xref: /linux/fs/jffs2/wbuf.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22 
23 #include "nodelist.h"
24 
25 /* For testing write failures */
26 #undef BREAKME
27 #undef BREAKMEHEADER
28 
29 #ifdef BREAKME
30 static unsigned char *brokenbuf;
31 #endif
32 
33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
35 
36 /* max. erase failures before we mark a block bad */
37 #define MAX_ERASE_FAILURES 	2
38 
39 struct jffs2_inodirty {
40 	uint32_t ino;
41 	struct jffs2_inodirty *next;
42 };
43 
44 static struct jffs2_inodirty inodirty_nomem;
45 
46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
47 {
48 	struct jffs2_inodirty *this = c->wbuf_inodes;
49 
50 	/* If a malloc failed, consider _everything_ dirty */
51 	if (this == &inodirty_nomem)
52 		return 1;
53 
54 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
55 	if (this && !ino)
56 		return 1;
57 
58 	/* Look to see if the inode in question is pending in the wbuf */
59 	while (this) {
60 		if (this->ino == ino)
61 			return 1;
62 		this = this->next;
63 	}
64 	return 0;
65 }
66 
67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
68 {
69 	struct jffs2_inodirty *this;
70 
71 	this = c->wbuf_inodes;
72 
73 	if (this != &inodirty_nomem) {
74 		while (this) {
75 			struct jffs2_inodirty *next = this->next;
76 			kfree(this);
77 			this = next;
78 		}
79 	}
80 	c->wbuf_inodes = NULL;
81 }
82 
83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
84 {
85 	struct jffs2_inodirty *new;
86 
87 	/* Mark the superblock dirty so that kupdated will flush... */
88 	jffs2_erase_pending_trigger(c);
89 
90 	if (jffs2_wbuf_pending_for_ino(c, ino))
91 		return;
92 
93 	new = kmalloc(sizeof(*new), GFP_KERNEL);
94 	if (!new) {
95 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
96 		jffs2_clear_wbuf_ino_list(c);
97 		c->wbuf_inodes = &inodirty_nomem;
98 		return;
99 	}
100 	new->ino = ino;
101 	new->next = c->wbuf_inodes;
102 	c->wbuf_inodes = new;
103 	return;
104 }
105 
106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
107 {
108 	struct list_head *this, *next;
109 	static int n;
110 
111 	if (list_empty(&c->erasable_pending_wbuf_list))
112 		return;
113 
114 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
115 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
116 
117 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
118 		list_del(this);
119 		if ((jiffies + (n++)) & 127) {
120 			/* Most of the time, we just erase it immediately. Otherwise we
121 			   spend ages scanning it on mount, etc. */
122 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
123 			list_add_tail(&jeb->list, &c->erase_pending_list);
124 			c->nr_erasing_blocks++;
125 			jffs2_erase_pending_trigger(c);
126 		} else {
127 			/* Sometimes, however, we leave it elsewhere so it doesn't get
128 			   immediately reused, and we spread the load a bit. */
129 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
130 			list_add_tail(&jeb->list, &c->erasable_list);
131 		}
132 	}
133 }
134 
135 #define REFILE_NOTEMPTY 0
136 #define REFILE_ANYWAY   1
137 
138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
139 {
140 	D1(printk("About to refile bad block at %08x\n", jeb->offset));
141 
142 	/* File the existing block on the bad_used_list.... */
143 	if (c->nextblock == jeb)
144 		c->nextblock = NULL;
145 	else /* Not sure this should ever happen... need more coffee */
146 		list_del(&jeb->list);
147 	if (jeb->first_node) {
148 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
149 		list_add(&jeb->list, &c->bad_used_list);
150 	} else {
151 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
152 		/* It has to have had some nodes or we couldn't be here */
153 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 		list_add(&jeb->list, &c->erase_pending_list);
155 		c->nr_erasing_blocks++;
156 		jffs2_erase_pending_trigger(c);
157 	}
158 
159 	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
160 		uint32_t oldfree = jeb->free_size;
161 
162 		jffs2_link_node_ref(c, jeb,
163 				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
164 				    oldfree, NULL);
165 		/* convert to wasted */
166 		c->wasted_size += oldfree;
167 		jeb->wasted_size += oldfree;
168 		c->dirty_size -= oldfree;
169 		jeb->dirty_size -= oldfree;
170 	}
171 
172 	jffs2_dbg_dump_block_lists_nolock(c);
173 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
174 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
175 }
176 
177 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
178 							    struct jffs2_inode_info *f,
179 							    struct jffs2_raw_node_ref *raw,
180 							    union jffs2_node_union *node)
181 {
182 	struct jffs2_node_frag *frag;
183 	struct jffs2_full_dirent *fd;
184 
185 	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
186 		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
187 
188 	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
189 	       je16_to_cpu(node->u.magic) != 0);
190 
