xref: /linux/fs/jffs2/wbuf.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22 #include <linux/sched.h>
23 
24 #include "nodelist.h"
25 
26 /* For testing write failures */
27 #undef BREAKME
28 #undef BREAKMEHEADER
29 
30 #ifdef BREAKME
31 static unsigned char *brokenbuf;
32 #endif
33 
34 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
35 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
36 
37 /* max. erase failures before we mark a block bad */
38 #define MAX_ERASE_FAILURES 	2
39 
40 struct jffs2_inodirty {
41 	uint32_t ino;
42 	struct jffs2_inodirty *next;
43 };
44 
45 static struct jffs2_inodirty inodirty_nomem;
46 
47 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
48 {
49 	struct jffs2_inodirty *this = c->wbuf_inodes;
50 
51 	/* If a malloc failed, consider _everything_ dirty */
52 	if (this == &inodirty_nomem)
53 		return 1;
54 
55 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
56 	if (this && !ino)
57 		return 1;
58 
59 	/* Look to see if the inode in question is pending in the wbuf */
60 	while (this) {
61 		if (this->ino == ino)
62 			return 1;
63 		this = this->next;
64 	}
65 	return 0;
66 }
67 
68 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
69 {
70 	struct jffs2_inodirty *this;
71 
72 	this = c->wbuf_inodes;
73 
74 	if (this != &inodirty_nomem) {
75 		while (this) {
76 			struct jffs2_inodirty *next = this->next;
77 			kfree(this);
78 			this = next;
79 		}
80 	}
81 	c->wbuf_inodes = NULL;
82 }
83 
84 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
85 {
86 	struct jffs2_inodirty *new;
87 
88 	/* Mark the superblock dirty so that kupdated will flush... */
89 	jffs2_erase_pending_trigger(c);
90 
91 	if (jffs2_wbuf_pending_for_ino(c, ino))
92 		return;
93 
94 	new = kmalloc(sizeof(*new), GFP_KERNEL);
95 	if (!new) {
96 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
97 		jffs2_clear_wbuf_ino_list(c);
98 		c->wbuf_inodes = &inodirty_nomem;
99 		return;
100 	}
101 	new->ino = ino;
102 	new->next = c->wbuf_inodes;
103 	c->wbuf_inodes = new;
104 	return;
105 }
106 
107 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
108 {
109 	struct list_head *this, *next;
110 	static int n;
111 
112 	if (list_empty(&c->erasable_pending_wbuf_list))
113 		return;
114 
115 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
116 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
117 
118 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
119 		list_del(this);
120 		if ((jiffies + (n++)) & 127) {
121 			/* Most of the time, we just erase it immediately. Otherwise we
122 			   spend ages scanning it on mount, etc. */
123 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
124 			list_add_tail(&jeb->list, &c->erase_pending_list);
125 			c->nr_erasing_blocks++;
126 			jffs2_erase_pending_trigger(c);
127 		} else {
128 			/* Sometimes, however, we leave it elsewhere so it doesn't get
129 			   immediately reused, and we spread the load a bit. */
130 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
131 			list_add_tail(&jeb->list, &c->erasable_list);
132 		}
133 	}
134 }
135 
136 #define REFILE_NOTEMPTY 0
137 #define REFILE_ANYWAY   1
138 
139 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
140 {
141 	D1(printk("About to refile bad block at %08x\n", jeb->offset));
142 
143 	/* File the existing block on the bad_used_list.... */
144 	if (c->nextblock == jeb)
145 		c->nextblock = NULL;
146 	else /* Not sure this should ever happen... need more coffee */
147 		list_del(&jeb->list);
148 	if (jeb->first_node) {
149 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
150 		list_add(&jeb->list, &c->bad_used_list);
151 	} else {
152 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
153 		/* It has to have had some nodes or we couldn't be here */
154 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
155 		list_add(&jeb->list, &c->erase_pending_list);
156 		c->nr_erasing_blocks++;
157 		jffs2_erase_pending_trigger(c);
158 	}
159 
160 	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
161 		uint32_t oldfree = jeb->free_size;
162 
163 		jffs2_link_node_ref(c, jeb,
164 				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
165 				    oldfree, NULL);
166 		/* convert to wasted */
167 		c->wasted_size += oldfree;
168 		jeb->wasted_size += oldfree;
169 		c->dirty_size -= oldfree;
170 		jeb->dirty_size -= oldfree;
171 	}
172 
173 	jffs2_dbg_dump_block_lists_nolock(c);
174 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
175 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
176 }
177 
178 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
179 							    struct jffs2_inode_info *f,
180 							    struct jffs2_raw_node_ref *raw,
181 							    union jffs2_node_union *node)
182 {
183 	struct jffs2_node_frag *frag;
184 	struct jffs2_full_dirent *fd;
185 
186 	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
187 		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
188 
189 	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
