xref: /linux/fs/jfs/jfs_dmap.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 #include <linux/fs.h>
20 #include "jfs_incore.h"
21 #include "jfs_superblock.h"
22 #include "jfs_dmap.h"
23 #include "jfs_imap.h"
24 #include "jfs_lock.h"
25 #include "jfs_metapage.h"
26 #include "jfs_debug.h"
27 
28 /*
29  *	Debug code for double-checking block map
30  */
31 /* #define	_JFS_DEBUG_DMAP	1 */
32 
33 #ifdef	_JFS_DEBUG_DMAP
34 #define DBINITMAP(size,ipbmap,results) \
35 	DBinitmap(size,ipbmap,results)
36 #define DBALLOC(dbmap,mapsize,blkno,nblocks) \
37 	DBAlloc(dbmap,mapsize,blkno,nblocks)
38 #define DBFREE(dbmap,mapsize,blkno,nblocks) \
39 	DBFree(dbmap,mapsize,blkno,nblocks)
40 #define DBALLOCCK(dbmap,mapsize,blkno,nblocks) \
41 	DBAllocCK(dbmap,mapsize,blkno,nblocks)
42 #define DBFREECK(dbmap,mapsize,blkno,nblocks) \
43 	DBFreeCK(dbmap,mapsize,blkno,nblocks)
44 
45 static void DBinitmap(s64, struct inode *, u32 **);
46 static void DBAlloc(uint *, s64, s64, s64);
47 static void DBFree(uint *, s64, s64, s64);
48 static void DBAllocCK(uint *, s64, s64, s64);
49 static void DBFreeCK(uint *, s64, s64, s64);
50 #else
51 #define DBINITMAP(size,ipbmap,results)
52 #define DBALLOC(dbmap, mapsize, blkno, nblocks)
53 #define DBFREE(dbmap, mapsize, blkno, nblocks)
54 #define DBALLOCCK(dbmap, mapsize, blkno, nblocks)
55 #define DBFREECK(dbmap, mapsize, blkno, nblocks)
56 #endif				/* _JFS_DEBUG_DMAP */
57 
58 /*
59  *	SERIALIZATION of the Block Allocation Map.
60  *
61  *	the working state of the block allocation map is accessed in
62  *	two directions:
63  *
64  *	1) allocation and free requests that start at the dmap
65  *	   level and move up through the dmap control pages (i.e.
66  *	   the vast majority of requests).
67  *
68  * 	2) allocation requests that start at dmap control page
69  *	   level and work down towards the dmaps.
70  *
71  *	the serialization scheme used here is as follows.
72  *
73  *	requests which start at the bottom are serialized against each
74  *	other through buffers and each requests holds onto its buffers
75  *	as it works it way up from a single dmap to the required level
76  *	of dmap control page.
77  *	requests that start at the top are serialized against each other
78  *	and request that start from the bottom by the multiple read/single
79  *	write inode lock of the bmap inode. requests starting at the top
80  *	take this lock in write mode while request starting at the bottom
81  *	take the lock in read mode.  a single top-down request may proceed
82  *	exclusively while multiple bottoms-up requests may proceed
83  * 	simultaneously (under the protection of busy buffers).
84  *
85  *	in addition to information found in dmaps and dmap control pages,
86  *	the working state of the block allocation map also includes read/
87  *	write information maintained in the bmap descriptor (i.e. total
88  *	free block count, allocation group level free block counts).
89  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
90  *	in the face of multiple-bottoms up requests.
91  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
92  *
93  *	accesses to the persistent state of the block allocation map (limited
94  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
95  */
96 
97 #define BMAP_LOCK_INIT(bmp)	init_MUTEX(&bmp->db_bmaplock)
98 #define BMAP_LOCK(bmp)		down(&bmp->db_bmaplock)
99 #define BMAP_UNLOCK(bmp)	up(&bmp->db_bmaplock)
100 
101 /*
102  * forward references
103  */
104 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
105 			int nblocks);
106 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
107 static void dbBackSplit(dmtree_t * tp, int leafno);
108 static void dbJoin(dmtree_t * tp, int leafno, int newval);
109 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
110 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
111 		    int level);
112 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
113 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
114 		       int nblocks);
115 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
116 		       int nblocks,
117 		       int l2nb, s64 * results);
118 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
119 		       int nblocks);
120 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
121 			  int l2nb,
122 			  s64 * results);
123 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
124 		     s64 * results);
125 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
126 		      s64 * results);
127 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
128 static int dbFindBits(u32 word, int l2nb);
129 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
130 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
131 static void dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
132 		       int nblocks);
133 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
134 		      int nblocks);
135 static int dbMaxBud(u8 * cp);
136 s64 dbMapFileSizeToMapSize(struct inode *ipbmap);
137 static int blkstol2(s64 nb);
138 
139 static int cntlz(u32 value);
140 static int cnttz(u32 word);
141 
142 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
143 			 int nblocks);
144 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
145 static int dbInitDmapTree(struct dmap * dp);
146 static int dbInitTree(struct dmaptree * dtp);
147 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
148 static int dbGetL2AGSize(s64 nblocks);
149 
150 /*
151  *	buddy table
152  *
153  * table used for determining buddy sizes within characters of
154  * dmap bitmap words.  the characters themselves serve as indexes
155  * into the table, with the table elements yielding the maximum
156  * binary buddy of free bits within the character.
157  */
158 static s8 budtab[256] = {
159 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
161 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
162 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
163 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
164 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
165 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
166 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
167 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
168 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
169 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
170 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
171 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
172 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
173 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
174 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
175 };
176 
177 
178 /*
179  * NAME:    	dbMount()
180  *
181  * FUNCTION:	initializate the block allocation map.
182  *
183  *		memory is allocated for the in-core bmap descriptor and
184  *		the in-core descriptor is initialized from disk.
185  *
186  * PARAMETERS:
187  *      ipbmap	-  pointer to in-core inode for the block map.
188  *
189  * RETURN VALUES:
190  *      0	- success
191  *      -ENOMEM	- insufficient memory
192  *      -EIO	- i/o error
193  */
194 int dbMount(struct inode *ipbmap)
195 {
196 	struct bmap *bmp;
197 	struct dbmap_disk *dbmp_le;
198 	struct metapage *mp;
199 	int i;
200 
201 	/*
202 	 * allocate/initialize the in-memory bmap descriptor
203 	 */
204 	/* allocate memory for the in-memory bmap descriptor */
205 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
206 	if (bmp == NULL)
207 		return -ENOMEM;
208 
209 	/* read the on-disk bmap descriptor. */
210 	mp = read_metapage(ipbmap,
211 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
212 			   PSIZE, 0);
213 	if (mp == NULL) {
214 		kfree(bmp);
215 		return -EIO;
216 	}
217 
218 	/* copy the on-disk bmap descriptor to its in-memory version. */
219 	dbmp_le = (struct dbmap_disk *) mp->data;
220 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
221 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
222 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
223 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
224 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
225 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
226 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
227 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
228 	bmp->db_agheigth = le32_to_cpu(dbmp_le->dn_agheigth);
229 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
230 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
231 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
232 	for (i = 0; i < MAXAG; i++)
233 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
234 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
235 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
236 
237 	/* release the buffer. */
238 	release_metapage(mp);
239 
240 	/* bind the bmap inode and the bmap descriptor to each other. */
241 	bmp->db_ipbmap = ipbmap;
242 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
243 
244 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
245 	DBINITMAP(bmp->db_mapsize, ipbmap, &bmp->db_DBmap);
246 
247 	/*
248 	 * allocate/initialize the bmap lock
249 	 */
250 	BMAP_LOCK_INIT(bmp);
251 
252 	return (0);
253 }
254 
255 
256 /*
257  * NAME:    	dbUnmount()
258  *
259  * FUNCTION:	terminate the block allocation map in preparation for
260  *		file system unmount.
261  *
262  * 		the in-core bmap descriptor is written to disk and
263  *		the memory for this descriptor is freed.
264  *
265  * PARAMETERS:
266  *      ipbmap	-  pointer to in-core inode for the block map.
267  *
268  * RETURN VALUES:
269  *      0	- success
270  *      -EIO	- i/o error
271  */
272 int dbUnmount(struct inode *ipbmap, int mounterror)
273 {
274 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
275 
276 	if (!(mounterror || isReadOnly(ipbmap)))
277 		dbSync(ipbmap);
278 
279 	/*
280 	 * Invalidate the page cache buffers
281 	 */
282 	truncate_inode_pages(ipbmap->i_mapping, 0);
283 
284 	/* free the memory for the in-memory bmap. */
285 	kfree(bmp);
286 
287 	return (0);
288 }
289 
290 /*
291  *	dbSync()
292  */
293 int dbSync(struct inode *ipbmap)
294 {
295 	struct dbmap_disk *dbmp_le;
296 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
297 	struct metapage *mp;
298 	int i;
299 
300 	/*
301 	 * write bmap global control page
302 	 */
303 	/* get the buffer for the on-disk bmap descriptor. */
304 	mp = read_metapage(ipbmap,
305 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
306 			   PSIZE, 0);
307 	if (mp == NULL) {
308 		jfs_err("dbSync: read_metapage failed!");
309 		return -EIO;
310 	}
311 	/* copy the in-memory version of the bmap to the on-disk version */
312 	dbmp_le = (struct dbmap_disk *) mp->data;
313 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
314 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
315 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
316 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
317 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
318 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
319 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
320 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
321 	dbmp_le->dn_agheigth = cpu_to_le32(bmp->db_agheigth);
322 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
323 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
324 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
325 	for (i = 0; i < MAXAG; i++)
326 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
327 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
328 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
329 
330 	/* write the buffer */
331 	write_metapage(mp);
332 
333 	/*
334 	 * write out dirty pages of bmap
335 	 */
336 	filemap_fdatawrite(ipbmap->i_mapping);
337 	filemap_fdatawait(ipbmap->i_mapping);
338 
339 	ipbmap->i_state |= I_DIRTY;
340 	diWriteSpecial(ipbmap, 0);
341 
342 	return (0);
343 }
344 
345 
346 /*
347  * NAME:    	dbFree()
348  *
349  * FUNCTION:	free the specified block range from the working block
350  *		allocation map.
351  *
352  *		the blocks will be free from the working map one dmap
353  *		at a time.
354  *
355  * PARAMETERS:
356  *      ip	-  pointer to in-core inode;
357  *      blkno	-  starting block number to be freed.
358  *      nblocks	-  number of blocks to be freed.
359  *
360  * RETURN VALUES:
361  *      0	- success
362  *      -EIO	- i/o error
363  */
364 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
365 {
366 	struct metapage *mp;
367 	struct dmap *dp;
368 	int nb, rc;
369 	s64 lblkno, rem;
370 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
371 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
372 
373 	IREAD_LOCK(ipbmap);
374 
375 	/* block to be freed better be within the mapsize. */
376 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
377 		IREAD_UNLOCK(ipbmap);
378 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
379 		       (unsigned long long) blkno,
380 		       (unsigned long long) nblocks);
381 		jfs_error(ip->i_sb,
382 			  "dbFree: block to be freed is outside the map");
383 		return -EIO;
384 	}
385 
386 	/*
387 	 * free the blocks a dmap at a time.
388 	 */
389 	mp = NULL;
390 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
391 		/* release previous dmap if any */
392 		if (mp) {
393 			write_metapage(mp);
394 		}
395 
396 		/* get the buffer for the current dmap. */
397 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
398 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
399 		if (mp == NULL) {
400 			IREAD_UNLOCK(ipbmap);
401 			return -EIO;
402 		}
403 		dp = (struct dmap *) mp->data;
404 
405 		/* determine the number of blocks to be freed from
406 		 * this dmap.
407 		 */
408 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
409 
410 		DBALLOCCK(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
411 
412 		/* free the blocks. */
413 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
414 			release_metapage(mp);
415 			IREAD_UNLOCK(ipbmap);
416 			return (rc);
417 		}
418 
419 		DBFREE(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
420 	}
421 
422 	/* write the last buffer. */
423 	write_metapage(mp);
424 
425 	IREAD_UNLOCK(ipbmap);
426 
427 	return (0);
428 }
429 
430 
431 /*
432  * NAME:	dbUpdatePMap()
433  *
434  * FUNCTION:    update the allocation state (free or allocate) of the
435  *		specified block range in the persistent block allocation map.
436  *
437  *		the blocks will be updated in the persistent map one
438  *		dmap at a time.
439  *
440  * PARAMETERS:
441  *      ipbmap	-  pointer to in-core inode for the block map.
442  *      free	- TRUE if block range is to be freed from the persistent
443  *		  map; FALSE if it is to   be allocated.
444  *      blkno	-  starting block number of the range.
445  *      nblocks	-  number of contiguous blocks in the range.
446  *      tblk	-  transaction block;
447  *
448  * RETURN VALUES:
449  *      0	- success
450  *      -EIO	- i/o error
451  */
452 int
453 dbUpdatePMap(struct inode *ipbmap,
454 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
455 {
456 	int nblks, dbitno, wbitno, rbits;
457 	int word, nbits, nwords;
458 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
459 	s64 lblkno, rem, lastlblkno;
460 	u32 mask;
461 	struct dmap *dp;
462 	struct metapage *mp;
463 	struct jfs_log *log;
464 	int lsn, difft, diffp;
465 	unsigned long flags;
466 
467 	/* the blocks better be within the mapsize. */
468 	if (blkno + nblocks > bmp->db_mapsize) {
469 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
470 		       (unsigned long long) blkno,
471 		       (unsigned long long) nblocks);
472 		jfs_error(ipbmap->i_sb,
473 			  "dbUpdatePMap: blocks are outside the map");
474 		return -EIO;
475 	}
476 
477 	/* compute delta of transaction lsn from log syncpt */
478 	lsn = tblk->lsn;
479 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
480 	logdiff(difft, lsn, log);
481 
482 	/*
483 	 * update the block state a dmap at a time.
484 	 */
485 	mp = NULL;
486 	lastlblkno = 0;
487 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
488 		/* get the buffer for the current dmap. */
489 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
490 		if (lblkno != lastlblkno) {
491 			if (mp) {
492 				write_metapage(mp);
493 			}
494 
495 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
496 					   0);
497 			if (mp == NULL)
498 				return -EIO;
499 			metapage_wait_for_io(mp);
500 		}
501 		dp = (struct dmap *) mp->data;
502 
503 		/* determine the bit number and word within the dmap of
504 		 * the starting block.  also determine how many blocks
505 		 * are to be updated within this dmap.
506 		 */
507 		dbitno = blkno & (BPERDMAP - 1);
508 		word = dbitno >> L2DBWORD;
509 		nblks = min(rem, (s64)BPERDMAP - dbitno);
510 
511 		/* update the bits of the dmap words. the first and last
512 		 * words may only have a subset of their bits updated. if
513 		 * this is the case, we'll work against that word (i.e.
514 		 * partial first and/or last) only in a single pass.  a
515 		 * single pass will also be used to update all words that
516 		 * are to have all their bits updated.
517 		 */
518 		for (rbits = nblks; rbits > 0;
519 		     rbits -= nbits, dbitno += nbits) {
520 			/* determine the bit number within the word and
521 			 * the number of bits within the word.
522 			 */
523 			wbitno = dbitno & (DBWORD - 1);
524 			nbits = min(rbits, DBWORD - wbitno);
525 
526 			/* check if only part of the word is to be updated. */
527 			if (nbits < DBWORD) {
528 				/* update (free or allocate) the bits
529 				 * in this word.
530 				 */
531 				mask =
532 				    (ONES << (DBWORD - nbits) >> wbitno);
533 				if (free)
534 					dp->pmap[word] &=
535 					    cpu_to_le32(~mask);
536 				else
537 					dp->pmap[word] |=
538 					    cpu_to_le32(mask);
539 
540 				word += 1;
541 			} else {
542 				/* one or more words are to have all
543 				 * their bits updated.  determine how
544 				 * many words and how many bits.
545 				 */
546 				nwords = rbits >> L2DBWORD;
547 				nbits = nwords << L2DBWORD;
548 
549 				/* update (free or allocate) the bits
550 				 * in these words.
551 				 */
552 				if (free)
553 					memset(&dp->pmap[word], 0,
554 					       nwords * 4);
555 				else
556 					memset(&dp->pmap[word], (int) ONES,
557 					       nwords * 4);
558 
559 				word += nwords;
560 			}
561 		}
562 
563 		/*
564 		 * update dmap lsn
565 		 */
566 		if (lblkno == lastlblkno)
567 			continue;
568 
569 		lastlblkno = lblkno;
570 
571 		if (mp->lsn != 0) {
572 			/* inherit older/smaller lsn */
573 			logdiff(diffp, mp->lsn, log);
574 			LOGSYNC_LOCK(log, flags);
575 			if (difft < diffp) {
576 				mp->lsn = lsn;
577 
578 				/* move bp after tblock in logsync list */
579 				list_move(&mp->synclist, &tblk->synclist);
580 			}
581 
582 			/* inherit younger/larger clsn */
583 			logdiff(difft, tblk->clsn, log);
584 			logdiff(diffp, mp->clsn, log);
585 			if (difft > diffp)
586 				mp->clsn = tblk->clsn;
587 			LOGSYNC_UNLOCK(log, flags);
588 		} else {
589 			mp->log = log;
590 			mp->lsn = lsn;
591 
592 			/* insert bp after tblock in logsync list */
593 			LOGSYNC_LOCK(log, flags);
594 
595 			log->count++;
596 			list_add(&mp->synclist, &tblk->synclist);
597 
598 			mp->clsn = tblk->clsn;
599 			LOGSYNC_UNLOCK(log, flags);
600 		}
601 	}
602 
603 	/* write the last buffer. */
604 	if (mp) {
605 		write_metapage(mp);
606 	}
607 
608 	return (0);
609 }
610 
611 
612 /*
613  * NAME:	dbNextAG()
614  *
615  * FUNCTION:    find the preferred allocation group for new allocations.