191 	switch (je16_to_cpu(node->u.nodetype)) {
192 	case JFFS2_NODETYPE_INODE:
193 		if (f->metadata && f->metadata->raw == raw) {
194 			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
195 			return &f->metadata->raw;
196 		}
197 		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
198 		BUG_ON(!frag);
199 		/* Find a frag which refers to the full_dnode we want to modify */
200 		while (!frag->node || frag->node->raw != raw) {
201 			frag = frag_next(frag);
202 			BUG_ON(!frag);
203 		}
204 		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
205 		return &frag->node->raw;
206 
207 	case JFFS2_NODETYPE_DIRENT:
208 		for (fd = f->dents; fd; fd = fd->next) {
209 			if (fd->raw == raw) {
210 				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
211 				return &fd->raw;
212 			}
213 		}
214 		BUG();
215 
216 	default:
217 		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
218 			    je16_to_cpu(node->u.nodetype));
219 		break;
220 	}
221 	return NULL;
222 }
223 
224 /* Recover from failure to write wbuf. Recover the nodes up to the
225  * wbuf, not the one which we were starting to try to write. */
226 
227 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
228 {
229 	struct jffs2_eraseblock *jeb, *new_jeb;
230 	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
231 	size_t retlen;
232 	int ret;
233 	int nr_refile = 0;
234 	unsigned char *buf;
235 	uint32_t start, end, ofs, len;
236 
237 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
238 
239 	spin_lock(&c->erase_completion_lock);
240 	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
241 	spin_unlock(&c->erase_completion_lock);
242 
243 	BUG_ON(!ref_obsolete(jeb->last_node));
244 
245 	/* Find the first node to be recovered, by skipping over every
246 	   node which ends before the wbuf starts, or which is obsolete. */
247 	for (next = raw = jeb->first_node; next; raw = next) {
248 		next = ref_next(raw);
249 
250 		if (ref_obsolete(raw) ||
251 		    (next && ref_offset(next) <= c->wbuf_ofs)) {
252 			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
253 				    ref_offset(raw), ref_flags(raw),
254 				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
255 				    c->wbuf_ofs);
256 			continue;
257 		}
258 		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
259 			    ref_offset(raw), ref_flags(raw),
260 			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
261 
262 		first_raw = raw;
263 		break;
264 	}
265 
266 	if (!first_raw) {
267 		/* All nodes were obsolete. Nothing to recover. */
268 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
269 		c->wbuf_len = 0;
270 		return;
271 	}
272 
273 	start = ref_offset(first_raw);
274 	end = ref_offset(jeb->last_node);
275 	nr_refile = 1;
276 
277 	/* Count the number of refs which need to be copied */
278 	while ((raw = ref_next(raw)) != jeb->last_node)
279 		nr_refile++;
280 
281 	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
282 		    start, end, end - start, nr_refile);
283 
284 	buf = NULL;
285 	if (start < c->wbuf_ofs) {
286 		/* First affected node was already partially written.
287 		 * Attempt to reread the old data into our buffer. */
288 
289 		buf = kmalloc(end - start, GFP_KERNEL);
290 		if (!buf) {
291 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
292 
293 			goto read_failed;
294 		}
295 
296 		/* Do the read... */
297 		ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
298 
299 		/* ECC recovered ? */
300 		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
301 		    (retlen == c->wbuf_ofs - start))
302 			ret = 0;
303 
304 		if (ret || retlen != c->wbuf_ofs - start) {
305 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
306 
307 			kfree(buf);
308 			buf = NULL;
309 		read_failed:
310 			first_raw = ref_next(first_raw);
311 			nr_refile--;
312 			while (first_raw && ref_obsolete(first_raw)) {
313 				first_raw = ref_next(first_raw);
314 				nr_refile--;
315 			}
316 
317 			/* If this was the only node to be recovered, give up */
318 			if (!first_raw) {
319 				c->wbuf_len = 0;
320 				return;
321 			}
322 
323 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
324 			start = ref_offset(first_raw);
325 			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
326 				    start, end, end - start, nr_refile);
327 
328 		} else {
329 			/* Read succeeded. Copy the remaining data from the wbuf */
330 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
331 		}
332 	}
333 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
334 	   Either 'buf' contains the data, or we find it in the wbuf */
335 
336 	/* ... and get an allocation of space from a shiny new block instead */
337 	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
338 	if (ret) {
339 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
340 		kfree(buf);
341 		return;
342 	}
343 
344 	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
345 	if (ret) {
346 		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
