1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $ 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/crc32.h> 20 #include <linux/mtd/nand.h> 21 #include <linux/jiffies.h> 22 23 #include "nodelist.h" 24 25 /* For testing write failures */ 26 #undef BREAKME 27 #undef BREAKMEHEADER 28 29 #ifdef BREAKME 30 static unsigned char *brokenbuf; 31 #endif 32 33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) 34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) 35 36 /* max. erase failures before we mark a block bad */ 37 #define MAX_ERASE_FAILURES 2 38 39 struct jffs2_inodirty { 40 uint32_t ino; 41 struct jffs2_inodirty *next; 42 }; 43 44 static struct jffs2_inodirty inodirty_nomem; 45 46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 47 { 48 struct jffs2_inodirty *this = c->wbuf_inodes; 49 50 /* If a malloc failed, consider _everything_ dirty */ 51 if (this == &inodirty_nomem) 52 return 1; 53 54 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 55 if (this && !ino) 56 return 1; 57 58 /* Look to see if the inode in question is pending in the wbuf */ 59 while (this) { 60 if (this->ino == ino) 61 return 1; 62 this = this->next; 63 } 64 return 0; 65 } 66 67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 68 { 69 struct jffs2_inodirty *this; 70 71 this = c->wbuf_inodes; 72 73 if (this != &inodirty_nomem) { 74 while (this) { 75 struct jffs2_inodirty *next = this->next; 76 kfree(this); 77 this = next; 78 } 79 } 80 c->wbuf_inodes = NULL; 81 } 82 83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 84 { 85 struct jffs2_inodirty *new; 86 87 /* Mark the superblock dirty so that kupdated will flush... */ 88 jffs2_erase_pending_trigger(c); 89 90 if (jffs2_wbuf_pending_for_ino(c, ino)) 91 return; 92 93 new = kmalloc(sizeof(*new), GFP_KERNEL); 94 if (!new) { 95 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 96 jffs2_clear_wbuf_ino_list(c); 97 c->wbuf_inodes = &inodirty_nomem; 98 return; 99 } 100 new->ino = ino; 101 new->next = c->wbuf_inodes; 102 c->wbuf_inodes = new; 103 return; 104 } 105 106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 107 { 108 struct list_head *this, *next; 109 static int n; 110 111 if (list_empty(&c->erasable_pending_wbuf_list)) 112 return; 113 114 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 115 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 116 117 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 118 list_del(this); 119 if ((jiffies + (n++)) & 127) { 120 /* Most of the time, we just erase it immediately. Otherwise we 121 spend ages scanning it on mount, etc. */ 122 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 123 list_add_tail(&jeb->list, &c->erase_pending_list); 124 c->nr_erasing_blocks++; 125 jffs2_erase_pending_trigger(c); 126 } else { 127 /* Sometimes, however, we leave it elsewhere so it doesn't get 128 immediately reused, and we spread the load a bit. */ 129 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 130 list_add_tail(&jeb->list, &c->erasable_list); 131 } 132 } 133 } 134 135 #define REFILE_NOTEMPTY 0 136 #define REFILE_ANYWAY 1 137 138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 139 { 140 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 141 142 /* File the existing block on the bad_used_list.... */ 143 if (c->nextblock == jeb) 144 c->nextblock = NULL; 145 else /* Not sure this should ever happen... need more coffee */ 146 list_del(&jeb->list); 147 if (jeb->first_node) { 148 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 149 list_add(&jeb->list, &c->bad_used_list); 150 } else { 151 BUG_ON(allow_empty == REFILE_NOTEMPTY); 152 /* It has to have had some nodes or we couldn't be here */ 153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 154 list_add(&jeb->list, &c->erase_pending_list); 155 c->nr_erasing_blocks++; 156 jffs2_erase_pending_trigger(c); 157 } 158 159 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) { 160 uint32_t oldfree = jeb->free_size; 161 162 jffs2_link_node_ref(c, jeb, 163 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE, 164 oldfree, NULL); 165 /* convert to wasted */ 166 c->wasted_size += oldfree; 167 jeb->wasted_size += oldfree; 168 c->dirty_size -= oldfree; 169 jeb->dirty_size -= oldfree; 170 } 171 172 jffs2_dbg_dump_block_lists_nolock(c); 173 jffs2_dbg_acct_sanity_check_nolock(c,jeb); 174 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 175 } 176 177 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c, 178 struct jffs2_inode_info *f, 179 struct jffs2_raw_node_ref *raw, 180 union jffs2_node_union *node) 181 { 182 struct jffs2_node_frag *frag; 183 struct jffs2_full_dirent *fd; 184 185 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n", 186 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype)); 187 188 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 && 189 je16_to_cpu(node->u.magic) != 0); 190 191 switch (je16_to_cpu(node->u.nodetype)) { 192 case JFFS2_NODETYPE_INODE: 193 if (f->metadata && f->metadata->raw == raw) { 194 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata); 195 return &f->metadata->raw; 196 } 197 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset)); 198 BUG_ON(!frag); 199 /* Find a frag which refers to the full_dnode we want to modify */ 200 while (!frag->node || frag->node->raw != raw) { 201 frag = frag_next(frag); 202 BUG_ON(!frag); 203 } 204 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node); 205 return &frag->node->raw; 206 207 case JFFS2_NODETYPE_DIRENT: 208 for (fd = f->dents; fd; fd = fd->next) { 209 if (fd->raw == raw) { 210 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd); 211 return &fd->raw; 212 } 213 } 214 BUG(); 215 216 default: 217 dbg_noderef("Don't care about replacing raw for nodetype %x\n", 218 je16_to_cpu(node->u.nodetype)); 219 break; 220 } 221 return NULL; 222 } 223 224 /* Recover from failure to write wbuf. Recover the nodes up to the 225 * wbuf, not the one which we were starting to try to write. */ 226 227 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 228 { 229 struct jffs2_eraseblock *jeb, *new_jeb; 230 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL; 231 size_t retlen; 232 int ret; 233 int nr_refile = 0; 234 unsigned char *buf; 235 uint32_t start, end, ofs, len; 236 237 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 238 239 spin_lock(&c->erase_completion_lock); 240 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); 241 spin_unlock(&c->erase_completion_lock); 242 243 BUG_ON(!ref_obsolete(jeb->last_node)); 244 245 /* Find the first node to be recovered, by skipping over every 246 node which ends before the wbuf starts, or which is obsolete. */ 247 for (next = raw = jeb->first_node; next; raw = next) { 248 next = ref_next(raw); 249 250 if (ref_obsolete(raw) || 251 (next && ref_offset(next) <= c->wbuf_ofs)) { 252 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 253 ref_offset(raw), ref_flags(raw), 254 (ref_offset(raw) + ref_totlen(c, jeb, raw)), 255 c->wbuf_ofs); 256 continue; 257 } 258 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n", 259 ref_offset(raw), ref_flags(raw), 260 (ref_offset(raw) + ref_totlen(c, jeb, raw))); 261 262 first_raw = raw; 263 break; 264 } 265 266 if (!first_raw) { 267 /* All nodes were obsolete. Nothing to recover. */ 268 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 269 c->wbuf_len = 0; 270 return; 271 } 272 273 start = ref_offset(first_raw); 274 end = ref_offset(jeb->last_node); 275 nr_refile = 1; 276 277 /* Count the number of refs which need to be copied */ 278 while ((raw = ref_next(raw)) != jeb->last_node) 279 nr_refile++; 280 281 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n", 282 start, end, end - start, nr_refile); 283 284 buf = NULL; 285 if (start < c->wbuf_ofs) { 286 /* First affected node was already partially written. 287 * Attempt to reread the old data into our buffer. */ 288 289 buf = kmalloc(end - start, GFP_KERNEL); 290 if (!buf) { 291 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 292 293 goto read_failed; 294 } 295 296 /* Do the read... */ 297 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); 298 299 /* ECC recovered ? */ 300 if ((ret == -EUCLEAN || ret == -EBADMSG) && 301 (retlen == c->wbuf_ofs - start)) 302 ret = 0; 303 304 if (ret || retlen != c->wbuf_ofs - start) { 305 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 306 307 kfree(buf); 308 buf = NULL; 309 read_failed: 310 first_raw = ref_next(first_raw); 311 nr_refile--; 312 while (first_raw && ref_obsolete(first_raw)) { 313 first_raw = ref_next(first_raw); 314 nr_refile--; 315 } 316 317 /* If this was the only node to be recovered, give up */ 318 if (!first_raw) { 319 c->wbuf_len = 0; 320 return; 321 } 322 323 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 324 start = ref_offset(first_raw); 325 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n", 326 start, end, end - start, nr_refile); 327 328 } else { 329 /* Read succeeded. Copy the remaining data from the wbuf */ 330 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 331 } 332 } 333 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 334 Either 'buf' contains the data, or we find it in the wbuf */ 335 336 /* ... and get an allocation of space from a shiny new block