616  *
617  *		Within the allocation groups, we maintain a preferred
618  *		allocation group which consists of a group with at least
619  *		average free space.  It is the preferred group that we target
620  *		new inode allocation towards.  The tie-in between inode
621  *		allocation and block allocation occurs as we allocate the
622  *		first (data) block of an inode and specify the inode (block)
623  *		as the allocation hint for this block.
624  *
625  *		We try to avoid having more than one open file growing in
626  *		an allocation group, as this will lead to fragmentation.
627  *		This differs from the old OS/2 method of trying to keep
628  *		empty ags around for large allocations.
629  *
630  * PARAMETERS:
631  *      ipbmap	-  pointer to in-core inode for the block map.
632  *
633  * RETURN VALUES:
634  *      the preferred allocation group number.
635  */
636 int dbNextAG(struct inode *ipbmap)
637 {
638 	s64 avgfree;
639 	int agpref;
640 	s64 hwm = 0;
641 	int i;
642 	int next_best = -1;
643 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
644 
645 	BMAP_LOCK(bmp);
646 
647 	/* determine the average number of free blocks within the ags. */
648 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
649 
650 	/*
651 	 * if the current preferred ag does not have an active allocator
652 	 * and has at least average freespace, return it
653 	 */
654 	agpref = bmp->db_agpref;
655 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
656 	    (bmp->db_agfree[agpref] >= avgfree))
657 		goto unlock;
658 
659 	/* From the last preferred ag, find the next one with at least
660 	 * average free space.
661 	 */
662 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
663 		if (agpref == bmp->db_numag)
664 			agpref = 0;
665 
666 		if (atomic_read(&bmp->db_active[agpref]))
667 			/* open file is currently growing in this ag */
668 			continue;
669 		if (bmp->db_agfree[agpref] >= avgfree) {
670 			/* Return this one */
671 			bmp->db_agpref = agpref;
672 			goto unlock;
673 		} else if (bmp->db_agfree[agpref] > hwm) {
674 			/* Less than avg. freespace, but best so far */
675 			hwm = bmp->db_agfree[agpref];
676 			next_best = agpref;
677 		}
678 	}
679 
680 	/*
681 	 * If no inactive ag was found with average freespace, use the
682 	 * next best
683 	 */
684 	if (next_best != -1)
685 		bmp->db_agpref = next_best;
686 	/* else leave db_agpref unchanged */
687 unlock:
688 	BMAP_UNLOCK(bmp);
689 
690 	/* return the preferred group.
691 	 */
692 	return (bmp->db_agpref);
693 }
694 
695 /*
696  * NAME:	dbAlloc()
697  *
698  * FUNCTION:    attempt to allocate a specified number of contiguous free
699  *		blocks from the working allocation block map.
700  *
701  *		the block allocation policy uses hints and a multi-step
702  *		approach.
703  *
704  *	  	for allocation requests smaller than the number of blocks
705  *		per dmap, we first try to allocate the new blocks
706  *		immediately following the hint.  if these blocks are not
707  *		available, we try to allocate blocks near the hint.  if
708  *		no blocks near the hint are available, we next try to
709  *		allocate within the same dmap as contains the hint.
710  *
711  *		if no blocks are available in the dmap or the allocation
712  *		request is larger than the dmap size, we try to allocate
713  *		within the same allocation group as contains the hint. if
714  *		this does not succeed, we finally try to allocate anywhere
715  *		within the aggregate.
716  *
717  *		we also try to allocate anywhere within the aggregate for
718  *		for allocation requests larger than the allocation group
719  *		size or requests that specify no hint value.
720  *
721  * PARAMETERS:
722  *      ip	-  pointer to in-core inode;
723  *      hint	- allocation hint.
724  *      nblocks	- number of contiguous blocks in the range.
725  *      results	- on successful return, set to the starting block number
726  *		  of the newly allocated contiguous range.
727  *
728  * RETURN VALUES:
729  *      0	- success
730  *      -ENOSPC	- insufficient disk resources
731  *      -EIO	- i/o error
732  */
733 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
734 {
735 	int rc, agno;
736 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
737 	struct bmap *bmp;
738 	struct metapage *mp;
739 	s64 lblkno, blkno;
740 	struct dmap *dp;
741 	int l2nb;
742 	s64 mapSize;
743 	int writers;
744 
745 	/* assert that nblocks is valid */
746 	assert(nblocks > 0);
747 
748 #ifdef _STILL_TO_PORT
749 	/* DASD limit check                                     F226941 */
750 	if (OVER_LIMIT(ip, nblocks))
751 		return -ENOSPC;
752 #endif				/* _STILL_TO_PORT */
753 
754 	/* get the log2 number of blocks to be allocated.
755 	 * if the number of blocks is not a log2 multiple,
756 	 * it will be rounded up to the next log2 multiple.
757 	 */
758 	l2nb = BLKSTOL2(nblocks);
759 
760 	bmp = JFS_SBI(ip->i_sb)->bmap;
761 
762 //retry:        /* serialize w.r.t.extendfs() */
763 	mapSize = bmp->db_mapsize;
764 
765 	/* the hint should be within the map */
766 	if (hint >= mapSize) {
767 		jfs_error(ip->i_sb, "dbAlloc: the hint is outside the map");
768 		return -EIO;
769 	}
770 
771 	/* if the number of blocks to be allocated is greater than the
772 	 * allocation group size, try to allocate anywhere.
773 	 */
774 	if (l2nb > bmp->db_agl2size) {
775 		IWRITE_LOCK(ipbmap);
776 
777 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
778 		if (rc == 0) {
779 			DBALLOC(bmp->db_DBmap, bmp->db_mapsize, *results,
780 				nblocks);
781 		}
782 
783 		goto write_unlock;
784 	}
785 
786 	/*
787 	 * If no hint, let dbNextAG recommend an allocation group
788 	 */
789 	if (hint == 0)
790 		goto pref_ag;
791 
792 	/* we would like to allocate close to the hint.  adjust the
793 	 * hint to the block following the hint since the allocators
794 	 * will start looking for free space starting at this point.
795 	 */
796 	blkno = hint + 1;
797 
798 	if (blkno >= bmp->db_mapsize)
799 		goto pref_ag;
800 
801 	agno = blkno >> bmp->db_agl2size;
802 
803 	/* check if blkno crosses over into a new allocation group.
804 	 * if so, check if we should allow allocations within this
805 	 * allocation group.
806 	 */
807 	if ((blkno & (bmp->db_agsize - 1)) == 0)
808 		/* check if the AG is currenly being written to.
809 		 * if so, call dbNextAG() to find a non-busy
810 		 * AG with sufficient free space.
811 		 */
812 		if (atomic_read(&bmp->db_active[agno]))
813 			goto pref_ag;
814 
815 	/* check if the allocation request size can be satisfied from a
816 	 * single dmap.  if so, try to allocate from the dmap containing
817 	 * the hint using a tiered strategy.
818 	 */
819 	if (nblocks <= BPERDMAP) {
820 		IREAD_LOCK(ipbmap);
821 
822 		/* get the buffer for the dmap containing the hint.
823 		 */
824 		rc = -EIO;
825 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
826 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
827 		if (mp == NULL)
828 			goto read_unlock;
829 
830 		dp = (struct dmap *) mp->data;
831 
832 		/* first, try to satisfy the allocation request with the
833 		 * blocks beginning at the hint.
834 		 */
835 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
836 		    != -ENOSPC) {
837 			if (rc == 0) {
838 				*results = blkno;
839 				DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
840 					*results, nblocks);
841 				mark_metapage_dirty(mp);
842 			}
843 
844 			release_metapage(mp);
845 			goto read_unlock;
846 		}
847 
848 		writers = atomic_read(&bmp->db_active[agno]);
849 		if ((writers > 1) ||
850 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
851 			/*
852 			 * Someone else is writing in this allocation
853 			 * group.  To avoid fragmenting, try another ag
854 			 */
855 			release_metapage(mp);
856 			IREAD_UNLOCK(ipbmap);
857 			goto pref_ag;
858 		}
859 
860 		/* next, try to satisfy the allocation request with blocks
861 		 * near the hint.
862 		 */
863 		if ((rc =
864 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
865 		    != -ENOSPC) {
866 			if (rc == 0) {
867 				DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
868 					*results, nblocks);
869 				mark_metapage_dirty(mp);
870 			}
871 
872 			release_metapage(mp);
873 			goto read_unlock;
874 		}
875 
876 		/* try to satisfy the allocation request with blocks within
877 		 * the same dmap as the hint.
878 		 */
879 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
880 		    != -ENOSPC) {
881 			if (rc == 0) {
882 				DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
883 					*results, nblocks);
884 				mark_metapage_dirty(mp);
885 			}
886 
887 			release_metapage(mp);
888 			goto read_unlock;
889 		}
890 
891 		release_metapage(mp);
892 		IREAD_UNLOCK(ipbmap);
893 	}
894 
895 	/* try to satisfy the allocation request with blocks within
896 	 * the same allocation group as the hint.
897 	 */
898 	IWRITE_LOCK(ipbmap);
899 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results))
900 	    != -ENOSPC) {
901 		if (rc == 0)
902 			DBALLOC(bmp->db_DBmap, bmp->db_mapsize,
903 				*results, nblocks);
904 		goto write_unlock;
905 	}
906 	IWRITE_UNLOCK(ipbmap);
907 
908 
909       pref_ag:
910 	/*
911 	 * Let dbNextAG recommend a preferred allocation group
912 	 */
913 	agno = dbNextAG(ipbmap);
914 	IWRITE_LOCK(ipbmap);
915 
916 	/* Try to allocate within this allocation group.  if that fails, try to
917 	 * allocate anywhere in the map.
918 	 */
919 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
920 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
921 	if (rc == 0) {
922 		DBALLOC(bmp->db_DBmap, bmp->db_mapsize, *results, nblocks);
923 	}
924 
925       write_unlock:
926 	IWRITE_UNLOCK(ipbmap);
927 
928 	return (rc);
929 
930       read_unlock:
931 	IREAD_UNLOCK(ipbmap);
932 
933 	return (rc);
934 }
935 
936 #ifdef _NOTYET
937 /*
938  * NAME:	dbAllocExact()
939  *
940  * FUNCTION:    try to allocate the requested extent;
941  *
942  * PARAMETERS:
943  *      ip	- pointer to in-core inode;
944  *      blkno	- extent address;
945  *      nblocks	- extent length;
946  *
947  * RETURN VALUES:
948  *      0	- success
949  *      -ENOSPC	- insufficient disk resources
950  *      -EIO	- i/o error
951  */
952 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
953 {
954 	int rc;
955 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
956 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
957 	struct dmap *dp;
958 	s64 lblkno;
959 	struct metapage *mp;
960 
961 	IREAD_LOCK(ipbmap);
962 
963 	/*
964 	 * validate extent request:
965 	 *
966 	 * note: defragfs policy:
967 	 *  max 64 blocks will be moved.
968 	 *  allocation request size must be satisfied from a single dmap.
969 	 */
970 	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
971 		IREAD_UNLOCK(ipbmap);
972 		return -EINVAL;
973 	}
974 
975 	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
976 		/* the free space is no longer available */
977 		IREAD_UNLOCK(ipbmap);
978 		return -ENOSPC;
979 	}
980 
981 	/* read in the dmap covering the extent */
982 	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
983 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
984 	if (mp == NULL) {
985 		IREAD_UNLOCK(ipbmap);
986 		return -EIO;
987 	}
988 	dp = (struct dmap *) mp->data;
989 
990 	/* try to allocate the requested extent */
991 	rc = dbAllocNext(bmp, dp, blkno, nblocks);
992 
993 	IREAD_UNLOCK(ipbmap);
994 
995 	if (rc == 0) {
996 		DBALLOC(bmp->db_DBmap, bmp->db_mapsize, blkno, nblocks);
997 		mark_metapage_dirty(mp);
998 	}
999 	release_metapage(mp);
1000 
1001 	return (rc);
1002 }
1003 #endif /* _NOTYET */
1004 
1005 /*
1006  * NAME:	dbReAlloc()
1007  *
1008  * FUNCTION:    attempt to extend a current allocation by a specified
1009  *		number of blocks.
1010  *
1011  *		this routine attempts to satisfy the allocation request
1012  *		by first trying to extend the existing allocation in
1013  *		place by allocating the additional blocks as the blocks
1014  *		immediately following the current allocation.  if these
1015  *		blocks are not available, this routine will attempt to
1016  *		allocate a new set of contiguous blocks large enough
1017  *		to cover the existing allocation plus the additional
1018  *		number of blocks required.
1019  *
1020  * PARAMETERS:
1021  *      ip	    -  pointer to in-core inode requiring allocation.
1022  *      blkno	    -  starting block of the current allocation.
1023  *      nblocks	    -  number of contiguous blocks within the current
1024  *		       allocation.
1025  *      addnblocks  -  number of blocks to add to the allocation.
1026  *      results	-      on successful return, set to the starting block number
1027  *		       of the existing allocation if the existing allocation
1028  *		       was extended in place or to a newly allocated contiguous
1029  *		       range if the existing allocation could not be extended
1030  *		       in place.
1031  *
1032  * RETURN VALUES:
1033  *      0	- success
1034  *      -ENOSPC	- insufficient disk resources
1035  *      -EIO	- i/o error
1036  */
1037 int
1038 dbReAlloc(struct inode *ip,
1039 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
1040 {
1041 	int rc;
1042 
1043 	/* try to extend the allocation in place.
1044 	 */
1045 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
1046 		*results = blkno;
1047 		return (0);
1048 	} else {
1049 		if (rc != -ENOSPC)
1050 			return (rc);
1051 	}
1052 
1053 	/* could not extend the allocation in place, so allocate a
1054 	 * new set of blocks for the entire request (i.e. try to get
1055 	 * a range of contiguous blocks large enough to cover the
1056 	 * existing allocation plus the additional blocks.)
1057 	 */
1058 	return (dbAlloc
1059 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1060 }
1061 
1062 
1063 /*
1064  * NAME:	dbExtend()
1065  *
1066  * FUNCTION:    attempt to extend a current allocation by a specified
1067  *		number of blocks.
1068  *
1069  *		this routine attempts to satisfy the allocation request
1070  *		by first trying to extend the existing allocation in
1071  *		place by allocating the additional blocks as the blocks
1072  *		immediately following the current allocation.
1073  *
1074  * PARAMETERS:
1075  *      ip	    -  pointer to in-core inode requiring allocation.
1076  *      blkno	    -  starting block of the current allocation.
1077  *      nblocks	    -  number of contiguous blocks within the current
1078  *		       allocation.
1079  *      addnblocks  -  number of blocks to add to the allocation.
1080  *
1081  * RETURN VALUES:
1082  *      0	- success
1083  *      -ENOSPC	- insufficient disk resources
1084  *      -EIO	- i/o error
1085  */
1086 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1087 {
1088 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1089 	s64 lblkno, lastblkno, extblkno;
1090 	uint rel_block;
1091 	struct metapage *mp;
1092 	struct dmap *dp;
1093 	int rc;
1094 	struct inode *ipbmap = sbi->ipbmap;
1095 	struct bmap *bmp;
1096 
1097 	/*
1098 	 * We don't want a non-aligned extent to cross a page boundary
1099 	 */
1100 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1101 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1102 		return -ENOSPC;
1103 
1104 	/* get the last block of the current allocation */
1105 	lastblkno = blkno + nblocks - 1;
1106 
1107 	/* determine the block number of the block following
1108 	 * the existing allocation.
1109 	 */
1110 	extblkno = lastblkno + 1;
1111 
1112 	IREAD_LOCK(ipbmap);
1113 
1114 	/* better be within the file system */
1115 	bmp = sbi->bmap;
1116 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1117 		IREAD_UNLOCK(ipbmap);
1118 		jfs_error(ip->i_sb,
1119 			  "dbExtend: the block is outside the filesystem");
1120 		return -EIO;
1121 	}
1122 
1123 	/* we'll attempt to extend the current allocation in place by
1124 	 * allocating the additional blocks as the blocks immediately
1125 	 * following the current allocation.  we only try to extend the
1126 	 * current allocation in place if the number of additional blocks
1127 	 * can fit into a dmap, the last block of the current allocation
1128 	 * is not the last block of the file system, and the start of the
1129 	 * inplace extension is not on an allocation group boundary.
1130 	 */
1131 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1132 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1133 		IREAD_UNLOCK(ipbmap);
1134 		return -ENOSPC;
1135 	}
1136 
1137 	/* get the buffer for the dmap containing the first block
1138 	 * of the extension.
1139 	 */
1140 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1141 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1142 	if (mp == NULL) {
1143 		IREAD_UNLOCK(ipbmap);
1144 		return -EIO;
1145 	}
1146 
1147 	DBALLOCCK(bmp->db_DBmap, bmp->db_mapsize, blkno, nblocks);
1148 	dp = (struct dmap *) mp->data;
1149 
1150 	/* try to allocate the blocks immediately following the
1151 	 * current allocation.
