1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $ 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/crc32.h> 20 #include <linux/mtd/nand.h> 21 #include <linux/jiffies.h> 22 23 #include "nodelist.h" 24 25 /* For testing write failures */ 26 #undef BREAKME 27 #undef BREAKMEHEADER 28 29 #ifdef BREAKME 30 static unsigned char *brokenbuf; 31 #endif 32 33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) 34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) 35 36 /* max. erase failures before we mark a block bad */ 37 #define MAX_ERASE_FAILURES 2 38 39 struct jffs2_inodirty { 40 uint32_t ino; 41 struct jffs2_inodirty *next; 42 }; 43 44 static struct jffs2_inodirty inodirty_nomem; 45 46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 47 { 48 struct jffs2_inodirty *this = c->wbuf_inodes; 49 50 /* If a malloc failed, consider _everything_ dirty */ 51 if (this == &inodirty_nomem) 52 return 1; 53 54 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 55 if (this && !ino) 56 return 1; 57 58 /* Look to see if the inode in question is pending in the wbuf */ 59 while (this) { 60 if (this->ino == ino) 61 return 1; 62 this = this->next; 63 } 64 return 0; 65 } 66 67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 68 { 69 struct jffs2_inodirty *this; 70 71 this = c->wbuf_inodes; 72 73 if (this != &inodirty_nomem) { 74 while (this) { 75 struct jffs2_inodirty *next = this->next; 76 kfree(this); 77 this = next; 78 } 79 } 80 c->wbuf_inodes = NULL; 81 } 82 83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 84 { 85 struct jffs2_inodirty *new; 86 87 /* Mark the superblock dirty so that kupdated will flush... */ 88 jffs2_erase_pending_trigger(c); 89 90 if (jffs2_wbuf_pending_for_ino(c, ino)) 91 return; 92 93 new = kmalloc(sizeof(*new), GFP_KERNEL); 94 if (!new) { 95 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 96 jffs2_clear_wbuf_ino_list(c); 97 c->wbuf_inodes = &inodirty_nomem; 98 return; 99 } 100 new->ino = ino; 101 new->next = c->wbuf_inodes; 102 c->wbuf_inodes = new; 103 return; 104 } 105 106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 107 { 108 struct list_head *this, *next; 109 static int n; 110 111 if (list_empty(&c->erasable_pending_wbuf_list)) 112 return; 113 114 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 115 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 116 117 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 118 list_del(this); 119 if ((jiffies + (n++)) & 127) { 120 /* Most of the time, we just erase it immediately. Otherwise we 121 spend ages scanning it on mount, etc. */ 122 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 123 list_add_tail(&jeb->list, &c->erase_pending_list); 124 c->nr_erasing_blocks++; 125 jffs2_erase_pending_trigger(c); 126 } else { 127 /* Sometimes, however, we leave it elsewhere so it doesn't get 128 immediately reused, and we spread the load a bit. */ 129 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 130 list_add_tail(&jeb->list, &c->erasable_list); 131 } 132 } 133 } 134 135 #define REFILE_NOTEMPTY 0 136 #define REFILE_ANYWAY 1 137 138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 139 { 140 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 141 142 /* File the existing block on the bad_used_list.... */ 143 if (c->nextblock == jeb) 144 c->nextblock = NULL; 145 else /* Not sure this should ever happen... need more coffee */ 146 list_del(&jeb->list); 147 if (jeb->first_node) { 148 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 149 list_add(&jeb->list, &c->bad_used_list); 150 } else { 151 BUG_ON(allow_empty == REFILE_NOTEMPTY); 152 /* It has to have had some nodes or we couldn't be here */ 153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 154 list_add(&jeb->list, &c->erase_pending_list); 155 c->nr_erasing_blocks++; 156 jffs2_erase_pending_trigger(c); 157 } 158 159 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) { 160 uint32_t oldfree = jeb->free_size; 161 162 jffs2_link_node_ref(c, jeb, 163 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE, 164 oldfree, NULL); 165 /* convert to wasted */ 166 c->wasted_size += oldfree; 167 jeb->wasted_size += oldfree; 168 c->dirty_size -= oldfree; 169 jeb->dirty_size -= oldfree; 170 } 171 172 jffs2_dbg_dump_block_lists_nolock(c); 173 jffs2_dbg_acct_sanity_check_nolock(c,jeb); 174 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 175 } 176 177 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c, 178 struct jffs2_inode_info *f, 179 struct jffs2_raw_node_ref *raw, 180 union jffs2_node_union *node) 181 { 182 struct jffs2_node_frag *frag; 183 struct jffs2_full_dirent *fd; 184 185 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n", 186 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype)); 187 188 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 && 189 je16_to_cpu(node->u.magic) != 0); 190 191 switch (je16_to_cpu(node->u.nodetype)) { 192 case JFFS2_NODETYPE_INODE: 193 if (f->metadata && f->metadata->raw == raw) { 194 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata); 195 return &f->metadata->raw; 196 } 197 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset)); 198 BUG_ON(!frag); 199 /* Find a frag which refers to the full_dnode we want to modify */ 200 while (!frag->node || frag->node->raw != raw) { 201 frag = frag_next(frag); 202 BUG_ON(!frag); 203 } 204 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node); 205 return &frag->node->raw; 206 207 case JFFS2_NODETYPE_DIRENT: 208 for (fd = f->dents; fd; fd = fd->next) { 209 if (fd->raw == raw) { 210 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd); 211 return &fd->raw; 212 } 213 } 214 BUG(); 215 216 default: 217 dbg_noderef("Don't care about replacing raw for nodetype %x\n", 218 je16_to_cpu(node->u.nodetype)); 219 break; 220 } 221 return NULL; 222 } 223 224 /* Recover from failure to write wbuf. Recover the nodes up to the 225 * wbuf, not the one which we were starting to try to write. */ 226 227 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 228 { 229 struct jffs2_eraseblock *jeb, *new_jeb; 230 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL; 231 size_t retlen; 232 int ret; 233 int nr_refile = 0; 234 unsigned char *buf; 235 uint32_t start, end, ofs, len; 236 237 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 238 239 spin_lock(&c->erase_completion_lock); 240 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); 241 spin_unlock(&c->erase_completion_lock); 242 243 BUG_ON(!ref_obsolete(jeb->last_node)); 244 245 /* Find the first node to be recovered, by skipping over every 246 node which ends before the wbuf starts, or which is obsolete. */ 247 for (next = raw = jeb->first_node; next; raw = next) { 248 next = ref_next(raw); 249 250 if (ref_obsolete(raw) || 251 (next && ref_offset(next) <= c->wbuf_ofs)) { 252 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 253 ref_offset(raw), ref_flags(raw), 254 (ref_offset(raw) + ref_totlen(c, jeb, raw)), 255 c->wbuf_ofs); 256 continue; 257 } 258 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n", 259 ref_offset(raw), ref_flags(raw), 260 (ref_offset(raw) + ref_totlen(c, jeb, raw))); 261 262 first_raw = raw; 263 break; 264 } 265 266 if (!first_raw) { 267 /* All nodes were obsolete. Nothing to recover. */ 268 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 269 c->wbuf_len = 0; 270 return; 271 } 272 273 start = ref_offset(first_raw); 274 end = ref_offset(jeb->last_node); 275 nr_refile = 1; 276 277 /* Count the number of refs which need to be copied */ 278 while ((raw = ref_next(raw)) != jeb->last_node) 279 nr_refile++; 280 281 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n", 282 start, end, end - start, nr_refile); 283 284 buf = NULL; 285 if (start < c->wbuf_ofs) { 286 /* First affected node was already partially written. 287 * Attempt to reread the old data into our buffer. */ 288 289 buf = kmalloc(end - start, GFP_KERNEL); 290 if (!buf) { 291 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 292 293 goto read_failed; 294 } 295 296 /* Do the read... */ 297 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); 298 299 /* ECC recovered ? */ 300 if ((ret == -EUCLEAN || ret == -EBADMSG) && 301 (retlen == c->wbuf_ofs - start)) 302 ret = 0; 303 304 if (ret || retlen != c->wbuf_ofs - start) { 305 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 306 307 kfree(buf); 308 buf = NULL; 309 read_failed: 310 first_raw = ref_next(first_raw); 311 nr_refile--; 312 while (first_raw && ref_obsolete(first_raw)) { 313 first_raw = ref_next(first_raw); 314 nr_refile--; 315 } 316 317 /* If this was the only node to be recovered, give up */ 318 if (!first_raw) { 319 c->wbuf_len = 0; 320 return; 321 } 322 323 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 324 start = ref_offset(first_raw); 325 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n", 326 start, end, end - start, nr_refile); 327 328 } else { 329 /* Read succeeded. Copy the remaining data from the wbuf */ 330 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 331 } 332 } 333 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 334 Either 'buf' contains the data, or we find it in the wbuf */ 335 336 /* ... and get an allocation of space from a shiny new block instead */ 337 