instead */ 337 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); 338 if (ret) { 339 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 340 kfree(buf); 341 return; 342 } 343 344 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); 345 if (ret) { 346 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); 347 kfree(buf); 348 return; 349 } 350 351 ofs = write_ofs(c); 352 353 if (end-start >= c->wbuf_pagesize) { 354 /* Need to do another write immediately, but it's possible 355 that this is just because the wbuf itself is completely 356 full, and there's nothing earlier read back from the 357 flash. Hence 'buf' isn't necessarily what we're writing 358 from. */ 359 unsigned char *rewrite_buf = buf?:c->wbuf; 360 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 361 362 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 363 towrite, ofs)); 364 365 #ifdef BREAKMEHEADER 366 static int breakme; 367 if (breakme++ == 20) { 368 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 369 breakme = 0; 370 c->mtd->write(c->mtd, ofs, towrite, &retlen, 371 brokenbuf); 372 ret = -EIO; 373 } else 374 #endif 375 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, 376 rewrite_buf); 377 378 if (ret || retlen != towrite) { 379 /* Argh. We tried. Really we did. */ 380 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 381 kfree(buf); 382 383 if (retlen) 384 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL); 385 386 return; 387 } 388 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 389 390 c->wbuf_len = (end - start) - towrite; 391 c->wbuf_ofs = ofs + towrite; 392 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); 393 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 394 } else { 395 /* OK, now we're left with the dregs in whichever buffer we're using */ 396 if (buf) { 397 memcpy(c->wbuf, buf, end-start); 398 } else { 399 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 400 } 401 c->wbuf_ofs = ofs; 402 c->wbuf_len = end - start; 403 } 404 405 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 406 new_jeb = &c->blocks[ofs / c->sector_size]; 407 408 spin_lock(&c->erase_completion_lock); 409 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) { 410 uint32_t rawlen = ref_totlen(c, jeb, raw); 411 struct jffs2_inode_cache *ic; 412 struct jffs2_raw_node_ref *new_ref; 413 struct jffs2_raw_node_ref **adjust_ref = NULL; 414 struct jffs2_inode_info *f = NULL; 415 416 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 417 rawlen, ref_offset(raw), ref_flags(raw), ofs)); 418 419 ic = jffs2_raw_ref_to_ic(raw); 420 421 /* Ick. This XATTR mess should be fixed shortly... */ 422 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) { 423 struct jffs2_xattr_datum *xd = (void *)ic; 424 BUG_ON(xd->node != raw); 425 adjust_ref = &xd->node; 426 raw->next_in_ino = NULL; 427 ic = NULL; 428 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) { 429 struct jffs2_xattr_datum *xr = (void *)ic; 430 BUG_ON(xr->node != raw); 431 adjust_ref = &xr->node; 432 raw->next_in_ino = NULL; 433 ic = NULL; 434 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) { 435 struct jffs2_raw_node_ref **p = &ic->nodes; 436 437 /* Remove the old node from the per-inode list */ 438 while (*p && *p != (void *)ic) { 439 if (*p == raw) { 440 (*p) = (raw->next_in_ino); 441 raw->next_in_ino = NULL; 442 break; 443 } 444 p = &((*p)->next_in_ino); 445 } 446 447 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) { 448 /* If it's an in-core inode, then we have to adjust any 449 full_dirent or full_dnode structure to point to the 450 new version instead of the old */ 451 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink); 452 if (IS_ERR(f)) { 453 /* Should never happen; it _must_ be present */ 454 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n", 455 ic->ino, PTR_ERR(f)); 456 BUG(); 457 } 458 /* We don't lock f->sem. There's a number of ways we could 459 end up in here with it already being locked, and nobody's 460 going to modify it on us anyway because we hold the 461 alloc_sem. We're only changing one ->raw pointer too, 462 which we can get away with without upsetting readers. */ 463 adjust_ref = jffs2_incore_replace_raw(c, f, raw, 464 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start)); 465 } else if (unlikely(ic->state != INO_STATE_PRESENT && 466 ic->state != INO_STATE_CHECKEDABSENT && 467 ic->state != INO_STATE_GC)) { 468 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state); 469 BUG(); 470 } 471 } 472 473 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic); 474 475 if (adjust_ref) { 476 BUG_ON(*adjust_ref != raw); 477 *adjust_ref = new_ref; 478 } 479 if (f) 480 jffs2_gc_release_inode(c, f); 481 482 if (!ref_obsolete(raw)) { 483 jeb->dirty_size += rawlen; 484 jeb->used_size -= rawlen; 485 c->dirty_size += rawlen; 486 c->used_size -= rawlen; 487 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE; 488 BUG_ON(raw->next_in_ino); 489 } 490 ofs += rawlen; 491 } 492 493 kfree(buf); 494 495 /* Fix up the original jeb now it's on the bad_list */ 496 if (first_raw == jeb->first_node) { 497 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 498 list_move(&jeb->list, &c->erase_pending_list); 499 c->nr_erasing_blocks++; 500 jffs2_erase_pending_trigger(c); 501 } 502 503 jffs2_dbg_acct_sanity_check_nolock(c, jeb); 504 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 505 506 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); 507 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); 508 509 spin_unlock(&c->erase_completion_lock); 510 511 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len)); 512 513 } 514 515 /* Meaning of pad argument: 516 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 517 1: Pad, do not adjust nextblock free_size 518 2: Pad, adjust nextblock free_size 519 */ 520 #define NOPAD 0 521 #define PAD_NOACCOUNT 1 522 #define PAD_ACCOUNTING 2 523 524 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 525 { 526 struct jffs2_eraseblock *wbuf_jeb; 527 int ret; 528 size_t retlen; 529 530 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't 531 del_timer() the timer we never initialised. */ 532 if (!jffs2_is_writebuffered(c)) 533 return 0; 534 535 if (!down_trylock(&c->alloc_sem)) { 536 up(&c->alloc_sem); 537 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 538 BUG(); 539 } 540 541 if (!c->wbuf_len) /* already checked c->wbuf above */ 542 return 0; 543 544 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 545 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1)) 546 return -ENOMEM; 547 548 /* claim remaining space on the page 549 this happens, if we have a change to a new block, 550 or if fsync forces us to flush the writebuffer. 551 if we have a switch to next page, we will not have 552 enough remaining space for this. 553 */ 554 if (pad ) { 555 c->wbuf_len = PAD(c->wbuf_len); 556 557 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 558 with 8 byte page size */ 559 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 560 561 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 562 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 563 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 564 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 565 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 566 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 567 } 568 } 569 /* else jffs2_flash_writev has actually filled in the rest of the 570 buffer for us, and will deal with the node refs etc. later. */ 571 572 #ifdef BREAKME 573 static int breakme; 574 if (breakme++ == 20) { 575 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 576 breakme = 0; 577 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, 578 brokenbuf); 579 ret = -EIO; 580 } else 581 #endif 582 583 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); 584 585 if (ret || retlen != c->wbuf_pagesize) { 586 if (ret) 587 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); 588 else { 589 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 590 retlen, c->wbuf_pagesize); 591 ret = -EIO; 592 } 593 594 jffs2_wbuf_recover(c); 595 596 return ret; 597 } 598 599 /* Adjust free size of the block if we padded. */ 600 if (pad) { 601 uint32_t waste = c->wbuf_pagesize - c->wbuf_len; 602 603 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 604 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset)); 605 606 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 607 padded. If there is less free space in the block than that, 608 something screwed up */ 609 if (wbuf_jeb->free_size < waste) { 610 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 611 c->wbuf_ofs, c->wbuf_len, waste); 612 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 613 wbuf_jeb->offset, wbuf_jeb->free_size); 614 BUG(); 615 } 616 617 spin_lock(&c->erase_completion_lock); 618 619 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL); 620 /* FIXME: that made it count as dirty. Convert to wasted */ 621 wbuf_jeb->dirty_size -= waste; 622 c->dirty_size -= waste; 623 wbuf_jeb->wasted_size += waste; 624 c->wasted_size += waste; 625 } else 626 spin_lock(&c->erase_completion_lock); 627 628 /* Stick any now-obsoleted blocks on the erase_pending_list */ 629 jffs2_refile_wbuf_blocks(c); 630 jffs2_clear_wbuf_ino_list(c); 631 spin_unlock(&c->erase_completion_lock); 632 633 memset(c->wbuf,0xff,c->wbuf_pagesize); 634 /* adjust write buffer offset, else we get a non contiguous write bug */ 635 c->wbuf_ofs += c->wbuf_pagesize; 636 c->wbuf_len = 0; 637 return 0; 638 } 639 640 /* Trigger garbage collection to flush the write-buffer. 