1152 	 */
1153 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1154 
1155 	IREAD_UNLOCK(ipbmap);
1156 
1157 	/* were we successful ? */
1158 	if (rc == 0) {
1159 		DBALLOC(bmp->db_DBmap, bmp->db_mapsize, extblkno,
1160 			addnblocks);
1161 		write_metapage(mp);
1162 	} else
1163 		/* we were not successful */
1164 		release_metapage(mp);
1165 
1166 
1167 	return (rc);
1168 }
1169 
1170 
1171 /*
1172  * NAME:	dbAllocNext()
1173  *
1174  * FUNCTION:    attempt to allocate the blocks of the specified block
1175  *		range within a dmap.
1176  *
1177  * PARAMETERS:
1178  *      bmp	-  pointer to bmap descriptor
1179  *      dp	-  pointer to dmap.
1180  *      blkno	-  starting block number of the range.
1181  *      nblocks	-  number of contiguous free blocks of the range.
1182  *
1183  * RETURN VALUES:
1184  *      0	- success
1185  *      -ENOSPC	- insufficient disk resources
1186  *      -EIO	- i/o error
1187  *
1188  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1189  */
1190 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1191 		       int nblocks)
1192 {
1193 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1194 	int l2size;
1195 	s8 *leaf;
1196 	u32 mask;
1197 
1198 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1199 		jfs_error(bmp->db_ipbmap->i_sb,
1200 			  "dbAllocNext: Corrupt dmap page");
1201 		return -EIO;
1202 	}
1203 
1204 	/* pick up a pointer to the leaves of the dmap tree.
1205 	 */
1206 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1207 
1208 	/* determine the bit number and word within the dmap of the
1209 	 * starting block.
1210 	 */
1211 	dbitno = blkno & (BPERDMAP - 1);
1212 	word = dbitno >> L2DBWORD;
1213 
1214 	/* check if the specified block range is contained within
1215 	 * this dmap.
1216 	 */
1217 	if (dbitno + nblocks > BPERDMAP)
1218 		return -ENOSPC;
1219 
1220 	/* check if the starting leaf indicates that anything
1221 	 * is free.
1222 	 */
1223 	if (leaf[word] == NOFREE)
1224 		return -ENOSPC;
1225 
1226 	/* check the dmaps words corresponding to block range to see
1227 	 * if the block range is free.  not all bits of the first and
1228 	 * last words may be contained within the block range.  if this
1229 	 * is the case, we'll work against those words (i.e. partial first
1230 	 * and/or last) on an individual basis (a single pass) and examine
1231 	 * the actual bits to determine if they are free.  a single pass
1232 	 * will be used for all dmap words fully contained within the
1233 	 * specified range.  within this pass, the leaves of the dmap
1234 	 * tree will be examined to determine if the blocks are free. a
1235 	 * single leaf may describe the free space of multiple dmap
1236 	 * words, so we may visit only a subset of the actual leaves
1237 	 * corresponding to the dmap words of the block range.
1238 	 */
1239 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1240 		/* determine the bit number within the word and
1241 		 * the number of bits within the word.
1242 		 */
1243 		wbitno = dbitno & (DBWORD - 1);
1244 		nb = min(rembits, DBWORD - wbitno);
1245 
1246 		/* check if only part of the word is to be examined.
1247 		 */
1248 		if (nb < DBWORD) {
1249 			/* check if the bits are free.
1250 			 */
1251 			mask = (ONES << (DBWORD - nb) >> wbitno);
1252 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1253 				return -ENOSPC;
1254 
1255 			word += 1;
1256 		} else {
1257 			/* one or more dmap words are fully contained
1258 			 * within the block range.  determine how many
1259 			 * words and how many bits.
1260 			 */
1261 			nwords = rembits >> L2DBWORD;
1262 			nb = nwords << L2DBWORD;
1263 
1264 			/* now examine the appropriate leaves to determine
1265 			 * if the blocks are free.
1266 			 */
1267 			while (nwords > 0) {
1268 				/* does the leaf describe any free space ?
1269 				 */
1270 				if (leaf[word] < BUDMIN)
1271 					return -ENOSPC;
1272 
1273 				/* determine the l2 number of bits provided
1274 				 * by this leaf.
1275 				 */
1276 				l2size =
1277 				    min((int)leaf[word], NLSTOL2BSZ(nwords));
1278 
1279 				/* determine how many words were handled.
1280 				 */
1281 				nw = BUDSIZE(l2size, BUDMIN);
1282 
1283 				nwords -= nw;
1284 				word += nw;
1285 			}
1286 		}
1287 	}
1288 
1289 	/* allocate the blocks.
1290 	 */
1291 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1292 }
1293 
1294 
1295 /*
1296  * NAME:	dbAllocNear()
1297  *
1298  * FUNCTION:    attempt to allocate a number of contiguous free blocks near
1299  *		a specified block (hint) within a dmap.
1300  *
1301  *		starting with the dmap leaf that covers the hint, we'll
1302  *		check the next four contiguous leaves for sufficient free
1303  *		space.  if sufficient free space is found, we'll allocate
1304  *		the desired free space.
1305  *
1306  * PARAMETERS:
1307  *      bmp	-  pointer to bmap descriptor
1308  *      dp	-  pointer to dmap.
1309  *      blkno	-  block number to allocate near.
1310  *      nblocks	-  actual number of contiguous free blocks desired.
1311  *      l2nb	-  log2 number of contiguous free blocks desired.
1312  *      results	-  on successful return, set to the starting block number
1313  *		   of the newly allocated range.
1314  *
1315  * RETURN VALUES:
1316  *      0	- success
1317  *      -ENOSPC	- insufficient disk resources
1318  *      -EIO	- i/o error
1319  *
1320  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1321  */
1322 static int
1323 dbAllocNear(struct bmap * bmp,
1324 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1325 {
1326 	int word, lword, rc;
1327 	s8 *leaf;
1328 
1329 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1330 		jfs_error(bmp->db_ipbmap->i_sb,
1331 			  "dbAllocNear: Corrupt dmap page");
1332 		return -EIO;
1333 	}
1334 
1335 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1336 
1337 	/* determine the word within the dmap that holds the hint
1338 	 * (i.e. blkno).  also, determine the last word in the dmap
1339 	 * that we'll include in our examination.
1340 	 */
1341 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1342 	lword = min(word + 4, LPERDMAP);
1343 
1344 	/* examine the leaves for sufficient free space.
1345 	 */
1346 	for (; word < lword; word++) {
1347 		/* does the leaf describe sufficient free space ?
1348 		 */
1349 		if (leaf[word] < l2nb)
1350 			continue;
1351 
1352 		/* determine the block number within the file system
1353 		 * of the first block described by this dmap word.
1354 		 */
1355 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1356 
1357 		/* if not all bits of the dmap word are free, get the
1358 		 * starting bit number within the dmap word of the required
1359 		 * string of free bits and adjust the block number with the
1360 		 * value.
1361 		 */
1362 		if (leaf[word] < BUDMIN)
1363 			blkno +=
1364 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1365 
1366 		/* allocate the blocks.
1367 		 */
1368 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1369 			*results = blkno;
1370 
1371 		return (rc);
1372 	}
1373 
1374 	return -ENOSPC;
1375 }
1376 
1377 
1378 /*
1379  * NAME:	dbAllocAG()
1380  *
1381  * FUNCTION:    attempt to allocate the specified number of contiguous
1382  *		free blocks within the specified allocation group.
1383  *
1384  *		unless the allocation group size is equal to the number
1385  *		of blocks per dmap, the dmap control pages will be used to
1386  *		find the required free space, if available.  we start the
1387  *		search at the highest dmap control page level which
1388  *		distinctly describes the allocation group's free space
1389  *		(i.e. the highest level at which the allocation group's
1390  *		free space is not mixed in with that of any other group).
1391  *		in addition, we start the search within this level at a
1392  *		height of the dmapctl dmtree at which the nodes distinctly
1393  *		describe the allocation group's free space.  at this height,
1394  *		the allocation group's free space may be represented by 1
1395  *		or two sub-trees, depending on the allocation group size.
1396  *		we search the top nodes of these subtrees left to right for
1397  *		sufficient free space.  if sufficient free space is found,
1398  *		the subtree is searched to find the leftmost leaf that
1399  *		has free space.  once we have made it to the leaf, we
1400  *		move the search to the next lower level dmap control page
1401  *		corresponding to this leaf.  we continue down the dmap control
1402  *		pages until we find the dmap that contains or starts the
1403  *		sufficient free space and we allocate at this dmap.
1404  *
1405  *		if the allocation group size is equal to the dmap size,
1406  *		we'll start at the dmap corresponding to the allocation
1407  *		group and attempt the allocation at this level.
1408  *
1409  *		the dmap control page search is also not performed if the
1410  *		allocation group is completely free and we go to the first
1411  *		dmap of the allocation group to do the allocation.  this is
1412  *		done because the allocation group may be part (not the first
1413  *		part) of a larger binary buddy system, causing the dmap
1414  *		control pages to indicate no free space (NOFREE) within
1415  *		the allocation group.
1416  *
1417  * PARAMETERS:
1418  *      bmp	-  pointer to bmap descriptor
1419  *	agno	- allocation group number.
1420  *      nblocks	-  actual number of contiguous free blocks desired.
1421  *      l2nb	-  log2 number of contiguous free blocks desired.
1422  *      results	-  on successful return, set to the starting block number
1423  *		   of the newly allocated range.
1424  *
1425  * RETURN VALUES:
1426  *      0	- success
1427  *      -ENOSPC	- insufficient disk resources
1428  *      -EIO	- i/o error
1429  *
1430  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1431  */
1432 static int
1433 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1434 {
1435 	struct metapage *mp;
1436 	struct dmapctl *dcp;
1437 	int rc, ti, i, k, m, n, agperlev;
1438 	s64 blkno, lblkno;
1439 	int budmin;
1440 
1441 	/* allocation request should not be for more than the
1442 	 * allocation group size.
1443 	 */
1444 	if (l2nb > bmp->db_agl2size) {
1445 		jfs_error(bmp->db_ipbmap->i_sb,
1446 			  "dbAllocAG: allocation request is larger than the "
1447 			  "allocation group size");
1448 		return -EIO;
1449 	}
1450 
1451 	/* determine the starting block number of the allocation
1452 	 * group.
1453 	 */
1454 	blkno = (s64) agno << bmp->db_agl2size;
1455 
1456 	/* check if the allocation group size is the minimum allocation
1457 	 * group size or if the allocation group is completely free. if
1458 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1459 	 * 1 dmap), there is no need to search the dmap control page (below)
1460 	 * that fully describes the allocation group since the allocation
1461 	 * group is already fully described by a dmap.  in this case, we
1462 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1463 	 * required space if available.
1464 	 *
1465 	 * if the allocation group is completely free, dbAllocCtl() is
1466 	 * also called to allocate the required space.  this is done for
1467 	 * two reasons.  first, it makes no sense searching the dmap control
1468 	 * pages for free space when we know that free space exists.  second,
1469 	 * the dmap control pages may indicate that the allocation group
1470 	 * has no free space if the allocation group is part (not the first
1471 	 * part) of a larger binary buddy system.
1472 	 */
1473 	if (bmp->db_agsize == BPERDMAP
1474 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1475 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1476 		if ((rc == -ENOSPC) &&
1477 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1478 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1479 			       (unsigned long long) blkno,
1480 			       (unsigned long long) nblocks);
1481 			jfs_error(bmp->db_ipbmap->i_sb,
1482 				  "dbAllocAG: dbAllocCtl failed in free AG");
1483 		}
1484 		return (rc);
1485 	}
1486 
1487 	/* the buffer for the dmap control page that fully describes the
1488 	 * allocation group.
1489 	 */
1490 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1491 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1492 	if (mp == NULL)
1493 		return -EIO;
1494 	dcp = (struct dmapctl *) mp->data;
1495 	budmin = dcp->budmin;
1496 
1497 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1498 		jfs_error(bmp->db_ipbmap->i_sb,
1499 			  "dbAllocAG: Corrupt dmapctl page");
1500 		release_metapage(mp);
1501 		return -EIO;
1502 	}
1503 
1504 	/* search the subtree(s) of the dmap control page that describes
1505 	 * the allocation group, looking for sufficient free space.  to begin,
1506 	 * determine how many allocation groups are represented in a dmap
1507 	 * control page at the control page level (i.e. L0, L1, L2) that
1508 	 * fully describes an allocation group. next, determine the starting
1509 	 * tree index of this allocation group within the control page.
1510 	 */
1511 	agperlev =
1512 	    (1 << (L2LPERCTL - (bmp->db_agheigth << 1))) / bmp->db_agwidth;
1513 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1514 
1515 	/* dmap control page trees fan-out by 4 and a single allocation
1516 	 * group may be described by 1 or 2 subtrees within the ag level
1517 	 * dmap control page, depending upon the ag size. examine the ag's
1518 	 * subtrees for sufficient free space, starting with the leftmost
1519 	 * subtree.
1520 	 */
1521 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1522 		/* is there sufficient free space ?
1523 		 */
1524 		if (l2nb > dcp->stree[ti])
1525 			continue;
1526 
1527 		/* sufficient free space found in a subtree. now search down
1528 		 * the subtree to find the leftmost leaf that describes this
1529 		 * free space.
1530 		 */
1531 		for (k = bmp->db_agheigth; k > 0; k--) {
1532 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1533 				if (l2nb <= dcp->stree[m + n]) {
1534 					ti = m + n;
1535 					break;
1536 				}
1537 			}
1538 			if (n == 4) {
1539 				jfs_error(bmp->db_ipbmap->i_sb,
1540 					  "dbAllocAG: failed descending stree");
1541 				release_metapage(mp);
1542 				return -EIO;
1543 			}
1544 		}
1545 
1546 		/* determine the block number within the file system
1547 		 * that corresponds to this leaf.
1548 		 */
1549 		if (bmp->db_aglevel == 2)
1550 			blkno = 0;
1551 		else if (bmp->db_aglevel == 1)
1552 			blkno &= ~(MAXL1SIZE - 1);
1553 		else		/* bmp->db_aglevel == 0 */
1554 			blkno &= ~(MAXL0SIZE - 1);
1555 
1556 		blkno +=
1557 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1558 
1559 		/* release the buffer in preparation for going down
1560 		 * the next level of dmap control pages.
1561 		 */
1562 		release_metapage(mp);
1563 
1564 		/* check if we need to continue to search down the lower
1565 		 * level dmap control pages.  we need to if the number of
1566 		 * blocks required is less than maximum number of blocks
1567 		 * described at the next lower level.
1568 		 */
1569 		if (l2nb < budmin) {
1570 
1571 			/* search the lower level dmap control pages to get
1572 			 * the starting block number of the the dmap that
1573 			 * contains or starts off the free space.
1574 			 */
1575 			if ((rc =
1576 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1577 				       &blkno))) {
1578 				if (rc == -ENOSPC) {
1579 					jfs_error(bmp->db_ipbmap->i_sb,
1580 						  "dbAllocAG: control page "
1581 						  "inconsistent");
1582 					return -EIO;
1583 				}
1584 				return (rc);
1585 			}
1586 		}
1587 
1588 		/* allocate the blocks.
1589 		 */
1590 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1591 		if (rc == -ENOSPC) {
1592 			jfs_error(bmp->db_ipbmap->i_sb,
1593 				  "dbAllocAG: unable to allocate blocks");
1594 			rc = -EIO;
1595 		}
1596 		return (rc);
1597 	}
1598 
1599 	/* no space in the allocation group.  release the buffer and
1600 	 * return -ENOSPC.
1601 	 */
1602 	release_metapage(mp);
1603 
1604 	return -ENOSPC;
1605 }
1606 
1607 
1608 /*
1609  * NAME:	dbAllocAny()
1610  *
1611  * FUNCTION:    attempt to allocate the specified number of contiguous
1612  *		free blocks anywhere in the file system.
1613  *
1614  *		dbAllocAny() attempts to find the sufficient free space by
1615  *		searching down the dmap control pages, starting with the
1616  *		highest level (i.e. L0, L1, L2) control page.  if free space
1617  *		large enough to satisfy the desired free space is found, the
1618  *		desired free space is allocated.
1619  *
1620  * PARAMETERS:
1621  *      bmp	-  pointer to bmap descriptor
1622  *      nblocks	 -  actual number of contiguous free blocks desired.
1623  *      l2nb	 -  log2 number of contiguous free blocks desired.
1624  *      results	-  on successful return, set to the starting block number
1625  *		   of the newly allocated range.
1626  *
1627  * RETURN VALUES:
1628  *      0	- success
1629  *      -ENOSPC	- insufficient disk resources
1630  *      -EIO	- i/o error
1631  *
1632  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1633  */
1634 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1635 {
1636 	int rc;
1637 	s64 blkno = 0;
1638 
1639 	/* starting with the top level dmap control page, search
1640 	 * down the dmap control levels for sufficient free space.
1641 	 * if free space is found, dbFindCtl() returns the starting
1642 	 * block number of the dmap that contains or starts off the
1643 	 * range of free space.
1644 	 */
1645 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1646 		return (rc);
1647 
1648 	/* allocate the blocks.