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); 338 if (ret) { 339 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 340 kfree(buf); 341 return; 342 } 343 344 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); 345 if (ret) { 346 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); 347 kfree(buf); 348 return; 349 } 350 351 ofs = write_ofs(c); 352 353 if (end-start >= c->wbuf_pagesize) { 354 /* Need to do another write immediately, but it's possible 355 that this is just because the wbuf itself is completely 356 full, and there's nothing earlier read back from the 357 flash. Hence 'buf' isn't necessarily what we're writing 358 from. */ 359 unsigned char *rewrite_buf = buf?:c->wbuf; 360 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 361 362 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 363 towrite, ofs)); 364 365 #ifdef BREAKMEHEADER 366 static int breakme; 367 if (breakme++ == 20) { 368 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 369 breakme = 0; 370 c->mtd->write(c->mtd, ofs, towrite, &retlen, 371 brokenbuf); 372 ret = -EIO; 373 } else 374 #endif 375 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, 376 rewrite_buf); 377 378 if (ret || retlen != towrite) { 379 /* Argh. We tried. Really we did. */ 380 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 381 kfree(buf); 382 383 if (retlen) 384 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL); 385 386 return; 387 } 388 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 389 390 c->wbuf_len = (end - start) - towrite; 391 c->wbuf_ofs = ofs + towrite; 392 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); 393 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 394 } else { 395 /* OK, now we're left with the dregs in whichever buffer we're using */ 396 if (buf) { 397 memcpy(c->wbuf, buf, end-start); 398 } else { 399 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 400 } 401 c->wbuf_ofs = ofs; 402 c->wbuf_len = end - start; 403 } 404 405 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 406 new_jeb = &c->blocks[ofs / c->sector_size]; 407 408 spin_lock(&c->erase_completion_lock); 409 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) { 410 uint32_t rawlen = ref_totlen(c, jeb, raw); 411 struct jffs2_inode_cache *ic; 412 struct jffs2_raw_node_ref *new_ref; 413 struct jffs2_raw_node_ref **adjust_ref = NULL; 414 struct jffs2_inode_info *f = NULL; 415 416 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 417 rawlen, ref_offset(raw), ref_flags(raw), ofs)); 418 419 ic = jffs2_raw_ref_to_ic(raw); 420 421 /* Ick. This XATTR mess should be fixed shortly... */ 422 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) { 423 struct jffs2_xattr_datum *xd = (void *)ic; 424 BUG_ON(xd->node != raw); 425 adjust_ref = &xd->node; 426 raw->next_in_ino = NULL; 427 ic = NULL; 428 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) { 429 struct jffs2_xattr_datum *xr = (void *)ic; 430 BUG_ON(xr->node != raw); 431 adjust_ref = &xr->node; 432 raw->next_in_ino = NULL; 433 ic = NULL; 434 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) { 435 struct jffs2_raw_node_ref **p = &ic->nodes; 436 437 /* Remove the old node from the per-inode list */ 438 while (*p && *p != (void *)ic) { 439 if (*p == raw) { 440 (*p) = (raw->next_in_ino); 441 raw->next_in_ino = NULL; 442 break; 443 } 444 p = &((*p)->next_in_ino); 445 } 446 447 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) { 448 /* If it's an in-core inode, then we have to adjust any 449 full_dirent or full_dnode structure to point to the 450 new version instead of the old */ 451 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink); 452 if (IS_ERR(f)) { 453 /* Should never happen; it _must_ be present */ 454 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n", 455 ic->ino, PTR_ERR(f)); 456 BUG(); 457 } 458 /* We don't lock f->sem. There's a number of ways we could 459 end up in here with it already being locked, and nobody's 460 going to modify it on us anyway because we hold the 461 alloc_sem. We're only changing one ->raw pointer too, 462 which we can get away with without upsetting readers. */ 463 adjust_ref = jffs2_incore_replace_raw(c, f, raw, 464 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start)); 465 } else if (unlikely(ic->state != INO_STATE_PRESENT && 466 ic->state != INO_STATE_CHECKEDABSENT && 467 ic->state != INO_STATE_GC)) { 468 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state); 469 BUG(); 470 } 471 } 472 473 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic); 474 475 if (adjust_ref) { 476 BUG_ON(*adjust_ref != raw); 477 *adjust_ref = new_ref; 478 } 479 if (f) 480 jffs2_gc_release_inode(c, f); 481 482 if (!ref_obsolete(raw)) { 483 jeb->dirty_size += rawlen; 484 jeb->used_size -= rawlen; 485 c->dirty_size += rawlen; 486 c->used_size -= rawlen; 487 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE; 488 BUG_ON(raw->next_in_ino); 489 } 490 ofs += rawlen; 491 } 492 493 kfree(buf); 494 495 /* Fix up the original jeb now it's on the bad_list */ 496 if (first_raw == jeb->first_node) { 497 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 498 list_del(&jeb->list); 499 list_add(&jeb->list, &c->erase_pending_list); 500 c->nr_erasing_blocks++; 501 jffs2_erase_pending_trigger(c); 502 } 503 504 jffs2_dbg_acct_sanity_check_nolock(c, jeb); 505 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 506 507 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); 508 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); 509 510 spin_unlock(&c->erase_completion_lock); 511 512 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len)); 513 514 } 515 516 /* Meaning of pad argument: 517 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 518 1: Pad, do not adjust nextblock free_size 519 2: Pad, adjust nextblock free_size 520 */ 521 #define NOPAD 0 522 #define PAD_NOACCOUNT 1 523 #define PAD_ACCOUNTING 2 524 525 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 526 { 527 struct jffs2_eraseblock *wbuf_jeb; 528 int ret; 529 size_t retlen; 530 531 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't 532 del_timer() the timer we never initialised. */ 533 if (!jffs2_is_writebuffered(c)) 534 return 0; 535 536 if (!down_trylock(&c->alloc_sem)) { 537 up(&c->alloc_sem); 538 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 539 BUG(); 540 } 541 542 if (!c->wbuf_len) /* already checked c->wbuf above */ 543 return 0; 544 545 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 546 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1)) 547 return -ENOMEM; 548 549 /* claim remaining space on the page 550 this happens, if we have a change to a new block, 551 or if fsync forces us to flush the writebuffer. 552 if we have a switch to next page, we will not have 553 enough remaining space for this. 554 */ 555 if (pad ) { 556 c->wbuf_len = PAD(c->wbuf_len); 557 558 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 559 with 8 byte page size */ 560 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 561 562 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 563 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 564 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 565 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 566 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 567 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 568 } 569 } 570 /* else jffs2_flash_writev has actually filled in the rest of the 571 buffer for us, and will deal with the node refs etc. later. */ 572 573 #ifdef BREAKME 574 static int breakme; 575 if (breakme++ == 20) { 576 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 577 breakme = 0; 578 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, 579 brokenbuf); 580 ret = -EIO; 581 } else 582 #endif 583 584 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); 585 586 if (ret || retlen != c->wbuf_pagesize) { 587 if (ret) 588 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); 589 else { 590 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 591 retlen, c->wbuf_pagesize); 592 ret = -EIO; 593 } 594 595 jffs2_wbuf_recover(c); 596 597 return ret; 598 } 599 600 /* Adjust free size of the block if we padded. */ 601 if (pad) { 602 uint32_t waste = c->wbuf_pagesize - c->wbuf_len; 603 604 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 605 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset)); 606 607 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 608 padded. If there is less free space in the block than that, 609 something screwed up */ 610 if (wbuf_jeb->free_size < waste) { 611 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 612 c->wbuf_ofs, c->wbuf_len, waste); 613 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 614 wbuf_jeb->offset, wbuf_jeb->free_size); 615 BUG(); 616 } 617 618 spin_lock(&c->erase_completion_lock); 619 620 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL); 621 /* FIXME: that made it count as dirty. Convert to wasted */ 622 wbuf_jeb->dirty_size -= waste; 623 c->dirty_size -= waste; 624 wbuf_jeb->wasted_size += waste; 625 c->wasted_size += waste; 626 } else 627 spin_lock(&c->erase_completion_lock); 628 629 /* Stick any now-obsoleted blocks on the erase_pending_list */ 630 jffs2_refile_wbuf_blocks(c); 631 jffs2_clear_wbuf_ino_list(c); 632 spin_unlock(&c->erase_completion_lock); 633 634 memset(c->wbuf,0xff,c->wbuf_pagesize); 635 /* adjust write buffer offset, else we get a non contiguous write bug */ 636 c->wbuf_ofs += c->wbuf_pagesize; 637 c->wbuf_len = 0; 638 return 0; 639 } 640 641 /* Trigger garbage collection to flush the write-buffer. 