641 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 642 outstanding. If ino arg non-zero, do it only if a write for the 643 given inode is outstanding. */ 644 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 645 { 646 uint32_t old_wbuf_ofs; 647 uint32_t old_wbuf_len; 648 int ret = 0; 649 650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 651 652 if (!c->wbuf) 653 return 0; 654 655 down(&c->alloc_sem); 656 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 657 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 658 up(&c->alloc_sem); 659 return 0; 660 } 661 662 old_wbuf_ofs = c->wbuf_ofs; 663 old_wbuf_len = c->wbuf_len; 664 665 if (c->unchecked_size) { 666 /* GC won't make any progress for a while */ 667 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 668 down_write(&c->wbuf_sem); 669 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 670 /* retry flushing wbuf in case jffs2_wbuf_recover 671 left some data in the wbuf */ 672 if (ret) 673 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 674 up_write(&c->wbuf_sem); 675 } else while (old_wbuf_len && 676 old_wbuf_ofs == c->wbuf_ofs) { 677 678 up(&c->alloc_sem); 679 680 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 681 682 ret = jffs2_garbage_collect_pass(c); 683 if (ret) { 684 /* GC failed. Flush it with padding instead */ 685 down(&c->alloc_sem); 686 down_write(&c->wbuf_sem); 687 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 688 /* retry flushing wbuf in case jffs2_wbuf_recover 689 left some data in the wbuf */ 690 if (ret) 691 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 692 up_write(&c->wbuf_sem); 693 break; 694 } 695 down(&c->alloc_sem); 696 } 697 698 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 699 700 up(&c->alloc_sem); 701 return ret; 702 } 703 704 /* Pad write-buffer to end and write it, wasting space. */ 705 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 706 { 707 int ret; 708 709 if (!c->wbuf) 710 return 0; 711 712 down_write(&c->wbuf_sem); 713 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 714 /* retry - maybe wbuf recover left some data in wbuf. */ 715 if (ret) 716 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 717 up_write(&c->wbuf_sem); 718 719 return ret; 720 } 721 722 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, 723 size_t len) 724 { 725 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) 726 return 0; 727 728 if (len > (c->wbuf_pagesize - c->wbuf_len)) 729 len = c->wbuf_pagesize - c->wbuf_len; 730 memcpy(c->wbuf + c->wbuf_len, buf, len); 731 c->wbuf_len += (uint32_t) len; 732 return len; 733 } 734 735 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, 736 unsigned long count, loff_t to, size_t *retlen, 737 uint32_t ino) 738 { 739 struct jffs2_eraseblock *jeb; 740 size_t wbuf_retlen, donelen = 0; 741 uint32_t outvec_to = to; 742 int ret, invec; 743 744 /* If not writebuffered flash, don't bother */ 745 if (!jffs2_is_writebuffered(c)) 746 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 747 748 down_write(&c->wbuf_sem); 749 750 /* If wbuf_ofs is not initialized, set it to target address */ 751 if (c->wbuf_ofs == 0xFFFFFFFF) { 752 c->wbuf_ofs = PAGE_DIV(to); 753 c->wbuf_len = PAGE_MOD(to); 754 memset(c->wbuf,0xff,c->wbuf_pagesize); 755 } 756 757 /* 758 * Sanity checks on target address. It's permitted to write 759 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to 760 * write at the beginning of a new erase block. Anything else, 761 * and you die. New block starts at xxx000c (0-b = block 762 * header) 763 */ 764 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 765 /* It's a write to a new block */ 766 if (c->wbuf_len) { 767 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx " 768 "causes flush of wbuf at 0x%08x\n", 769 (unsigned long)to, c->wbuf_ofs)); 770 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 771 if (ret) 772 goto outerr; 773 } 774 /* set pointer to new block */ 775 c->wbuf_ofs = PAGE_DIV(to); 776 c->wbuf_len = PAGE_MOD(to); 777 } 778 779 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 780 /* We're not writing immediately after the writebuffer. Bad. */ 781 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write " 782 "to %08lx\n", (unsigned