190 	       je16_to_cpu(node->u.magic) != 0);
191 
192 	switch (je16_to_cpu(node->u.nodetype)) {
193 	case JFFS2_NODETYPE_INODE:
194 		if (f->metadata && f->metadata->raw == raw) {
195 			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
196 			return &f->metadata->raw;
197 		}
198 		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
199 		BUG_ON(!frag);
200 		/* Find a frag which refers to the full_dnode we want to modify */
201 		while (!frag->node || frag->node->raw != raw) {
202 			frag = frag_next(frag);
203 			BUG_ON(!frag);
204 		}
205 		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
206 		return &frag->node->raw;
207 
208 	case JFFS2_NODETYPE_DIRENT:
209 		for (fd = f->dents; fd; fd = fd->next) {
210 			if (fd->raw == raw) {
211 				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
212 				return &fd->raw;
213 			}
214 		}
215 		BUG();
216 
217 	default:
218 		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
219 			    je16_to_cpu(node->u.nodetype));
220 		break;
221 	}
222 	return NULL;
223 }
224 
225 /* Recover from failure to write wbuf. Recover the nodes up to the
226  * wbuf, not the one which we were starting to try to write. */
227 
228 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
229 {
230 	struct jffs2_eraseblock *jeb, *new_jeb;
231 	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
232 	size_t retlen;
233 	int ret;
234 	int nr_refile = 0;
235 	unsigned char *buf;
236 	uint32_t start, end, ofs, len;
237 
238 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
239 
240 	spin_lock(&c->erase_completion_lock);
241 	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
242 	spin_unlock(&c->erase_completion_lock);
243 
244 	BUG_ON(!ref_obsolete(jeb->last_node));
245 
246 	/* Find the first node to be recovered, by skipping over every
247 	   node which ends before the wbuf starts, or which is obsolete. */
248 	for (next = raw = jeb->first_node; next; raw = next) {
249 		next = ref_next(raw);
250 
251 		if (ref_obsolete(raw) ||
252 		    (next && ref_offset(next) <= c->wbuf_ofs)) {
253 			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
254 				    ref_offset(raw), ref_flags(raw),
255 				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
256 				    c->wbuf_ofs);
257 			continue;
258 		}
259 		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
260 			    ref_offset(raw), ref_flags(raw),
261 			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
262 
263 		first_raw = raw;
264 		break;
265 	}
266 
267 	if (!first_raw) {
268 		/* All nodes were obsolete. Nothing to recover. */
269 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
270 		c->wbuf_len = 0;
271 		return;
272 	}
273 
274 	start = ref_offset(first_raw);
275 	end = ref_offset(jeb->last_node);
276 	nr_refile = 1;
277 
278 	/* Count the number of refs which need to be copied */
279 	while ((raw = ref_next(raw)) != jeb->last_node)
280 		nr_refile++;
281 
282 	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
283 		    start, end, end - start, nr_refile);
284 
285 	buf = NULL;
286 	if (start < c->wbuf_ofs) {
287 		/* First affected node was already partially written.
288 		 * Attempt to reread the old data into our buffer. */
289 
290 		buf = kmalloc(end - start, GFP_KERNEL);
291 		if (!buf) {
292 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
293 
294 			goto read_failed;
295 		}
296 
297 		/* Do the read... */
298 		ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
299 
300 		/* ECC recovered ? */
301 		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
302 		    (retlen == c->wbuf_ofs - start))
303 			ret = 0;
304 
305 		if (ret || retlen != c->wbuf_ofs - start) {
306 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
307 
308 			kfree(buf);
309 			buf = NULL;
310 		read_failed:
311 			first_raw = ref_next(first_raw);
312 			nr_refile--;
313 			while (first_raw && ref_obsolete(first_raw)) {
314 				first_raw = ref_next(first_raw);
315 				nr_refile--;
316 			}
317 
318 			/* If this was the only node to be recovered, give up */
319 			if (!first_raw) {
320 				c->wbuf_len = 0;
321 				return;
322 			}
323 
324 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
325 			start = ref_offset(first_raw);
326 			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
327 				    start, end, end - start, nr_refile);
328 
329 		} else {
330 			/* Read succeeded. Copy the remaining data from the wbuf */
331 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
332 		}
333 	}
334 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
335 	   Either 'buf' contains the data, or we find it in the wbuf */
336 
337 	/* ... and get an allocation of space from a shiny new block instead */
338 	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
339 	if (ret) {
340 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
341 		kfree(buf);
342 		return;
343 	}
344 
345 	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
