t *p;
2617 	int rc;
2618 	s8 *stbl;
2619 	tid_t tid;
2620 	struct tlock *tlck;
2621 
2622 	tid = txBegin(inode->i_sb, 0);
2623 
2624 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2625 
2626 	if (rc) {
2627 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2628 		goto end;
2629 	}
2630 	BT_MARK_DIRTY(mp, inode);
2631 
2632 	ASSERT(p->header.flag & BT_LEAF);
2633 
2634 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2635 	if (BT_IS_ROOT(mp))
2636 		tlck->type |= tlckBTROOT;
2637 
2638 	dtlck = (struct dt_lock *) &tlck->lock;
2639 
2640 	stbl = DT_GETSTBL(p);
2641 	for (i = 0; i < p->header.nextindex; i++) {
2642 		d = (struct ldtentry *) &p->slot[stbl[i]];
2643 		index = le32_to_cpu(d->index);
2644 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2645 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2646 			if (dtlck->index >= dtlck->maxcnt)
2647 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2648 			lv = &dtlck->lv[dtlck->index];
2649 			lv->offset = stbl[i];
2650 			lv->length = 1;
2651 			dtlck->index++;
2652 		}
2653 	}
2654 
2655 	DT_PUTPAGE(mp);
2656 	(void) txCommit(tid, 1, &inode, 0);
2657 end:
2658 	txEnd(tid);
2659 }
2660 
2661 /*
2662  * Buffer to hold directory entry info while traversing a dtree page
2663  * before being fed to the filldir function
2664  */
2665 struct jfs_dirent {
2666 	loff_t position;
2667 	int ino;
2668 	u16 name_len;
2669 	char name[];
2670 };
2671 
2672 /*
2673  * function to determine next variable-sized jfs_dirent in buffer
2674  */
2675 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2676 {
2677 	return (struct jfs_dirent *)
2678 		((char *)dirent +
2679 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2680 		   sizeof (loff_t) - 1) &
2681 		  ~(sizeof (loff_t) - 1)));
2682 }
2683 
2684 /*
2685  *	jfs_readdir()
2686  *
2687  * function: read directory entries sequentially
2688  *	from the specified entry offset
2689  *
2690  * parameter:
2691  *
2692  * return: offset = (pn, index) of start entry
2693  *	of next jfs_readdir()/dtRead()
2694  */
2695 int jfs_readdir(struct file *file, struct dir_context *ctx)
2696 {
2697 	struct inode *ip = file_inode(file);
2698 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2699 	int rc = 0;
2700 	loff_t dtpos;	/* legacy OS/2 style position */
2701 	struct dtoffset {
2702 		s16 pn;
2703 		s16 index;
2704 		s32 unused;
2705 	} *dtoffset = (struct dtoffset *) &dtpos;
2706 	s64 bn;
2707 	struct metapage *mp;
2708 	dtpage_t *p;
2709 	int index;
2710 	s8 *stbl;
2711 	struct btstack btstack;
2712 	int i, next;
2713 	struct ldtentry *d;
2714 	struct dtslot *t;
2715 	int d_namleft, len, outlen;
2716 	unsigned long dirent_buf;
2717 	char *name_ptr;
2718 	u32 dir_index;
2719 	int do_index = 0;
2720 	uint loop_count = 0;
2721 	struct jfs_dirent *jfs_dirent;
2722 	int jfs_dirents;
2723 	int overflow, fix_page, page_fixed = 0;
2724 	static int unique_pos = 2;	/* If we can't fix broken index */
2725 
2726 	if (ctx->pos == DIREND)
2727 		return 0;
2728 
2729 	if (DO_INDEX(ip)) {
2730 		/*
2731 		 * persistent index is stored in directory entries.
2732 		 * Special cases:	 0 = .
2733 		 *			 1 = ..
2734 		 *			-1 = End of directory
2735 		 */
2736 		do_index = 1;
2737 
2738 		dir_index = (u32) ctx->pos;
2739 
2740 		/*
2741 		 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
2742 		 * we return to the vfs is one greater than the one we use
2743 		 * internally.
2744 		 */
2745 		if (dir_index)
2746 			dir_index--;
2747 
2748 		if (dir_index > 1) {
2749 			struct dir_table_slot dirtab_slot;
2750 
2751 			if (dtEmpty(ip) ||
2752 			    (dir_index >= JFS_IP(ip)->next_index)) {
2753 				/* Stale position.  Directory has shrunk */
2754 				ctx->pos = DIREND;
2755 				return 0;
2756 			}
2757 		      repeat:
2758 			rc = read_index(ip, dir_index, &dirtab_slot);
2759 			if (rc) {
2760 				ctx->pos = DIREND;
2761 				return rc;
2762 			}
2763 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
2764 				if (loop_count++ > JFS_IP(ip)->next_index) {
2765 					jfs_err("jfs_readdir detected infinite loop!");
2766 					ctx->pos = DIREND;
2767 					return 0;
2768 				}
2769 				dir_index = le32_to_cpu(dirtab_slot.addr2);
2770 				if (dir_index == -1) {
2771 					ctx->pos = DIREND;
2772 					return 0;
2773 				}
2774 				goto repeat;
2775 			}
2776 			bn = addressDTS(&dirtab_slot);
2777 			index = dirtab_slot.slot;
2778 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2779 			if (rc) {
2780 				ctx->pos = DIREND;
2781 				return 0;
2782 			}
2783 			if (p->header.flag & BT_INTERNAL) {
2784 				jfs_err("jfs_readdir: bad index table");
2785 				DT_PUTPAGE(mp);
2786 				ctx->pos = DIREND;
2787 				return 0;
2788 			}
2789 		} else {
2790 			if (dir_index == 0) {
2791 				/*
2792 				 * self "."
2793 				 */
2794 				ctx->pos = 1;
2795 				if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2796 					return 0;
2797 			}
2798 			/*
2799 			 * parent ".."
2800 			 */
2801 			ctx->pos = 2;
2802 			if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2803 				return 0;
2804 
2805 			/*
2806 			 * Find first entry of left-most leaf
2807 			 */
2808 			if (dtEmpty(ip)) {
2809 				ctx->pos = DIREND;
2810 				return 0;
2811 			}
2812 
2813 			if ((rc = dtReadFirst(ip, &btstack)))
2814 				return rc;
2815 
2816 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2817 		}
2818 	} else {
2819 		/*
2820 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
2821 		 *
2822 		 * pn = 0; index = 1:	First entry "."