347 		kfree(buf);
348 		return;
349 	}
350 
351 	ofs = write_ofs(c);
352 
353 	if (end-start >= c->wbuf_pagesize) {
354 		/* Need to do another write immediately, but it's possible
355 		   that this is just because the wbuf itself is completely
356 		   full, and there's nothing earlier read back from the
357 		   flash. Hence 'buf' isn't necessarily what we're writing
358 		   from. */
359 		unsigned char *rewrite_buf = buf?:c->wbuf;
360 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
361 
362 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
363 			  towrite, ofs));
364 
365 #ifdef BREAKMEHEADER
366 		static int breakme;
367 		if (breakme++ == 20) {
368 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
369 			breakme = 0;
370 			c->mtd->write(c->mtd, ofs, towrite, &retlen,
371 				      brokenbuf);
372 			ret = -EIO;
373 		} else
374 #endif
375 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
376 					    rewrite_buf);
377 
378 		if (ret || retlen != towrite) {
379 			/* Argh. We tried. Really we did. */
380 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
381 			kfree(buf);
382 
383 			if (retlen)
384 				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
385 
386 			return;
387 		}
388 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
389 
390 		c->wbuf_len = (end - start) - towrite;
391 		c->wbuf_ofs = ofs + towrite;
392 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
393 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
394 	} else {
395 		/* OK, now we're left with the dregs in whichever buffer we're using */
396 		if (buf) {
397 			memcpy(c->wbuf, buf, end-start);
398 		} else {
399 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
400 		}
401 		c->wbuf_ofs = ofs;
402 		c->wbuf_len = end - start;
403 	}
404 
405 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
406 	new_jeb = &c->blocks[ofs / c->sector_size];
407 
408 	spin_lock(&c->erase_completion_lock);
409 	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
410 		uint32_t rawlen = ref_totlen(c, jeb, raw);
411 		struct jffs2_inode_cache *ic;
412 		struct jffs2_raw_node_ref *new_ref;
413 		struct jffs2_raw_node_ref **adjust_ref = NULL;
414 		struct jffs2_inode_info *f = NULL;
415 
416 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
417 			  rawlen, ref_offset(raw), ref_flags(raw), ofs));
418 
419 		ic = jffs2_raw_ref_to_ic(raw);
420 
421 		/* Ick. This XATTR mess should be fixed shortly... */
422 		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
423 			struct jffs2_xattr_datum *xd = (void *)ic;
424 			BUG_ON(xd->node != raw);
425 			adjust_ref = &xd->node;
426 			raw->next_in_ino = NULL;
427 			ic = NULL;
428 		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
429 			struct jffs2_xattr_datum *xr = (void *)ic;
430 			BUG_ON(xr->node != raw);
431 			adjust_ref = &xr->node;
432 			raw->next_in_ino = NULL;
433 			ic = NULL;
434 		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
435 			struct jffs2_raw_node_ref **p = &ic->nodes;
436 
437 			/* Remove the old node from the per-inode list */
438 			while (*p && *p != (void *)ic) {
439 				if (*p == raw) {
440 					(*p) = (raw->next_in_ino);
441 					raw->next_in_ino = NULL;
442 					break;
443 				}
444 				p = &((*p)->next_in_ino);
445 			}
446 
447 			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
448 				/* If it's an in-core inode, then we have to adjust any
449 				   full_dirent or full_dnode structure to point to the
450 				   new version instead of the old */
451 				f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
452 				if (IS_ERR(f)) {
453 					/* Should never happen; it _must_ be present */
454 					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
455 						    ic->ino, PTR_ERR(f));
456 					BUG();
457 				}
458 				/* We don't lock f->sem. There's a number of ways we could
459 				   end up in here with it already being locked, and nobody's
460 				   going to modify it on us anyway because we hold the
461 				   alloc_sem. We're only changing one ->raw pointer too,
462 				   which we can get away with without upsetting readers. */
463 				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
464 								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
465 			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
466 					    ic->state != INO_STATE_CHECKEDABSENT &&
467 					    ic->state != INO_STATE_GC)) {
468 				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
469 				BUG();
470 			}
471 		}
472 
473 		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
474 
475 		if (adjust_ref) {
476 			BUG_ON(*adjust_ref != raw);
477 			*adjust_ref = new_ref;
478 		}
479 		if (f)
480 			jffs2_gc_release_inode(c, f);
481 
482 		if (!ref_obsolete(raw)) {
483 			jeb->dirty_size += rawlen;
484 			jeb->used_size  -= rawlen;
485 			c->dirty_size += rawlen;
486 			c->used_size -= rawlen;
487 			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
