1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $ 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/crc32.h> 20 #include <linux/mtd/nand.h> 21 #include <linux/jiffies.h> 22 #include <linux/sched.h> 23 24 #include "nodelist.h" 25 26 /* For testing write failures */ 27 #undef BREAKME 28 #undef BREAKMEHEADER 29 30 #ifdef BREAKME 31 static unsigned char *brokenbuf; 32 #endif 33 34 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) 35 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) 36 37 /* max. erase failures before we mark a block bad */ 38 #define MAX_ERASE_FAILURES 2 39 40 struct jffs2_inodirty { 41 uint32_t ino; 42 struct jffs2_inodirty *next; 43 }; 44 45 static struct jffs2_inodirty inodirty_nomem; 46 47 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 48 { 49 struct jffs2_inodirty *this = c->wbuf_inodes; 50 51 /* If a malloc failed, consider _everything_ dirty */ 52 if (this == &inodirty_nomem) 53 return 1; 54 55 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 56 if (this && !ino) 57 return 1; 58 59 /* Look to see if the inode in question is pending in the wbuf */ 60 while (this) { 61 if (this->ino == ino) 62 return 1; 63 this = this->next; 64 } 65 return 0; 66 } 67 68 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 69 { 70 struct jffs2_inodirty *this; 71 72 this = c->wbuf_inodes; 73 74 if (this != &inodirty_nomem) { 75 while (this) { 76 struct jffs2_inodirty *next = this->next; 77 kfree(this); 78 this = next; 79 } 80 } 81 c->wbuf_inodes = NULL; 82 } 83 84 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 85 { 86 struct jffs2_inodirty *new; 87 88 /* Mark the superblock dirty so that kupdated will flush... */ 89 jffs2_erase_pending_trigger(c); 90 91 if (jffs2_wbuf_pending_for_ino(c, ino)) 92 return; 93 94 new = kmalloc(sizeof(*new), GFP_KERNEL); 95 if (!new) { 96 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 97 jffs2_clear_wbuf_ino_list(c); 98 c->wbuf_inodes = &inodirty_nomem; 99 return; 100 } 101 new->ino = ino; 102 new->next = c->wbuf_inodes; 103 c->wbuf_inodes = new; 104 return; 105 } 106 107 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 108 { 109 struct list_head *this, *next; 110 static int n; 111 112 if (list_empty(&c->erasable_pending_wbuf_list)) 113 return; 114 115 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 116 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 117 118 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 119 list_del(this); 120 if ((jiffies + (n++)) & 127) { 121 /* Most of the time, we just erase it immediately. Otherwise we 122 spend ages scanning it on mount, etc. */ 123 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 124 list_add_tail(&jeb->list, &c->erase_pending_list); 125 c->nr_erasing_blocks++; 126 jffs2_erase_pending_trigger(c); 127 } else { 128 /* Sometimes, however, we leave it elsewhere so it doesn't get 129 immediately reused, and we spread the load a bit. */ 130 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 131 list_add_tail(&jeb->list, &c->erasable_list); 132 } 133 } 134 } 135 136 #define REFILE_NOTEMPTY 0 137 #define REFILE_ANYWAY 1 138 139 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 140 { 141 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 142 143 /* File the existing block on the bad_used_list.... */ 144 if (c->nextblock == jeb) 145 c->nextblock = NULL; 146 else /* Not sure this should ever happen... need more coffee */ 147 list_del(&jeb->list); 148 if (jeb->first_node) { 149 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 150 list_add(&jeb->list, &c->bad_used_list); 151 } else { 152 BUG_ON(allow_empty == REFILE_NOTEMPTY); 153 /* It has to have had some nodes or we couldn't be here */ 154 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 155 list_add(&jeb->list, &c->erase_pending_list); 156 c->nr_erasing_blocks++; 157 jffs2_erase_pending_trigger(c); 158 } 159 160 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) { 161 uint32_t oldfree = jeb->free_size; 162 163 jffs2_link_node_ref(c, jeb, 164 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE, 165 oldfree, NULL); 166 /* convert to wasted */ 167 c->wasted_size += oldfree; 168 jeb->wasted_size += oldfree; 169 c->dirty_size -= oldfree; 170 jeb->dirty_size -= oldfree; 171 } 172 173 jffs2_dbg_dump_block_lists_nolock(c); 174 jffs2_dbg_acct_sanity_check_nolock(c,jeb); 175 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 176 } 177 178 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c, 179 struct jffs2_inode_info *f, 180 struct jffs2_raw_node_ref *raw, 181 union jffs2_node_union *node) 182 { 183 struct jffs2_node_frag *frag; 184 struct jffs2_full_dirent *fd; 185 186 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n", 187 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype)); 188 189 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 && 190 je16_to_cpu(node->u.magic) != 0); 191 192 switch (je16_to_cpu(node->u.nodetype)) { 193 case JFFS2_NODETYPE_INODE: 194 if (f->metadata && f->metadata->raw == raw) { 195 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata); 196 return &f->metadata->raw; 197 } 198 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset)); 199 BUG_ON(!frag); 200 /* Find a frag which refers to the full_dnode we want to modify */ 201 while (!frag->node || frag->node->raw != raw) { 202 frag = frag_next(frag); 203 BUG_ON(!frag); 204 } 205 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node); 206 return &frag->node->raw; 207 208 case JFFS2_NODETYPE_DIRENT: 209 for (fd = f->dents; fd; fd = fd->next) { 210 if (fd->raw == raw) { 211 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd); 212 return &fd->raw; 213 } 214 } 215 BUG(); 216 217 default: 218 dbg_noderef("Don't care about replacing raw for nodetype %x\n", 219 je16_to_cpu(node->u.nodetype)); 220 break; 221 } 222 return NULL; 223 } 224 225 /* Recover from failure to write wbuf. Recover the nodes up to the 226 * wbuf, not the one which we were starting to try to write. */ 227 228 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 229 { 230 struct jffs2_eraseblock *jeb, *new_jeb; 231 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL; 232 size_t retlen; 233 int ret; 234 int nr_refile = 0; 235 unsigned char *buf; 236 uint32_t start, end, ofs, len; 237 238 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 239 240 spin_lock(&c->erase_completion_lock); 241 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); 242 spin_unlock(&c->erase_completion_lock); 243 244 BUG_ON(!ref_obsolete(jeb->last_node)); 245 246 /* Find the first node to be recovered, by skipping over every 247 node which ends before the wbuf starts, or which is obsolete. */ 248 for (next = raw = jeb->first_node; next; raw = next) { 249 next = ref_next(raw); 250 251 if (ref_obsolete(raw) || 252 (next && ref_offset(next) <= c->wbuf_ofs)) { 253 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 254 ref_offset(raw), ref_flags(raw), 255 (ref_offset(raw) + ref_totlen(c, jeb, raw)), 256 c->wbuf_ofs); 257 continue; 258 } 259 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n", 260 ref_offset(raw), ref_flags(raw), 261 (ref_offset(raw) + ref_totlen(c, jeb, raw))); 262 263 first_raw = raw; 264 break; 265 } 266 267 if (!first_raw) { 268 /* All nodes were obsolete. Nothing to recover. */ 269 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 270 c->wbuf_len = 0; 271 return; 272 } 273 274 start = ref_offset(first_raw); 275 end = ref_offset(jeb->last_node); 276 nr_refile = 1; 277 278 /* Count the number of refs which need to be copied */ 279 while ((raw = ref_next(raw)) != jeb->last_node) 280 nr_refile++; 281 282 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n", 283 start, end, end - start, nr_refile); 284 285 buf = NULL; 286 if (start < c->wbuf_ofs) { 287 /* First affected node was already partially written. 288 * Attempt to reread the old data into our buffer. */ 289 290 buf = kmalloc(end - start, GFP_KERNEL); 291 if (!buf) { 292 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 293 294 goto read_failed; 295 } 296 297 /* Do the read... */ 298 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); 299 300 /* ECC recovered ? */ 301 if ((ret == -EUCLEAN || ret == -EBADMSG) && 302 (retlen == c->wbuf_ofs - start)) 303 ret = 0; 304 305 if (ret || retlen != c->wbuf_ofs - start) { 306 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 307 308 kfree(buf); 309 buf = NULL; 310 read_failed: 311 first_raw = ref_next(first_raw); 312 nr_refile--; 313 while (first_raw && ref_obsolete(first_raw)) { 314 first_raw = ref_next(first_raw); 315 nr_refile--; 316 } 317 318 /* If this was the only node to be recovered, give up */ 319 if (!first_raw) { 320 c->wbuf_len = 0; 321 return; 322 } 323 324 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 325 start = ref_offset(first_raw); 326 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n", 327 start, end, end - start, nr_refile); 328 329 } else { 330 /* Read succeeded. Copy the remaining data from the wbuf */ 331 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 332 } 333 } 334 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 335 Either 'buf' contains the data, or we find it in the wbuf */ 336 337 /* ... and get an allocation