346 	if (ret) {
347 		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
348 		kfree(buf);
349 		return;
350 	}
351 
352 	ofs = write_ofs(c);
353 
354 	if (end-start >= c->wbuf_pagesize) {
355 		/* Need to do another write immediately, but it's possible
356 		   that this is just because the wbuf itself is completely
357 		   full, and there's nothing earlier read back from the
358 		   flash. Hence 'buf' isn't necessarily what we're writing
359 		   from. */
360 		unsigned char *rewrite_buf = buf?:c->wbuf;
361 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
362 
363 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
364 			  towrite, ofs));
365 
366 #ifdef BREAKMEHEADER
367 		static int breakme;
368 		if (breakme++ == 20) {
369 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
370 			breakme = 0;
371 			c->mtd->write(c->mtd, ofs, towrite, &retlen,
372 				      brokenbuf);
373 			ret = -EIO;
374 		} else
375 #endif
376 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
377 					    rewrite_buf);
378 
379 		if (ret || retlen != towrite) {
380 			/* Argh. We tried. Really we did. */
381 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
382 			kfree(buf);
383 
384 			if (retlen)
385 				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
386 
387 			return;
388 		}
389 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
390 
391 		c->wbuf_len = (end - start) - towrite;
392 		c->wbuf_ofs = ofs + towrite;
393 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
394 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
395 	} else {
396 		/* OK, now we're left with the dregs in whichever buffer we're using */
397 		if (buf) {
398 			memcpy(c->wbuf, buf, end-start);
399 		} else {
400 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
401 		}
402 		c->wbuf_ofs = ofs;
403 		c->wbuf_len = end - start;
404 	}
405 
406 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
407 	new_jeb = &c->blocks[ofs / c->sector_size];
408 
409 	spin_lock(&c->erase_completion_lock);
410 	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
411 		uint32_t rawlen = ref_totlen(c, jeb, raw);
412 		struct jffs2_inode_cache *ic;
413 		struct jffs2_raw_node_ref *new_ref;
414 		struct jffs2_raw_node_ref **adjust_ref = NULL;
415 		struct jffs2_inode_info *f = NULL;
416 
417 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
418 			  rawlen, ref_offset(raw), ref_flags(raw), ofs));
419 
420 		ic = jffs2_raw_ref_to_ic(raw);
421 
422 		/* Ick. This XATTR mess should be fixed shortly... */
423 		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
424 			struct jffs2_xattr_datum *xd = (void *)ic;
425 			BUG_ON(xd->node != raw);
426 			adjust_ref = &xd->node;
427 			raw->next_in_ino = NULL;
428 			ic = NULL;
429 		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
430 			struct jffs2_xattr_datum *xr = (void *)ic;
431 			BUG_ON(xr->node != raw);
432 			adjust_ref = &xr->node;
433 			raw->next_in_ino = NULL;
434 			ic = NULL;
435 		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
436 			struct jffs2_raw_node_ref **p = &ic->nodes;
437 
438 			/* Remove the old node from the per-inode list */
439 			while (*p && *p != (void *)ic) {
440 				if (*p == raw) {
441 					(*p) = (raw->next_in_ino);
442 					raw->next_in_ino = NULL;
443 					break;
444 				}
445 				p = &((*p)->next_in_ino);
446 			}
447 
448 			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
449 				/* If it's an in-core inode, then we have to adjust any
450 				   full_dirent or full_dnode structure to point to the
451 				   new version instead of the old */
452 				f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
453 				if (IS_ERR(f)) {
454 					/* Should never happen; it _must_ be present */
455 					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
456 						    ic->ino, PTR_ERR(f));
457 					BUG();
458 				}
459 				/* We don't lock f->sem. There's a number of ways we could
460 				   end up in here with it already being locked, and nobody's
461 				   going to modify it on us anyway because we hold the
462 				   alloc_sem. We're only changing one ->raw pointer too,
463 				   which we can get away with without upsetting readers. */
464 				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
465 								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
466 			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
467 					    ic->state != INO_STATE_CHECKEDABSENT &&
468 					    ic->state != INO_STATE_GC)) {
469 				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
470 				BUG();
471 			}
472 		}
473 
474 		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
475 
476 		if (adjust_ref) {
477 			BUG_ON(*adjust_ref != raw);
478 			*adjust_ref = new_ref;
479 		}
480 		if (f)
481 			jffs2_gc_release_inode(c, f);
482 
483 		if (!ref_obsolete(raw)) {
484 			jeb->dirty_size += rawlen;
485 			jeb->used_size  -= rawlen;
486 			c->dirty_size += rawlen;
487 			c->used_size -= rawlen;