488 			BUG_ON(raw->next_in_ino);
489 		}
490 		ofs += rawlen;
491 	}
492 
493 	kfree(buf);
494 
495 	/* Fix up the original jeb now it's on the bad_list */
496 	if (first_raw == jeb->first_node) {
497 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
498 		list_del(&jeb->list);
499 		list_add(&jeb->list, &c->erase_pending_list);
500 		c->nr_erasing_blocks++;
501 		jffs2_erase_pending_trigger(c);
502 	}
503 
504 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
505 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
506 
507 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
508 	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
509 
510 	spin_unlock(&c->erase_completion_lock);
511 
512 	D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
513 
514 }
515 
516 /* Meaning of pad argument:
517    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
518    1: Pad, do not adjust nextblock free_size
519    2: Pad, adjust nextblock free_size
520 */
521 #define NOPAD		0
522 #define PAD_NOACCOUNT	1
523 #define PAD_ACCOUNTING	2
524 
525 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
526 {
527 	struct jffs2_eraseblock *wbuf_jeb;
528 	int ret;
529 	size_t retlen;
530 
531 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
532 	   del_timer() the timer we never initialised. */
533 	if (!jffs2_is_writebuffered(c))
534 		return 0;
535 
536 	if (!down_trylock(&c->alloc_sem)) {
537 		up(&c->alloc_sem);
538 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
539 		BUG();
540 	}
541 
542 	if (!c->wbuf_len)	/* already checked c->wbuf above */
543 		return 0;
544 
545 	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
546 	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
547 		return -ENOMEM;
548 
549 	/* claim remaining space on the page
550 	   this happens, if we have a change to a new block,
551 	   or if fsync forces us to flush the writebuffer.
552 	   if we have a switch to next page, we will not have
553 	   enough remaining space for this.
554 	*/
555 	if (pad ) {
556 		c->wbuf_len = PAD(c->wbuf_len);
557 
558 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
559 		   with 8 byte page size */
560 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
561 
562 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
563 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
564 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
565 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
566 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
567 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
568 		}
569 	}
570 	/* else jffs2_flash_writev has actually filled in the rest of the
571 	   buffer for us, and will deal with the node refs etc. later. */
572 
573 #ifdef BREAKME
574 	static int breakme;
575 	if (breakme++ == 20) {
576 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
577 		breakme = 0;
578 		c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
579 			      brokenbuf);
580 		ret = -EIO;
581 	} else
582 #endif
583 
584 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
585 
586 	if (ret || retlen != c->wbuf_pagesize) {
587 		if (ret)
588 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
589 		else {
590 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
591 				retlen, c->wbuf_pagesize);
592 			ret = -EIO;
593 		}
594 
595 		jffs2_wbuf_recover(c);
596 
597 		return ret;
598 	}
599 
600 	/* Adjust free size of the block if we padded. */
601 	if (pad) {
602 		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
603 
604 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
605 			  (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
606 
607 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
608 		   padded. If there is less free space in the block than that,
609 		   something screwed up */
610 		if (wbuf_jeb->free_size < waste) {
611 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
612 			       c->wbuf_ofs, c->wbuf_len, waste);
613 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
614 			       wbuf_jeb->offset, wbuf_jeb->free_size);
615 			BUG();
616 		}
617 
618 		spin_lock(&c->erase_completion_lock);
619 
620 		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
621 		/* FIXME: that made it count as dirty. Convert to wasted */
622 		wbuf_jeb->dirty_size -= waste;
623 		c->dirty_size -= waste;
624 		wbuf_jeb->wasted_size += waste;
625 		c->wasted_size += waste;
626 	} else
627 		spin_lock(&c->erase_completion_lock);
628 
629 	/* Stick any now-obsoleted blocks on the erase_pending_list */
630 	jffs2_refile_wbuf_blocks(c);
631 	jffs2_clear_wbuf_ino_list(c);
632 	spin_unlock(&c->erase_completion_lock);
633 
634 	memset(c->wbuf,0xff,c->wbuf_pagesize);
635 	/* adjust write buffer offset, else we get a non contiguous write bug */
636 	c->wbuf_ofs += c->wbuf_pagesize;
637 	c->wbuf_len = 0;
638 	return 0;
639 }
640 
641 /* Trigger garbage collection to flush the write-buffer.