2823 		 * pn = 0; index = 2:	Second entry ".."
2824 		 * pn > 0:		Real entries, pn=1 -> leftmost page
2825 		 * pn = index = -1:	No more entries
2826 		 */
2827 		dtpos = ctx->pos;
2828 		if (dtpos < 2) {
2829 			/* build "." entry */
2830 			ctx->pos = 1;
2831 			if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2832 				return 0;
2833 			dtoffset->index = 2;
2834 			ctx->pos = dtpos;
2835 		}
2836 
2837 		if (dtoffset->pn == 0) {
2838 			if (dtoffset->index == 2) {
2839 				/* build ".." entry */
2840 				if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2841 					return 0;
2842 			} else {
2843 				jfs_err("jfs_readdir called with invalid offset!");
2844 			}
2845 			dtoffset->pn = 1;
2846 			dtoffset->index = 0;
2847 			ctx->pos = dtpos;
2848 		}
2849 
2850 		if (dtEmpty(ip)) {
2851 			ctx->pos = DIREND;
2852 			return 0;
2853 		}
2854 
2855 		if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
2856 			jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
2857 				rc);
2858 			ctx->pos = DIREND;
2859 			return 0;
2860 		}
2861 		/* get start leaf page and index */
2862 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2863 
2864 		/* offset beyond directory eof ? */
2865 		if (bn < 0) {
2866 			ctx->pos = DIREND;
2867 			return 0;
2868 		}
2869 	}
2870 
2871 	dirent_buf = __get_free_page(GFP_KERNEL);
2872 	if (dirent_buf == 0) {
2873 		DT_PUTPAGE(mp);
2874 		jfs_warn("jfs_readdir: __get_free_page failed!");
2875 		ctx->pos = DIREND;
2876 		return -ENOMEM;
2877 	}
2878 
2879 	while (1) {
2880 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
2881 		jfs_dirents = 0;
2882 		overflow = fix_page = 0;
2883 
2884 		stbl = DT_GETSTBL(p);
2885 
2886 		for (i = index; i < p->header.nextindex; i++) {
2887 			d = (struct ldtentry *) & p->slot[stbl[i]];
2888 
2889 			if (((long) jfs_dirent + d->namlen + 1) >
2890 			    (dirent_buf + PAGE_SIZE)) {
2891 				/* DBCS codepages could overrun dirent_buf */
2892 				index = i;
2893 				overflow = 1;
2894 				break;
2895 			}
2896 
2897 			d_namleft = d->namlen;
2898 			name_ptr = jfs_dirent->name;
2899 			jfs_dirent->ino = le32_to_cpu(d->inumber);
2900 
2901 			if (do_index) {
2902 				len = min(d_namleft, DTLHDRDATALEN);
2903 				jfs_dirent->position = le32_to_cpu(d->index);
2904 				/*
2905 				 * d->index should always be valid, but it
2906 				 * isn't.  fsck.jfs doesn't create the
2907 				 * directory index for the lost+found
2908 				 * directory.  Rather than let it go,
2909 				 * we can try to fix it.
2910 				 */
2911 				if ((jfs_dirent->position < 2) ||
2912 				    (jfs_dirent->position >=
2913 				     JFS_IP(ip)->next_index)) {
2914 					if (!page_fixed && !isReadOnly(ip)) {
2915 						fix_page = 1;
2916 						/*
2917 						 * setting overflow and setting
2918 						 * index to i will cause the
2919 						 * same page to be processed
2920 						 * again starting here
2921 						 */
2922 						overflow = 1;
2923 						index = i;
2924 						break;
2925 					}
2926 					jfs_dirent->position = unique_pos++;
2927 				}
2928 				/*
2929 				 * We add 1 to the index because we may
2930 				 * use a value of 2 internally, and NFSv4
2931 				 * doesn't like that.
2932 				 */
2933 				jfs_dirent->position++;
2934 			} else {
2935 				jfs_dirent->position = dtpos;
2936 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
2937 			}
2938 
2939 			/* copy the name of head/only segment */
2940 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
2941 						   codepage);
2942 			jfs_dirent->name_len = outlen;
2943 
2944 			/* copy name in the additional segment(s) */
2945 			next = d->next;
2946 			while (next >= 0) {
2947 				t = (struct dtslot *) & p->slot[next];
2948 				name_ptr += outlen;
2949 				d_namleft -= len;
2950 				/* Sanity Check */
2951 				if (d_namleft == 0) {
2952 					jfs_error(ip->i_sb,
2953 						  "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
2954 						  (long)ip->i_ino,
2955 						  (long long)bn,
2956 						  i);
2957 					goto skip_one;
2958 				}
2959 				len = min(d_namleft, DTSLOTDATALEN);
2960 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
2961 							   len, codepage);
2962 				jfs_dirent->name_len += outlen;
2963 
2964 				next = t->next;
2965 			}
2966 
2967 			jfs_dirents++;
2968 			jfs_dirent = next_jfs_dirent(jfs_dirent);
2969 skip_one:
2970 			if (!do_index)
2971 				dtoffset->index++;
2972 		}
2973 
2974 		if (!overflow) {
2975 			/* Point to next leaf page */
2976 			if (p->header.flag & BT_ROOT)
2977 				bn = 0;
2978 			else {
2979 				bn = le64_to_cpu(p->header.next);
2980 				index = 0;
2981 				/* update offset (pn:index) for new page */
2982 				if (!do_index) {
2983 					dtoffset->pn++;
2984 					dtoffset->index = 0;
2985 				}
2986 			}
2987 			page_fixed = 0;
2988 		}
2989 
2990 		/* unpin previous leaf page */
2991 		DT_PUTPAGE(mp);
2992 
2993 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
2994 		while (jfs_dirents--) {
2995 			ctx->pos = jfs_dirent->position;
2996 			if (!dir_emit(ctx, jfs_dirent->name,
2997 				    jfs_dirent->name_len,
2998 				    jfs_dirent->ino, DT_UNKNOWN))
2999 				goto out;
3000 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3001 		}
3002 
3003 		if (fix_page) {
3004 			add_missing_indices(ip, bn);
3005 			page_fixed = 1;
3006 		}
3007 
3008 		if (!overflow && (bn == 0)) {
3009 			ctx->pos = DIREND;
3010 			break;
3011 		}
3012 
3013 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3014 		if (rc) {
3015 			free_page(dirent_buf);
3016 			return rc;
3017 		}
3018 	}
3019 
3020       out:
3021 	free_page(dirent_buf);
3022 
3023 	return rc;
3024 }
3025 
3026 
3027 /*
3028  *	dtReadFirst()
3029  *
3030  * function: get the leftmost page of the directory
3031  */
3032 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3033 {
3034 	int rc = 0;
3035 	s64 bn;
3036 	int psize = 288;	/* initial in-line directory */
3037 	struct metapage *mp;
3038 	dtpage_t *p;
3039 	s8 *stbl;
3040 	struct btframe *btsp;
3041 	pxd_t *xd;
3042 
3043 	BT_CLR(btstack);	/* reset stack */
3044 
3045 	/*
3046 	 *	descend leftmost path of the tree
3047 	 *
3048 	 * by convention, root bn = 0.