642 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 643 outstanding. If ino arg non-zero, do it only if a write for the 644 given inode is outstanding. */ 645 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 646 { 647 uint32_t old_wbuf_ofs; 648 uint32_t old_wbuf_len; 649 int ret = 0; 650 651 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 652 653 if (!c->wbuf) 654 return 0; 655 656 down(&c->alloc_sem); 657 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 658 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 659 up(&c->alloc_sem); 660 return 0; 661 } 662 663 old_wbuf_ofs = c->wbuf_ofs; 664 old_wbuf_len = c->wbuf_len; 665 666 if (c->unchecked_size) { 667 /* GC won't make any progress for a while */ 668 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 669 down_write(&c->wbuf_sem); 670 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 671 /* retry flushing wbuf in case jffs2_wbuf_recover 672 left some data in the wbuf */ 673 if (ret) 674 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 675 up_write(&c->wbuf_sem); 676 } else while (old_wbuf_len && 677 old_wbuf_ofs == c->wbuf_ofs) { 678 679 up(&c->alloc_sem); 680 681 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 682 683 ret = jffs2_garbage_collect_pass(c); 684 if (ret) { 685 /* GC failed. Flush it with padding instead */ 686 down(&c->alloc_sem); 687 down_write(&c->wbuf_sem); 688 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 689 /* retry flushing wbuf in case jffs2_wbuf_recover 690 left some data in the wbuf */ 691 if (ret) 692 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 693 up_write(&c->wbuf_sem); 694 break; 695 } 696 down(&c->alloc_sem); 697 } 698 699 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 700 701 up(&c->alloc_sem); 702 return ret; 703 } 704 705 /* Pad write-buffer to end and write it, wasting space. */ 706 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 707 { 708 int ret; 709 710 if (!c->wbuf) 711 return 0; 712 713 down_write(&c->wbuf_sem); 714 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 715 /* retry - maybe wbuf recover left some data in wbuf. */ 716 if (ret) 717 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 718 up_write(&c->wbuf_sem); 719 720 return ret; 721 } 722 723 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, 724 size_t len) 725 { 726 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) 727 return 0; 728 729 if (len > (c->wbuf_pagesize - c->wbuf_len)) 730 len = c->wbuf_pagesize - c->wbuf_len; 731 memcpy(c->wbuf + c->wbuf_len, buf, len); 732 c->wbuf_len += (uint32_t) len; 733 return len; 734 } 735 736 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, 737 unsigned long count, loff_t to, size_t *retlen, 738 uint32_t ino) 739 { 740 struct jffs2_eraseblock *jeb; 741 size_t wbuf_retlen, donelen = 0; 742 uint32_t outvec_to = to; 743 int ret, invec; 744 745 /* If not writebuffered flash, don't bother */ 746 if (!jffs2_is_writebuffered(c)) 747 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 748 749 down_write(&c->wbuf_sem); 750 751 /* If wbuf_ofs is not initialized, set it to target address */ 752 if (c->wbuf_ofs == 0xFFFFFFFF) { 753 c->wbuf_ofs = PAGE_DIV(to); 754 c->wbuf_len = PAGE_MOD(to); 755 memset(c->wbuf,0xff,c->wbuf_pagesize); 756 } 757 758 /* 759 * Sanity checks on target address. It's permitted to write 760 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to 761 * write at the beginning of a new erase block. Anything else, 762 * and you die. New block starts at xxx000c (0-b = block 763 * header) 764 */ 765 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 766 /* It's a write to a new block */ 767 if (c->wbuf_len) { 768 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx " 769 "causes flush of wbuf at 0x%08x\n", 770 (unsigned long)to, c->wbuf_ofs)); 771 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 772 if (ret) 773 goto outerr; 774 } 775 /* set pointer to new block */ 776 c->wbuf_ofs = PAGE_DIV(to); 777 c->wbuf_len = PAGE_MOD(to); 778 } 779 780 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 781 /* We're not writing immediately after the writebuffer. Bad. */ 782 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write " 783 "to %08lx\n", (unsigned