of space from a shiny new block instead */ 338 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); 339 if (ret) { 340 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 341 kfree(buf); 342 return; 343 } 344 345 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); 346 if (ret) { 347 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); 348 kfree(buf); 349 return; 350 } 351 352 ofs = write_ofs(c); 353 354 if (end-start >= c->wbuf_pagesize) { 355 /* Need to do another write immediately, but it's possible 356 that this is just because the wbuf itself is completely 357 full, and there's nothing earlier read back from the 358 flash. Hence 'buf' isn't necessarily what we're writing 359 from. */ 360 unsigned char *rewrite_buf = buf?:c->wbuf; 361 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 362 363 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 364 towrite, ofs)); 365 366 #ifdef BREAKMEHEADER 367 static int breakme; 368 if (breakme++ == 20) { 369 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 370 breakme = 0; 371 c->mtd->write(c->mtd, ofs, towrite, &retlen, 372 brokenbuf); 373 ret = -EIO; 374 } else 375 #endif 376 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, 377 rewrite_buf); 378 379 if (ret || retlen != towrite) { 380 /* Argh. We tried. Really we did. */ 381 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 382 kfree(buf); 383 384 if (retlen) 385 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL); 386 387 return; 388 } 389 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 390 391 c->wbuf_len = (end - start) - towrite; 392 c->wbuf_ofs = ofs + towrite; 393 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); 394 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 395 } else { 396 /* OK, now we're left with the dregs in whichever buffer we're using */ 397 if (buf) { 398 memcpy(c->wbuf, buf, end-start); 399 } else { 400 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 401 } 402 c->wbuf_ofs = ofs; 403 c->wbuf_len = end - start; 404 } 405 406 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 407 new_jeb = &c->blocks[ofs / c->sector_size]; 408 409 spin_lock(&c->erase_completion_lock); 410 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) { 411 uint32_t rawlen = ref_totlen(c, jeb, raw); 412 struct jffs2_inode_cache *ic; 413 struct jffs2_raw_node_ref *new_ref; 414 struct jffs2_raw_node_ref **adjust_ref = NULL; 415 struct jffs2_inode_info *f = NULL; 416 417 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 418 rawlen, ref_offset(raw), ref_flags(raw), ofs)); 419 420 ic = jffs2_raw_ref_to_ic(raw); 421 422 /* Ick. This XATTR mess should be fixed shortly... */ 423 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) { 424 struct jffs2_xattr_datum *xd = (void *)ic; 425 BUG_ON(xd->node != raw); 426 adjust_ref = &xd->node; 427 raw->next_in_ino = NULL; 428 ic = NULL; 429 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) { 430 struct jffs2_xattr_datum *xr = (void *)ic; 431 BUG_ON(xr->node != raw); 432 adjust_ref = &xr->node; 433 raw->next_in_ino = NULL; 434 ic = NULL; 435 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) { 436 struct jffs2_raw_node_ref **p = &ic->nodes; 437 438 /* Remove the old node from the per-inode list */ 439 while (*p && *p != (void *)ic) { 440 if (*p == raw) { 441 (*p) = (raw->next_in_ino); 442 raw->next_in_ino = NULL; 443 break; 444 } 445 p = &((*p)->next_in_ino); 446 } 447 448 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) { 449 /* If it's an in-core inode, then we have to adjust any 450 full_dirent or full_dnode structure to point to the 451 new version instead of the old */ 452 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink); 453 if (IS_ERR(f)) { 454 /* Should never happen; it _must_ be present */ 455 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n", 456 ic->ino, PTR_ERR(f)); 457 BUG(); 458 } 459 /* We don't lock f->sem. There's a number of ways we could 460 end up in here with it already being locked, and nobody's 461 going to modify it on us anyway because we hold the 462 alloc_sem. We're only changing one ->raw pointer too, 463 which we can get away with without upsetting readers. */ 464 adjust_ref = jffs2_incore_replace_raw(c, f, raw, 465 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start)); 466 } else if (unlikely(ic->state != INO_STATE_PRESENT && 467 ic->state != INO_STATE_CHECKEDABSENT && 468 ic->state != INO_STATE_GC)) { 469 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state); 470 BUG(); 471 } 472 } 473 474 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic); 475 476 if (adjust_ref) { 