3049 	 */
3050 	for (bn = 0;;) {
3051 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3052 		if (rc)
3053 			return rc;
3054 
3055 		/*
3056 		 * leftmost leaf page
3057 		 */
3058 		if (p->header.flag & BT_LEAF) {
3059 			/* return leftmost entry */
3060 			btsp = btstack->top;
3061 			btsp->bn = bn;
3062 			btsp->index = 0;
3063 			btsp->mp = mp;
3064 
3065 			return 0;
3066 		}
3067 
3068 		/*
3069 		 * descend down to leftmost child page
3070 		 */
3071 		if (BT_STACK_FULL(btstack)) {
3072 			DT_PUTPAGE(mp);
3073 			jfs_error(ip->i_sb, "btstack overrun\n");
3074 			BT_STACK_DUMP(btstack);
3075 			return -EIO;
3076 		}
3077 		/* push (bn, index) of the parent page/entry */
3078 		BT_PUSH(btstack, bn, 0);
3079 
3080 		/* get the leftmost entry */
3081 		stbl = DT_GETSTBL(p);
3082 		xd = (pxd_t *) & p->slot[stbl[0]];
3083 
3084 		/* get the child page block address */
3085 		bn = addressPXD(xd);
3086 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3087 
3088 		/* unpin the parent page */
3089 		DT_PUTPAGE(mp);
3090 	}
3091 }
3092 
3093 
3094 /*
3095  *	dtReadNext()
3096  *
3097  * function: get the page of the specified offset (pn:index)
3098  *
3099  * return: if (offset > eof), bn = -1;
3100  *
3101  * note: if index > nextindex of the target leaf page,
3102  * start with 1st entry of next leaf page;
3103  */
3104 static int dtReadNext(struct inode *ip, loff_t * offset,
3105 		      struct btstack * btstack)
3106 {
3107 	int rc = 0;
3108 	struct dtoffset {
3109 		s16 pn;
3110 		s16 index;
3111 		s32 unused;
3112 	} *dtoffset = (struct dtoffset *) offset;
3113 	s64 bn;
3114 	struct metapage *mp;
3115 	dtpage_t *p;
3116 	int index;
3117 	int pn;
3118 	s8 *stbl;
3119 	struct btframe *btsp, *parent;
3120 	pxd_t *xd;
3121 
3122 	/*
3123 	 * get leftmost leaf page pinned
3124 	 */
3125 	if ((rc = dtReadFirst(ip, btstack)))
3126 		return rc;
3127 
3128 	/* get leaf page */
3129 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3130 
3131 	/* get the start offset (pn:index) */
3132 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3133 	index = dtoffset->index;
3134 
3135 	/* start at leftmost page ? */
3136 	if (pn == 0) {
3137 		/* offset beyond eof ? */
3138 		if (index < p->header.nextindex)
3139 			goto out;
3140 
3141 		if (p->header.flag & BT_ROOT) {
3142 			bn = -1;
3143 			goto out;
3144 		}
3145 
3146 		/* start with 1st entry of next leaf page */
3147 		dtoffset->pn++;
3148 		dtoffset->index = index = 0;
3149 		goto a;
3150 	}
3151 
3152 	/* start at non-leftmost page: scan parent pages for large pn */
3153 	if (p->header.flag & BT_ROOT) {
3154 		bn = -1;
3155 		goto out;
3156 	}
3157 
3158 	/* start after next leaf page ? */
3159 	if (pn > 1)
3160 		goto b;
3161 
3162 	/* get leaf page pn = 1 */
3163       a:
3164 	bn = le64_to_cpu(p->header.next);
3165 
3166 	/* unpin leaf page */
3167 	DT_PUTPAGE(mp);
3168 
3169 	/* offset beyond eof ? */
3170 	if (bn == 0) {
3171 		bn = -1;
3172 		goto out;
3173 	}
3174 
3175 	goto c;
3176 
3177 	/*
3178 	 * scan last internal page level to get target leaf page
3179 	 */
3180       b:
3181 	/* unpin leftmost leaf page */
3182 	DT_PUTPAGE(mp);
3183 
3184 	/* get left most parent page */
3185 	btsp = btstack->top;
3186 	parent = btsp - 1;
3187 	bn = parent->bn;
3188 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3189 	if (rc)
3190 		return rc;
3191 
3192 	/* scan parent pages at last internal page level */
3193 	while (pn >= p->header.nextindex) {
3194 		pn -= p->header.nextindex;
3195 
3196 		/* get next parent page address */
3197 		bn = le64_to_cpu(p->header.next);
3198 
3199 		/* unpin current parent page */
3200 		DT_PUTPAGE(mp);
3201 
3202 		/* offset beyond eof ? */
3203 		if (bn == 0) {
3204 			bn = -1;
3205 			goto out;
3206 		}
3207 
3208 		/* get next parent page */
3209 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3210 		if (rc)
3211 			return rc;
3212 
3213 		/* update parent page stack frame */
3214 		parent->bn = bn;
3215 	}
3216 
3217 	/* get leaf page address */
3218 	stbl = DT_GETSTBL(p);
3219 	xd = (pxd_t *) & p->slot[stbl[pn]];
3220 	bn = addressPXD(xd);
3221 
3222 	/* unpin parent page */
3223 	DT_PUTPAGE(mp);
3224 
3225 	/*
3226 	 * get target leaf page
3227 	 */
3228       c:
3229 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3230 	if (rc)
3231 		return rc;
3232 
3233 	/*
3234 	 * leaf page has been completed:
3235 	 * start with 1st entry of next leaf page
3236 	 */
3237 	if (index >= p->header.nextindex) {
3238 		bn = le64_to_cpu(p->header.next);
3239 
3240 		/* unpin leaf page */
3241 		DT_PUTPAGE(mp);
3242 
3243 		/* offset beyond eof ? */
3244 		if (bn == 0) {
3245 			bn = -1;
3246 			goto out;
3247 		}
3248 
3249 		/* get next leaf page */
3250 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3251 		if (rc)
3252 			return rc;
3253 
3254 		/* start with 1st entry of next leaf page */
3255 		dtoffset->pn++;
3256 		dtoffset->index = 0;
3257 	}
3258 
3259       out:
3260 	/* return target leaf page pinned */
3261 	btsp = btstack->top;
3262 	btsp->bn = bn;
3263 	btsp->index = dtoffset->index;
3264 	btsp->mp = mp;
3265 
3266 	return 0;
3267 }
3268 
3269 
3270 /*
3271  *	dtCompare()
3272  *
3273  * function: compare search key with an internal entry
3274  *
3275  * return:
3276  *	< 0 if k is < record
3277  *	= 0 if k is = record
3278  *	> 0 if k is > record
3279  */
3280 static int dtCompare(struct component_name * key,	/* search key */
3281 		     dtpage_t * p,	/* directory page */
3282 		     int si)
3283 {				/* entry slot index */
3284 	wchar_t *kname;
3285 	__le16 *name;
3286 	int klen, namlen, len, rc;
3287 	struct idtentry *ih;
3288 	struct dtslot *t;
3289 
3290 	/*
3291 	 * force the left-most key on internal pages, at any level of
3292 	 * the tree, to be less than any search key.