642    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
643    outstanding. If ino arg non-zero, do it only if a write for the
644    given inode is outstanding. */
645 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
646 {
647 	uint32_t old_wbuf_ofs;
648 	uint32_t old_wbuf_len;
649 	int ret = 0;
650 
651 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
652 
653 	if (!c->wbuf)
654 		return 0;
655 
656 	down(&c->alloc_sem);
657 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
658 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
659 		up(&c->alloc_sem);
660 		return 0;
661 	}
662 
663 	old_wbuf_ofs = c->wbuf_ofs;
664 	old_wbuf_len = c->wbuf_len;
665 
666 	if (c->unchecked_size) {
667 		/* GC won't make any progress for a while */
668 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
669 		down_write(&c->wbuf_sem);
670 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
671 		/* retry flushing wbuf in case jffs2_wbuf_recover
672 		   left some data in the wbuf */
673 		if (ret)
674 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
675 		up_write(&c->wbuf_sem);
676 	} else while (old_wbuf_len &&
677 		      old_wbuf_ofs == c->wbuf_ofs) {
678 
679 		up(&c->alloc_sem);
680 
681 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
682 
683 		ret = jffs2_garbage_collect_pass(c);
684 		if (ret) {
685 			/* GC failed. Flush it with padding instead */
686 			down(&c->alloc_sem);
687 			down_write(&c->wbuf_sem);
688 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
689 			/* retry flushing wbuf in case jffs2_wbuf_recover
690 			   left some data in the wbuf */
691 			if (ret)
692 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
693 			up_write(&c->wbuf_sem);
694 			break;
695 		}
696 		down(&c->alloc_sem);
697 	}
698 
699 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
700 
701 	up(&c->alloc_sem);
702 	return ret;
703 }
704 
705 /* Pad write-buffer to end and write it, wasting space. */
706 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
707 {
708 	int ret;
709 
710 	if (!c->wbuf)
711 		return 0;
712 
713 	down_write(&c->wbuf_sem);
714 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
715 	/* retry - maybe wbuf recover left some data in wbuf. */
716 	if (ret)
717 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
718 	up_write(&c->wbuf_sem);
719 
720 	return ret;
721 }
722 
723 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
724 			      size_t len)
725 {
726 	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
727 		return 0;
728 
729 	if (len > (c->wbuf_pagesize - c->wbuf_len))
730 		len = c->wbuf_pagesize - c->wbuf_len;
731 	memcpy(c->wbuf + c->wbuf_len, buf, len);
732 	c->wbuf_len += (uint32_t) len;
733 	return len;
734 }
735 
736 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
737 		       unsigned long count, loff_t to, size_t *retlen,
738 		       uint32_t ino)
739 {
740 	struct jffs2_eraseblock *jeb;
741 	size_t wbuf_retlen, donelen = 0;
742 	uint32_t outvec_to = to;
743 	int ret, invec;
744 
745 	/* If not writebuffered flash, don't bother */
746 	if (!jffs2_is_writebuffered(c))
747 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
748 
749 	down_write(&c->wbuf_sem);
750 
751 	/* If wbuf_ofs is not initialized, set it to target address */
752 	if (c->wbuf_ofs == 0xFFFFFFFF) {
753 		c->wbuf_ofs = PAGE_DIV(to);
754 		c->wbuf_len = PAGE_MOD(to);
755 		memset(c->wbuf,0xff,c->wbuf_pagesize);
756 	}
757 
758 	/*
759 	 * Sanity checks on target address.  It's permitted to write
760 	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
761 	 * write at the beginning of a new erase block. Anything else,
762 	 * and you die.  New block starts at xxx000c (0-b = block
763 	 * header)
764 	 */
765 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
766 		/* It's a write to a new block */
767 		if (c->wbuf_len) {
768 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
769 				  "causes flush of wbuf at 0x%08x\n",
770 				  (unsigned long)to, c->wbuf_ofs));
771 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
772 			if (ret)
773 				goto outerr;
774 		}
775 		/* set pointer to new block */
776 		c->wbuf_ofs = PAGE_DIV(to);
777 		c->wbuf_len = PAGE_MOD(to);
778 	}
779 
780 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
781 		/* We're not writing immediately after the writebuffer. Bad. */
782 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
783 		       "to %08lx\n", (unsigned long)to);
784 		if (c->wbuf_len)
785 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
786 			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
787 		BUG();
788 	}
789 
790 	/* adjust alignment offset */
791 	if (c->wbuf_len != PAGE_MOD(to)) {
792 		c->wbuf_len = PAGE_MOD(to);
793 		/* take care of alignment to next page */
794 		if (!c->wbuf_len) {