488 			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
489 			BUG_ON(raw->next_in_ino);
490 		}
491 		ofs += rawlen;
492 	}
493 
494 	kfree(buf);
495 
496 	/* Fix up the original jeb now it's on the bad_list */
497 	if (first_raw == jeb->first_node) {
498 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
499 		list_move(&jeb->list, &c->erase_pending_list);
500 		c->nr_erasing_blocks++;
501 		jffs2_erase_pending_trigger(c);
502 	}
503 
504 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
505 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
506 
507 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
508 	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
509 
510 	spin_unlock(&c->erase_completion_lock);
511 
512 	D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
513 
514 }
515 
516 /* Meaning of pad argument:
517    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
518    1: Pad, do not adjust nextblock free_size
519    2: Pad, adjust nextblock free_size
520 */
521 #define NOPAD		0
522 #define PAD_NOACCOUNT	1
523 #define PAD_ACCOUNTING	2
524 
525 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
526 {
527 	struct jffs2_eraseblock *wbuf_jeb;
528 	int ret;
529 	size_t retlen;
530 
531 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
532 	   del_timer() the timer we never initialised. */
533 	if (!jffs2_is_writebuffered(c))
534 		return 0;
535 
536 	if (!down_trylock(&c->alloc_sem)) {
537 		up(&c->alloc_sem);
538 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
539 		BUG();
540 	}
541 
542 	if (!c->wbuf_len)	/* already checked c->wbuf above */
543 		return 0;
544 
545 	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
546 	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
547 		return -ENOMEM;
548 
549 	/* claim remaining space on the page
550 	   this happens, if we have a change to a new block,
551 	   or if fsync forces us to flush the writebuffer.
552 	   if we have a switch to next page, we will not have
553 	   enough remaining space for this.
554 	*/
555 	if (pad ) {
556 		c->wbuf_len = PAD(c->wbuf_len);
557 
558 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
559 		   with 8 byte page size */
560 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
561 
562 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
563 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
564 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
565 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
566 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
567 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
568 		}
569 	}
570 	/* else jffs2_flash_writev has actually filled in the rest of the
571 	   buffer for us, and will deal with the node refs etc. later. */
572 
573 #ifdef BREAKME
574 	static int breakme;
575 	if (breakme++ == 20) {
576 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
577 		breakme = 0;
578 		c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
579 			      brokenbuf);
580 		ret = -EIO;
581 	} else
582 #endif
583 
584 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
585 
586 	if (ret || retlen != c->wbuf_pagesize) {
587 		if (ret)
588 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
589 		else {
590 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
591 				retlen, c->wbuf_pagesize);
592 			ret = -EIO;
593 		}
594 
595 		jffs2_wbuf_recover(c);
596 
597 		return ret;
598 	}
599 
600 	/* Adjust free size of the block if we padded. */
601 	if (pad) {
602 		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
603 
604 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
605 			  (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
606 
607 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
608 		   padded. If there is less free space in the block than that,
609 		   something screwed up */
610 		if (wbuf_jeb->free_size < waste) {
611 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
612 			       c->wbuf_ofs, c->wbuf_len, waste);
613 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
614 			       wbuf_jeb->offset, wbuf_jeb->free_size);
615 			BUG();
616 		}
617 
618 		spin_lock(&c->erase_completion_lock);
619 
620 		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
621 		/* FIXME: that made it count as dirty. Convert to wasted */
622 		wbuf_jeb->dirty_size -= waste;
623 		c->dirty_size -= waste;
624 		wbuf_jeb->wasted_size += waste;
625 		c->wasted_size += waste;
626 	} else
627 		spin_lock(&c->erase_completion_lock);
628 
629 	/* Stick any now-obsoleted blocks on the erase_pending_list */
630 	jffs2_refile_wbuf_blocks(c);
631 	jffs2_clear_wbuf_ino_list(c);
632 	spin_unlock(&c->erase_completion_lock);
633 
634 	memset(c->wbuf,0xff,c->wbuf_pagesize);
635 	/* adjust write buffer offset, else we get a non contiguous write bug */
636 	c->wbuf_ofs += c->wbuf_pagesize;
637 	c->wbuf_len = 0;
638 	return 0;
639 }
640 
641 /* Trigger garbage collection to flush the write-buffer.