3293 	 * this obviates having to update the leftmost key on an internal
3294 	 * page when the user inserts a new key in the tree smaller than
3295 	 * anything that has been stored.
3296 	 *
3297 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3298 	 * at any internal page at any level of the tree,
3299 	 * it descends to child of the entry anyway -
3300 	 * ? make the entry as min size dummy entry)
3301 	 *
3302 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3303 	 * return (1);
3304 	 */
3305 
3306 	kname = key->name;
3307 	klen = key->namlen;
3308 
3309 	ih = (struct idtentry *) & p->slot[si];
3310 	si = ih->next;
3311 	name = ih->name;
3312 	namlen = ih->namlen;
3313 	len = min(namlen, DTIHDRDATALEN);
3314 
3315 	/* compare with head/only segment */
3316 	len = min(klen, len);
3317 	if ((rc = UniStrncmp_le(kname, name, len)))
3318 		return rc;
3319 
3320 	klen -= len;
3321 	namlen -= len;
3322 
3323 	/* compare with additional segment(s) */
3324 	kname += len;
3325 	while (klen > 0 && namlen > 0) {
3326 		/* compare with next name segment */
3327 		t = (struct dtslot *) & p->slot[si];
3328 		len = min(namlen, DTSLOTDATALEN);
3329 		len = min(klen, len);
3330 		name = t->name;
3331 		if ((rc = UniStrncmp_le(kname, name, len)))
3332 			return rc;
3333 
3334 		klen -= len;
3335 		namlen -= len;
3336 		kname += len;
3337 		si = t->next;
3338 	}
3339 
3340 	return (klen - namlen);
3341 }
3342 
3343 
3344 
3345 
3346 /*
3347  *	ciCompare()
3348  *
3349  * function: compare search key with an (leaf/internal) entry
3350  *
3351  * return:
3352  *	< 0 if k is < record
3353  *	= 0 if k is = record
3354  *	> 0 if k is > record
3355  */
3356 static int ciCompare(struct component_name * key,	/* search key */
3357 		     dtpage_t * p,	/* directory page */
3358 		     int si,	/* entry slot index */
3359 		     int flag)
3360 {
3361 	wchar_t *kname, x;
3362 	__le16 *name;
3363 	int klen, namlen, len, rc;
3364 	struct ldtentry *lh;
3365 	struct idtentry *ih;
3366 	struct dtslot *t;
3367 	int i;
3368 
3369 	/*
3370 	 * force the left-most key on internal pages, at any level of
3371 	 * the tree, to be less than any search key.
3372 	 * this obviates having to update the leftmost key on an internal
3373 	 * page when the user inserts a new key in the tree smaller than
3374 	 * anything that has been stored.
3375 	 *
3376 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3377 	 * at any internal page at any level of the tree,
3378 	 * it descends to child of the entry anyway -
3379 	 * ? make the entry as min size dummy entry)
3380 	 *
3381 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3382 	 * return (1);
3383 	 */
3384 
3385 	kname = key->name;
3386 	klen = key->namlen;
3387 
3388 	/*
3389 	 * leaf page entry
3390 	 */
3391 	if (p->header.flag & BT_LEAF) {
3392 		lh = (struct ldtentry *) & p->slot[si];
3393 		si = lh->next;
3394 		name = lh->name;
3395 		namlen = lh->namlen;
3396 		if (flag & JFS_DIR_INDEX)
3397 			len = min(namlen, DTLHDRDATALEN);
3398 		else
3399 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3400 	}
3401 	/*
3402 	 * internal page entry
3403 	 */
3404 	else {
3405 		ih = (struct idtentry *) & p->slot[si];
3406 		si = ih->next;
3407 		name = ih->name;
3408 		namlen = ih->namlen;
3409 		len = min(namlen, DTIHDRDATALEN);
3410 	}
3411 
3412 	/* compare with head/only segment */
3413 	len = min(klen, len);
3414 	for (i = 0; i < len; i++, kname++, name++) {
3415 		/* only uppercase if case-insensitive support is on */
3416 		if ((flag & JFS_OS2) == JFS_OS2)
3417 			x = UniToupper(le16_to_cpu(*name));
3418 		else
3419 			x = le16_to_cpu(*name);
3420 		if ((rc = *kname - x))
3421 			return rc;
3422 	}
3423 
3424 	klen -= len;
3425 	namlen -= len;
3426 
3427 	/* compare with additional segment(s) */
3428 	while (klen > 0 && namlen > 0) {
3429 		/* compare with next name segment */
3430 		t = (struct dtslot *) & p->slot[si];
3431 		len = min(namlen, DTSLOTDATALEN);
3432 		len = min(klen, len);
3433 		name = t->name;
3434 		for (i = 0; i < len; i++, kname++, name++) {
3435 			/* only uppercase if case-insensitive support is on */
3436 			if ((flag & JFS_OS2) == JFS_OS2)
3437 				x = UniToupper(le16_to_cpu(*name));
3438 			else
3439 				x = le16_to_cpu(*name);
3440 
3441 			if ((rc = *kname - x))
3442 				return rc;
3443 		}
3444 
3445 		klen -= len;
3446 		namlen -= len;
3447 		si = t->next;
3448 	}
3449 
3450 	return (klen - namlen);
3451 }
3452 
3453 
3454 /*
3455  *	ciGetLeafPrefixKey()
3456  *
3457  * function: compute prefix of suffix compression
3458  *	     from two adjacent leaf entries
3459  *	     across page boundary
3460  *
3461  * return: non-zero on error
3462  *
3463  */
3464 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3465 			       int ri, struct component_name * key, int flag)
3466 {
3467 	int klen, namlen;
3468 	wchar_t *pl, *pr, *kname;
3469 	struct component_name lkey;
3470 	struct component_name rkey;
3471 