477 BUG_ON(*adjust_ref != raw); 478 *adjust_ref = new_ref; 479 } 480 if (f) 481 jffs2_gc_release_inode(c, f); 482 483 if (!ref_obsolete(raw)) { 484 jeb->dirty_size += rawlen; 485 jeb->used_size -= rawlen; 486 c->dirty_size += rawlen; 487 c->used_size -= rawlen; 488 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE; 489 BUG_ON(raw->next_in_ino); 490 } 491 ofs += rawlen; 492 } 493 494 kfree(buf); 495 496 /* Fix up the original jeb now it's on the bad_list */ 497 if (first_raw == jeb->first_node) { 498 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 499 list_move(&jeb->list, &c->erase_pending_list); 500 c->nr_erasing_blocks++; 501 jffs2_erase_pending_trigger(c); 502 } 503 504 jffs2_dbg_acct_sanity_check_nolock(c, jeb); 505 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 506 507 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); 508 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); 509 510 spin_unlock(&c->erase_completion_lock); 511 512 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len)); 513 514 } 515 516 /* Meaning of pad argument: 517 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 518 1: Pad, do not adjust nextblock free_size 519 2: Pad, adjust nextblock free_size 520 */ 521 #define NOPAD 0 522 #define PAD_NOACCOUNT 1 523 #define PAD_ACCOUNTING 2 524 525 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 526 { 527 struct jffs2_eraseblock *wbuf_jeb; 528 int ret; 529 size_t retlen; 530 531 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't 532 del_timer() the timer we never initialised. */ 533 if (!jffs2_is_writebuffered(c)) 534 return 0; 535 536 if (!down_trylock(&c->alloc_sem)) { 537 up(&c->alloc_sem); 538 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 539 BUG(); 540 } 541 542 if (!c->wbuf_len) /* already checked c->wbuf above */ 543 return 0; 544 545 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 546 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1)) 547 return -ENOMEM; 548 549 /* claim remaining space on the page 550 this happens, if we have a change to a new block, 551 or if fsync forces us to flush the writebuffer. 552 if we have a switch to next page, we will not have 553 enough remaining space for this. 554 */ 555 if (pad ) { 556 c->wbuf_len = PAD(c->wbuf_len); 557 558 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 559 with 8 byte page size */ 560 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 561 562 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 563 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 564 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 565 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 566 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 567 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 568 } 569 } 570 /* else jffs2_flash_writev has actually filled in the rest of the 571 buffer for us, and will deal with the node refs etc. later. */ 572 573 #ifdef BREAKME 574 static int breakme; 575 if (breakme++ == 20) { 576 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 577 breakme = 0; 578 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, 579 brokenbuf); 580 ret = -EIO; 581 } else 582 #endif 583 584 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); 585 586 if (ret || retlen != c->wbuf_pagesize) { 587 if (ret) 588 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); 589 else { 590 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 591 retlen, c->wbuf_pagesize); 592 ret = -EIO; 593 } 594 595 jffs2_wbuf_recover(c); 596 597 return ret; 598 } 599 600 /* Adjust free size of the block if we padded. */ 601 if (pad) { 602 uint32_t waste = c->wbuf_pagesize - c->wbuf_len; 603 604 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 605 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset)); 606 607 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 608 padded. If there is less free space in the block than that, 609 something screwed up */ 610 if (wbuf_jeb->free_size < waste) { 611 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 612 c->wbuf_ofs, c->wbuf_len, waste); 613 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 614 wbuf_jeb->offset, wbuf_jeb->free_size); 615 BUG(); 616 } 617 618 spin_lock(&c->erase_completion_lock); 619 620 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL); 621 /* FIXME: that made it count as dirty. Convert to wasted */ 622 wbuf_jeb->dirty_size -= waste; 623 c->dirty_size -= waste; 624 wbuf_jeb->wasted_size += waste; 625 c->wasted_size += waste; 626 } else 627 spin_lock(&c->erase_completion_lock); 628 629 /* Stick any now-obsoleted blocks on the erase_pending_list */ 630 jffs2_refile_wbuf_blocks(c); 631 jffs2_clear_wbuf_ino_list(c); 632 spin_unlock(&c->erase_completion_lock); 633 634 memset(c->wbuf,0xff,c->wbuf_pagesize); 635 /* adjust write buffer offset, else we get a non contiguous write bug */ 636 c->wbuf_ofs += c->wbuf_pagesize; 637 c->wbuf_len = 0; 638 return 0; 639 } 640 641 /* Trigger garbage collection to flush the write-buffer. 