795 			c->wbuf_len = c->wbuf_pagesize;
796 			ret = __jffs2_flush_wbuf(c, NOPAD);
797 			if (ret)
798 				goto outerr;
799 		}
800 	}
801 
802 	for (invec = 0; invec < count; invec++) {
803 		int vlen = invecs[invec].iov_len;
804 		uint8_t *v = invecs[invec].iov_base;
805 
806 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
807 
808 		if (c->wbuf_len == c->wbuf_pagesize) {
809 			ret = __jffs2_flush_wbuf(c, NOPAD);
810 			if (ret)
811 				goto outerr;
812 		}
813 		vlen -= wbuf_retlen;
814 		outvec_to += wbuf_retlen;
815 		donelen += wbuf_retlen;
816 		v += wbuf_retlen;
817 
818 		if (vlen >= c->wbuf_pagesize) {
819 			ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
820 					    &wbuf_retlen, v);
821 			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
822 				goto outfile;
823 
824 			vlen -= wbuf_retlen;
825 			outvec_to += wbuf_retlen;
826 			c->wbuf_ofs = outvec_to;
827 			donelen += wbuf_retlen;
828 			v += wbuf_retlen;
829 		}
830 
831 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
832 		if (c->wbuf_len == c->wbuf_pagesize) {
833 			ret = __jffs2_flush_wbuf(c, NOPAD);
834 			if (ret)
835 				goto outerr;
836 		}
837 
838 		outvec_to += wbuf_retlen;
839 		donelen += wbuf_retlen;
840 	}
841 
842 	/*
843 	 * If there's a remainder in the wbuf and it's a non-GC write,
844 	 * remember that the wbuf affects this ino
845 	 */
846 	*retlen = donelen;
847 
848 	if (jffs2_sum_active()) {
849 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
850 		if (res)
851 			return res;
852 	}
853 
854 	if (c->wbuf_len && ino)
855 		jffs2_wbuf_dirties_inode(c, ino);
856 
857 	ret = 0;
858 	up_write(&c->wbuf_sem);
859 	return ret;
860 
861 outfile:
862 	/*
863 	 * At this point we have no problem, c->wbuf is empty. However
864 	 * refile nextblock to avoid writing again to same address.
865 	 */
866 
867 	spin_lock(&c->erase_completion_lock);
868 
869 	jeb = &c->blocks[outvec_to / c->sector_size];
870 	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
871 
872 	spin_unlock(&c->erase_completion_lock);
873 
874 outerr:
875 	*retlen = 0;
876 	up_write(&c->wbuf_sem);
877 	return ret;
878 }
879 
880 /*
881  *	This is the entry for flash write.
882  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
883 */
884 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
885 		      size_t *retlen, const u_char *buf)
886 {
887 	struct kvec vecs[1];
888 
889 	if (!jffs2_is_writebuffered(c))
890 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
891 
892 	vecs[0].iov_base = (unsigned char *) buf;
893 	vecs[0].iov_len = len;
894 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
895 }
896 
897 /*
898 	Handle readback from writebuffer and ECC failure return
899 */
900 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
901 {
902 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
903 	int	ret;
904 
905 	if (!jffs2_is_writebuffered(c))
906 		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
907 
908 	/* Read flash */
909 	down_read(&c->wbuf_sem);
910 	ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
911 
912 	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
913 		if (ret == -EBADMSG)
914 			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
915 			       " returned ECC error\n", len, ofs);
916 		/*
917 		 * We have the raw data without ECC correction in the buffer,
918 		 * maybe we are lucky and all data or parts are correct. We
919 		 * check the node.  If data are corrupted node check will sort
920 		 * it out.  We keep this block, it will fail on write or erase
921 		 * and the we mark it bad. Or should we do that now? But we
922 		 * should give him a chance.  Maybe we had a system crash or
923 		 * power loss before the ecc write or a erase was completed.
924 		 * So we return success. :)
925 		 */
926 		ret = 0;
927 	}
928 
929 	/* if no writebuffer available or write buffer empty, return */
930 	if (!c->wbuf_pagesize || !c->wbuf_len)
931 		goto exit;
932 
933 	/* if we read in a different block, return */
934 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
935 		goto exit;
936 
937 	if (ofs >= c->wbuf_ofs) {
938 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
939 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
940 			goto exit;
941 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
942 		if (lwbf > len)
943 			lwbf = len;
944 	} else {
945 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
946 		if (orbf > len)			/* is write beyond write buffer ? */
947 			goto exit;
948 		lwbf = len - orbf;		/* number of bytes to copy */
949 		if (lwbf > c->wbuf_len)
950 			lwbf = c->wbuf_len;
951 	}
952 	if (lwbf > 0)
953 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
954 
955 exit:
956 	up_read(&c->wbuf_sem);
957 	return ret;
958 }
959 