long)to); 783 if (c->wbuf_len) 784 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 785 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 786 BUG(); 787 } 788 789 /* adjust alignment offset */ 790 if (c->wbuf_len != PAGE_MOD(to)) { 791 c->wbuf_len = PAGE_MOD(to); 792 /* take care of alignment to next page */ 793 if (!c->wbuf_len) { 794 c->wbuf_len = c->wbuf_pagesize; 795 ret = __jffs2_flush_wbuf(c, NOPAD); 796 if (ret) 797 goto outerr; 798 } 799 } 800 801 for (invec = 0; invec < count; invec++) { 802 int vlen = invecs[invec].iov_len; 803 uint8_t *v = invecs[invec].iov_base; 804 805 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 806 807 if (c->wbuf_len == c->wbuf_pagesize) { 808 ret = __jffs2_flush_wbuf(c, NOPAD); 809 if (ret) 810 goto outerr; 811 } 812 vlen -= wbuf_retlen; 813 outvec_to += wbuf_retlen; 814 donelen += wbuf_retlen; 815 v += wbuf_retlen; 816 817 if (vlen >= c->wbuf_pagesize) { 818 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen), 819 &wbuf_retlen, v); 820 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) 821 goto outfile; 822 823 vlen -= wbuf_retlen; 824 outvec_to += wbuf_retlen; 825 c->wbuf_ofs = outvec_to; 826 donelen += wbuf_retlen; 827 v += wbuf_retlen; 828 } 829 830 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 831 if (c->wbuf_len == c->wbuf_pagesize) { 832 ret = __jffs2_flush_wbuf(c, NOPAD); 833 if (ret) 834 goto outerr; 835 } 836 837 outvec_to += wbuf_retlen; 838 donelen += wbuf_retlen; 839 } 840 841 /* 842 * If there's a remainder in the wbuf and it's a non-GC write, 843 * remember that the wbuf affects this ino 844 */ 845 *retlen = donelen; 846 847 if (jffs2_sum_active()) { 848 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); 849 if (res) 850 return res; 851 } 852 853 if (c->wbuf_len && ino) 854 jffs2_wbuf_dirties_inode(c, ino); 855 856 ret = 0; 857 up_write(&c->wbuf_sem); 858 return ret; 859 860 outfile: 861 /* 862 * At this point we have no problem, c->wbuf is empty. However 863 * refile nextblock to avoid writing again to same address. 864 */ 865 866 spin_lock(&c->erase_completion_lock); 867 868 jeb = &c->blocks[outvec_to / c->sector_size]; 869 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 870 871 spin_unlock(&c->erase_completion_lock); 872 873 outerr: 874 *retlen = 0; 875 up_write(&c->wbuf_sem); 876 return ret; 877 } 878 879 /* 880 * This is the entry for flash write. 881 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 882 */ 883 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, 884 size_t *retlen, const u_char *buf) 885 { 886 struct kvec vecs[1]; 887 888 if (!jffs2_is_writebuffered(c)) 889 return jffs2_flash_direct_write(c, ofs, len, retlen, buf); 890 891 vecs[0].iov_base = (unsigned char *) buf; 892 vecs[0].iov_len = len; 893 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 894 } 895 896 /* 897 Handle readback from writebuffer and ECC failure return 898 */ 899 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 900 { 901 loff_t orbf = 0, owbf = 0, lwbf = 0; 902 int ret; 903 904 if (!jffs2_is_writebuffered(c)) 905 return c->mtd->read(c->mtd, ofs, len, retlen, buf); 906 907 /* Read flash */ 908 down_read(&c->wbuf_sem); 909 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); 910 911 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { 912 if (ret == -EBADMSG) 913 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)" 914 " returned ECC error\n", len, ofs); 915 /* 916 * We have the raw data without ECC correction in the buffer, 917 * maybe we are lucky and all data or parts are correct. We 918 * check the node. If data are corrupted node check will sort 919 * it out. We keep this block, it will fail on write or erase 920 * and the we mark it bad. Or should we do that now? But we 921 * should give him a chance. Maybe we had a system crash or 922 * power loss before the ecc write or a erase was completed. 923 * So we return success. :) 924 */ 925 ret = 0; 926 } 927 928 /* if no writebuffer available or write buffer empty, return */ 929 if (!c->wbuf_pagesize || !c->wbuf_len) 930 goto exit; 931 932 /* if we read in a different block, return */ 933 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) 934 goto exit; 935 936 if (ofs >= c->wbuf_ofs) { 937 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 938 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 939 goto exit; 940 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 941 if (lwbf > len) 942 lwbf = len; 943 } else { 944 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 945 if (orbf > len) /* is write beyond write buffer ? */ 946 goto exit; 947 lwbf = len - orbf; /* number of bytes to copy */ 948 if (lwbf > c->wbuf_len) 949 lwbf = c->wbuf_len; 950 } 951 if (lwbf > 0) 952 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 953 954 exit: 955 up_read(&c->wbuf_sem); 956 return ret; 957 } 958 959 #define NR_OOB_SCAN_PAGES 4 960 961 /* 962 * Check, if the out of band area is empty 963 */ 964 int jffs2_check_oob_empty(struct jffs2_sb_info *c, 965 struct jffs2_eraseblock *jeb, int mode) 966 { 967 int i, page, ret; 968 int oobsize = c->mtd->oobsize; 969 struct mtd_oob_ops ops; 970 971 ops.ooblen = NR_OOB_SCAN_PAGES * oobsize; 972 ops.oobbuf = c->oobbuf; 973 ops.ooboffs = 0; 974 ops.datbuf = NULL; 975 ops.mode = MTD_OOB_PLACE; 976 977 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops); 978 if (ret) { 979 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB " 980 "failed %d for block at %08x\n", ret, jeb->offset)); 981 return ret; 982 } 983 984 if (ops.oobretlen < ops.ooblen) { 985 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB " 986 "returned short read (%zd bytes not %d) for block " 987 "at %08x\n", ops.oobretlen, ops.ooblen, jeb->offset)); 988 return -EIO; 989 } 990 991 /* Special check for first page */ 992 for(i = 0; i < oobsize ; i++) { 993 /* Yeah, we know about the cleanmarker. */ 994 if (mode && i >= c->fsdata_pos && 995 i < c->fsdata_pos + c->fsdata_len) 996 continue; 997 998 if (ops.oobbuf[i] != 0xFF) { 999 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for " 1000 "%08x\n", ops.oobbuf[i], i, jeb->offset)); 1001 return 1; 1002 } 1003 } 1004 1005 /* we know, we are aligned :) */ 1006 for (page = oobsize; page < ops.ooblen; page += sizeof(long)) { 1007 long dat = *(long *)(&ops.oobbuf[page]); 1008 if(dat != -1) 1009 return 1; 1010 } 1011 return 0; 1012 } 1013 1014 /* 1015 * Scan for a valid cleanmarker and for bad blocks 1016 */ 1017 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, 1018 struct jffs2_eraseblock *jeb) 1019 { 1020 struct jffs2_unknown_node n; 1021 struct mtd_oob_ops ops; 1022 int oobsize = c->mtd->oobsize; 1023 unsigned char *p,*b; 1024 int i, ret; 1025 size_t offset = jeb->offset; 1026 1027 /* Check first if the block is bad. */ 1028 if (c->mtd->block_isbad(c->mtd, offset)) { 1029 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()" 1030 ": Bad block at %08x\n", jeb->offset)); 1031 return 2; 1032 } 1033 1034 ops.ooblen = oobsize; 1035 ops.oobbuf = c->oobbuf; 1036 ops.ooboffs = 0; 1037 ops.datbuf = NULL; 1038 ops.mode = MTD_OOB_PLACE; 1039 1040 ret = c->mtd->read_oob(c->mtd, offset, &ops); 1041 if (ret) { 1042 D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1043 "Read OOB failed %d for block at %08x\n", 1044 ret, jeb->offset)); 1045 return ret; 1046 } 1047 1048 if (ops.oobretlen < ops.ooblen) { 1049 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1050 "Read OOB return short read (%zd bytes not %d) " 1051 "for block at %08x\n", ops.oobretlen, ops.ooblen, 1052 jeb->offset)); 1053 return -EIO; 1054 } 1055 1056 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); 1057 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); 1058 n.totlen = cpu_to_je32 (8); 1059 p = (unsigned char *) &n; 1060 b = c->oobbuf + c->fsdata_pos; 1061 1062 for (i = c->fsdata_len; i; i--) { 1063 if (*b++ != *p++) 1064 ret = 1; 1065 } 1066 1067 D1(if (ret == 1) { 1068 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): " 1069 "Cleanmarker node not detected in block at %08x\n", 1070 offset); 1071 printk(KERN_WARNING "OOB at %08zx was ", offset); 1072 for (i=0; i < oobsize; i++) 1073 printk("%02x ", c->oobbuf[i]); 1074 printk("\n"); 1075 }); 1076 return ret; 1077 } 1078 1079 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, 1080 struct jffs2_eraseblock *jeb) 1081 { 1082 struct jffs2_unknown_node n; 1083 int ret; 1084 struct mtd_oob_ops ops; 1085 1086 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 1087 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); 1088 n.totlen = cpu_to_je32(8); 1089 1090 ops.ooblen = c->fsdata_len; 1091 ops.oobbuf = (uint8_t *)&n; 1092 ops.ooboffs = c->fsdata_pos; 1093 ops.datbuf = NULL; 1094 ops.mode = MTD_OOB_PLACE; 1095 1096 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops); 1097 1098 if (ret) { 1099 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): " 1100 "Write failed for block at %08x: error %d\n", 1101 jeb->offset, ret)); 1102 return ret; 1103 } 1104 if (ops.oobretlen != ops.ooblen) { 1105 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): " 1106 "Short write for block at %08x: %zd not %d\n", 1107 jeb->offset, ops.oobretlen, ops.ooblen)); 1108 return -EIO; 1109 } 1110 