642 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 643 outstanding. If ino arg non-zero, do it only if a write for the 644 given inode is outstanding. */ 645 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 646 { 647 uint32_t old_wbuf_ofs; 648 uint32_t old_wbuf_len; 649 int ret = 0; 650 651 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 652 653 if (!c->wbuf) 654 return 0; 655 656 down(&c->alloc_sem); 657 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 658 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 659 up(&c->alloc_sem); 660 return 0; 661 } 662 663 old_wbuf_ofs = c->wbuf_ofs; 664 old_wbuf_len = c->wbuf_len; 665 666 if (c->unchecked_size) { 667 /* GC won't make any progress for a while */ 668 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 669 down_write(&c->wbuf_sem); 670 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 671 /* retry flushing wbuf in case jffs2_wbuf_recover 672 left some data in the wbuf */ 673 if (ret) 674 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 675 up_write(&c->wbuf_sem); 676 } else while (old_wbuf_len && 677 old_wbuf_ofs == c->wbuf_ofs) { 678 679 up(&c->alloc_sem); 680 681 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 682 683 ret = jffs2_garbage_collect_pass(c); 684 if (ret) { 685 /* GC failed. Flush it with padding instead */ 686 down(&c->alloc_sem); 687 down_write(&c->wbuf_sem); 688 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 689 /* retry flushing wbuf in case jffs2_wbuf_recover 690 left some data in the wbuf */ 691 if (ret) 692 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 693 up_write(&c->wbuf_sem); 694 break; 695 } 696 down(&c->alloc_sem); 697 } 698 699 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 700 701 up(&c->alloc_sem); 702 return ret; 703 } 704 705 /* Pad write-buffer to end and write it, wasting space. */ 706 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 707 { 708 int ret; 709 710 if (!c->wbuf) 711 return 0; 712 713 down_write(&c->wbuf_sem); 714 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 715 /* retry - maybe wbuf recover left some data in wbuf. */ 716 if (ret) 717 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 718 up_write(&c->wbuf_sem); 719 720 return ret; 721 } 722 723 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, 724 size_t len) 725 { 726 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) 727 return 0; 728 729 if (len > (c->wbuf_pagesize - c->wbuf_len)) 730 len = c->wbuf_pagesize - c->wbuf_len; 731 memcpy(c->wbuf + c->wbuf_len, buf, len); 732 c->wbuf_len += (uint32_t) len; 733 return len; 734 } 735 736 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, 737 unsigned long count, loff_t to, size_t *retlen, 738 uint32_t ino) 739 { 740 struct jffs2_eraseblock *jeb; 741 size_t wbuf_retlen, donelen = 0; 742 uint32_t outvec_to = to; 743 int ret, invec; 744 745 /* If not writebuffered flash, don't bother */ 746 if (!jffs2_is_writebuffered(c)) 747 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 748 749 down_write(&c->wbuf_sem); 750 751 /* If wbuf_ofs is not initialized, set it to target address */ 752 if (c->wbuf_ofs == 0xFFFFFFFF) { 753 c->wbuf_ofs = PAGE_DIV(to); 754 c->wbuf_len = PAGE_MOD(to); 755 memset(c->wbuf,0xff,c->wbuf_pagesize); 756 } 757 758 /* 759 * Sanity checks on target address. It's permitted to write 760 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to 761 * write at the beginning of a new erase block. Anything else, 762 * and you die. New block starts at xxx000c (0-b = block 763 * header) 764 */ 765 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 766 /* It's a write to a new block */ 767 if (c->wbuf_len) { 768 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx " 769 "causes flush of wbuf at 0x%08x\n", 770 (unsigned long)to, c->wbuf_ofs)); 771 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 772 if (ret) 773 goto outerr; 774 } 775 /* set pointer to new block */ 776 c->wbuf_ofs = PAGE_DIV(to); 777 c->wbuf_len = PAGE_MOD(to); 778 } 779 780 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 781 /* We're not writing immediately after the writebuffer. Bad. */ 782 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write " 783 "to %08lx\n", (unsigned long)to); 784 if (c->wbuf_len) 785 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 786 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 787 BUG(); 788 } 789 790 /* adjust alignment offset */ 791 if (c->wbuf_len != PAGE_MOD(to)) { 792 c->wbuf_len = PAGE_MOD(to); 793 /* take care of alignment to next page */ 794 if (!c->wbuf_len) { 795 c->wbuf_len = c->wbuf_pagesize; 796 ret = __jffs2_flush_wbuf(c, NOPAD); 797 if (ret) 798 goto outerr; 799 } 800 } 801 802 for (invec = 0; invec < count; invec++) { 803 int vlen = invecs[invec].iov_len; 804 uint8_t *v = invecs[invec].iov_base; 805 806 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 807 808 if (c->wbuf_len == c->wbuf_pagesize) { 809 ret = __jffs2_flush_wbuf(c, NOPAD); 810 if (ret) 811 goto outerr; 812 } 813 vlen -= wbuf_retlen; 814 outvec_to += wbuf_retlen; 815 donelen += wbuf_retlen; 816 v += wbuf_retlen; 817 818 if (vlen >= c->wbuf_pagesize) { 819 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen), 820 &wbuf_retlen, v); 821 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) 822 goto outfile; 823 824 vlen -= wbuf_retlen; 825 outvec_to += wbuf_retlen; 826 c->wbuf_ofs = outvec_to; 827 donelen += wbuf_retlen; 828 v += wbuf_retlen; 829 } 830 831 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 832 if (c->wbuf_len == c->wbuf_pagesize) { 833 ret = __jffs2_flush_wbuf(c, NOPAD); 834 if (ret) 835 goto outerr; 836 } 837 838 outvec_to += wbuf_retlen; 839 donelen += wbuf_retlen; 840 } 841 842 /* 843 * If there's a remainder in the wbuf and it's a non-GC write, 844 * remember that the wbuf affects this ino 845 */ 846 *retlen = donelen; 847 848 if (jffs2_sum_active()) { 849 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); 850 if (res) 851 return res; 852 } 853 854 if (c->wbuf_len && ino) 855 jffs2_wbuf_dirties_inode(c, ino); 856 857 ret = 0; 858 up_write(&c->wbuf_sem); 859 return ret; 860 861 outfile: 862 /* 863 * At this point we have no problem, c->wbuf is empty. However 864 * refile nextblock to avoid writing again to same address. 865 */ 866 867 spin_lock(&c->erase_completion_lock); 868 869 jeb = &c->blocks[outvec_to / c->sector_size]; 870 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 871 872 spin_unlock(&c->erase_completion_lock); 873 874 outerr: 875 *retlen = 0; 876 up_write(&c->wbuf_sem); 877 return ret; 878 } 879 880 /* 881 * This is the entry for flash write. 882 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 883 */ 884 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, 885 size_t *retlen, const u_char *buf) 886 { 887 struct kvec vecs[1]; 888 889 if (!jffs2_is_writebuffered(c)) 890 return jffs2_flash_direct_write(c, ofs, len, retlen, buf); 891 892 vecs[0].iov_base = (unsigned char *) buf; 893 vecs[0].iov_len = len; 894 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 895 } 896 897 /* 898 Handle readback from writebuffer and ECC failure return 899 */ 900 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 901 { 902 loff_t orbf = 0, owbf = 0, lwbf = 0; 903 int ret; 904 905 if (!jffs2_is_writebuffered(c)) 906 return c->mtd->read(c->mtd, ofs, len, retlen, buf); 907 908 /* Read flash */ 909 down_read(&c->wbuf_sem); 910 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); 911 912 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { 913 if (ret == -EBADMSG) 914 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)" 915 " returned ECC error\n", len, ofs); 916 /* 917 * We have the raw data without ECC correction in the buffer, 918 * maybe we are lucky and all data or parts are correct. We 919 * check the node. If data are corrupted node check will sort 920 * it out. We keep this block, it will fail on write or erase 921 * and the we mark it bad. Or should we do that now? But we 922 * should give him a chance. Maybe we had a system crash or 923 * power loss before the ecc write or a erase was completed. 924 * So we return success. :) 925 */ 926 ret = 0; 927 } 928 929 /* if no writebuffer available or write buffer empty, return */ 930 if (!c->wbuf_pagesize || !c->wbuf_len) 931 goto exit; 932 933 /* if we read in a different block, return */ 934 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) 935 goto exit; 936 937 if (ofs >= c->wbuf_ofs) { 938 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 939 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 940 goto exit; 941 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 942 if (lwbf > len) 943 lwbf = len; 944 } else { 945 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 946 if (orbf > len) /* is write beyond write buffer ? */ 947 goto