3472 	lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3473 					GFP_KERNEL);
3474 	if (lkey.name == NULL)
3475 		return -ENOMEM;
3476 
3477 	rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3478 					GFP_KERNEL);
3479 	if (rkey.name == NULL) {
3480 		kfree(lkey.name);
3481 		return -ENOMEM;
3482 	}
3483 
3484 	/* get left and right key */
3485 	dtGetKey(lp, li, &lkey, flag);
3486 	lkey.name[lkey.namlen] = 0;
3487 
3488 	if ((flag & JFS_OS2) == JFS_OS2)
3489 		ciToUpper(&lkey);
3490 
3491 	dtGetKey(rp, ri, &rkey, flag);
3492 	rkey.name[rkey.namlen] = 0;
3493 
3494 
3495 	if ((flag & JFS_OS2) == JFS_OS2)
3496 		ciToUpper(&rkey);
3497 
3498 	/* compute prefix */
3499 	klen = 0;
3500 	kname = key->name;
3501 	namlen = min(lkey.namlen, rkey.namlen);
3502 	for (pl = lkey.name, pr = rkey.name;
3503 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3504 		*kname = *pr;
3505 		if (*pl != *pr) {
3506 			key->namlen = klen + 1;
3507 			goto free_names;
3508 		}
3509 	}
3510 
3511 	/* l->namlen <= r->namlen since l <= r */
3512 	if (lkey.namlen < rkey.namlen) {
3513 		*kname = *pr;
3514 		key->namlen = klen + 1;
3515 	} else			/* l->namelen == r->namelen */
3516 		key->namlen = klen;
3517 
3518 free_names:
3519 	kfree(lkey.name);
3520 	kfree(rkey.name);
3521 	return 0;
3522 }
3523 
3524 
3525 
3526 /*
3527  *	dtGetKey()
3528  *
3529  * function: get key of the entry
3530  */
3531 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3532 		     struct component_name * key, int flag)
3533 {
3534 	int si;
3535 	s8 *stbl;
3536 	struct ldtentry *lh;
3537 	struct idtentry *ih;
3538 	struct dtslot *t;
3539 	int namlen, len;
3540 	wchar_t *kname;
3541 	__le16 *name;
3542 
3543 	/* get entry */
3544 	stbl = DT_GETSTBL(p);
3545 	si = stbl[i];
3546 	if (p->header.flag & BT_LEAF) {
3547 		lh = (struct ldtentry *) & p->slot[si];
3548 		si = lh->next;
3549 		namlen = lh->namlen;
3550 		name = lh->name;
3551 		if (flag & JFS_DIR_INDEX)
3552 			len = min(namlen, DTLHDRDATALEN);
3553 		else
3554 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3555 	} else {
3556 		ih = (struct idtentry *) & p->slot[si];
3557 		si = ih->next;
3558 		namlen = ih->namlen;
3559 		name = ih->name;
3560 		len = min(namlen, DTIHDRDATALEN);
3561 	}
3562 
3563 	key->namlen = namlen;
3564 	kname = key->name;
3565 
3566 	/*
3567 	 * move head/only segment
3568 	 */
3569 	UniStrncpy_from_le(kname, name, len);
3570 
3571 	/*
3572 	 * move additional segment(s)
3573 	 */
3574 	while (si >= 0) {
3575 		/* get next segment */
3576 		t = &p->slot[si];
3577 		kname += len;
3578 		namlen -= len;
3579 		len = min(namlen, DTSLOTDATALEN);
3580 		UniStrncpy_from_le(kname, t->name, len);
3581 
3582 		si = t->next;
3583 	}
3584 }
3585 
3586 
3587 /*
3588  *	dtInsertEntry()
3589  *
3590  * function: allocate free slot(s) and
3591  *	     write a leaf/internal entry
3592  *
3593  * return: entry slot index
3594  */
3595 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3596 			  ddata_t * data, struct dt_lock ** dtlock)
3597 {
3598 	struct dtslot *h, *t;
3599 	struct ldtentry *lh = NULL;
3600 	struct idtentry *ih = NULL;
3601 	int hsi, fsi, klen, len, nextindex;
3602 	wchar_t *kname;
3603 	__le16 *name;
3604 	s8 *stbl;
3605 	pxd_t *xd;
3606 	struct dt_lock *dtlck = *dtlock;
3607 	struct lv *lv;
3608 	int xsi, n;
3609 	s64 bn = 0;
3610 	struct metapage *mp = NULL;
3611 
3612 	klen = key->namlen;
3613 	kname = key->name;
3614 
3615 	/* allocate a free slot */
3616 	hsi = fsi = p->header.freelist;
3617 	h = &p->slot[fsi];
3618 	p->header.freelist = h->next;
3619 	--p->header.freecnt;
3620 
3621 	/* open new linelock */
3622 	if (dtlck->index >= dtlck->maxcnt)
3623 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3624 
3625 	lv = & dtlck->lv[dtlck->index];
3626 	lv->offset = hsi;
3627 
3628 	/* write head/only segment */
3629 	if (p->header.flag & BT_LEAF) {
3630 		lh = (struct ldtentry *) h;
3631 		lh->next = h->next;
3632 		lh->inumber = cpu_to_le32(data->leaf.ino);
3633 		lh->namlen = klen;
3634 		name = lh->name;
3635 		if (data->leaf.ip) {
3636 			len = min(klen, DTLHDRDATALEN);
3637 			if (!(p->header.flag & BT_ROOT))
3638 				bn = addressPXD(&p->header.self);
3639 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3640 							  data->leaf.ip,
3641 							  bn, index));
3642 		} else
3643 			len = min(klen, DTLHDRDATALEN_LEGACY);
3644 	} else {
3645 		ih = (struct idtentry *) h;
3646 		ih->next = h->next;
3647 		xd = (pxd_t *) ih;
3648 		*xd = data->xd;
3649 		ih->namlen = klen;
3650 		name = ih->name;
3651 		len = min(klen, DTIHDRDATALEN);
3652 	}
3653 
3654 	UniStrncpy_to_le(name, kname, len);
3655 
3656 	n = 1;
3657 	xsi = hsi;
3658 
3659 	/* write additional segment(s) */
3660 	t = h;
3661 	klen -= len;
3662 	while (klen) {
3663 		/* get free slot */
3664 		fsi = p->header.freelist;
3665 		t = &p->slot[fsi];
3666 		p->header.freelist = t->next;
3667 		--p->header.freecnt;
3668 
3669 		/* is next slot contiguous ? */