642    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
643    outstanding. If ino arg non-zero, do it only if a write for the
644    given inode is outstanding. */
645 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
646 {
647 	uint32_t old_wbuf_ofs;
648 	uint32_t old_wbuf_len;
649 	int ret = 0;
650 
651 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
652 
653 	if (!c->wbuf)
654 		return 0;
655 
656 	down(&c->alloc_sem);
657 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
658 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
659 		up(&c->alloc_sem);
660 		return 0;
661 	}
662 
663 	old_wbuf_ofs = c->wbuf_ofs;
664 	old_wbuf_len = c->wbuf_len;
665 
666 	if (c->unchecked_size) {
667 		/* GC won't make any progress for a while */
668 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
669 		down_write(&c->wbuf_sem);
670 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
671 		/* retry flushing wbuf in case jffs2_wbuf_recover
672 		   left some data in the wbuf */
673 		if (ret)
674 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
675 		up_write(&c->wbuf_sem);
676 	} else while (old_wbuf_len &&
677 		      old_wbuf_ofs == c->wbuf_ofs) {
678 
679 		up(&c->alloc_sem);
680 
681 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
682 
683 		ret = jffs2_garbage_collect_pass(c);
684 		if (ret) {
685 			/* GC failed. Flush it with padding instead */
686 			down(&c->alloc_sem);
687 			down_write(&c->wbuf_sem);
688 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
689 			/* retry flushing wbuf in case jffs2_wbuf_recover
690 			   left some data in the wbuf */
691 			if (ret)
692 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
693 			up_write(&c->wbuf_sem);
694 			break;
695 		}
696 		down(&c->alloc_sem);
697 	}
698 
699 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
700 
701 	up(&c->alloc_sem);
702 	return ret;
703 }
704 
705 /* Pad write-buffer to end and write it, wasting space. */
706 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
707 {
708 	int ret;
709 
710 	if (!c->wbuf)
711 		return 0;
712 
713 	down_write(&c->wbuf_sem);
714 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
715 	/* retry - maybe wbuf recover left some data in wbuf. */
716 	if (ret)
717 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
718 	up_write(&c->wbuf_sem);
719 
720 	return ret;
721 }
722 
723 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
724 			      size_t len)
725 {
726 	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
727 		return 0;
728 
729 	if (len > (c->wbuf_pagesize - c->wbuf_len))
730 		len = c->wbuf_pagesize - c->wbuf_len;
731 	memcpy(c->wbuf + c->wbuf_len, buf, len);
732 	c->wbuf_len += (uint32_t) len;
733 	return len;
734 }
735 
736 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
737 		       unsigned long count, loff_t to, size_t *retlen,
738 		       uint32_t ino)
739 {
740 	struct jffs2_eraseblock *jeb;
741 	size_t wbuf_retlen, donelen = 0;
742 	uint32_t outvec_to = to;
743 	int ret, invec;
744 
745 	/* If not writebuffered flash, don't bother */
746 	if (!jffs2_is_writebuffered(c))
747 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
748 
749 	down_write(&c->wbuf_sem);
750 
751 	/* If wbuf_ofs is not initialized, set it to target address */
752 	if (c->wbuf_ofs == 0xFFFFFFFF) {
753 		c->wbuf_ofs = PAGE_DIV(to);
754 		c->wbuf_len = PAGE_MOD(to);
755 		memset(c->wbuf,0xff,c->wbuf_pagesize);
756 	}
757 
758 	/*
759 	 * Sanity checks on target address.  It's permitted to write
760 	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
761 	 * write at the beginning of a new erase block. Anything else,
762 	 * and you die.  New block starts at xxx000c (0-b = block
763 	 * header)
764 	 */
765 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
766 		/* It's a write to a new block */
767 		if (c->wbuf_len) {
768 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
769 				  "causes flush of wbuf at 0x%08x\n",
770 				  (unsigned long)to, c->wbuf_ofs));
771 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
772 			if (ret)
773 				goto outerr;
774 		}
775 		/* set pointer to new block */
776 		c->wbuf_ofs = PAGE_DIV(to);
777 		c->wbuf_len = PAGE_MOD(to);
778 	}
779 
780 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
781 		/* We're not writing immediately after the writebuffer. Bad. */
782 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
783 		       "to %08lx\n", (unsigned long)to);
784 		if (c->wbuf_len)
785 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
786 			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
787 		BUG();
788 	}
789 
790 	/* adjust alignment offset */
791 	if (c->wbuf_len != PAGE_MOD(to)) {
792 		c->wbuf_len = PAGE_MOD(to);
793 		/* take care of alignment to next page */