960 #define NR_OOB_SCAN_PAGES	4
961 
962 /*
963  * Check, if the out of band area is empty
964  */
965 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
966 			  struct jffs2_eraseblock *jeb, int mode)
967 {
968 	int i, page, ret;
969 	int oobsize = c->mtd->oobsize;
970 	struct mtd_oob_ops ops;
971 
972 	ops.len = NR_OOB_SCAN_PAGES * oobsize;
973 	ops.ooblen = oobsize;
974 	ops.oobbuf = c->oobbuf;
975 	ops.ooboffs = 0;
976 	ops.datbuf = NULL;
977 	ops.mode = MTD_OOB_PLACE;
978 
979 	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
980 	if (ret) {
981 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
982 			  "failed %d for block at %08x\n", ret, jeb->offset));
983 		return ret;
984 	}
985 
986 	if (ops.retlen < ops.len) {
987 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
988 			  "returned short read (%zd bytes not %d) for block "
989 			  "at %08x\n", ops.retlen, ops.len, jeb->offset));
990 		return -EIO;
991 	}
992 
993 	/* Special check for first page */
994 	for(i = 0; i < oobsize ; i++) {
995 		/* Yeah, we know about the cleanmarker. */
996 		if (mode && i >= c->fsdata_pos &&
997 		    i < c->fsdata_pos + c->fsdata_len)
998 			continue;
999 
1000 		if (ops.oobbuf[i] != 0xFF) {
1001 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1002 				  "%08x\n", ops.oobbuf[i], i, jeb->offset));
1003 			return 1;
1004 		}
1005 	}
1006 
1007 	/* we know, we are aligned :) */
1008 	for (page = oobsize; page < ops.len; page += sizeof(long)) {
1009 		long dat = *(long *)(&ops.oobbuf[page]);
1010 		if(dat != -1)
1011 			return 1;
1012 	}
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Scan for a valid cleanmarker and for bad blocks
1018  */
1019 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c,
1020 				  struct jffs2_eraseblock *jeb)
1021 {
1022 	struct jffs2_unknown_node n;
1023 	struct mtd_oob_ops ops;
1024 	int oobsize = c->mtd->oobsize;
1025 	unsigned char *p,*b;
1026 	int i, ret;
1027 	size_t offset = jeb->offset;
1028 
1029 	/* Check first if the block is bad. */
1030 	if (c->mtd->block_isbad(c->mtd, offset)) {
1031 		D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()"
1032 			   ": Bad block at %08x\n", jeb->offset));
1033 		return 2;
1034 	}
1035 
1036 	ops.len = oobsize;
1037 	ops.ooblen = oobsize;
1038 	ops.oobbuf = c->oobbuf;
1039 	ops.ooboffs = 0;
1040 	ops.datbuf = NULL;
1041 	ops.mode = MTD_OOB_PLACE;
1042 
1043 	ret = c->mtd->read_oob(c->mtd, offset, &ops);
1044 	if (ret) {
1045 		D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1046 			   "Read OOB failed %d for block at %08x\n",
1047 			   ret, jeb->offset));
1048 		return ret;
1049 	}
1050 
1051 	if (ops.retlen < ops.len) {
1052 		D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1053 			    "Read OOB return short read (%zd bytes not %d) "
1054 			    "for block at %08x\n", ops.retlen, ops.len,
1055 			    jeb->offset));
1056 		return -EIO;
1057 	}
1058 
1059 	n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1060 	n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1061 	n.totlen = cpu_to_je32 (8);
1062 	p = (unsigned char *) &n;
1063 	b = c->oobbuf + c->fsdata_pos;
1064 
1065 	for (i = c->fsdata_len; i; i--) {
1066 		if (*b++ != *p++)
1067 			ret = 1;
1068 	}
1069 
1070 	D1(if (ret == 1) {
1071 		printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1072 		       "Cleanmarker node not detected in block at %08x\n",
1073 		       offset);
1074 		printk(KERN_WARNING "OOB at %08zx was ", offset);
1075 		for (i=0; i < oobsize; i++)
1076 			printk("%02x ", c->oobbuf[i]);
1077 		printk("\n");
1078 	});
1079 	return ret;
1080 }
1081 
1082 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1083 				 struct jffs2_eraseblock *jeb)
1084 {
1085 	struct jffs2_unknown_node n;
1086 	int	ret;
1087 	struct mtd_oob_ops ops;
1088 
1089 	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1090 	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1091 	n.totlen = cpu_to_je32(8);
1092 
1093 	ops.len = c->fsdata_len;
1094 	ops.ooblen = c->fsdata_len;;
1095 	ops.oobbuf = (uint8_t *)&n;
1096 	ops.ooboffs = c->fsdata_pos;
1097 	ops.datbuf = NULL;
1098 	ops.mode = MTD_OOB_PLACE;
1099 
1100 	ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1101 
1102 	if (ret) {
1103 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1104 			  "Write failed for block at %08x: error %d\n",
1105 			  jeb->offset, ret));
1106 		return ret;
1107 	}
1108 	if (ops.retlen != ops.len) {
1109 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1110 			  "Short write for block at %08x: %zd not %d\n",
1111 			  jeb->offset, ops.retlen, ops.len));
1112 		return -EIO;
1113 	}
1114 	return 0;
1115 }
1116 
1117 /*
1118  * On NAND we try to mark this block bad. If the block was erased more
1119  * than MAX_ERASE_FAILURES we mark it finaly bad.