3670 		if (fsi != xsi + 1) {
3671 			/* close current linelock */
3672 			lv->length = n;
3673 			dtlck->index++;
3674 
3675 			/* open new linelock */
3676 			if (dtlck->index < dtlck->maxcnt)
3677 				lv++;
3678 			else {
3679 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3680 				lv = & dtlck->lv[0];
3681 			}
3682 
3683 			lv->offset = fsi;
3684 			n = 0;
3685 		}
3686 
3687 		kname += len;
3688 		len = min(klen, DTSLOTDATALEN);
3689 		UniStrncpy_to_le(t->name, kname, len);
3690 
3691 		n++;
3692 		xsi = fsi;
3693 		klen -= len;
3694 	}
3695 
3696 	/* close current linelock */
3697 	lv->length = n;
3698 	dtlck->index++;
3699 
3700 	*dtlock = dtlck;
3701 
3702 	/* terminate last/only segment */
3703 	if (h == t) {
3704 		/* single segment entry */
3705 		if (p->header.flag & BT_LEAF)
3706 			lh->next = -1;
3707 		else
3708 			ih->next = -1;
3709 	} else
3710 		/* multi-segment entry */
3711 		t->next = -1;
3712 
3713 	/* if insert into middle, shift right succeeding entries in stbl */
3714 	stbl = DT_GETSTBL(p);
3715 	nextindex = p->header.nextindex;
3716 	if (index < nextindex) {
3717 		memmove(stbl + index + 1, stbl + index, nextindex - index);
3718 
3719 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
3720 			s64 lblock;
3721 
3722 			/*
3723 			 * Need to update slot number for entries that moved
3724 			 * in the stbl
3725 			 */
3726 			mp = NULL;
3727 			for (n = index + 1; n <= nextindex; n++) {
3728 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
3729 				modify_index(data->leaf.tid, data->leaf.ip,
3730 					     le32_to_cpu(lh->index), bn, n,
3731 					     &mp, &lblock);
3732 			}
3733 			if (mp)
3734 				release_metapage(mp);
3735 		}
3736 	}
3737 
3738 	stbl[index] = hsi;
3739 
3740 	/* advance next available entry index of stbl */
3741 	++p->header.nextindex;
3742 }
3743 
3744 
3745 /*
3746  *	dtMoveEntry()
3747  *
3748  * function: move entries from split/left page to new/right page
3749  *
3750  *	nextindex of dst page and freelist/freecnt of both pages
3751  *	are updated.
3752  */
3753 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
3754 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
3755 			int do_index)
3756 {
3757 	int ssi, next;		/* src slot index */
3758 	int di;			/* dst entry index */
3759 	int dsi;		/* dst slot index */
3760 	s8 *sstbl, *dstbl;	/* sorted entry table */
3761 	int snamlen, len;
3762 	struct ldtentry *slh, *dlh = NULL;
3763 	struct idtentry *sih, *dih = NULL;
3764 	struct dtslot *h, *s, *d;
3765 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
3766 	struct lv *slv, *dlv;
3767 	int xssi, ns, nd;
3768 	int sfsi;
3769 
3770 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
3771 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
3772 
3773 	dsi = dp->header.freelist;	/* first (whole page) free slot */
3774 	sfsi = sp->header.freelist;
3775 
3776 	/* linelock destination entry slot */
3777 	dlv = & ddtlck->lv[ddtlck->index];
3778 	dlv->offset = dsi;
3779 
3780 	/* linelock source entry slot */
3781 	slv = & sdtlck->lv[sdtlck->index];
3782 	slv->offset = sstbl[si];
3783 	xssi = slv->offset - 1;
3784 
3785 	/*
3786 	 * move entries
3787 	 */
3788 	ns = nd = 0;
3789 	for (di = 0; si < sp->header.nextindex; si++, di++) {
3790 		ssi = sstbl[si];
3791 		dstbl[di] = dsi;
3792 
3793 		/* is next slot contiguous ? */
3794 		if (ssi != xssi + 1) {
3795 			/* close current linelock */
3796 			slv->length = ns;
3797 			sdtlck->index++;
3798 
3799 			/* open new linelock */
3800 			if (sdtlck->index < sdtlck->maxcnt)
3801 				slv++;
3802 			else {
3803 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
3804 				slv = & sdtlck->lv[0];
3805 			}
3806 
3807 			slv->offset = ssi;
3808 			ns = 0;
3809 		}
3810 
3811 		/*
3812 		 * move head/only segment of an entry
3813 		 */
3814 		/* get dst slot */
3815 		h = d = &dp->slot[dsi];
3816 
3817 		/* get src slot and move */
3818 		s = &sp->slot[ssi];
3819 		if (sp->header.flag & BT_LEAF) {
3820 			/* get source entry */
3821 			slh = (struct ldtentry *) s;
3822 			dlh = (struct ldtentry *) h;
3823 			snamlen = slh->namlen;
3824 
3825 			if (do_index) {
3826 				len = min(snamlen, DTLHDRDATALEN);
3827 				dlh->index = slh->index; /* little-endian */
3828 			} else
3829 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
3830 
3831 			memcpy(dlh, slh, 6 + len * 2);
3832 
3833 			next = slh->next;
3834 
3835 			/* update dst head/only segment next field */
3836 			dsi++;
3837 			dlh->next = dsi;
3838 		} else {
3839 			sih = (struct idtentry *) s;
3840 			snamlen = sih->namlen;
3841 
3842 			len = min(snamlen, DTIHDRDATALEN);
3843 			dih = (struct idtentry *) h;
3844 			memcpy(dih, sih, 10 + len * 2);
3845 			next = sih->next;
3846 
3847 			dsi++;
3848 			dih->next = dsi;
3849 		}
3850 
3851 		/* free src head/only segment */
3852 		s->next = sfsi;
3853 		s->cnt = 1;
3854 		sfsi = ssi;
3855 
3856 		ns++;
3857 		nd++;
3858 		xssi = ssi;
3859 
3860 		/*