794 		if (!c->wbuf_len) {
795 			c->wbuf_len = c->wbuf_pagesize;
796 			ret = __jffs2_flush_wbuf(c, NOPAD);
797 			if (ret)
798 				goto outerr;
799 		}
800 	}
801 
802 	for (invec = 0; invec < count; invec++) {
803 		int vlen = invecs[invec].iov_len;
804 		uint8_t *v = invecs[invec].iov_base;
805 
806 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
807 
808 		if (c->wbuf_len == c->wbuf_pagesize) {
809 			ret = __jffs2_flush_wbuf(c, NOPAD);
810 			if (ret)
811 				goto outerr;
812 		}
813 		vlen -= wbuf_retlen;
814 		outvec_to += wbuf_retlen;
815 		donelen += wbuf_retlen;
816 		v += wbuf_retlen;
817 
818 		if (vlen >= c->wbuf_pagesize) {
819 			ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
820 					    &wbuf_retlen, v);
821 			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
822 				goto outfile;
823 
824 			vlen -= wbuf_retlen;
825 			outvec_to += wbuf_retlen;
826 			c->wbuf_ofs = outvec_to;
827 			donelen += wbuf_retlen;
828 			v += wbuf_retlen;
829 		}
830 
831 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
832 		if (c->wbuf_len == c->wbuf_pagesize) {
833 			ret = __jffs2_flush_wbuf(c, NOPAD);
834 			if (ret)
835 				goto outerr;
836 		}
837 
838 		outvec_to += wbuf_retlen;
839 		donelen += wbuf_retlen;
840 	}
841 
842 	/*
843 	 * If there's a remainder in the wbuf and it's a non-GC write,
844 	 * remember that the wbuf affects this ino
845 	 */
846 	*retlen = donelen;
847 
848 	if (jffs2_sum_active()) {
849 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
850 		if (res)
851 			return res;
852 	}
853 
854 	if (c->wbuf_len && ino)
855 		jffs2_wbuf_dirties_inode(c, ino);
856 
857 	ret = 0;
858 	up_write(&c->wbuf_sem);
859 	return ret;
860 
861 outfile:
862 	/*
863 	 * At this point we have no problem, c->wbuf is empty. However
864 	 * refile nextblock to avoid writing again to same address.
865 	 */
866 
867 	spin_lock(&c->erase_completion_lock);
868 
869 	jeb = &c->blocks[outvec_to / c->sector_size];
870 	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
871 
872 	spin_unlock(&c->erase_completion_lock);
873 
874 outerr:
875 	*retlen = 0;
876 	up_write(&c->wbuf_sem);
877 	return ret;
878 }
879 
880 /*
881  *	This is the entry for flash write.
882  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
883 */
884 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
885 		      size_t *retlen, const u_char *buf)
886 {
887 	struct kvec vecs[1];
888 
889 	if (!jffs2_is_writebuffered(c))
890 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
891 
892 	vecs[0].iov_base = (unsigned char *) buf;
893 	vecs[0].iov_len = len;
894 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
895 }
896 
897 /*
898 	Handle readback from writebuffer and ECC failure return
899 */
900 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
901 {
902 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
903 	int	ret;
904 
905 	if (!jffs2_is_writebuffered(c))
906 		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
907 
908 	/* Read flash */
909 	down_read(&c->wbuf_sem);
910 	ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
911 
912 	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
913 		if (ret == -EBADMSG)
914 			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
915 			       " returned ECC error\n", len, ofs);
916 		/*
917 		 * We have the raw data without ECC correction in the buffer,
918 		 * maybe we are lucky and all data or parts are correct. We
919 		 * check the node.  If data are corrupted node check will sort
920 		 * it out.  We keep this block, it will fail on write or erase
921 		 * and the we mark it bad. Or should we do that now? But we
922 		 * should give him a chance.  Maybe we had a system crash or
923 		 * power loss before the ecc write or a erase was completed.
924 		 * So we return success. :)
925 		 */
926 		ret = 0;
927 	}
928 
929 	/* if no writebuffer available or write buffer empty, return */
930 	if (!c->wbuf_pagesize || !c->wbuf_len)
931 		goto exit;
932 
933 	/* if we read in a different block, return */
934 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
935 		goto exit;
936 
937 	if (ofs >= c->wbuf_ofs) {
938 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
939 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
940 			goto exit;
941 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
942 		if (lwbf > len)
943 			lwbf = len;
944 	} else {
945 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
946 		if (orbf > len)			/* is write beyond write buffer ? */
947 			goto exit;
948 		lwbf = len - orbf;		/* number of bytes to copy */
949 		if (lwbf > c->wbuf_len)
950 			lwbf = c->wbuf_len;
951 	}
952 	if (lwbf > 0)
953 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
954 
955 exit:
956 	up_read(&c->wbuf_sem);