1649 	 */
1650 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1651 	if (rc == -ENOSPC) {
1652 		jfs_error(bmp->db_ipbmap->i_sb,
1653 			  "dbAllocAny: unable to allocate blocks");
1654 		return -EIO;
1655 	}
1656 	return (rc);
1657 }
1658 
1659 
1660 /*
1661  * NAME:	dbFindCtl()
1662  *
1663  * FUNCTION:    starting at a specified dmap control page level and block
1664  *		number, search down the dmap control levels for a range of
1665  *	        contiguous free blocks large enough to satisfy an allocation
1666  *		request for the specified number of free blocks.
1667  *
1668  *		if sufficient contiguous free blocks are found, this routine
1669  *		returns the starting block number within a dmap page that
1670  *		contains or starts a range of contiqious free blocks that
1671  *		is sufficient in size.
1672  *
1673  * PARAMETERS:
1674  *      bmp	-  pointer to bmap descriptor
1675  *      level	-  starting dmap control page level.
1676  *      l2nb	-  log2 number of contiguous free blocks desired.
1677  *      *blkno	-  on entry, starting block number for conducting the search.
1678  *		   on successful return, the first block within a dmap page
1679  *		   that contains or starts a range of contiguous free blocks.
1680  *
1681  * RETURN VALUES:
1682  *      0	- success
1683  *      -ENOSPC	- insufficient disk resources
1684  *      -EIO	- i/o error
1685  *
1686  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1687  */
1688 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1689 {
1690 	int rc, leafidx, lev;
1691 	s64 b, lblkno;
1692 	struct dmapctl *dcp;
1693 	int budmin;
1694 	struct metapage *mp;
1695 
1696 	/* starting at the specified dmap control page level and block
1697 	 * number, search down the dmap control levels for the starting
1698 	 * block number of a dmap page that contains or starts off
1699 	 * sufficient free blocks.
1700 	 */
1701 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1702 		/* get the buffer of the dmap control page for the block
1703 		 * number and level (i.e. L0, L1, L2).
1704 		 */
1705 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1706 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1707 		if (mp == NULL)
1708 			return -EIO;
1709 		dcp = (struct dmapctl *) mp->data;
1710 		budmin = dcp->budmin;
1711 
1712 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1713 			jfs_error(bmp->db_ipbmap->i_sb,
1714 				  "dbFindCtl: Corrupt dmapctl page");
1715 			release_metapage(mp);
1716 			return -EIO;
1717 		}
1718 
1719 		/* search the tree within the dmap control page for
1720 		 * sufficent free space.  if sufficient free space is found,
1721 		 * dbFindLeaf() returns the index of the leaf at which
1722 		 * free space was found.
1723 		 */
1724 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1725 
1726 		/* release the buffer.
1727 		 */
1728 		release_metapage(mp);
1729 
1730 		/* space found ?
1731 		 */
1732 		if (rc) {
1733 			if (lev != level) {
1734 				jfs_error(bmp->db_ipbmap->i_sb,
1735 					  "dbFindCtl: dmap inconsistent");
1736 				return -EIO;
1737 			}
1738 			return -ENOSPC;
1739 		}
1740 
1741 		/* adjust the block number to reflect the location within
1742 		 * the dmap control page (i.e. the leaf) at which free
1743 		 * space was found.
1744 		 */
1745 		b += (((s64) leafidx) << budmin);
1746 
1747 		/* we stop the search at this dmap control page level if
1748 		 * the number of blocks required is greater than or equal
1749 		 * to the maximum number of blocks described at the next
1750 		 * (lower) level.
1751 		 */
1752 		if (l2nb >= budmin)
1753 			break;
1754 	}
1755 
1756 	*blkno = b;
1757 	return (0);
1758 }
1759 
1760 
1761 /*
1762  * NAME:	dbAllocCtl()
1763  *
1764  * FUNCTION:    attempt to allocate a specified number of contiguous
1765  *		blocks starting within a specific dmap.
1766  *
1767  *		this routine is called by higher level routines that search
1768  *		the dmap control pages above the actual dmaps for contiguous
1769  *		free space.  the result of successful searches by these
1770  * 		routines are the starting block numbers within dmaps, with
1771  *		the dmaps themselves containing the desired contiguous free
1772  *		space or starting a contiguous free space of desired size
1773  *		that is made up of the blocks of one or more dmaps. these
1774  *		calls should not fail due to insufficent resources.
1775  *
1776  *		this routine is called in some cases where it is not known
1777  *		whether it will fail due to insufficient resources.  more
1778  *		specifically, this occurs when allocating from an allocation
1779  *		group whose size is equal to the number of blocks per dmap.
1780  *		in this case, the dmap control pages are not examined prior
1781  *		to calling this routine (to save pathlength) and the call
1782  *		might fail.
1783  *
1784  *		for a request size that fits within a dmap, this routine relies
1785  *		upon the dmap's dmtree to find the requested contiguous free
1786  *		space.  for request sizes that are larger than a dmap, the
1787  *		requested free space will start at the first block of the
1788  *		first dmap (i.e. blkno).
1789  *
1790  * PARAMETERS:
1791  *      bmp	-  pointer to bmap descriptor
1792  *      nblocks	 -  actual number of contiguous free blocks to allocate.
1793  *      l2nb	 -  log2 number of contiguous free blocks to allocate.
1794  *      blkno	 -  starting block number of the dmap to start the allocation
1795  *		    from.
1796  *      results	-  on successful return, set to the starting block number
1797  *		   of the newly allocated range.
1798  *
1799  * RETURN VALUES:
1800  *      0	- success
1801  *      -ENOSPC	- insufficient disk resources
1802  *      -EIO	- i/o error
1803  *
1804  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1805  */
1806 static int
1807 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1808 {
1809 	int rc, nb;
1810 	s64 b, lblkno, n;
1811 	struct metapage *mp;
1812 	struct dmap *dp;
1813 
1814 	/* check if the allocation request is confined to a single dmap.
1815 	 */
1816 	if (l2nb <= L2BPERDMAP) {
1817 		/* get the buffer for the dmap.
1818 		 */
1819 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1820 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1821 		if (mp == NULL)
1822 			return -EIO;
1823 		dp = (struct dmap *) mp->data;
1824 
1825 		/* try to allocate the blocks.
1826 		 */
1827 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1828 		if (rc == 0)
1829 			mark_metapage_dirty(mp);
1830 
1831 		release_metapage(mp);
1832 
1833 		return (rc);
1834 	}
1835 
1836 	/* allocation request involving multiple dmaps. it must start on
1837 	 * a dmap boundary.
1838 	 */
1839 	assert((blkno & (BPERDMAP - 1)) == 0);
1840 
1841 	/* allocate the blocks dmap by dmap.
1842 	 */
1843 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1844 		/* get the buffer for the dmap.
1845 		 */
1846 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1847 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1848 		if (mp == NULL) {
1849 			rc = -EIO;
1850 			goto backout;
1851 		}
1852 		dp = (struct dmap *) mp->data;
1853 
1854 		/* the dmap better be all free.
1855 		 */
1856 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1857 			release_metapage(mp);
1858 			jfs_error(bmp->db_ipbmap->i_sb,
1859 				  "dbAllocCtl: the dmap is not all free");
1860 			rc = -EIO;
1861 			goto backout;
1862 		}
1863 
1864 		/* determine how many blocks to allocate from this dmap.
1865 		 */
1866 		nb = min(n, (s64)BPERDMAP);
1867 
1868 		/* allocate the blocks from the dmap.
1869 		 */
1870 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1871 			release_metapage(mp);
1872 			goto backout;
1873 		}
1874 
1875 		/* write the buffer.
1876 		 */
1877 		write_metapage(mp);
1878 	}
1879 
1880 	/* set the results (starting block number) and return.
1881 	 */
1882 	*results = blkno;
1883 	return (0);
1884 
1885 	/* something failed in handling an allocation request involving
1886 	 * multiple dmaps.  we'll try to clean up by backing out any
1887 	 * allocation that has already happened for this request.  if
1888 	 * we fail in backing out the allocation, we'll mark the file
1889 	 * system to indicate that blocks have been leaked.
1890 	 */
1891       backout:
1892 
1893 	/* try to backout the allocations dmap by dmap.
1894 	 */
1895 	for (n = nblocks - n, b = blkno; n > 0;
1896 	     n -= BPERDMAP, b += BPERDMAP) {
1897 		/* get the buffer for this dmap.
1898 		 */
1899 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1900 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1901 		if (mp == NULL) {
1902 			/* could not back out.  mark the file system
1903 			 * to indicate that we have leaked blocks.
1904 			 */
1905 			jfs_error(bmp->db_ipbmap->i_sb,
1906 				  "dbAllocCtl: I/O Error: Block Leakage.");
1907 			continue;
1908 		}
1909 		dp = (struct dmap *) mp->data;
1910 
1911 		/* free the blocks is this dmap.
1912 		 */
1913 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1914 			/* could not back out.  mark the file system
1915 			 * to indicate that we have leaked blocks.
1916 			 */
1917 			release_metapage(mp);
1918 			jfs_error(bmp->db_ipbmap->i_sb,
1919 				  "dbAllocCtl: Block Leakage.");
1920 			continue;
1921 		}
1922 
1923 		/* write the buffer.
1924 		 */
1925 		write_metapage(mp);
1926 	}
1927 
1928 	return (rc);
1929 }
1930 
1931 
1932 /*
1933  * NAME:	dbAllocDmapLev()
1934  *
1935  * FUNCTION:    attempt to allocate a specified number of contiguous blocks
1936  *		from a specified dmap.
1937  *
1938  *		this routine checks if the contiguous blocks are available.
1939  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1940  *		returned.
1941  *
1942  * PARAMETERS:
1943  *      mp	-  pointer to bmap descriptor
1944  *      dp	-  pointer to dmap to attempt to allocate blocks from.
1945  *      l2nb	-  log2 number of contiguous block desired.
1946  *      nblocks	-  actual number of contiguous block desired.
1947  *      results	-  on successful return, set to the starting block number
1948  *		   of the newly allocated range.
1949  *
1950  * RETURN VALUES:
1951  *      0	- success
1952  *      -ENOSPC	- insufficient disk resources
1953  *      -EIO	- i/o error
1954  *
1955  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1956  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1957  */
1958 static int
1959 dbAllocDmapLev(struct bmap * bmp,
1960 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1961 {
1962 	s64 blkno;
1963 	int leafidx, rc;
1964 
1965 	/* can't be more than a dmaps worth of blocks */
1966 	assert(l2nb <= L2BPERDMAP);
1967 
1968 	/* search the tree within the dmap page for sufficient
1969 	 * free space.  if sufficient free space is found, dbFindLeaf()
1970 	 * returns the index of the leaf at which free space was found.
1971 	 */
1972 	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1973 		return -ENOSPC;
1974 
1975 	/* determine the block number within the file system corresponding
1976 	 * to the leaf at which free space was found.
1977 	 */
1978 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1979 
1980 	/* if not all bits of the dmap word are free, get the starting
1981 	 * bit number within the dmap word of the required string of free
1982 	 * bits and adjust the block number with this value.
1983 	 */
1984 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1985 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1986 
1987 	/* allocate the blocks */
1988 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1989 		*results = blkno;
1990 
1991 	return (rc);
1992 }
1993 
1994 
1995 /*
1996  * NAME:	dbAllocDmap()
1997  *
1998  * FUNCTION:    adjust the disk allocation map to reflect the allocation
1999  *		of a specified block range within a dmap.
2000  *
2001  *		this routine allocates the specified blocks from the dmap
2002  *		through a call to dbAllocBits(). if the allocation of the
2003  *		block range causes the maximum string of free blocks within
2004  *		the dmap to change (i.e. the value of the root of the dmap's
2005  *		dmtree), this routine will cause this change to be reflected
2006  *		up through the appropriate levels of the dmap control pages
2007  *		by a call to dbAdjCtl() for the L0 dmap control page that
2008  *		covers this dmap.
2009  *
2010  * PARAMETERS:
2011  *      bmp	-  pointer to bmap descriptor
2012  *      dp	-  pointer to dmap to allocate the block range from.
2013  *      blkno	-  starting block number of the block to be allocated.
2014  *      nblocks	-  number of blocks to be allocated.
2015  *
2016  * RETURN VALUES:
2017  *      0	- success
2018  *      -EIO	- i/o error
2019  *
2020  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2021  */
2022 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2023 		       int nblocks)
2024 {
2025 	s8 oldroot;
2026 	int rc;
2027 
2028 	/* save the current value of the root (i.e. maximum free string)
2029 	 * of the dmap tree.
2030 	 */
2031 	oldroot = dp->tree.stree[ROOT];
2032 
2033 	/* allocate the specified (blocks) bits */
2034 	dbAllocBits(bmp, dp, blkno, nblocks);
2035 
2036 	/* if the root has not changed, done. */
2037 	if (dp->tree.stree[ROOT] == oldroot)
2038 		return (0);
2039 
2040 	/* root changed. bubble the change up to the dmap control pages.
2041 	 * if the adjustment of the upper level control pages fails,
2042 	 * backout the bit allocation (thus making everything consistent).
2043 	 */
2044 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2045 		dbFreeBits(bmp, dp, blkno, nblocks);
2046 
2047 	return (rc);
2048 }
2049 
2050 
2051 /*
2052  * NAME:	dbFreeDmap()
2053  *
2054  * FUNCTION:    adjust the disk allocation map to reflect the allocation
2055  *		of a specified block range within a dmap.
2056  *
2057  *		this routine frees the specified blocks from the dmap through
2058  *		a call to dbFreeBits(). if the deallocation of the block range
2059  *		causes the maximum string of free blocks within the dmap to
2060  *		change (i.e. the value of the root of the dmap's dmtree), this
2061  *		routine will cause this change to be reflected up through the
2062  *	        appropriate levels of the dmap control pages by a call to
2063  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2064  *
2065  * PARAMETERS:
2066  *      bmp	-  pointer to bmap descriptor
2067  *      dp	-  pointer to dmap to free the block range from.
2068  *      blkno	-  starting block number of the block to be freed.
2069  *      nblocks	-  number of blocks to be freed.
2070  *
2071  * RETURN VALUES:
2072  *      0	- success
2073  *      -EIO	- i/o error
2074  *
2075  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2076  */
2077 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2078 		      int nblocks)
2079 {
2080 	s8 oldroot;
2081 	int rc, word;
2082 
2083 	/* save the current value of the root (i.e. maximum free string)
2084 	 * of the dmap tree.
2085 	 */
2086 	oldroot = dp->tree.stree[ROOT];
2087 
2088 	/* free the specified (blocks) bits */
2089 	dbFreeBits(bmp, dp, blkno, nblocks);
2090 
2091 	/* if the root has not changed, done. */
2092 	if (dp->tree.stree[ROOT] == oldroot)
2093 		return (0);
2094 
2095 	/* root changed. bubble the change up to the dmap control pages.
2096 	 * if the adjustment of the upper level control pages fails,
2097 	 * backout the deallocation.
2098 	 */
2099 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2100 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2101 
2102 		/* as part of backing out the deallocation, we will have
2103 		 * to back split the dmap tree if the deallocation caused
2104 		 * the freed blocks to become part of a larger binary buddy
2105 		 * system.
2106 		 */
2107 		if (dp->tree.stree[word] == NOFREE)
2108 			dbBackSplit((dmtree_t *) & dp->tree, word);
2109 
2110 		dbAllocBits(bmp, dp, blkno, nblocks);
2111 	}
2112 
2113 	return (rc);
2114 }
2115 
2116 
2117 /*
2118  * NAME:	dbAllocBits()
2119  *
2120  * FUNCTION:    allocate a specified block range from a dmap.
2121  *
2122  *		this routine updates the dmap to reflect the working
2123  *		state allocation of the specified block range. it directly
2124  *		updates the bits of the working map and causes the adjustment
2125  *		of the binary buddy system described by the dmap's dmtree
2126  *		leaves to reflect the bits allocated.  it also causes the
2127  *		dmap's dmtree, as a whole, to reflect the allocated range.
2128  *
2129  * PARAMETERS:
2130  *      bmp	-  pointer to bmap descriptor
2131  *      dp	-  pointer to dmap to allocate bits from.
2132  *      blkno	-  starting block number of the bits to be allocated.
2133  *      nblocks	-  number of bits to be allocated.
2134  *
2135  * RETURN VALUES: none
2136  *
2137  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2138  */
2139 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2140 			int nblocks)
2141 {
2142 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2143 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2144 	int size;
2145 	s8 *leaf;
2146 
2147 	/* pick up a pointer to the leaves of the dmap tree */
2148 	leaf = dp->tree.stree + LEAFIND;
2149 
2150 	/* determine the bit number and word within the dmap of the
2151 	 * starting block.
2152 	 */
2153 	dbitno = blkno & (BPERDMAP - 1);
2154 	word = dbitno >> L2DBWORD;
2155 
2156 	/* block range better be within the dmap */
2157 	assert(dbitno + nblocks <= BPERDMAP);
2158 
2159 	/* allocate the bits of the dmap's words corresponding to the block
2160 	 * range. not all bits of the first and last words may be contained
2161 	 * within the block range.  if this is the case, we'll work against
2162 	 * those words (i.e. partial first and/or last) on an individual basis
2163 	 * (a single pass), allocating the bits of interest by hand and
2164 	 * updating the leaf corresponding to the dmap word. a single pass
2165 	 * will be used for all dmap words fully contained within the
2166 	 * specified range.  within this pass, the bits of all fully contained
2167 	 * dmap words will be marked as free in a single shot and the leaves
2168 	 * will be updated. a single leaf may describe the free space of
2169 	 * multiple dmap words, so we may update only a subset of the actual
2170 	 * leaves corresponding to the dmap words of the block range.