exit; 948 lwbf = len - orbf; /* number of bytes to copy */ 949 if (lwbf > c->wbuf_len) 950 lwbf = c->wbuf_len; 951 } 952 if (lwbf > 0) 953 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 954 955 exit: 956 up_read(&c->wbuf_sem); 957 return ret; 958 } 959 960 #define NR_OOB_SCAN_PAGES 4 961 962 /* 963 * Check, if the out of band area is empty 964 */ 965 int jffs2_check_oob_empty(struct jffs2_sb_info *c, 966 struct jffs2_eraseblock *jeb, int mode) 967 { 968 int i, page, ret; 969 int oobsize = c->mtd->oobsize; 970 struct mtd_oob_ops ops; 971 972 ops.ooblen = NR_OOB_SCAN_PAGES * oobsize; 973 ops.oobbuf = c->oobbuf; 974 ops.ooboffs = 0; 975 ops.datbuf = NULL; 976 ops.mode = MTD_OOB_PLACE; 977 978 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops); 979 if (ret) { 980 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB " 981 "failed %d for block at %08x\n", ret, jeb->offset)); 982 return ret; 983 } 984 985 if (ops.oobretlen < ops.ooblen) { 986 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB " 987 "returned short read (%zd bytes not %d) for block " 988 "at %08x\n", ops.oobretlen, ops.ooblen, jeb->offset)); 989 return -EIO; 990 } 991 992 /* Special check for first page */ 993 for(i = 0; i < oobsize ; i++) { 994 /* Yeah, we know about the cleanmarker. */ 995 if (mode && i >= c->fsdata_pos && 996 i < c->fsdata_pos + c->fsdata_len) 997 continue; 998 999 if (ops.oobbuf[i] != 0xFF) { 1000 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for " 1001 "%08x\n", ops.oobbuf[i], i, jeb->offset)); 1002 return 1; 1003 } 1004 } 1005 1006 /* we know, we are aligned :) */ 1007 for (page = oobsize; page < ops.ooblen; page += sizeof(long)) { 1008 long dat = *(long *)(&ops.oobbuf[page]); 1009 if(dat != -1) 1010 return 1; 1011 } 1012 return 0; 1013 } 1014 1015 /* 1016 * Scan for a valid cleanmarker and for bad blocks 1017 */ 1018 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, 1019 struct jffs2_eraseblock *jeb) 1020 { 1021 struct jffs2_unknown_node n; 1022 struct mtd_oob_ops ops; 1023 int oobsize = c->mtd->oobsize; 1024 unsigned char *p,*b; 1025 int i, ret; 1026 size_t offset = jeb->offset; 1027 1028 /* Check first if the block is bad. */ 1029 if (c->mtd->block_isbad(c->mtd, offset)) { 1030 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()" 1031 ": Bad block at %08x\n", jeb->offset)); 1032 return 2; 1033 } 1034 1035 ops.ooblen = oobsize; 1036 ops.oobbuf = c->oobbuf; 1037 ops.ooboffs = 0; 1038 ops.datbuf = NULL; 1039 ops.mode = MTD_OOB_PLACE; 1040 1041 ret = c->mtd->read_oob(c->mtd, offset, &ops); 1042 if (ret) { 1043 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1044 "Read OOB failed %d for block at %08x\n", 1045 ret, jeb->offset)); 1046 return ret; 1047 } 1048 1049 if (ops.oobretlen < ops.ooblen) { 1050 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1051 "Read OOB return short read (%zd bytes not %d) " 1052 "for block at %08x\n", ops.oobretlen, ops.ooblen, 1053 jeb->offset)); 1054 return -EIO; 1055 } 1056 1057 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); 1058 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); 1059 n.totlen = cpu_to_je32 (8); 1060 p = (unsigned char *) &n; 1061 b = c->oobbuf + c->fsdata_pos; 1062 1063 for (i = c->fsdata_len; i; i--) { 1064 if (*b++ != *p++) 1065 ret = 1; 1066 } 1067 1068 D1(if (ret == 1) { 1069 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1070 "Cleanmarker node not detected in block at %08x\n", 1071 offset); 1072 printk(KERN_WARNING "OOB at %08zx was ", offset); 1073 for (i=0; i < oobsize; i++) 1074 printk("%02x ", c->oobbuf[i]); 1075 printk("\n"); 1076 }); 1077 return ret; 1078 } 1079 1080 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, 1081 struct jffs2_eraseblock *jeb) 1082 { 1083 struct jffs2_unknown_node n; 1084 int ret; 1085 struct mtd_oob_ops ops; 1086 1087 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 1088 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); 1089 n.totlen = cpu_to_je32(8); 1090 1091 ops.ooblen = c->fsdata_len; 1092 ops.oobbuf = (uint8_t *)&n; 1093 ops.ooboffs = c->fsdata_pos; 1094 ops.datbuf = NULL; 1095 ops.mode = MTD_OOB_PLACE; 1096 1097 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops); 1098 1099 if (ret) { 1100 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): " 1101 "Write failed for block at %08x: error %d\n", 1102 jeb->offset, ret)); 1103 return ret; 1104 } 1105 if (ops.oobretlen != ops.ooblen) { 1106 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): " 1107 "Short write for block at %08x: %zd not %d\n", 1108 jeb->offset, ops.oobretlen, ops.ooblen)); 1109 return -EIO; 1110 } 1111 