long)to); 784 if (c->wbuf_len) 785 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 786 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 787 BUG(); 788 } 789 790 /* adjust alignment offset */ 791 if (c->wbuf_len != PAGE_MOD(to)) { 792 c->wbuf_len = PAGE_MOD(to); 793 /* take care of alignment to next page */ 794 if (!c->wbuf_len) { 795 c->wbuf_len = c->wbuf_pagesize; 796 ret = __jffs2_flush_wbuf(c, NOPAD); 797 if (ret) 798 goto outerr; 799 } 800 } 801 802 for (invec = 0; invec < count; invec++) { 803 int vlen = invecs[invec].iov_len; 804 uint8_t *v = invecs[invec].iov_base; 805 806 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 807 808 if (c->wbuf_len == c->wbuf_pagesize) { 809 ret = __jffs2_flush_wbuf(c, NOPAD); 810 if (ret) 811 goto outerr; 812 } 813 vlen -= wbuf_retlen; 814 outvec_to += wbuf_retlen; 815 donelen += wbuf_retlen; 816 v += wbuf_retlen; 817 818 if (vlen >= c->wbuf_pagesize) { 819 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen), 820 &wbuf_retlen, v); 821 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) 822 goto outfile; 823 824 vlen -= wbuf_retlen; 825 outvec_to += wbuf_retlen; 826 c->wbuf_ofs = outvec_to; 827 donelen += wbuf_retlen; 828 v += wbuf_retlen; 829 } 830 831 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 832 if (c->wbuf_len == c->wbuf_pagesize) { 833 ret = __jffs2_flush_wbuf(c, NOPAD); 834 if (ret) 835 goto outerr; 836 } 837 838 outvec_to += wbuf_retlen; 839 donelen += wbuf_retlen; 840 } 841 842 /* 843 * If there's a remainder in the wbuf and it's a non-GC write, 844 * remember that the wbuf affects this ino 845 */ 846 *retlen = donelen; 847 848 if (jffs2_sum_active()) { 849 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); 850 if (res) 851 return res; 852 } 853 854 if (c->wbuf_len && ino) 855 jffs2_wbuf_dirties_inode(c, ino); 856 857 ret = 0; 858 up_write(&c->wbuf_sem); 859 return ret; 860 861 outfile: 862 /* 863 * At this point we have no problem, c->wbuf is empty. However 864 * refile nextblock to avoid writing again to same address. 865 */ 866 867 spin_lock(&c->erase_completion_lock); 868 869 jeb = &c->blocks[outvec_to / c->sector_size]; 870 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 871 872 spin_unlock(&c->erase_completion_lock); 873 874 outerr: 875 *retlen = 0; 876 up_write(&c->wbuf_sem); 877 return ret; 878 } 879 880 /* 881 * This is the entry for flash write. 882 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 883 */ 884 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, 885 size_t *retlen, const u_char *buf) 886 { 887 struct kvec vecs[1]; 888 889 if (!jffs2_is_writebuffered(c)) 890 return jffs2_flash_direct_write(c, ofs, len, retlen, buf); 891 892 vecs[0].iov_base = (unsigned char *) buf; 893 vecs[0].iov_len = len; 894 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 895 } 896 897 /* 898 Handle readback from writebuffer and ECC failure return 899 */ 900 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 901 { 902 loff_t orbf = 0, owbf = 0, lwbf = 0; 903 int ret; 904 905 if (!jffs2_is_writebuffered(c)) 906 return c->mtd->read(c->mtd, ofs, len, retlen, buf); 907 908 /* Read flash */ 909 down_read(&c->wbuf_sem); 910 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); 911 912 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { 913 if (ret == -EBADMSG) 914 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)" 915 " returned ECC error\n", len, ofs); 916 /* 917 * We have the raw data without ECC correction in the buffer, 918 * maybe we are lucky and all data or parts are correct. We 919 * check the node. If data are corrupted node check will sort 920 * it out. We keep this block, it will fail on write or erase 921 * and the we mark it bad. Or should we do that now? But we 922 * should give him a chance. Maybe we had a system crash or 923 * power loss before the ecc write or a erase was completed. 924 * So we return success. :) 925 */ 926 ret = 0; 927 } 928 929 /* if no writebuffer available or write buffer empty, return */ 930 if (!c->wbuf_pagesize || !c->wbuf_len) 931 goto exit; 932 933 /* if we read in a different block, return */ 934 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) 935 goto exit; 936 937 if (ofs >= c->wbuf_ofs) { 938 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 939 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 940 goto exit; 941 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 942 if (lwbf > len) 943 lwbf = len; 944 } else { 945 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 946 if (orbf > len) /* is write beyond write buffer ? */ 947 goto exit; 948 lwbf = len - orbf; /* number