return 0; 1111 } 1112 1113 /* 1114 * On NAND we try to mark this block bad. If the block was erased more 1115 * than MAX_ERASE_FAILURES we mark it finaly bad. 1116 * Don't care about failures. This block remains on the erase-pending 1117 * or badblock list as long as nobody manipulates the flash with 1118 * a bootloader or something like that. 1119 */ 1120 1121 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1122 { 1123 int ret; 1124 1125 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1126 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1127 return 0; 1128 1129 if (!c->mtd->block_markbad) 1130 return 1; // What else can we do? 1131 1132 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); 1133 ret = c->mtd->block_markbad(c->mtd, bad_offset); 1134 1135 if (ret) { 1136 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1137 return ret; 1138 } 1139 return 1; 1140 } 1141 1142 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) 1143 { 1144 struct nand_ecclayout *oinfo = c->mtd->ecclayout; 1145 1146 /* Do this only, if we have an oob buffer */ 1147 if (!c->mtd->oobsize) 1148 return 0; 1149 1150 /* Cleanmarker is out-of-band, so inline size zero */ 1151 c->cleanmarker_size = 0; 1152 1153 /* Should we use autoplacement ? */ 1154 if (!oinfo) { 1155 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); 1156 return -EINVAL; 1157 } 1158 1159 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); 1160 /* Get the position of the free bytes */ 1161 if (!oinfo->oobfree[0].length) { 1162 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep." 1163 " Autoplacement selected and no empty space in oob\n"); 1164 return -ENOSPC; 1165 } 1166 c->fsdata_pos = oinfo->oobfree[0].offset; 1167 c->fsdata_len = oinfo->oobfree[0].length; 1168 if (c->fsdata_len > 8) 1169 c->fsdata_len = 8; 1170 1171 return 0; 1172 } 1173 1174 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1175 { 1176 int res; 1177 1178 /* Initialise write buffer */ 1179 init_rwsem(&c->wbuf_sem); 1180 c->wbuf_pagesize = c->mtd->writesize; 1181 c->wbuf_ofs = 0xFFFFFFFF; 1182 1183 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1184 if (!c->wbuf) 1185 return -ENOMEM; 1186 1187 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL); 1188 if (!c->oobbuf) 1189 return -ENOMEM; 1190 1191 res = jffs2_nand_set_oobinfo(c); 1192 1193 #ifdef BREAKME 1194 if (!brokenbuf) 1195 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1196 if (!brokenbuf) { 1197 kfree(c->wbuf); 1198 return -ENOMEM; 1199 } 1200 memset(brokenbuf, 0xdb, c->wbuf_pagesize); 1201 #endif 1202 return res; 1203 } 1204 1205 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1206 { 1207 kfree(c->wbuf); 1208 kfree(c->oobbuf); 1209 } 1210 1211 int jffs2_dataflash_setup(struct jffs2_sb_info *c) { 1212 c->cleanmarker_size = 0; /* No cleanmarkers needed */ 1213 1214 /* Initialize write buffer */ 1215 init_rwsem(&c->wbuf_sem); 1216 1217 1218 c->wbuf_pagesize = c->mtd->erasesize; 1219 1220 /* Find a suitable c->sector_size 1221 * - Not too much sectors 1222 * - Sectors have to be at least 4 K + some bytes 1223 * - All known dataflashes have erase sizes of 528 or 1056 1224 * - we take at least 8 eraseblocks and want to have at least 8K size 1225 * - The concatenation should be a power of 2 1226 */ 1227 1228 c->sector_size = 8 * c->mtd->erasesize; 1229 1230 while (c->sector_size < 8192) { 1231 c->sector_size *= 2; 1232 } 1233 1234 /* It may be necessary to adjust the flash size */ 1235 c->flash_size = c->mtd->size; 1236 1237 if ((c->flash_size % c->sector_size) != 0) { 1238 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; 1239 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); 1240 }; 1241 1242 c->wbuf_ofs = 0xFFFFFFFF; 1243 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1244 if (!c->wbuf) 1245 return -ENOMEM; 1246 1247 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1248 1249 return 0; 1250 } 1251 1252 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { 1253 kfree(c->wbuf); 1254 } 1255 1256 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { 1257 /* Cleanmarker currently occupies whole programming regions, 1258 * either one or 2 for 8Byte STMicro flashes. */ 1259 c->cleanmarker_size = max(16u, c->mtd->writesize); 1260 1261 /* Initialize write buffer */ 1262 init_rwsem(&c->wbuf_sem); 1263 c->wbuf_pagesize = c->mtd->writesize; 1264 c->wbuf_ofs = 0xFFFFFFFF; 1265 1266 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1267 if (!c->wbuf) 1268 return -ENOMEM; 1269 1270 return 0; 1271 } 1272 1273 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { 1274 kfree(c->wbuf); 1275 } 1276