1120  * Don't care about failures. This block remains on the erase-pending
1121  * or badblock list as long as nobody manipulates the flash with
1122  * a bootloader or something like that.
1123  */
1124 
1125 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1126 {
1127 	int 	ret;
1128 
1129 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1130 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1131 		return 0;
1132 
1133 	if (!c->mtd->block_markbad)
1134 		return 1; // What else can we do?
1135 
1136 	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1137 	ret = c->mtd->block_markbad(c->mtd, bad_offset);
1138 
1139 	if (ret) {
1140 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1141 		return ret;
1142 	}
1143 	return 1;
1144 }
1145 
1146 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1147 {
1148 	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1149 
1150 	/* Do this only, if we have an oob buffer */
1151 	if (!c->mtd->oobsize)
1152 		return 0;
1153 
1154 	/* Cleanmarker is out-of-band, so inline size zero */
1155 	c->cleanmarker_size = 0;
1156 
1157 	/* Should we use autoplacement ? */
1158 	if (!oinfo) {
1159 		D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1160 		return -EINVAL;
1161 	}
1162 
1163 	D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1164 	/* Get the position of the free bytes */
1165 	if (!oinfo->oobfree[0].length) {
1166 		printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep."
1167 			" Autoplacement selected and no empty space in oob\n");
1168 		return -ENOSPC;
1169 	}
1170 	c->fsdata_pos = oinfo->oobfree[0].offset;
1171 	c->fsdata_len = oinfo->oobfree[0].length;
1172 	if (c->fsdata_len > 8)
1173 		c->fsdata_len = 8;
1174 
1175 	return 0;
1176 }
1177 
1178 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1179 {
1180 	int res;
1181 
1182 	/* Initialise write buffer */
1183 	init_rwsem(&c->wbuf_sem);
1184 	c->wbuf_pagesize = c->mtd->writesize;
1185 	c->wbuf_ofs = 0xFFFFFFFF;
1186 
1187 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1188 	if (!c->wbuf)
1189 		return -ENOMEM;
1190 
1191 	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL);
1192 	if (!c->oobbuf)
1193 		return -ENOMEM;
1194 
1195 	res = jffs2_nand_set_oobinfo(c);
1196 
1197 #ifdef BREAKME
1198 	if (!brokenbuf)
1199 		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1200 	if (!brokenbuf) {
1201 		kfree(c->wbuf);
1202 		return -ENOMEM;
1203 	}
1204 	memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1205 #endif
1206 	return res;
1207 }
1208 
1209 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1210 {
1211 	kfree(c->wbuf);
1212 	kfree(c->oobbuf);
1213 }
1214 
1215 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1216 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1217 
1218 	/* Initialize write buffer */
1219 	init_rwsem(&c->wbuf_sem);
1220 
1221 
1222 	c->wbuf_pagesize =  c->mtd->erasesize;
1223 
1224 	/* Find a suitable c->sector_size
1225 	 * - Not too much sectors
1226 	 * - Sectors have to be at least 4 K + some bytes
1227 	 * - All known dataflashes have erase sizes of 528 or 1056
1228 	 * - we take at least 8 eraseblocks and want to have at least 8K size
1229 	 * - The concatenation should be a power of 2
1230 	*/
1231 
1232 	c->sector_size = 8 * c->mtd->erasesize;
1233 
1234 	while (c->sector_size < 8192) {
1235 		c->sector_size *= 2;
1236 	}
1237 
1238 	/* It may be necessary to adjust the flash size */
1239 	c->flash_size = c->mtd->size;
1240 
1241 	if ((c->flash_size % c->sector_size) != 0) {
1242 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1243 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1244 	};
1245 
1246 	c->wbuf_ofs = 0xFFFFFFFF;
1247 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1248 	if (!c->wbuf)
1249 		return -ENOMEM;
1250 
1251 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1252 
1253 	return 0;
1254 }
1255 
1256 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1257 	kfree(c->wbuf);
1258 }
1259 
1260 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1261 	/* Cleanmarker currently occupies whole programming regions,
1262 	 * either one or 2 for 8Byte STMicro flashes. */
1263 	c->cleanmarker_size = max(16u, c->mtd->writesize);
1264 
1265 	/* Initialize write buffer */
1266 	init_rwsem(&c->wbuf_sem);
1267 	c->wbuf_pagesize = c->mtd->writesize;
1268 	c->wbuf_ofs = 0xFFFFFFFF;
1269 
1270 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1271 	if (!c->wbuf)
1272 		return -ENOMEM;
1273 
1274 	return 0;
1275 }
1276 
1277 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1278 	kfree(c->wbuf);
1279 }
1280