2171 	 */
2172 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2173 		/* determine the bit number within the word and
2174 		 * the number of bits within the word.
2175 		 */
2176 		wbitno = dbitno & (DBWORD - 1);
2177 		nb = min(rembits, DBWORD - wbitno);
2178 
2179 		/* check if only part of a word is to be allocated.
2180 		 */
2181 		if (nb < DBWORD) {
2182 			/* allocate (set to 1) the appropriate bits within
2183 			 * this dmap word.
2184 			 */
2185 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2186 						      >> wbitno);
2187 
2188 			/* update the leaf for this dmap word. in addition
2189 			 * to setting the leaf value to the binary buddy max
2190 			 * of the updated dmap word, dbSplit() will split
2191 			 * the binary system of the leaves if need be.
2192 			 */
2193 			dbSplit(tp, word, BUDMIN,
2194 				dbMaxBud((u8 *) & dp->wmap[word]));
2195 
2196 			word += 1;
2197 		} else {
2198 			/* one or more dmap words are fully contained
2199 			 * within the block range.  determine how many
2200 			 * words and allocate (set to 1) the bits of these
2201 			 * words.
2202 			 */
2203 			nwords = rembits >> L2DBWORD;
2204 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2205 
2206 			/* determine how many bits.
2207 			 */
2208 			nb = nwords << L2DBWORD;
2209 
2210 			/* now update the appropriate leaves to reflect
2211 			 * the allocated words.
2212 			 */
2213 			for (; nwords > 0; nwords -= nw) {
2214 			        if (leaf[word] < BUDMIN) {
2215 					jfs_error(bmp->db_ipbmap->i_sb,
2216 						  "dbAllocBits: leaf page "
2217 						  "corrupt");
2218 					break;
2219 				}
2220 
2221 				/* determine what the leaf value should be
2222 				 * updated to as the minimum of the l2 number
2223 				 * of bits being allocated and the l2 number
2224 				 * of bits currently described by this leaf.
2225 				 */
2226 				size = min((int)leaf[word], NLSTOL2BSZ(nwords));
2227 
2228 				/* update the leaf to reflect the allocation.
2229 				 * in addition to setting the leaf value to
2230 				 * NOFREE, dbSplit() will split the binary
2231 				 * system of the leaves to reflect the current
2232 				 * allocation (size).
2233 				 */
2234 				dbSplit(tp, word, size, NOFREE);
2235 
2236 				/* get the number of dmap words handled */
2237 				nw = BUDSIZE(size, BUDMIN);
2238 				word += nw;
2239 			}
2240 		}
2241 	}
2242 
2243 	/* update the free count for this dmap */
2244 	dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
2245 
2246 	BMAP_LOCK(bmp);
2247 
2248 	/* if this allocation group is completely free,
2249 	 * update the maximum allocation group number if this allocation
2250 	 * group is the new max.
2251 	 */
2252 	agno = blkno >> bmp->db_agl2size;
2253 	if (agno > bmp->db_maxag)
2254 		bmp->db_maxag = agno;
2255 
2256 	/* update the free count for the allocation group and map */
2257 	bmp->db_agfree[agno] -= nblocks;
2258 	bmp->db_nfree -= nblocks;
2259 
2260 	BMAP_UNLOCK(bmp);
2261 }
2262 
2263 
2264 /*
2265  * NAME:	dbFreeBits()
2266  *
2267  * FUNCTION:    free a specified block range from a dmap.
2268  *
2269  *		this routine updates the dmap to reflect the working
2270  *		state allocation of the specified block range. it directly
2271  *		updates the bits of the working map and causes the adjustment
2272  *		of the binary buddy system described by the dmap's dmtree
2273  *		leaves to reflect the bits freed.  it also causes the dmap's
2274  *		dmtree, as a whole, to reflect the deallocated range.
2275  *
2276  * PARAMETERS:
2277  *      bmp	-  pointer to bmap descriptor
2278  *      dp	-  pointer to dmap to free bits from.
2279  *      blkno	-  starting block number of the bits to be freed.
2280  *      nblocks	-  number of bits to be freed.
2281  *
2282  * RETURN VALUES: none
2283  *
2284  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2285  */
2286 static void dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2287 		       int nblocks)
2288 {
2289 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2290 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2291 	int size;
2292 
2293 	/* determine the bit number and word within the dmap of the
2294 	 * starting block.
2295 	 */
2296 	dbitno = blkno & (BPERDMAP - 1);
2297 	word = dbitno >> L2DBWORD;
2298 
2299 	/* block range better be within the dmap.
2300 	 */
2301 	assert(dbitno + nblocks <= BPERDMAP);
2302 
2303 	/* free the bits of the dmaps words corresponding to the block range.
2304 	 * not all bits of the first and last words may be contained within
2305 	 * the block range.  if this is the case, we'll work against those
2306 	 * words (i.e. partial first and/or last) on an individual basis
2307 	 * (a single pass), freeing the bits of interest by hand and updating
2308 	 * the leaf corresponding to the dmap word. a single pass will be used
2309 	 * for all dmap words fully contained within the specified range.
2310 	 * within this pass, the bits of all fully contained dmap words will
2311 	 * be marked as free in a single shot and the leaves will be updated. a
2312 	 * single leaf may describe the free space of multiple dmap words,
2313 	 * so we may update only a subset of the actual leaves corresponding
2314 	 * to the dmap words of the block range.
2315 	 *
2316 	 * dbJoin() is used to update leaf values and will join the binary
2317 	 * buddy system of the leaves if the new leaf values indicate this
2318 	 * should be done.
2319 	 */
2320 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2321 		/* determine the bit number within the word and
2322 		 * the number of bits within the word.
2323 		 */
2324 		wbitno = dbitno & (DBWORD - 1);
2325 		nb = min(rembits, DBWORD - wbitno);
2326 
2327 		/* check if only part of a word is to be freed.
2328 		 */
2329 		if (nb < DBWORD) {
2330 			/* free (zero) the appropriate bits within this
2331 			 * dmap word.
2332 			 */
2333 			dp->wmap[word] &=
2334 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2335 					  >> wbitno));
2336 
2337 			/* update the leaf for this dmap word.
2338 			 */
2339 			dbJoin(tp, word,
2340 			       dbMaxBud((u8 *) & dp->wmap[word]));
2341 
2342 			word += 1;
2343 		} else {
2344 			/* one or more dmap words are fully contained
2345 			 * within the block range.  determine how many
2346 			 * words and free (zero) the bits of these words.
2347 			 */
2348 			nwords = rembits >> L2DBWORD;
2349 			memset(&dp->wmap[word], 0, nwords * 4);
2350 
2351 			/* determine how many bits.
2352 			 */
2353 			nb = nwords << L2DBWORD;
2354 
2355 			/* now update the appropriate leaves to reflect
2356 			 * the freed words.
2357 			 */
2358 			for (; nwords > 0; nwords -= nw) {
2359 				/* determine what the leaf value should be
2360 				 * updated to as the minimum of the l2 number
2361 				 * of bits being freed and the l2 (max) number
2362 				 * of bits that can be described by this leaf.
2363 				 */
2364 				size =
2365 				    min(LITOL2BSZ
2366 					(word, L2LPERDMAP, BUDMIN),
2367 					NLSTOL2BSZ(nwords));
2368 
2369 				/* update the leaf.
2370 				 */
2371 				dbJoin(tp, word, size);
2372 
2373 				/* get the number of dmap words handled.
2374 				 */
2375 				nw = BUDSIZE(size, BUDMIN);
2376 				word += nw;
2377 			}
2378 		}
2379 	}
2380 
2381 	/* update the free count for this dmap.
2382 	 */
2383 	dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
2384 
2385 	BMAP_LOCK(bmp);
2386 
2387 	/* update the free count for the allocation group and
2388 	 * map.
2389 	 */
2390 	agno = blkno >> bmp->db_agl2size;
2391 	bmp->db_nfree += nblocks;
2392 	bmp->db_agfree[agno] += nblocks;
2393 
2394 	/* check if this allocation group is not completely free and
2395 	 * if it is currently the maximum (rightmost) allocation group.
2396 	 * if so, establish the new maximum allocation group number by
2397 	 * searching left for the first allocation group with allocation.
2398 	 */
2399 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2400 	    (agno == bmp->db_numag - 1 &&
2401 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2402 		while (bmp->db_maxag > 0) {
2403 			bmp->db_maxag -= 1;
2404 			if (bmp->db_agfree[bmp->db_maxag] !=
2405 			    bmp->db_agsize)
2406 				break;
2407 		}
2408 
2409 		/* re-establish the allocation group preference if the
2410 		 * current preference is right of the maximum allocation
2411 		 * group.
2412 		 */
2413 		if (bmp->db_agpref > bmp->db_maxag)
2414 			bmp->db_agpref = bmp->db_maxag;
2415 	}
2416 
2417 	BMAP_UNLOCK(bmp);
2418 }
2419 
2420 
2421 /*
2422  * NAME:	dbAdjCtl()
2423  *
2424  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2425  *		the change in a lower level dmap or dmap control page's
2426  *		maximum string of free blocks (i.e. a change in the root
2427  *		of the lower level object's dmtree) due to the allocation
2428  *		or deallocation of a range of blocks with a single dmap.
2429  *
2430  *		on entry, this routine is provided with the new value of
2431  *		the lower level dmap or dmap control page root and the
2432  *		starting block number of the block range whose allocation
2433  *		or deallocation resulted in the root change.  this range
2434  *		is respresented by a single leaf of the current dmapctl
2435  *		and the leaf will be updated with this value, possibly
2436  *		causing a binary buddy system within the leaves to be
2437  *		split or joined.  the update may also cause the dmapctl's
2438  *		dmtree to be updated.
2439  *
2440  *		if the adjustment of the dmap control page, itself, causes its
2441  *		root to change, this change will be bubbled up to the next dmap
2442  *		control level by a recursive call to this routine, specifying
2443  *		the new root value and the next dmap control page level to
2444  *		be adjusted.
2445  * PARAMETERS:
2446  *      bmp	-  pointer to bmap descriptor
2447  *      blkno	-  the first block of a block range within a dmap.  it is
2448  *		   the allocation or deallocation of this block range that
2449  *		   requires the dmap control page to be adjusted.
2450  *      newval	-  the new value of the lower level dmap or dmap control
2451  *		   page root.
2452  *      alloc	-  TRUE if adjustment is due to an allocation.
2453  *      level	-  current level of dmap control page (i.e. L0, L1, L2) to
2454  *		   be adjusted.
2455  *
2456  * RETURN VALUES:
2457  *      0	- success
2458  *      -EIO	- i/o error
2459  *
2460  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2461  */
2462 static int
2463 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2464 {
2465 	struct metapage *mp;
2466 	s8 oldroot;
2467 	int oldval;
2468 	s64 lblkno;
2469 	struct dmapctl *dcp;
2470 	int rc, leafno, ti;
2471 
2472 	/* get the buffer for the dmap control page for the specified
2473 	 * block number and control page level.
2474 	 */
2475 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2476 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2477 	if (mp == NULL)
2478 		return -EIO;
2479 	dcp = (struct dmapctl *) mp->data;
2480 
2481 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2482 		jfs_error(bmp->db_ipbmap->i_sb,
2483 			  "dbAdjCtl: Corrupt dmapctl page");
2484 		release_metapage(mp);
2485 		return -EIO;
2486 	}
2487 
2488 	/* determine the leaf number corresponding to the block and
2489 	 * the index within the dmap control tree.
2490 	 */
2491 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2492 	ti = leafno + le32_to_cpu(dcp->leafidx);
2493 
2494 	/* save the current leaf value and the current root level (i.e.
2495 	 * maximum l2 free string described by this dmapctl).
2496 	 */
2497 	oldval = dcp->stree[ti];
2498 	oldroot = dcp->stree[ROOT];
2499 
2500 	/* check if this is a control page update for an allocation.
2501 	 * if so, update the leaf to reflect the new leaf value using
2502 	 * dbSplit(); otherwise (deallocation), use dbJoin() to udpate
2503 	 * the leaf with the new value.  in addition to updating the
2504 	 * leaf, dbSplit() will also split the binary buddy system of
2505 	 * the leaves, if required, and bubble new values within the
2506 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2507 	 * the binary buddy system of leaves and bubble new values up
2508 	 * the dmapctl tree as required by the new leaf value.
2509 	 */
2510 	if (alloc) {
2511 		/* check if we are in the middle of a binary buddy
2512 		 * system.  this happens when we are performing the
2513 		 * first allocation out of an allocation group that
2514 		 * is part (not the first part) of a larger binary
2515 		 * buddy system.  if we are in the middle, back split
2516 		 * the system prior to calling dbSplit() which assumes
2517 		 * that it is at the front of a binary buddy system.
2518 		 */
2519 		if (oldval == NOFREE) {
2520 			dbBackSplit((dmtree_t *) dcp, leafno);
2521 			oldval = dcp->stree[ti];
2522 		}
2523 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2524 	} else {
2525 		dbJoin((dmtree_t *) dcp, leafno, newval);
2526 	}
2527 
2528 	/* check if the root of the current dmap control page changed due
2529 	 * to the update and if the current dmap control page is not at
2530 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2531 	 * root changed and this is not the top level), call this routine
2532 	 * again (recursion) for the next higher level of the mapping to
2533 	 * reflect the change in root for the current dmap control page.
2534 	 */
2535 	if (dcp->stree[ROOT] != oldroot) {
2536 		/* are we below the top level of the map.  if so,
2537 		 * bubble the root up to the next higher level.
2538 		 */
2539 		if (level < bmp->db_maxlevel) {
2540 			/* bubble up the new root of this dmap control page to
2541 			 * the next level.
2542 			 */
2543 			if ((rc =
2544 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2545 				      level + 1))) {
2546 				/* something went wrong in bubbling up the new
2547 				 * root value, so backout the changes to the
2548 				 * current dmap control page.
2549 				 */
2550 				if (alloc) {
2551 					dbJoin((dmtree_t *) dcp, leafno,
2552 					       oldval);
2553 				} else {
2554 					/* the dbJoin() above might have
2555 					 * caused a larger binary buddy system
2556 					 * to form and we may now be in the
2557 					 * middle of it.  if this is the case,
2558 					 * back split the buddies.
2559 					 */
2560 					if (dcp->stree[ti] == NOFREE)
2561 						dbBackSplit((dmtree_t *)
2562 							    dcp, leafno);
2563 					dbSplit((dmtree_t *) dcp, leafno,
2564 						dcp->budmin, oldval);
2565 				}
2566 
2567 				/* release the buffer and return the error.
2568 				 */
2569 				release_metapage(mp);
2570 				return (rc);
2571 			}
2572 		} else {
2573 			/* we're at the top level of the map. update
2574 			 * the bmap control page to reflect the size
2575 			 * of the maximum free buddy system.
2576 			 */
2577 			assert(level == bmp->db_maxlevel);
2578 			if (bmp->db_maxfreebud != oldroot) {
2579 				jfs_error(bmp->db_ipbmap->i_sb,
2580 					  "dbAdjCtl: the maximum free buddy is "
2581 					  "not the old root");
2582 			}
2583 			bmp->db_maxfreebud = dcp->stree[ROOT];
2584 		}
2585 	}
2586 
2587 	/* write the buffer.
2588 	 */
2589 	write_metapage(mp);
2590 
2591 	return (0);
2592 }
2593 
2594 
2595 /*
2596  * NAME:	dbSplit()
2597  *
2598  * FUNCTION:    update the leaf of a dmtree with a new value, splitting
2599  *		the leaf from the binary buddy system of the dmtree's
2600  *		leaves, as required.
2601  *
2602  * PARAMETERS:
2603  *      tp	- pointer to the tree containing the leaf.
2604  *      leafno	- the number of the leaf to be updated.
2605  *      splitsz	- the size the binary buddy system starting at the leaf
2606  *		  must be split to, specified as the log2 number of blocks.
2607  *      newval	- the new value for the leaf.
2608  *
2609  * RETURN VALUES: none
2610  *
2611  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2612  */
2613 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2614 {
2615 	int budsz;
2616 	int cursz;
2617 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2618 
2619 	/* check if the leaf needs to be split.
2620 	 */
2621 	if (leaf[leafno] > tp->dmt_budmin) {
2622 		/* the split occurs by cutting the buddy system in half
2623 		 * at the specified leaf until we reach the specified
2624 		 * size.  pick up the starting split size (current size
2625 		 * - 1 in l2) and the corresponding buddy size.
2626 		 */
2627 		cursz = leaf[leafno] - 1;
2628 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2629 
2630 		/* split until we reach the specified size.
2631 		 */
2632 		while (cursz >= splitsz) {
2633 			/* update the buddy's leaf with its new value.
2634 			 */
2635 			dbAdjTree(tp, leafno ^ budsz, cursz);
2636 
2637 			/* on to the next size and buddy.
2638 			 */
2639 			cursz -= 1;
2640 			budsz >>= 1;
2641 		}
2642 	}
2643 
2644 	/* adjust the dmap tree to reflect the specified leaf's new
2645 	 * value.
2646 	 */
2647 	dbAdjTree(tp, leafno, newval);
2648 }
2649 
2650 
2651 /*
2652  * NAME:	dbBackSplit()
2653  *
2654  * FUNCTION:    back split the binary buddy system of dmtree leaves
2655  *		that hold a specified leaf until the specified leaf
2656  *		starts its own binary buddy system.