3861 		 * move additional segment(s) of the entry
3862 		 */
3863 		snamlen -= len;
3864 		while ((ssi = next) >= 0) {
3865 			/* is next slot contiguous ? */
3866 			if (ssi != xssi + 1) {
3867 				/* close current linelock */
3868 				slv->length = ns;
3869 				sdtlck->index++;
3870 
3871 				/* open new linelock */
3872 				if (sdtlck->index < sdtlck->maxcnt)
3873 					slv++;
3874 				else {
3875 					sdtlck =
3876 					    (struct dt_lock *)
3877 					    txLinelock(sdtlck);
3878 					slv = & sdtlck->lv[0];
3879 				}
3880 
3881 				slv->offset = ssi;
3882 				ns = 0;
3883 			}
3884 
3885 			/* get next source segment */
3886 			s = &sp->slot[ssi];
3887 
3888 			/* get next destination free slot */
3889 			d++;
3890 
3891 			len = min(snamlen, DTSLOTDATALEN);
3892 			UniStrncpy_le(d->name, s->name, len);
3893 
3894 			ns++;
3895 			nd++;
3896 			xssi = ssi;
3897 
3898 			dsi++;
3899 			d->next = dsi;
3900 
3901 			/* free source segment */
3902 			next = s->next;
3903 			s->next = sfsi;
3904 			s->cnt = 1;
3905 			sfsi = ssi;
3906 
3907 			snamlen -= len;
3908 		}		/* end while */
3909 
3910 		/* terminate dst last/only segment */
3911 		if (h == d) {
3912 			/* single segment entry */
3913 			if (dp->header.flag & BT_LEAF)
3914 				dlh->next = -1;
3915 			else
3916 				dih->next = -1;
3917 		} else
3918 			/* multi-segment entry */
3919 			d->next = -1;
3920 	}			/* end for */
3921 
3922 	/* close current linelock */
3923 	slv->length = ns;
3924 	sdtlck->index++;
3925 	*sdtlock = sdtlck;
3926 
3927 	dlv->length = nd;
3928 	ddtlck->index++;
3929 	*ddtlock = ddtlck;
3930 
3931 	/* update source header */
3932 	sp->header.freelist = sfsi;
3933 	sp->header.freecnt += nd;
3934 
3935 	/* update destination header */
3936 	dp->header.nextindex = di;
3937 
3938 	dp->header.freelist = dsi;
3939 	dp->header.freecnt -= nd;
3940 }
3941 
3942 
3943 /*
3944  *	dtDeleteEntry()
3945  *
3946  * function: free a (leaf/internal) entry
3947  *
3948  * log freelist header, stbl, and each segment slot of entry
3949  * (even though last/only segment next field is modified,
3950  * physical image logging requires all segment slots of
3951  * the entry logged to avoid applying previous updates
3952  * to the same slots)
3953  */
3954 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
3955 {
3956 	int fsi;		/* free entry slot index */
3957 	s8 *stbl;
3958 	struct dtslot *t;
3959 	int si, freecnt;
3960 	struct dt_lock *dtlck = *dtlock;
3961 	struct lv *lv;
3962 	int xsi, n;
3963 
3964 	/* get free entry slot index */
3965 	stbl = DT_GETSTBL(p);
3966 	fsi = stbl[fi];
3967 
3968 	/* open new linelock */
3969 	if (dtlck->index >= dtlck->maxcnt)
3970 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3971 	lv = & dtlck->lv[dtlck->index];
3972 
3973 	lv->offset = fsi;
3974 
3975 	/* get the head/only segment */
3976 	t = &p->slot[fsi];
3977 	if (p->header.flag & BT_LEAF)
3978 		si = ((struct ldtentry *) t)->next;
3979 	else
3980 		si = ((struct idtentry *) t)->next;
3981 	t->next = si;
3982 	t->cnt = 1;
3983 
3984 	n = freecnt = 1;
3985 	xsi = fsi;
3986 
3987 	/* find the last/only segment */
3988 	while (si >= 0) {
3989 		/* is next slot contiguous ? */
3990 		if (si != xsi + 1) {
3991 			/* close current linelock */
3992 			lv->length = n;
3993 			dtlck->index++;
3994 
3995 			/* open new linelock */
3996 			if (dtlck->index < dtlck->maxcnt)
3997 				lv++;
3998 			else {
3999 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4000 				lv = & dtlck->lv[0];
4001 			}
4002 
4003 			lv->offset = si;
4004 			n = 0;
4005 		}
4006 
4007 		n++;
4008 		xsi = si;
4009 		freecnt++;
4010 
4011 		t = &p->slot[si];
4012 		t->cnt = 1;
4013 		si = t->next;
4014 	}
4015 
4016 	/* close current linelock */
4017 	lv->length = n;
4018 	dtlck->index++;
4019 
4020 	*dtlock = dtlck;
4021 
4022 	/* update freelist */
4023 	t->next = p->header.freelist;
4024 	p->header.freelist = fsi;
4025 	p->header.freecnt += freecnt;
4026 
4027 	/* if delete from middle,
4028 	 * shift left the succedding entries in the stbl
4029 	 */
4030 	si = p->header.nextindex;
4031 	if (fi < si - 1)
4032 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4033 
4034 	p->header.nextindex--;
4035 }
4036 
4037 
4038 /*
4039  *	dtTruncateEntry()
4040  *
4041  * function: truncate a (leaf/internal) entry
4042  *
4043  * log freelist header, stbl, and each segment slot of entry
4044  * (even though last/only segment next field is modified,
4045  * physical image logging requires all segment slots of
4046  * the entry logged to avoid applying previous updates
4047  * to the same slots)
4048  */
4049 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4050 {
4051 	int tsi;		/* truncate entry slot index */
4052 	s8 *stbl;
4053 	struct dtslot *t;
4054 	int si, freecnt;
4055 	struct dt_lock *dtlck = *dtlock;
4056 	struct lv *lv;
4057 	int fsi, xsi, n;
4058 
4059 	/* get free entry slot index */
4060 	stbl = DT_GETSTBL(p);
4061 	tsi = stbl[ti];
4062 