of bytes to copy */ 949 if (lwbf > c->wbuf_len) 950 lwbf = c->wbuf_len; 951 } 952 if (lwbf > 0) 953 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 954 955 exit: 956 up_read(&c->wbuf_sem); 957 return ret; 958 } 959 960 #define NR_OOB_SCAN_PAGES 4 961 962 /* 963 * Check, if the out of band area is empty 964 */ 965 int jffs2_check_oob_empty(struct jffs2_sb_info *c, 966 struct jffs2_eraseblock *jeb, int mode) 967 { 968 int i, page, ret; 969 int oobsize = c->mtd->oobsize; 970 struct mtd_oob_ops ops; 971 972 ops.len = NR_OOB_SCAN_PAGES * oobsize; 973 ops.ooblen = oobsize; 974 ops.oobbuf = c->oobbuf; 975 ops.ooboffs = 0; 976 ops.datbuf = NULL; 977 ops.mode = MTD_OOB_PLACE; 978 979 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops); 980 if (ret) { 981 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB " 982 "failed %d for block at %08x\n", ret, jeb->offset)); 983 return ret; 984 } 985 986 if (ops.retlen < ops.len) { 987 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB " 988 "returned short read (%zd bytes not %d) for block " 989 "at %08x\n", ops.retlen, ops.len, jeb->offset)); 990 return -EIO; 991 } 992 993 /* Special check for first page */ 994 for(i = 0; i < oobsize ; i++) { 995 /* Yeah, we know about the cleanmarker. */ 996 if (mode && i >= c->fsdata_pos && 997 i < c->fsdata_pos + c->fsdata_len) 998 continue; 999 1000 if (ops.oobbuf[i] != 0xFF) { 1001 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for " 1002 "%08x\n", ops.oobbuf[i], i, jeb->offset)); 1003 return 1; 1004 } 1005 } 1006 1007 /* we know, we are aligned :) */ 1008 for (page = oobsize; page < ops.len; page += sizeof(long)) { 1009 long dat = *(long *)(&ops.oobbuf[page]); 1010 if(dat != -1) 1011 return 1; 1012 } 1013 return 0; 1014 } 1015 1016 /* 1017 * Scan for a valid cleanmarker and for bad blocks 1018 */ 1019 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, 1020 struct jffs2_eraseblock *jeb) 1021 { 1022 struct jffs2_unknown_node n; 1023 struct mtd_oob_ops ops; 1024 int oobsize = c->mtd->oobsize; 1025 unsigned char *p,*b; 1026 int i, ret; 1027 size_t offset = jeb->offset; 1028 1029 /* Check first if the block is bad. */ 1030 if (c->mtd->block_isbad(c->mtd, offset)) { 1031 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()" 1032 ": Bad block at %08x\n", jeb->offset)); 1033 return 2; 1034 } 1035 1036 ops.len = oobsize; 1037 ops.ooblen = oobsize; 1038 ops.oobbuf = c->oobbuf; 1039 ops.ooboffs = 0; 1040 ops.datbuf = NULL; 1041 ops.mode = MTD_OOB_PLACE; 1042 1043 ret = c->mtd->read_oob(c->mtd, offset, &ops); 1044 if (ret) { 1045 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1046 "Read OOB failed %d for block at %08x\n", 1047 ret, jeb->offset)); 1048 return ret; 1049 } 1050 1051 if (ops.retlen < ops.len) { 1052 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1053 "Read OOB return short read (%zd bytes not %d) " 1054 "for block at %08x\n", ops.retlen, ops.len, 1055 jeb->offset)); 1056 return -EIO; 1057 } 1058 1059 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); 1060 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); 1061 n.totlen = cpu_to_je32 (8); 1062 p = (unsigned char *) &n; 1063 b = c->oobbuf + c->fsdata_pos; 1064 1065 for (i = c->fsdata_len; i; i--) { 1066 if (*b++ != *p++) 1067 ret = 1; 1068 } 1069 1070 D1(if (ret == 1) { 1071 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1072 "Cleanmarker node not detected in block at %08x\n", 1073 offset); 1074 printk(KERN_WARNING "OOB at %08zx was ", offset); 1075 for (i=0; i < oobsize; i++) 1076 printk("%02x ", c->oobbuf[i]); 1077 printk("\n"); 1078 }); 1079 return ret; 1080 } 1081 1082 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, 1083 struct jffs2_eraseblock *jeb) 1084 { 1085 struct jffs2_unknown_node n; 1086 int ret; 1087 struct mtd_oob_ops ops; 1088 1089 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 1090 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); 1091 n.totlen = cpu_to_je32(8); 1092 1093 ops.len = c->fsdata_len; 1094 ops.ooblen = c->fsdata_len;; 1095 ops.oobbuf = (uint8_t *)&n; 1096 ops.ooboffs = c->fsdata_pos; 1097 ops.datbuf = NULL; 1098 ops.mode = MTD_OOB_PLACE; 1099 1100 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops); 1101 1102 if (ret) { 1103 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): " 1104 "Write failed for block at %08x: error %d\n", 1105 jeb->offset, ret)); 1106 return ret; 1107 } 1108 if (ops.retlen != ops.len) { 1109 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): " 1110 "Short write for block at %08x: %zd not %d\n", 1111 jeb->offset, ops.retlen, ops.len)); 1112 return -EIO; 1113 } 