2657  *
2658  *		the allocators typically perform allocations at the start
2659  *		of binary buddy systems and dbSplit() is used to accomplish
2660  *		any required splits.  in some cases, however, allocation
2661  *		may occur in the middle of a binary system and requires a
2662  *		back split, with the split proceeding out from the middle of
2663  *		the system (less efficient) rather than the start of the
2664  *		system (more efficient).  the cases in which a back split
2665  *		is required are rare and are limited to the first allocation
2666  *		within an allocation group which is a part (not first part)
2667  *		of a larger binary buddy system and a few exception cases
2668  *		in which a previous join operation must be backed out.
2669  *
2670  * PARAMETERS:
2671  *      tp	- pointer to the tree containing the leaf.
2672  *      leafno	- the number of the leaf to be updated.
2673  *
2674  * RETURN VALUES: none
2675  *
2676  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2677  */
2678 static void dbBackSplit(dmtree_t * tp, int leafno)
2679 {
2680 	int budsz, bud, w, bsz, size;
2681 	int cursz;
2682 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2683 
2684 	/* leaf should be part (not first part) of a binary
2685 	 * buddy system.
2686 	 */
2687 	assert(leaf[leafno] == NOFREE);
2688 
2689 	/* the back split is accomplished by iteratively finding the leaf
2690 	 * that starts the buddy system that contains the specified leaf and
2691 	 * splitting that system in two.  this iteration continues until
2692 	 * the specified leaf becomes the start of a buddy system.
2693 	 *
2694 	 * determine maximum possible l2 size for the specified leaf.
2695 	 */
2696 	size =
2697 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2698 		      tp->dmt_budmin);
2699 
2700 	/* determine the number of leaves covered by this size.  this
2701 	 * is the buddy size that we will start with as we search for
2702 	 * the buddy system that contains the specified leaf.
2703 	 */
2704 	budsz = BUDSIZE(size, tp->dmt_budmin);
2705 
2706 	/* back split.
2707 	 */
2708 	while (leaf[leafno] == NOFREE) {
2709 		/* find the leftmost buddy leaf.
2710 		 */
2711 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2712 		     w = (w < bud) ? w : bud) {
2713 			assert(bsz < le32_to_cpu(tp->dmt_nleafs));
2714 
2715 			/* determine the buddy.
2716 			 */
2717 			bud = w ^ bsz;
2718 
2719 			/* check if this buddy is the start of the system.
2720 			 */
2721 			if (leaf[bud] != NOFREE) {
2722 				/* split the leaf at the start of the
2723 				 * system in two.
2724 				 */
2725 				cursz = leaf[bud] - 1;
2726 				dbSplit(tp, bud, cursz, cursz);
2727 				break;
2728 			}
2729 		}
2730 	}
2731 
2732 	assert(leaf[leafno] == size);
2733 }
2734 
2735 
2736 /*
2737  * NAME:	dbJoin()
2738  *
2739  * FUNCTION:    update the leaf of a dmtree with a new value, joining
2740  *		the leaf with other leaves of the dmtree into a multi-leaf
2741  *		binary buddy system, as required.
2742  *
2743  * PARAMETERS:
2744  *      tp	- pointer to the tree containing the leaf.
2745  *      leafno	- the number of the leaf to be updated.
2746  *      newval	- the new value for the leaf.
2747  *
2748  * RETURN VALUES: none
2749  */
2750 static void dbJoin(dmtree_t * tp, int leafno, int newval)
2751 {
2752 	int budsz, buddy;
2753 	s8 *leaf;
2754 
2755 	/* can the new leaf value require a join with other leaves ?
2756 	 */
2757 	if (newval >= tp->dmt_budmin) {
2758 		/* pickup a pointer to the leaves of the tree.
2759 		 */
2760 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2761 
2762 		/* try to join the specified leaf into a large binary
2763 		 * buddy system.  the join proceeds by attempting to join
2764 		 * the specified leafno with its buddy (leaf) at new value.
2765 		 * if the join occurs, we attempt to join the left leaf
2766 		 * of the joined buddies with its buddy at new value + 1.
2767 		 * we continue to join until we find a buddy that cannot be
2768 		 * joined (does not have a value equal to the size of the
2769 		 * last join) or until all leaves have been joined into a
2770 		 * single system.
2771 		 *
2772 		 * get the buddy size (number of words covered) of
2773 		 * the new value.
2774 		 */
2775 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2776 
2777 		/* try to join.
2778 		 */
2779 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2780 			/* get the buddy leaf.
2781 			 */
2782 			buddy = leafno ^ budsz;
2783 
2784 			/* if the leaf's new value is greater than its
2785 			 * buddy's value, we join no more.
2786 			 */
2787 			if (newval > leaf[buddy])
2788 				break;
2789 
2790 			assert(newval == leaf[buddy]);
2791 
2792 			/* check which (leafno or buddy) is the left buddy.
2793 			 * the left buddy gets to claim the blocks resulting
2794 			 * from the join while the right gets to claim none.
2795 			 * the left buddy is also eligable to participate in
2796 			 * a join at the next higher level while the right
2797 			 * is not.
2798 			 *
2799 			 */
2800 			if (leafno < buddy) {
2801 				/* leafno is the left buddy.
2802 				 */
2803 				dbAdjTree(tp, buddy, NOFREE);
2804 			} else {
2805 				/* buddy is the left buddy and becomes
2806 				 * leafno.
2807 				 */
2808 				dbAdjTree(tp, leafno, NOFREE);
2809 				leafno = buddy;
2810 			}
2811 
2812 			/* on to try the next join.
2813 			 */
2814 			newval += 1;
2815 			budsz <<= 1;
2816 		}
2817 	}
2818 
2819 	/* update the leaf value.
2820 	 */
2821 	dbAdjTree(tp, leafno, newval);
2822 }
2823 
2824 
2825 /*
2826  * NAME:	dbAdjTree()
2827  *
2828  * FUNCTION:    update a leaf of a dmtree with a new value, adjusting
2829  *		the dmtree, as required, to reflect the new leaf value.
2830  *		the combination of any buddies must already be done before
2831  *		this is called.
2832  *
2833  * PARAMETERS:
2834  *      tp	- pointer to the tree to be adjusted.
2835  *      leafno	- the number of the leaf to be updated.
2836  *      newval	- the new value for the leaf.
2837  *
2838  * RETURN VALUES: none
2839  */
2840 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2841 {
2842 	int lp, pp, k;
2843 	int max;
2844 
2845 	/* pick up the index of the leaf for this leafno.
2846 	 */
2847 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2848 
2849 	/* is the current value the same as the old value ?  if so,
2850 	 * there is nothing to do.
2851 	 */
2852 	if (tp->dmt_stree[lp] == newval)
2853 		return;
2854 
2855 	/* set the new value.
2856 	 */
2857 	tp->dmt_stree[lp] = newval;
2858 
2859 	/* bubble the new value up the tree as required.
2860 	 */
2861 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2862 		/* get the index of the first leaf of the 4 leaf
2863 		 * group containing the specified leaf (leafno).
2864 		 */
2865 		lp = ((lp - 1) & ~0x03) + 1;
2866 
2867 		/* get the index of the parent of this 4 leaf group.
2868 		 */
2869 		pp = (lp - 1) >> 2;
2870 
2871 		/* determine the maximum of the 4 leaves.
2872 		 */
2873 		max = TREEMAX(&tp->dmt_stree[lp]);
2874 
2875 		/* if the maximum of the 4 is the same as the
2876 		 * parent's value, we're done.
2877 		 */
2878 		if (tp->dmt_stree[pp] == max)
2879 			break;
2880 
2881 		/* parent gets new value.
2882 		 */
2883 		tp->dmt_stree[pp] = max;
2884 
2885 		/* parent becomes leaf for next go-round.
2886 		 */
2887 		lp = pp;
2888 	}
2889 }
2890 
2891 
2892 /*
2893  * NAME:	dbFindLeaf()
2894  *
2895  * FUNCTION:    search a dmtree_t for sufficient free blocks, returning
2896  *		the index of a leaf describing the free blocks if
2897  *		sufficient free blocks are found.
2898  *
2899  *		the search starts at the top of the dmtree_t tree and
2900  *		proceeds down the tree to the leftmost leaf with sufficient
2901  *		free space.
2902  *
2903  * PARAMETERS:
2904  *      tp	- pointer to the tree to be searched.
2905  *      l2nb	- log2 number of free blocks to search for.
2906  *	leafidx	- return pointer to be set to the index of the leaf
2907  *		  describing at least l2nb free blocks if sufficient
2908  *		  free blocks are found.
2909  *
2910  * RETURN VALUES:
2911  *      0	- success
2912  *      -ENOSPC	- insufficient free blocks.
2913  */
2914 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2915 {
2916 	int ti, n = 0, k, x = 0;
2917 
2918 	/* first check the root of the tree to see if there is
2919 	 * sufficient free space.
2920 	 */
2921 	if (l2nb > tp->dmt_stree[ROOT])
2922 		return -ENOSPC;
2923 
2924 	/* sufficient free space available. now search down the tree
2925 	 * starting at the next level for the leftmost leaf that
2926 	 * describes sufficient free space.
2927 	 */
2928 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2929 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2930 		/* search the four nodes at this level, starting from
2931 		 * the left.
2932 		 */
2933 		for (x = ti, n = 0; n < 4; n++) {
2934 			/* sufficient free space found.  move to the next
2935 			 * level (or quit if this is the last level).
2936 			 */
2937 			if (l2nb <= tp->dmt_stree[x + n])
2938 				break;
2939 		}
2940 
2941 		/* better have found something since the higher
2942 		 * levels of the tree said it was here.
2943 		 */
2944 		assert(n < 4);
2945 	}
2946 
2947 	/* set the return to the leftmost leaf describing sufficient
2948 	 * free space.
2949 	 */
2950 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2951 
2952 	return (0);
2953 }
2954 
2955 
2956 /*
2957  * NAME:	dbFindBits()
2958  *
2959  * FUNCTION:    find a specified number of binary buddy free bits within a
2960  *		dmap bitmap word value.
2961  *
2962  *		this routine searches the bitmap value for (1 << l2nb) free
2963  *		bits at (1 << l2nb) alignments within the value.
2964  *
2965  * PARAMETERS:
2966  *      word	-  dmap bitmap word value.
2967  *      l2nb	-  number of free bits specified as a log2 number.
2968  *
2969  * RETURN VALUES:
2970  *      starting bit number of free bits.
2971  */
2972 static int dbFindBits(u32 word, int l2nb)
2973 {
2974 	int bitno, nb;
2975 	u32 mask;
2976 
2977 	/* get the number of bits.
2978 	 */
2979 	nb = 1 << l2nb;
2980 	assert(nb <= DBWORD);
2981 
2982 	/* complement the word so we can use a mask (i.e. 0s represent
2983 	 * free bits) and compute the mask.
2984 	 */
2985 	word = ~word;
2986 	mask = ONES << (DBWORD - nb);
2987 
2988 	/* scan the word for nb free bits at nb alignments.
2989 	 */
2990 	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2991 		if ((mask & word) == mask)
2992 			break;
2993 	}
2994 
2995 	ASSERT(bitno < 32);
2996 
2997 	/* return the bit number.
2998 	 */
2999 	return (bitno);
3000 }
3001 
3002 
3003 /*
3004  * NAME:	dbMaxBud(u8 *cp)
3005  *
3006  * FUNCTION:    determine the largest binary buddy string of free
3007  *		bits within 32-bits of the map.
3008  *
3009  * PARAMETERS:
3010  *      cp	-  pointer to the 32-bit value.
3011  *
3012  * RETURN VALUES:
3013  *      largest binary buddy of free bits within a dmap word.
3014  */
3015 static int dbMaxBud(u8 * cp)
3016 {
3017 	signed char tmp1, tmp2;
3018 
3019 	/* check if the wmap word is all free. if so, the
3020 	 * free buddy size is BUDMIN.
3021 	 */
3022 	if (*((uint *) cp) == 0)
3023 		return (BUDMIN);
3024 
3025 	/* check if the wmap word is half free. if so, the
3026 	 * free buddy size is BUDMIN-1.
3027 	 */
3028 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3029 		return (BUDMIN - 1);
3030 
3031 	/* not all free or half free. determine the free buddy
3032 	 * size thru table lookup using quarters of the wmap word.
3033 	 */
3034 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3035 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3036 	return (max(tmp1, tmp2));
3037 }
3038 
3039 
3040 /*
3041  * NAME:	cnttz(uint word)
3042  *
3043  * FUNCTION:    determine the number of trailing zeros within a 32-bit
3044  *		value.
3045  *
3046  * PARAMETERS:
3047  *      value	-  32-bit value to be examined.
3048  *
3049  * RETURN VALUES:
3050  *      count of trailing zeros
3051  */
3052 static int cnttz(u32 word)
3053 {
3054 	int n;
3055 
3056 	for (n = 0; n < 32; n++, word >>= 1) {
3057 		if (word & 0x01)
3058 			break;
3059 	}
3060 
3061 	return (n);
3062 }
3063 
3064 
3065 /*
3066  * NAME:	cntlz(u32 value)
3067  *
3068  * FUNCTION:    determine the number of leading zeros within a 32-bit
3069  *		value.
3070  *
3071  * PARAMETERS:
3072  *      value	-  32-bit value to be examined.
3073  *
3074  * RETURN VALUES:
3075  *      count of leading zeros
3076  */
3077 static int cntlz(u32 value)
3078 {
3079 	int n;
3080 
3081 	for (n = 0; n < 32; n++, value <<= 1) {
3082 		if (value & HIGHORDER)
3083 			break;
3084 	}
3085 	return (n);
3086 }
3087 
3088 
3089 /*
3090  * NAME:	blkstol2(s64 nb)
3091  *
3092  * FUNCTION:	convert a block count to its log2 value. if the block
3093  *	        count is not a l2 multiple, it is rounded up to the next
3094  *		larger l2 multiple.
3095  *
3096  * PARAMETERS:
3097  *      nb	-  number of blocks
3098  *
3099  * RETURN VALUES:
3100  *      log2 number of blocks
3101  */
3102 int blkstol2(s64 nb)
3103 {
3104 	int l2nb;
3105 	s64 mask;		/* meant to be signed */
3106 
3107 	mask = (s64) 1 << (64 - 1);
3108 
3109 	/* count the leading bits.
3110 	 */
3111 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3112 		/* leading bit found.
3113 		 */
3114 		if (nb & mask) {
3115 			/* determine the l2 value.
3116 			 */
3117 			l2nb = (64 - 1) - l2nb;
3118 
3119 			/* check if we need to round up.
3120 			 */
3121 			if (~mask & nb)
3122 				l2nb++;
3123 
3124 			return (l2nb);
3125 		}
3126 	}
3127 	assert(0);
3128 	return 0;		/* fix compiler warning */
3129 }
3130 
3131 
3132 /*
3133  * NAME:    	dbAllocBottomUp()
3134  *
3135  * FUNCTION:	alloc the specified block range from the working block
3136  *		allocation map.
3137  *
3138  *		the blocks will be alloc from the working map one dmap
3139  *		at a time.
3140  *
3141  * PARAMETERS:
3142  *      ip	-  pointer to in-core inode;
3143  *      blkno	-  starting block number to be freed.
3144  *      nblocks	-  number of blocks to be freed.
3145  *
3146  * RETURN VALUES:
3147  *      0	- success
3148  *      -EIO	- i/o error
3149  */
3150 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3151 {
3152 	struct metapage *mp;
3153 	struct dmap *dp;
3154 	int nb, rc;
3155 	s64 lblkno, rem;
3156 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3157 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3158 
3159 	IREAD_LOCK(ipbmap);
3160 
3161 	/* block to be allocated better be within the mapsize. */
3162 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3163 
3164 	/*
3165 	 * allocate the blocks a dmap at a time.
3166 	 */
3167 	mp = NULL;
3168 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3169 		/* release previous dmap if any */
3170 		if (mp) {
3171 			write_metapage(mp);
3172 		}
3173 
3174 		/* get the buffer for the current dmap. */
3175 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3176 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3177 		if (mp == NULL) {
3178 			IREAD_UNLOCK(ipbmap);
3179 			return -EIO;
3180 		}
3181 		dp = (struct dmap *) mp->data;
3182 
3183 		/* determine the number of blocks to be allocated from
3184 		 * this dmap.
3185 		 */
3186 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3187 
3188 		DBFREECK(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
3189 
3190 		/* allocate the blocks. */
3191 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3192 			release_metapage(mp);
3193 			IREAD_UNLOCK(ipbmap);
3194 			return (rc);
3195 		}
3196 
3197 		DBALLOC(bmp->db_DBmap, bmp->db_mapsize, blkno, nb);
3198 	}
3199 
3200 	/* write the last buffer. */
3201 	write_metapage(mp);
3202 
3203 	IREAD_UNLOCK(ipbmap);
3204 
3205 	return (0);
3206 }
3207 
3208 
3209 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3210 			 int nblocks)
3211 {
3212 	int rc;
3213 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3214 	s8 oldroot, *leaf;
3215 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3216 
3217 	/* save the current value of the root (i.e. maximum free string)
3218 	 * of the dmap tree.
3219 	 */
3220 	oldroot = tp->stree[ROOT];
3221 
3222 	/* pick up a pointer to the leaves of the dmap tree */
3223 	leaf = tp->stree + LEAFIND;
3224 
3225 	/* determine the bit number and word within the dmap of the
3226 	 * starting block.