4063 	/* open new linelock */
4064 	if (dtlck->index >= dtlck->maxcnt)
4065 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4066 	lv = & dtlck->lv[dtlck->index];
4067 
4068 	lv->offset = tsi;
4069 
4070 	/* get the head/only segment */
4071 	t = &p->slot[tsi];
4072 	ASSERT(p->header.flag & BT_INTERNAL);
4073 	((struct idtentry *) t)->namlen = 0;
4074 	si = ((struct idtentry *) t)->next;
4075 	((struct idtentry *) t)->next = -1;
4076 
4077 	n = 1;
4078 	freecnt = 0;
4079 	fsi = si;
4080 	xsi = tsi;
4081 
4082 	/* find the last/only segment */
4083 	while (si >= 0) {
4084 		/* is next slot contiguous ? */
4085 		if (si != xsi + 1) {
4086 			/* close current linelock */
4087 			lv->length = n;
4088 			dtlck->index++;
4089 
4090 			/* open new linelock */
4091 			if (dtlck->index < dtlck->maxcnt)
4092 				lv++;
4093 			else {
4094 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4095 				lv = & dtlck->lv[0];
4096 			}
4097 
4098 			lv->offset = si;
4099 			n = 0;
4100 		}
4101 
4102 		n++;
4103 		xsi = si;
4104 		freecnt++;
4105 
4106 		t = &p->slot[si];
4107 		t->cnt = 1;
4108 		si = t->next;
4109 	}
4110 
4111 	/* close current linelock */
4112 	lv->length = n;
4113 	dtlck->index++;
4114 
4115 	*dtlock = dtlck;
4116 
4117 	/* update freelist */
4118 	if (freecnt == 0)
4119 		return;
4120 	t->next = p->header.freelist;
4121 	p->header.freelist = fsi;
4122 	p->header.freecnt += freecnt;
4123 }
4124 
4125 
4126 /*
4127  *	dtLinelockFreelist()
4128  */
4129 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4130 			       int m,	/* max slot index */
4131 			       struct dt_lock ** dtlock)
4132 {
4133 	int fsi;		/* free entry slot index */
4134 	struct dtslot *t;
4135 	int si;
4136 	struct dt_lock *dtlck = *dtlock;
4137 	struct lv *lv;
4138 	int xsi, n;
4139 
4140 	/* get free entry slot index */
4141 	fsi = p->header.freelist;
4142 
4143 	/* open new linelock */
4144 	if (dtlck->index >= dtlck->maxcnt)
4145 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4146 	lv = & dtlck->lv[dtlck->index];
4147 
4148 	lv->offset = fsi;
4149 
4150 	n = 1;
4151 	xsi = fsi;
4152 
4153 	t = &p->slot[fsi];
4154 	si = t->next;
4155 
4156 	/* find the last/only segment */
4157 	while (si < m && si >= 0) {
4158 		/* is next slot contiguous ? */
4159 		if (si != xsi + 1) {
4160 			/* close current linelock */
4161 			lv->length = n;
4162 			dtlck->index++;
4163 
4164 			/* open new linelock */
4165 			if (dtlck->index < dtlck->maxcnt)
4166 				lv++;
4167 			else {
4168 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4169 				lv = & dtlck->lv[0];
4170 			}
4171 
4172 			lv->offset = si;
4173 			n = 0;
4174 		}
4175 
4176 		n++;
4177 		xsi = si;
4178 
4179 		t = &p->slot[si];
4180 		si = t->next;
4181 	}
4182 
4183 	/* close current linelock */
4184 	lv->length = n;
4185 	dtlck->index++;
4186 
4187 	*dtlock = dtlck;
4188 }
4189 
4190 
4191 /*
4192  * NAME: dtModify
4193  *
4194  * FUNCTION: Modify the inode number part of a directory entry
4195  *
4196  * PARAMETERS:
4197  *	tid	- Transaction id
4198  *	ip	- Inode of parent directory
4199  *	key	- Name of entry to be modified
4200  *	orig_ino	- Original inode number expected in entry
4201  *	new_ino	- New inode number to put into entry
4202  *	flag	- JFS_RENAME
4203  *
4204  * RETURNS:
4205  *	-ESTALE	- If entry found does not match orig_ino passed in
4206  *	-ENOENT	- If no entry can be found to match key
4207  *	0	- If successfully modified entry
4208  */
4209 int dtModify(tid_t tid, struct inode *ip,
4210 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4211 {
4212 	int rc;
4213 	s64 bn;
4214 	struct metapage *mp;
4215 	dtpage_t *p;
4216 	int index;
4217 	struct btstack btstack;
4218 	struct tlock *tlck;
4219 	struct dt_lock *dtlck;
4220 	struct lv *lv;
4221 	s8 *stbl;
4222 	int entry_si;		/* entry slot index */
4223 	struct ldtentry *entry;
4224 
4225 	/*
4226 	 *	search for the entry to modify:
4227 	 *
4228 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4229 	 */
4230 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4231 		return rc;
4232 
4233 	/* retrieve search result */
4234 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4235 
4236 	BT_MARK_DIRTY(mp, ip);
4237 	/*
4238 	 * acquire a transaction lock on the leaf page of named entry
4239 	 */
4240 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4241 	dtlck = (struct dt_lock *) & tlck->lock;
4242 
4243 	/* get slot index of the entry */
4244 	stbl = DT_GETSTBL(p);
4245 	entry_si = stbl[index];
4246 
4247 	/* linelock entry */
4248 	ASSERT(dtlck->index == 0);
4249 	lv = & dtlck->lv[0];
4250 	lv->offset = entry_si;
4251 	lv->length = 1;
4252 	dtlck->index++;
4253 
4254 	/* get the head/only segment */
4255 	entry = (struct ldtentry *) & p->slot[entry_si];
4256 
4257 	/* substitute the inode number of the entry */
4258 	entry->inumber = cpu_to_le32(new_ino);
4259 
4260 	/* unpin the leaf page */
4261 	DT_PUTPAGE(mp);
4262 
4263 	return 0;
4264 }
4265