957 	return ret;
958 }
959 
960 #define NR_OOB_SCAN_PAGES	4
961 
962 /*
963  * Check, if the out of band area is empty
964  */
965 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
966 			  struct jffs2_eraseblock *jeb, int mode)
967 {
968 	int i, page, ret;
969 	int oobsize = c->mtd->oobsize;
970 	struct mtd_oob_ops ops;
971 
972 	ops.ooblen = NR_OOB_SCAN_PAGES * oobsize;
973 	ops.oobbuf = c->oobbuf;
974 	ops.ooboffs = 0;
975 	ops.datbuf = NULL;
976 	ops.mode = MTD_OOB_PLACE;
977 
978 	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
979 	if (ret) {
980 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
981 			  "failed %d for block at %08x\n", ret, jeb->offset));
982 		return ret;
983 	}
984 
985 	if (ops.oobretlen < ops.ooblen) {
986 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
987 			  "returned short read (%zd bytes not %d) for block "
988 			  "at %08x\n", ops.oobretlen, ops.ooblen, jeb->offset));
989 		return -EIO;
990 	}
991 
992 	/* Special check for first page */
993 	for(i = 0; i < oobsize ; i++) {
994 		/* Yeah, we know about the cleanmarker. */
995 		if (mode && i >= c->fsdata_pos &&
996 		    i < c->fsdata_pos + c->fsdata_len)
997 			continue;
998 
999 		if (ops.oobbuf[i] != 0xFF) {
1000 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1001 				  "%08x\n", ops.oobbuf[i], i, jeb->offset));
1002 			return 1;
1003 		}
1004 	}
1005 
1006 	/* we know, we are aligned :) */
1007 	for (page = oobsize; page < ops.ooblen; page += sizeof(long)) {
1008 		long dat = *(long *)(&ops.oobbuf[page]);
1009 		if(dat != -1)
1010 			return 1;
1011 	}
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Scan for a valid cleanmarker and for bad blocks
1017  */
1018 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c,
1019 				  struct jffs2_eraseblock *jeb)
1020 {
1021 	struct jffs2_unknown_node n;
1022 	struct mtd_oob_ops ops;
1023 	int oobsize = c->mtd->oobsize;
1024 	unsigned char *p,*b;
1025 	int i, ret;
1026 	size_t offset = jeb->offset;
1027 
1028 	/* Check first if the block is bad. */
1029 	if (c->mtd->block_isbad(c->mtd, offset)) {
1030 		D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()"
1031 			   ": Bad block at %08x\n", jeb->offset));
1032 		return 2;
1033 	}
1034 
1035 	ops.ooblen = oobsize;
1036 	ops.oobbuf = c->oobbuf;
1037 	ops.ooboffs = 0;
1038 	ops.datbuf = NULL;
1039 	ops.mode = MTD_OOB_PLACE;
1040 
1041 	ret = c->mtd->read_oob(c->mtd, offset, &ops);
1042 	if (ret) {
1043 		D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1044 			   "Read OOB failed %d for block at %08x\n",
1045 			   ret, jeb->offset));
1046 		return ret;
1047 	}
1048 
1049 	if (ops.oobretlen < ops.ooblen) {
1050 		D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1051 			    "Read OOB return short read (%zd bytes not %d) "
1052 			    "for block at %08x\n", ops.oobretlen, ops.ooblen,
1053 			    jeb->offset));
1054 		return -EIO;
1055 	}
1056 
1057 	n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1058 	n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1059 	n.totlen = cpu_to_je32 (8);
1060 	p = (unsigned char *) &n;
1061 	b = c->oobbuf + c->fsdata_pos;
1062 
1063 	for (i = c->fsdata_len; i; i--) {
1064 		if (*b++ != *p++)
1065 			ret = 1;
1066 	}
1067 
1068 	D1(if (ret == 1) {
1069 		printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1070 		       "Cleanmarker node not detected in block at %08x\n",
1071 		       offset);
1072 		printk(KERN_WARNING "OOB at %08zx was ", offset);
1073 		for (i=0; i < oobsize; i++)
1074 			printk("%02x ", c->oobbuf[i]);
1075 		printk("\n");
1076 	});
1077 	return ret;
1078 }
1079 
1080 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1081 				 struct jffs2_eraseblock *jeb)
1082 {
1083 	struct jffs2_unknown_node n;
1084 	int	ret;
1085 	struct mtd_oob_ops ops;
1086 
1087 	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1088 	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1089 	n.totlen = cpu_to_je32(8);
1090 
1091 	ops.ooblen = c->fsdata_len;
1092 	ops.oobbuf = (uint8_t *)&n;
1093 	ops.ooboffs = c->fsdata_pos;
1094 	ops.datbuf = NULL;
1095 	ops.mode = MTD_OOB_PLACE;
1096 
1097 	ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1098 
1099 	if (ret) {
1100 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1101 			  "Write failed for block at %08x: error %d\n",
1102 			  jeb->offset, ret));
1103 		return ret;
1104 	}
1105 	if (ops.oobretlen != ops.ooblen) {
1106 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1107 			  "Short write for block at %08x: %zd not %d\n",
1108 			  jeb->offset, ops.oobretlen, ops.ooblen));
1109 		return -EIO;
1110 	}
1111 	return 0;
1112 }
1113 
1114 /*
1115  * On NAND we try to mark this block bad. If the block was erased more
1116  * than MAX_ERASE_FAILURES we mark it finaly bad.