3227 	 */
3228 	dbitno = blkno & (BPERDMAP - 1);
3229 	word = dbitno >> L2DBWORD;
3230 
3231 	/* block range better be within the dmap */
3232 	assert(dbitno + nblocks <= BPERDMAP);
3233 
3234 	/* allocate the bits of the dmap's words corresponding to the block
3235 	 * range. not all bits of the first and last words may be contained
3236 	 * within the block range.  if this is the case, we'll work against
3237 	 * those words (i.e. partial first and/or last) on an individual basis
3238 	 * (a single pass), allocating the bits of interest by hand and
3239 	 * updating the leaf corresponding to the dmap word. a single pass
3240 	 * will be used for all dmap words fully contained within the
3241 	 * specified range.  within this pass, the bits of all fully contained
3242 	 * dmap words will be marked as free in a single shot and the leaves
3243 	 * will be updated. a single leaf may describe the free space of
3244 	 * multiple dmap words, so we may update only a subset of the actual
3245 	 * leaves corresponding to the dmap words of the block range.
3246 	 */
3247 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3248 		/* determine the bit number within the word and
3249 		 * the number of bits within the word.
3250 		 */
3251 		wbitno = dbitno & (DBWORD - 1);
3252 		nb = min(rembits, DBWORD - wbitno);
3253 
3254 		/* check if only part of a word is to be allocated.
3255 		 */
3256 		if (nb < DBWORD) {
3257 			/* allocate (set to 1) the appropriate bits within
3258 			 * this dmap word.
3259 			 */
3260 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3261 						      >> wbitno);
3262 
3263 			word++;
3264 		} else {
3265 			/* one or more dmap words are fully contained
3266 			 * within the block range.  determine how many
3267 			 * words and allocate (set to 1) the bits of these
3268 			 * words.
3269 			 */
3270 			nwords = rembits >> L2DBWORD;
3271 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3272 
3273 			/* determine how many bits */
3274 			nb = nwords << L2DBWORD;
3275 			word += nwords;
3276 		}
3277 	}
3278 
3279 	/* update the free count for this dmap */
3280 	dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
3281 
3282 	/* reconstruct summary tree */
3283 	dbInitDmapTree(dp);
3284 
3285 	BMAP_LOCK(bmp);
3286 
3287 	/* if this allocation group is completely free,
3288 	 * update the highest active allocation group number
3289 	 * if this allocation group is the new max.
3290 	 */
3291 	agno = blkno >> bmp->db_agl2size;
3292 	if (agno > bmp->db_maxag)
3293 		bmp->db_maxag = agno;
3294 
3295 	/* update the free count for the allocation group and map */
3296 	bmp->db_agfree[agno] -= nblocks;
3297 	bmp->db_nfree -= nblocks;
3298 
3299 	BMAP_UNLOCK(bmp);
3300 
3301 	/* if the root has not changed, done. */
3302 	if (tp->stree[ROOT] == oldroot)
3303 		return (0);
3304 
3305 	/* root changed. bubble the change up to the dmap control pages.
3306 	 * if the adjustment of the upper level control pages fails,
3307 	 * backout the bit allocation (thus making everything consistent).
3308 	 */
3309 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3310 		dbFreeBits(bmp, dp, blkno, nblocks);
3311 
3312 	return (rc);
3313 }
3314 
3315 
3316 /*
3317  * NAME:	dbExtendFS()
3318  *
3319  * FUNCTION:	extend bmap from blkno for nblocks;
3320  * 		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3321  *
3322  * L2
3323  *  |
3324  *   L1---------------------------------L1
3325  *    |                                  |
3326  *     L0---------L0---------L0           L0---------L0---------L0
3327  *      |          |          |            |          |          |
3328  *       d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3329  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3330  *
3331  * <---old---><----------------------------extend----------------------->
3332  */
3333 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3334 {
3335 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3336 	int nbperpage = sbi->nbperpage;
3337 	int i, i0 = TRUE, j, j0 = TRUE, k, n;
3338 	s64 newsize;
3339 	s64 p;
3340 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3341 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3342 	struct dmap *dp;
3343 	s8 *l0leaf, *l1leaf, *l2leaf;
3344 	struct bmap *bmp = sbi->bmap;
3345 	int agno, l2agsize, oldl2agsize;
3346 	s64 ag_rem;
3347 
3348 	newsize = blkno + nblocks;
3349 
3350 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3351 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3352 
3353 	/*
3354 	 *      initialize bmap control page.
3355 	 *
3356 	 * all the data in bmap control page should exclude
3357 	 * the mkfs hidden dmap page.
3358 	 */
3359 
3360 	/* update mapsize */
3361 	bmp->db_mapsize = newsize;
3362 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3363 
3364 	/* compute new AG size */
3365 	l2agsize = dbGetL2AGSize(newsize);
3366 	oldl2agsize = bmp->db_agl2size;
3367 
3368 	bmp->db_agl2size = l2agsize;
3369 	bmp->db_agsize = 1 << l2agsize;
3370 
3371 	/* compute new number of AG */
3372 	agno = bmp->db_numag;
3373 	bmp->db_numag = newsize >> l2agsize;
3374 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3375 
3376 	/*
3377 	 *      reconfigure db_agfree[]
3378 	 * from old AG configuration to new AG configuration;
3379 	 *
3380 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3381 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3382 	 * note: new AG size = old AG size * (2**x).
3383 	 */
3384 	if (l2agsize == oldl2agsize)
3385 		goto extend;
3386 	k = 1 << (l2agsize - oldl2agsize);
3387 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3388 	for (i = 0, n = 0; i < agno; n++) {
3389 		bmp->db_agfree[n] = 0;	/* init collection point */
3390 
3391 		/* coalesce cotiguous k AGs; */
3392 		for (j = 0; j < k && i < agno; j++, i++) {
3393 			/* merge AGi to AGn */
3394 			bmp->db_agfree[n] += bmp->db_agfree[i];
3395 		}
3396 	}
3397 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3398 
3399 	for (; n < MAXAG; n++)
3400 		bmp->db_agfree[n] = 0;
3401 
3402 	/*
3403 	 * update highest active ag number
3404 	 */
3405 
3406 	bmp->db_maxag = bmp->db_maxag / k;
3407 
3408 	/*
3409 	 *      extend bmap
3410 	 *
3411 	 * update bit maps and corresponding level control pages;
3412 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3413 	 */
3414       extend:
3415 	/* get L2 page */
3416 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3417 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3418 	if (!l2mp) {
3419 		jfs_error(ipbmap->i_sb, "dbExtendFS: L2 page could not be read");
3420 		return -EIO;
3421 	}
3422 	l2dcp = (struct dmapctl *) l2mp->data;
3423 
3424 	/* compute start L1 */
3425 	k = blkno >> L2MAXL1SIZE;
3426 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3427 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3428 
3429 	/*
3430 	 * extend each L1 in L2
3431 	 */
3432 	for (; k < LPERCTL; k++, p += nbperpage) {
3433 		/* get L1 page */
3434 		if (j0) {
3435 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3436 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3437 			if (l1mp == NULL)
3438 				goto errout;
3439 			l1dcp = (struct dmapctl *) l1mp->data;
3440 
3441 			/* compute start L0 */
3442 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3443 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3444 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3445 			j0 = FALSE;
3446 		} else {
3447 			/* assign/init L1 page */
3448 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3449 			if (l1mp == NULL)
3450 				goto errout;
3451 
3452 			l1dcp = (struct dmapctl *) l1mp->data;
3453 
3454 			/* compute start L0 */
3455 			j = 0;
3456 			l1leaf = l1dcp->stree + CTLLEAFIND;
3457 			p += nbperpage;	/* 1st L0 of L1.k  */
3458 		}
3459 
3460 		/*
3461 		 * extend each L0 in L1
3462 		 */
3463 		for (; j < LPERCTL; j++) {
3464 			/* get L0 page */
3465 			if (i0) {
3466 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3467 
3468 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3469 				if (l0mp == NULL)
3470 					goto errout;
3471 				l0dcp = (struct dmapctl *) l0mp->data;
3472 
3473 				/* compute start dmap */
3474 				i = (blkno & (MAXL0SIZE - 1)) >>
3475 				    L2BPERDMAP;
3476 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3477 				p = BLKTODMAP(blkno,
3478 					      sbi->l2nbperpage);
3479 				i0 = FALSE;
3480 			} else {
3481 				/* assign/init L0 page */
3482 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3483 				if (l0mp == NULL)
3484 					goto errout;
3485 
3486 				l0dcp = (struct dmapctl *) l0mp->data;
3487 
3488 				/* compute start dmap */
3489 				i = 0;
3490 				l0leaf = l0dcp->stree + CTLLEAFIND;
3491 				p += nbperpage;	/* 1st dmap of L0.j */
3492 			}
3493 
3494 			/*
3495 			 * extend each dmap in L0
3496 			 */
3497 			for (; i < LPERCTL; i++) {
3498 				/*
3499 				 * reconstruct the dmap page, and
3500 				 * initialize corresponding parent L0 leaf
3501 				 */
3502 				if ((n = blkno & (BPERDMAP - 1))) {
3503 					/* read in dmap page: */
3504 					mp = read_metapage(ipbmap, p,
3505 							   PSIZE, 0);
3506 					if (mp == NULL)
3507 						goto errout;
3508 					n = min(nblocks, (s64)BPERDMAP - n);
3509 				} else {
3510 					/* assign/init dmap page */
3511 					mp = read_metapage(ipbmap, p,
3512 							   PSIZE, 0);
3513 					if (mp == NULL)
3514 						goto errout;
3515 
3516 					n = min(nblocks, (s64)BPERDMAP);
3517 				}
3518 
3519 				dp = (struct dmap *) mp->data;
3520 				*l0leaf = dbInitDmap(dp, blkno, n);
3521 
3522 				bmp->db_nfree += n;
3523 				agno = le64_to_cpu(dp->start) >> l2agsize;
3524 				bmp->db_agfree[agno] += n;
3525 
3526 				write_metapage(mp);
3527 
3528 				l0leaf++;
3529 				p += nbperpage;
3530 
3531 				blkno += n;
3532 				nblocks -= n;
3533 				if (nblocks == 0)
3534 					break;
3535 			}	/* for each dmap in a L0 */
3536 
3537 			/*
3538 			 * build current L0 page from its leaves, and
3539 			 * initialize corresponding parent L1 leaf
3540 			 */
3541 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3542 			write_metapage(l0mp);
3543 			l0mp = NULL;
3544 
3545 			if (nblocks)
3546 				l1leaf++;	/* continue for next L0 */
3547 			else {
3548 				/* more than 1 L0 ? */
3549 				if (j > 0)
3550 					break;	/* build L1 page */
3551 				else {
3552 					/* summarize in global bmap page */
3553 					bmp->db_maxfreebud = *l1leaf;
3554 					release_metapage(l1mp);
3555 					release_metapage(l2mp);
3556 					goto finalize;
3557 				}
3558 			}
3559 		}		/* for each L0 in a L1 */
3560 
3561 		/*
3562 		 * build current L1 page from its leaves, and
3563 		 * initialize corresponding parent L2 leaf
3564 		 */
3565 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3566 		write_metapage(l1mp);
3567 		l1mp = NULL;
3568 
3569 		if (nblocks)
3570 			l2leaf++;	/* continue for next L1 */
3571 		else {
3572 			/* more than 1 L1 ? */
3573 			if (k > 0)
3574 				break;	/* build L2 page */
3575 			else {
3576 				/* summarize in global bmap page */
3577 				bmp->db_maxfreebud = *l2leaf;
3578 				release_metapage(l2mp);
3579 				goto finalize;
3580 			}
3581 		}
3582 	}			/* for each L1 in a L2 */
3583 
3584 	jfs_error(ipbmap->i_sb,
3585 		  "dbExtendFS: function has not returned as expected");
3586 errout:
3587 	if (l0mp)
3588 		release_metapage(l0mp);
3589 	if (l1mp)
3590 		release_metapage(l1mp);
3591 	release_metapage(l2mp);
3592 	return -EIO;
3593 
3594 	/*
3595 	 *      finalize bmap control page
3596 	 */
3597 finalize:
3598 
3599 	return 0;
3600 }
3601 
3602 
3603 /*
3604  *	dbFinalizeBmap()
3605  */
3606 void dbFinalizeBmap(struct inode *ipbmap)
3607 {
3608 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3609 	int actags, inactags, l2nl;
3610 	s64 ag_rem, actfree, inactfree, avgfree;
3611 	int i, n;
3612 
3613 	/*
3614 	 *      finalize bmap control page
3615 	 */
3616 //finalize:
3617 	/*
3618 	 * compute db_agpref: preferred ag to allocate from
3619 	 * (the leftmost ag with average free space in it);
3620 	 */
3621 //agpref:
3622 	/* get the number of active ags and inacitve ags */
3623 	actags = bmp->db_maxag + 1;
3624 	inactags = bmp->db_numag - actags;
3625 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3626 
3627 	/* determine how many blocks are in the inactive allocation
3628 	 * groups. in doing this, we must account for the fact that
3629 	 * the rightmost group might be a partial group (i.e. file
3630 	 * system size is not a multiple of the group size).
3631 	 */
3632 	inactfree = (inactags && ag_rem) ?
3633 	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3634 	    : inactags << bmp->db_agl2size;
3635 
3636 	/* determine how many free blocks are in the active
3637 	 * allocation groups plus the average number of free blocks
3638 	 * within the active ags.
3639 	 */
3640 	actfree = bmp->db_nfree - inactfree;
3641 	avgfree = (u32) actfree / (u32) actags;
3642 
3643 	/* if the preferred allocation group has not average free space.
3644 	 * re-establish the preferred group as the leftmost
3645 	 * group with average free space.
3646 	 */
3647 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3648 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3649 		     bmp->db_agpref++) {
3650 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3651 				break;
3652 		}
3653 		if (bmp->db_agpref >= bmp->db_numag) {
3654 			jfs_error(ipbmap->i_sb,
3655 				  "cannot find ag with average freespace");
3656 		}
3657 	}
3658 
3659 	/*
3660 	 * compute db_aglevel, db_agheigth, db_width, db_agstart:
3661 	 * an ag is covered in aglevel dmapctl summary tree,
3662 	 * at agheight level height (from leaf) with agwidth number of nodes
3663 	 * each, which starts at agstart index node of the smmary tree node
3664 	 * array;
3665 	 */
3666 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3667 	l2nl =
3668 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3669 	bmp->db_agheigth = l2nl >> 1;
3670 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheigth << 1));
3671 	for (i = 5 - bmp->db_agheigth, bmp->db_agstart = 0, n = 1; i > 0;
3672 	     i--) {
3673 		bmp->db_agstart += n;
3674 		n <<= 2;
3675 	}
3676 
3677 }
3678 
3679 
3680 /*
3681  * NAME:	dbInitDmap()/ujfs_idmap_page()
3682  *
3683  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3684  *		for the specified number of blocks:
3685  *
3686  *		at entry, the bitmaps had been initialized as free (ZEROS);
3687  *		The number of blocks will only account for the actually
3688  *		existing blocks. Blocks which don't actually exist in
3689  *		the aggregate will be marked as allocated (ONES);
3690  *
3691  * PARAMETERS:
3692  *	dp	- pointer to page of map
3693  *	nblocks	- number of blocks this page
3694  *
3695  * RETURNS: NONE
3696  */
3697 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3698 {
3699 	int blkno, w, b, r, nw, nb, i;
3700 
3701 	/* starting block number within the dmap */
3702 	blkno = Blkno & (BPERDMAP - 1);
3703 
3704 	if (blkno == 0) {
3705 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3706 		dp->start = cpu_to_le64(Blkno);
3707 
3708 		if (nblocks == BPERDMAP) {
3709 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3710 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3711 			goto initTree;
3712 		}
3713 	} else {
3714 		dp->nblocks =
3715 		    cpu_to_le32(le32_to_cpu(dp->nblocks) + nblocks);
3716 		dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
3717 	}
3718 
3719 	/* word number containing start block number */
3720 	w = blkno >> L2DBWORD;
3721 
3722 	/*
3723 	 * free the bits corresponding to the block range (ZEROS):
3724 	 * note: not all bits of the first and last words may be contained
3725 	 * within the block range.