1114 return 0; 1115 } 1116 1117 /* 1118 * On NAND we try to mark this block bad. If the block was erased more 1119 * than MAX_ERASE_FAILURES we mark it finaly bad. 1120 * Don't care about failures. This block remains on the erase-pending 1121 * or badblock list as long as nobody manipulates the flash with 1122 * a bootloader or something like that. 1123 */ 1124 1125 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1126 { 1127 int ret; 1128 1129 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1130 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1131 return 0; 1132 1133 if (!c->mtd->block_markbad) 1134 return 1; // What else can we do? 1135 1136 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); 1137 ret = c->mtd->block_markbad(c->mtd, bad_offset); 1138 1139 if (ret) { 1140 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1141 return ret; 1142 } 1143 return 1; 1144 } 1145 1146 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) 1147 { 1148 struct nand_ecclayout *oinfo = c->mtd->ecclayout; 1149 1150 /* Do this only, if we have an oob buffer */ 1151 if (!c->mtd->oobsize) 1152 return 0; 1153 1154 /* Cleanmarker is out-of-band, so inline size zero */ 1155 c->cleanmarker_size = 0; 1156 1157 /* Should we use autoplacement ? */ 1158 if (!oinfo) { 1159 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); 1160 return -EINVAL; 1161 } 1162 1163 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); 1164 /* Get the position of the free bytes */ 1165 if (!oinfo->oobfree[0].length) { 1166 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep." 1167 " Autoplacement selected and no empty space in oob\n"); 1168 return -ENOSPC; 1169 } 1170 c->fsdata_pos = oinfo->oobfree[0].offset; 1171 c->fsdata_len = oinfo->oobfree[0].length; 1172 if (c->fsdata_len > 8) 1173 c->fsdata_len = 8; 1174 1175 return 0; 1176 } 1177 1178 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1179 { 1180 int res; 1181 1182 /* Initialise write buffer */ 1183 init_rwsem(&c->wbuf_sem); 1184 c->wbuf_pagesize = c->mtd->writesize; 1185 c->wbuf_ofs = 0xFFFFFFFF; 1186 1187 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1188 if (!c->wbuf) 1189 return -ENOMEM; 1190 1191 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL); 1192 if (!c->oobbuf) 1193 return -ENOMEM; 1194 1195 res = jffs2_nand_set_oobinfo(c); 1196 1197 #ifdef BREAKME 1198 if (!brokenbuf) 1199 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1200 if (!brokenbuf) { 1201 kfree(c->wbuf); 1202 return -ENOMEM; 1203 } 1204 memset(brokenbuf, 0xdb, c->wbuf_pagesize); 1205 #endif 1206 return res; 1207 } 1208 1209 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1210 { 1211 kfree(c->wbuf); 1212 kfree(c->oobbuf); 1213 } 1214 1215 int jffs2_dataflash_setup(struct jffs2_sb_info *c) { 1216 c->cleanmarker_size = 0; /* No cleanmarkers needed */ 1217 1218 /* Initialize write buffer */ 1219 init_rwsem(&c->wbuf_sem); 1220 1221 1222 c->wbuf_pagesize = c->mtd->erasesize; 1223 1224 /* Find a suitable c->sector_size 1225 * - Not too much sectors 1226 * - Sectors have to be at least 4 K + some bytes 1227 * - All known dataflashes have erase sizes of 528 or 1056 1228 * - we take at least 8 eraseblocks and want to have at least 8K size 1229 * - The concatenation should be a power of 2 1230 */ 1231 1232 c->sector_size = 8 * c->mtd->erasesize; 1233 1234 while (c->sector_size < 8192) { 1235 c->sector_size *= 2; 1236 } 1237 1238 /* It may be necessary to adjust the flash size */ 1239 c->flash_size = c->mtd->size; 1240 1241 if ((c->flash_size % c->sector_size) != 0) { 1242 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; 1243 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); 1244 }; 1245 1246 c->wbuf_ofs = 0xFFFFFFFF; 1247 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1248 if (!c->wbuf) 1249 return -ENOMEM; 1250 1251 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1252 1253 return 0; 1254 } 1255 1256 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { 1257 kfree(c->wbuf); 1258 } 1259 1260 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { 1261 /* Cleanmarker currently occupies whole programming regions, 1262 * either one or 2 for 8Byte STMicro flashes. */ 1263 c->cleanmarker_size = max(16u, c->mtd->writesize); 1264 1265 /* Initialize write buffer */ 1266 init_rwsem(&c->wbuf_sem); 1267 c->wbuf_pagesize = c->mtd->writesize; 1268 c->wbuf_ofs = 0xFFFFFFFF; 1269 1270 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1271 if (!c->wbuf) 1272 return -ENOMEM; 1273 1274 return 0; 1275 } 1276 1277 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { 1278 kfree(c->wbuf); 1279 } 1280