1117  * Don't care about failures. This block remains on the erase-pending
1118  * or badblock list as long as nobody manipulates the flash with
1119  * a bootloader or something like that.
1120  */
1121 
1122 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1123 {
1124 	int 	ret;
1125 
1126 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1127 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1128 		return 0;
1129 
1130 	if (!c->mtd->block_markbad)
1131 		return 1; // What else can we do?
1132 
1133 	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1134 	ret = c->mtd->block_markbad(c->mtd, bad_offset);
1135 
1136 	if (ret) {
1137 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1138 		return ret;
1139 	}
1140 	return 1;
1141 }
1142 
1143 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1144 {
1145 	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1146 
1147 	/* Do this only, if we have an oob buffer */
1148 	if (!c->mtd->oobsize)
1149 		return 0;
1150 
1151 	/* Cleanmarker is out-of-band, so inline size zero */
1152 	c->cleanmarker_size = 0;
1153 
1154 	/* Should we use autoplacement ? */
1155 	if (!oinfo) {
1156 		D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1157 		return -EINVAL;
1158 	}
1159 
1160 	D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1161 	/* Get the position of the free bytes */
1162 	if (!oinfo->oobfree[0].length) {
1163 		printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep."
1164 			" Autoplacement selected and no empty space in oob\n");
1165 		return -ENOSPC;
1166 	}
1167 	c->fsdata_pos = oinfo->oobfree[0].offset;
1168 	c->fsdata_len = oinfo->oobfree[0].length;
1169 	if (c->fsdata_len > 8)
1170 		c->fsdata_len = 8;
1171 
1172 	return 0;
1173 }
1174 
1175 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1176 {
1177 	int res;
1178 
1179 	/* Initialise write buffer */
1180 	init_rwsem(&c->wbuf_sem);
1181 	c->wbuf_pagesize = c->mtd->writesize;
1182 	c->wbuf_ofs = 0xFFFFFFFF;
1183 
1184 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1185 	if (!c->wbuf)
1186 		return -ENOMEM;
1187 
1188 	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL);
1189 	if (!c->oobbuf)
1190 		return -ENOMEM;
1191 
1192 	res = jffs2_nand_set_oobinfo(c);
1193 
1194 #ifdef BREAKME
1195 	if (!brokenbuf)
1196 		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1197 	if (!brokenbuf) {
1198 		kfree(c->wbuf);
1199 		return -ENOMEM;
1200 	}
1201 	memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1202 #endif
1203 	return res;
1204 }
1205 
1206 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1207 {
1208 	kfree(c->wbuf);
1209 	kfree(c->oobbuf);
1210 }
1211 
1212 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1213 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1214 
1215 	/* Initialize write buffer */
1216 	init_rwsem(&c->wbuf_sem);
1217 
1218 
1219 	c->wbuf_pagesize =  c->mtd->erasesize;
1220 
1221 	/* Find a suitable c->sector_size
1222 	 * - Not too much sectors
1223 	 * - Sectors have to be at least 4 K + some bytes
1224 	 * - All known dataflashes have erase sizes of 528 or 1056
1225 	 * - we take at least 8 eraseblocks and want to have at least 8K size
1226 	 * - The concatenation should be a power of 2
1227 	*/
1228 
1229 	c->sector_size = 8 * c->mtd->erasesize;
1230 
1231 	while (c->sector_size < 8192) {
1232 		c->sector_size *= 2;
1233 	}
1234 
1235 	/* It may be necessary to adjust the flash size */
1236 	c->flash_size = c->mtd->size;
1237 
1238 	if ((c->flash_size % c->sector_size) != 0) {
1239 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1240 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1241 	};
1242 
1243 	c->wbuf_ofs = 0xFFFFFFFF;
1244 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1245 	if (!c->wbuf)
1246 		return -ENOMEM;
1247 
1248 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1249 
1250 	return 0;
1251 }
1252 
1253 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1254 	kfree(c->wbuf);
1255 }
1256 
1257 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1258 	/* Cleanmarker currently occupies whole programming regions,
1259 	 * either one or 2 for 8Byte STMicro flashes. */
1260 	c->cleanmarker_size = max(16u, c->mtd->writesize);
1261 
1262 	/* Initialize write buffer */
1263 	init_rwsem(&c->wbuf_sem);
1264 	c->wbuf_pagesize = c->mtd->writesize;
1265 	c->wbuf_ofs = 0xFFFFFFFF;
1266 
1267 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1268 	if (!c->wbuf)
1269 		return -ENOMEM;
1270 
1271 	return 0;
1272 }
1273 
1274 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1275 	kfree(c->wbuf);
1276 }
1277