return 0; 1112 } 1113 1114 /* 1115 * On NAND we try to mark this block bad. If the block was erased more 1116 * than MAX_ERASE_FAILURES we mark it finaly bad. 1117 * Don't care about failures. This block remains on the erase-pending 1118 * or badblock list as long as nobody manipulates the flash with 1119 * a bootloader or something like that. 1120 */ 1121 1122 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1123 { 1124 int ret; 1125 1126 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1127 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1128 return 0; 1129 1130 if (!c->mtd->block_markbad) 1131 return 1; // What else can we do? 1132 1133 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); 1134 ret = c->mtd->block_markbad(c->mtd, bad_offset); 1135 1136 if (ret) { 1137 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1138 return ret; 1139 } 1140 return 1; 1141 } 1142 1143 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) 1144 { 1145 struct nand_ecclayout *oinfo = c->mtd->ecclayout; 1146 1147 /* Do this only, if we have an oob buffer */ 1148 if (!c->mtd->oobsize) 1149 return 0; 1150 1151 /* Cleanmarker is out-of-band, so inline size zero */ 1152 c->cleanmarker_size = 0; 1153 1154 /* Should we use autoplacement ? */ 1155 if (!oinfo) { 1156 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); 1157 return -EINVAL; 1158 } 1159 1160 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); 1161 /* Get the position of the free bytes */ 1162 if (!oinfo->oobfree[0].length) { 1163 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep." 1164 " Autoplacement selected and no empty space in oob\n"); 1165 return -ENOSPC; 1166 } 1167 c->fsdata_pos = oinfo->oobfree[0].offset; 1168 c->fsdata_len = oinfo->oobfree[0].length; 1169 if (c->fsdata_len > 8) 1170 c->fsdata_len = 8; 1171 1172 return 0; 1173 } 1174 1175 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1176 { 1177 int res; 1178 1179 /* Initialise write buffer */ 1180 init_rwsem(&c->wbuf_sem); 1181 c->wbuf_pagesize = c->mtd->writesize; 1182 c->wbuf_ofs = 0xFFFFFFFF; 1183 1184 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1185 if (!c->wbuf) 1186 return -ENOMEM; 1187 1188 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL); 1189 if (!c->oobbuf) 1190 return -ENOMEM; 1191 1192 res = jffs2_nand_set_oobinfo(c); 1193 1194 #ifdef BREAKME 1195 if (!brokenbuf) 1196 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1197 if (!brokenbuf) { 1198 kfree(c->wbuf); 1199 return -ENOMEM; 1200 } 1201 memset(brokenbuf, 0xdb, c->wbuf_pagesize); 1202 #endif 1203 return res; 1204 } 1205 1206 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1207 { 1208 kfree(c->wbuf); 1209 kfree(c->oobbuf); 1210 } 1211 1212 int jffs2_dataflash_setup(struct jffs2_sb_info *c) { 1213 c->cleanmarker_size = 0; /* No cleanmarkers needed */ 1214 1215 /* Initialize write buffer */ 1216 init_rwsem(&c->wbuf_sem); 1217 1218 1219 c->wbuf_pagesize = c->mtd->erasesize; 1220 1221 /* Find a suitable c->sector_size 1222 * - Not too much sectors 1223 * - Sectors have to be at least 4 K + some bytes 1224 * - All known dataflashes have erase sizes of 528 or 1056 1225 * - we take at least 8 eraseblocks and want to have at least 8K size 1226 * - The concatenation should be a power of 2 1227 */ 1228 1229 c->sector_size = 8 * c->mtd->erasesize; 1230 1231 while (c->sector_size < 8192) { 1232 c->sector_size *= 2; 1233 } 1234 1235 /* It may be necessary to adjust the flash size */ 1236 c->flash_size = c->mtd->size; 1237 1238 if ((c->flash_size % c->sector_size) != 0) { 1239 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; 1240 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); 1241 }; 1242 1243 c->wbuf_ofs = 0xFFFFFFFF; 1244 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1245 if (!c->wbuf) 1246 return -ENOMEM; 1247 1248 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1249 1250 return 0; 1251 } 1252 1253 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { 1254 kfree(c->wbuf); 1255 } 1256 1257 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { 1258 /* Cleanmarker currently occupies whole programming regions, 1259 * either one or 2 for 8Byte STMicro flashes. */ 1260 c->cleanmarker_size = max(16u, c->mtd->writesize); 1261 1262 /* Initialize write buffer */ 1263 init_rwsem(&c->wbuf_sem); 1264 c->wbuf_pagesize = c->mtd->writesize; 1265 c->wbuf_ofs = 0xFFFFFFFF; 1266 1267 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1268 if (!c->wbuf) 1269 return -ENOMEM; 1270 1271 return 0; 1272 } 1273 1274 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { 1275 kfree(c->wbuf); 1276 } 1277