3726 	 */
3727 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3728 		/* number of bits preceding range to be freed in the word */
3729 		b = blkno & (DBWORD - 1);
3730 		/* number of bits to free in the word */
3731 		nb = min(r, DBWORD - b);
3732 
3733 		/* is partial word to be freed ? */
3734 		if (nb < DBWORD) {
3735 			/* free (set to 0) from the bitmap word */
3736 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3737 						     >> b));
3738 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3739 						     >> b));
3740 
3741 			/* skip the word freed */
3742 			w++;
3743 		} else {
3744 			/* free (set to 0) contiguous bitmap words */
3745 			nw = r >> L2DBWORD;
3746 			memset(&dp->wmap[w], 0, nw * 4);
3747 			memset(&dp->pmap[w], 0, nw * 4);
3748 
3749 			/* skip the words freed */
3750 			nb = nw << L2DBWORD;
3751 			w += nw;
3752 		}
3753 	}
3754 
3755 	/*
3756 	 * mark bits following the range to be freed (non-existing
3757 	 * blocks) as allocated (ONES)
3758 	 */
3759 
3760 	if (blkno == BPERDMAP)
3761 		goto initTree;
3762 
3763 	/* the first word beyond the end of existing blocks */
3764 	w = blkno >> L2DBWORD;
3765 
3766 	/* does nblocks fall on a 32-bit boundary ? */
3767 	b = blkno & (DBWORD - 1);
3768 	if (b) {
3769 		/* mark a partial word allocated */
3770 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3771 		w++;
3772 	}
3773 
3774 	/* set the rest of the words in the page to allocated (ONES) */
3775 	for (i = w; i < LPERDMAP; i++)
3776 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3777 
3778 	/*
3779 	 * init tree
3780 	 */
3781       initTree:
3782 	return (dbInitDmapTree(dp));
3783 }
3784 
3785 
3786 /*
3787  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3788  *
3789  * FUNCTION:	initialize summary tree of the specified dmap:
3790  *
3791  *		at entry, bitmap of the dmap has been initialized;
3792  *
3793  * PARAMETERS:
3794  *	dp	- dmap to complete
3795  *	blkno	- starting block number for this dmap
3796  *	treemax	- will be filled in with max free for this dmap
3797  *
3798  * RETURNS:	max free string at the root of the tree
3799  */
3800 static int dbInitDmapTree(struct dmap * dp)
3801 {
3802 	struct dmaptree *tp;
3803 	s8 *cp;
3804 	int i;
3805 
3806 	/* init fixed info of tree */
3807 	tp = &dp->tree;
3808 	tp->nleafs = cpu_to_le32(LPERDMAP);
3809 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3810 	tp->leafidx = cpu_to_le32(LEAFIND);
3811 	tp->height = cpu_to_le32(4);
3812 	tp->budmin = BUDMIN;
3813 
3814 	/* init each leaf from corresponding wmap word:
3815 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3816 	 * bitmap word are allocated.
3817 	 */
3818 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3819 	for (i = 0; i < LPERDMAP; i++)
3820 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3821 
3822 	/* build the dmap's binary buddy summary tree */
3823 	return (dbInitTree(tp));
3824 }
3825 
3826 
3827 /*
3828  * NAME:	dbInitTree()/ujfs_adjtree()
3829  *
3830  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3831  *
3832  *		at entry, the leaves of the tree has been initialized
3833  *		from corresponding bitmap word or root of summary tree
3834  *		of the child control page;
3835  *		configure binary buddy system at the leaf level, then
3836  *		bubble up the values of the leaf nodes up the tree.
3837  *
3838  * PARAMETERS:
3839  *	cp	- Pointer to the root of the tree
3840  *	l2leaves- Number of leaf nodes as a power of 2
3841  *	l2min	- Number of blocks that can be covered by a leaf
3842  *		  as a power of 2
3843  *
3844  * RETURNS: max free string at the root of the tree
3845  */
3846 static int dbInitTree(struct dmaptree * dtp)
3847 {
3848 	int l2max, l2free, bsize, nextb, i;
3849 	int child, parent, nparent;
3850 	s8 *tp, *cp, *cp1;
3851 
3852 	tp = dtp->stree;
3853 
3854 	/* Determine the maximum free string possible for the leaves */
3855 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3856 
3857 	/*
3858 	 * configure the leaf levevl into binary buddy system
3859 	 *
3860 	 * Try to combine buddies starting with a buddy size of 1
3861 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3862 	 * can be combined if both buddies have a maximum free of l2min;
3863 	 * the combination will result in the left-most buddy leaf having
3864 	 * a maximum free of l2min+1.
3865 	 * After processing all buddies for a given size, process buddies
3866 	 * at the next higher buddy size (i.e. current size * 2) and
3867 	 * the next maximum free (current free + 1).
3868 	 * This continues until the maximum possible buddy combination
3869 	 * yields maximum free.
3870 	 */
3871 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3872 	     l2free++, bsize = nextb) {
3873 		/* get next buddy size == current buddy pair size */
3874 		nextb = bsize << 1;
3875 
3876 		/* scan each adjacent buddy pair at current buddy size */
3877 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3878 		     i < le32_to_cpu(dtp->nleafs);
3879 		     i += nextb, cp += nextb) {
3880 			/* coalesce if both adjacent buddies are max free */
3881 			if (*cp == l2free && *(cp + bsize) == l2free) {
3882 				*cp = l2free + 1;	/* left take right */
3883 				*(cp + bsize) = -1;	/* right give left */
3884 			}
3885 		}
3886 	}
3887 
3888 	/*
3889 	 * bubble summary information of leaves up the tree.
3890 	 *
3891 	 * Starting at the leaf node level, the four nodes described by
3892 	 * the higher level parent node are compared for a maximum free and
3893 	 * this maximum becomes the value of the parent node.
3894 	 * when all lower level nodes are processed in this fashion then
3895 	 * move up to the next level (parent becomes a lower level node) and
3896 	 * continue the process for that level.
3897 	 */
3898 	for (child = le32_to_cpu(dtp->leafidx),
3899 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3900 	     nparent > 0; nparent >>= 2, child = parent) {
3901 		/* get index of 1st node of parent level */
3902 		parent = (child - 1) >> 2;
3903 
3904 		/* set the value of the parent node as the maximum
3905 		 * of the four nodes of the current level.
3906 		 */
3907 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3908 		     i < nparent; i++, cp += 4, cp1++)
3909 			*cp1 = TREEMAX(cp);
3910 	}
3911 
3912 	return (*tp);
3913 }
3914 
3915 
3916 /*
3917  *	dbInitDmapCtl()
3918  *
3919  * function: initialize dmapctl page
3920  */
3921 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3922 {				/* start leaf index not covered by range */
3923 	s8 *cp;
3924 
3925 	dcp->nleafs = cpu_to_le32(LPERCTL);
3926 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3927 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3928 	dcp->height = cpu_to_le32(5);
3929 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3930 
3931 	/*
3932 	 * initialize the leaves of current level that were not covered
3933 	 * by the specified input block range (i.e. the leaves have no
3934 	 * low level dmapctl or dmap).
3935 	 */
3936 	cp = &dcp->stree[CTLLEAFIND + i];
3937 	for (; i < LPERCTL; i++)
3938 		*cp++ = NOFREE;
3939 
3940 	/* build the dmap's binary buddy summary tree */
3941 	return (dbInitTree((struct dmaptree *) dcp));
3942 }
3943 
3944 
3945 /*
3946  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3947  *
3948  * FUNCTION:	Determine log2(allocation group size) from aggregate size
3949  *
3950  * PARAMETERS:
3951  *	nblocks	- Number of blocks in aggregate
3952  *
3953  * RETURNS: log2(allocation group size) in aggregate blocks
3954  */
3955 static int dbGetL2AGSize(s64 nblocks)
3956 {
3957 	s64 sz;
3958 	s64 m;
3959 	int l2sz;
3960 
3961 	if (nblocks < BPERDMAP * MAXAG)
3962 		return (L2BPERDMAP);
3963 
3964 	/* round up aggregate size to power of 2 */
3965 	m = ((u64) 1 << (64 - 1));
3966 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3967 		if (m & nblocks)
3968 			break;
3969 	}
3970 
3971 	sz = (s64) 1 << l2sz;
3972 	if (sz < nblocks)
3973 		l2sz += 1;
3974 
3975 	/* agsize = roundupSize/max_number_of_ag */
3976 	return (l2sz - L2MAXAG);
3977 }
3978 
3979 
3980 /*
3981  * NAME:	dbMapFileSizeToMapSize()
3982  *
3983  * FUNCTION:	compute number of blocks the block allocation map file
3984  *		can cover from the map file size;
3985  *
3986  * RETURNS:	Number of blocks which can be covered by this block map file;
3987  */
3988 
3989 /*
3990  * maximum number of map pages at each level including control pages
3991  */
3992 #define MAXL0PAGES	(1 + LPERCTL)
3993 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
3994 #define MAXL2PAGES	(1 + LPERCTL * MAXL1PAGES)
3995 
3996 /*
3997  * convert number of map pages to the zero origin top dmapctl level
3998  */
3999 #define BMAPPGTOLEV(npages)	\
4000 	(((npages) <= 3 + MAXL0PAGES) ? 0 \
4001        : ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4002 
4003 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4004 {
4005 	struct super_block *sb = ipbmap->i_sb;
4006 	s64 nblocks;
4007 	s64 npages, ndmaps;
4008 	int level, i;
4009 	int complete, factor;
4010 
4011 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4012 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4013 	level = BMAPPGTOLEV(npages);
4014 
4015 	/* At each level, accumulate the number of dmap pages covered by
4016 	 * the number of full child levels below it;
4017 	 * repeat for the last incomplete child level.
4018 	 */
4019 	ndmaps = 0;
4020 	npages--;		/* skip the first global control page */
4021 	/* skip higher level control pages above top level covered by map */
4022 	npages -= (2 - level);
4023 	npages--;		/* skip top level's control page */
4024 	for (i = level; i >= 0; i--) {
4025 		factor =
4026 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4027 		complete = (u32) npages / factor;
4028 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL
4029 				      : ((i == 1) ? LPERCTL : 1));
4030 
4031 		/* pages in last/incomplete child */
4032 		npages = (u32) npages % factor;
4033 		/* skip incomplete child's level control page */
4034 		npages--;
4035 	}
4036 
4037 	/* convert the number of dmaps into the number of blocks
4038 	 * which can be covered by the dmaps;
4039 	 */
4040 	nblocks = ndmaps << L2BPERDMAP;
4041 
4042 	return (nblocks);
4043 }
4044 
4045 
4046 #ifdef	_JFS_DEBUG_DMAP
4047 /*
4048  *	DBinitmap()
4049  */
4050 static void DBinitmap(s64 size, struct inode *ipbmap, u32 ** results)
4051 {
4052 	int npages;
4053 	u32 *dbmap, *d;
4054 	int n;
4055 	s64 lblkno, cur_block;
4056 	struct dmap *dp;
4057 	struct metapage *mp;
4058 
4059 	npages = size / 32768;
4060 	npages += (size % 32768) ? 1 : 0;
4061 
4062 	dbmap = (u32 *) xmalloc(npages * 4096, L2PSIZE, kernel_heap);
4063 	if (dbmap == NULL)
4064 		BUG();	/* Not robust since this is only unused debug code */
4065 
4066 	for (n = 0, d = dbmap; n < npages; n++, d += 1024)
4067 		bzero(d, 4096);
4068 
4069 	/* Need to initialize from disk map pages
4070 	 */
4071 	for (d = dbmap, cur_block = 0; cur_block < size;
4072 	     cur_block += BPERDMAP, d += LPERDMAP) {
4073 		lblkno = BLKTODMAP(cur_block,
4074 				   JFS_SBI(ipbmap->i_sb)->bmap->
4075 				   db_l2nbperpage);
4076 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
4077 		if (mp == NULL) {
4078 			jfs_error(ipbmap->i_sb,
4079 				  "DBinitmap: could not read disk map page");
4080 			continue;
4081 		}
4082 		dp = (struct dmap *) mp->data;
4083 
4084 		for (n = 0; n < LPERDMAP; n++)
4085 			d[n] = le32_to_cpu(dp->wmap[n]);
4086 
4087 		release_metapage(mp);
4088 	}
4089 
4090 	*results = dbmap;
4091 }
4092 
4093 
4094 /*
4095  *	DBAlloc()
4096  */
4097 void DBAlloc(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4098 {
4099 	int word, nb, bitno;
4100 	u32 mask;
4101 
4102 	assert(blkno > 0 && blkno < mapsize);
4103 	assert(nblocks > 0 && nblocks <= mapsize);
4104 
4105 	assert(blkno + nblocks <= mapsize);
4106 
4107 	dbmap += (blkno / 32);
4108 	while (nblocks > 0) {
4109 		bitno = blkno & (32 - 1);
4110 		nb = min(nblocks, 32 - bitno);
4111 
4112 		mask = (0xffffffff << (32 - nb) >> bitno);
4113 		assert((mask & *dbmap) == 0);
4114 		*dbmap |= mask;
4115 
4116 		dbmap++;
4117 		blkno += nb;
4118 		nblocks -= nb;
4119 	}
4120 }
4121 
4122 
4123 /*
4124  *	DBFree()
4125  */
4126 static void DBFree(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4127 {
4128 	int word, nb, bitno;
4129 	u32 mask;
4130 
4131 	assert(blkno > 0 && blkno < mapsize);
4132 	assert(nblocks > 0 && nblocks <= mapsize);
4133 
4134 	assert(blkno + nblocks <= mapsize);
4135 
4136 	dbmap += (blkno / 32);
4137 	while (nblocks > 0) {
4138 		bitno = blkno & (32 - 1);
4139 		nb = min(nblocks, 32 - bitno);
4140 
4141 		mask = (0xffffffff << (32 - nb) >> bitno);
4142 		assert((mask & *dbmap) == mask);
4143 		*dbmap &= ~mask;
4144 
4145 		dbmap++;
4146 		blkno += nb;
4147 		nblocks -= nb;
4148 	}
4149 }
4150 
4151 
4152 /*
4153  *	DBAllocCK()
4154  */
4155 static void DBAllocCK(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4156 {
4157 	int word, nb, bitno;
4158 	u32 mask;
4159 
4160 	assert(blkno > 0 && blkno < mapsize);
4161 	assert(nblocks > 0 && nblocks <= mapsize);
4162 
4163 	assert(blkno + nblocks <= mapsize);
4164 
4165 	dbmap += (blkno / 32);
4166 	while (nblocks > 0) {
4167 		bitno = blkno & (32 - 1);
4168 		nb = min(nblocks, 32 - bitno);
4169 
4170 		mask = (0xffffffff << (32 - nb) >> bitno);
4171 		assert((mask & *dbmap) == mask);
4172 
4173 		dbmap++;
4174 		blkno += nb;
4175 		nblocks -= nb;
4176 	}
4177 }
4178 
4179 
4180 /*
4181  *	DBFreeCK()
4182  */
4183 static void DBFreeCK(uint * dbmap, s64 mapsize, s64 blkno, s64 nblocks)
4184 {
4185 	int word, nb, bitno;
4186 	u32 mask;
4187 
4188 	assert(blkno > 0 && blkno < mapsize);
4189 	assert(nblocks > 0 && nblocks <= mapsize);
4190 
4191 	assert(blkno + nblocks <= mapsize);
4192 
4193 	dbmap += (blkno / 32);
4194 	while (nblocks > 0) {
4195 		bitno = blkno & (32 - 1);
4196 		nb = min(nblocks, 32 - bitno);
4197 
4198 		mask = (0xffffffff << (32 - nb) >> bitno);
4199 		assert((mask & *dbmap) == 0);
4200 
4201 		dbmap++;
4202 		blkno += nb;
4203 		nblocks -= nb;
4204 	}
4205 }
4206 
4207 
4208 /*
4209  *	dbPrtMap()
4210  */
4211 static void dbPrtMap(struct bmap * bmp)
4212 {
4213 	printk("   mapsize:   %d%d\n", bmp->db_mapsize);
4214 	printk("   nfree:     %d%d\n", bmp->db_nfree);
4215 	printk("   numag:     %d\n", bmp->db_numag);
4216 	printk("   agsize:    %d%d\n", bmp->db_agsize);
4217 	printk("   agl2size:  %d\n", bmp->db_agl2size);
4218 	printk("   agwidth:   %d\n", bmp->db_agwidth);
4219 	printk("   agstart:   %d\n", bmp->db_agstart);
4220 	printk("   agheigth:  %d\n", bmp->db_agheigth);
4221 	printk("   aglevel:   %d\n", bmp->db_aglevel);
4222 	printk("   maxlevel:  %d\n", bmp->db_maxlevel);
4223 	printk("   maxag:     %d\n", bmp->db_maxag);
4224 	printk("   agpref:    %d\n", bmp->db_agpref);
4225 	printk("   l2nbppg:   %d\n", bmp->db_l2nbperpage);
4226 }
4227 
4228 
4229 /*
4230  *	dbPrtCtl()
4231  */
4232 static void dbPrtCtl(struct dmapctl * dcp)
4233 {
4234 	int i, j, n;
4235 
4236 	printk("   height:    %08x\n", le32_to_cpu(dcp->height));
4237 	printk("   leafidx:   %08x\n", le32_to_cpu(dcp->leafidx));
4238 	printk("   budmin:    %08x\n", dcp->budmin);
4239 	printk("   nleafs:    %08x\n", le32_to_cpu(dcp->nleafs));
4240 	printk("   l2nleafs:  %08x\n", le32_to_cpu(dcp->l2nleafs));
4241 
4242 	printk("\n Tree:\n");
4243 	for (i = 0; i < CTLLEAFIND; i += 8) {
4244 		n = min(8, CTLLEAFIND - i);
4245 
4246 		for (j = 0; j < n; j++)
4247 			printf("  [%03x]: %02x", i + j,
4248 			       (char) dcp->stree[i + j]);
4249 		printf("\n");
4250 	}
4251 
4252 	printk("\n Tree Leaves:\n");
4253 	for (i = 0; i < LPERCTL; i += 8) {
4254 		n = min(8, LPERCTL - i);
4255 
4256 		for (j = 0; j < n; j++)
4257 			printf("  [%03x]: %02x",
4258 			       i + j,
4259 			       (char) dcp->stree[i + j + CTLLEAFIND]);
4260 		printf("\n");
4261 	}
4262 }
4263 #endif				/* _JFS_DEBUG_DMAP */
4264