xref: /linux/fs/jffs2/wbuf.c (revision 7014568bad55c20b7ee4f439d78c9e875912d51f)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22 
23 #include "nodelist.h"
24 
25 /* For testing write failures */
26 #undef BREAKME
27 #undef BREAKMEHEADER
28 
29 #ifdef BREAKME
30 static unsigned char *brokenbuf;
31 #endif
32 
33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
35 
36 /* max. erase failures before we mark a block bad */
37 #define MAX_ERASE_FAILURES 	2
38 
39 struct jffs2_inodirty {
40 	uint32_t ino;
41 	struct jffs2_inodirty *next;
42 };
43 
44 static struct jffs2_inodirty inodirty_nomem;
45 
46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
47 {
48 	struct jffs2_inodirty *this = c->wbuf_inodes;
49 
50 	/* If a malloc failed, consider _everything_ dirty */
51 	if (this == &inodirty_nomem)
52 		return 1;
53 
54 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
55 	if (this && !ino)
56 		return 1;
57 
58 	/* Look to see if the inode in question is pending in the wbuf */
59 	while (this) {
60 		if (this->ino == ino)
61 			return 1;
62 		this = this->next;
63 	}
64 	return 0;
65 }
66 
67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
68 {
69 	struct jffs2_inodirty *this;
70 
71 	this = c->wbuf_inodes;
72 
73 	if (this != &inodirty_nomem) {
74 		while (this) {
75 			struct jffs2_inodirty *next = this->next;
76 			kfree(this);
77 			this = next;
78 		}
79 	}
80 	c->wbuf_inodes = NULL;
81 }
82 
83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
84 {
85 	struct jffs2_inodirty *new;
86 
87 	/* Mark the superblock dirty so that kupdated will flush... */
88 	jffs2_erase_pending_trigger(c);
89 
90 	if (jffs2_wbuf_pending_for_ino(c, ino))
91 		return;
92 
93 	new = kmalloc(sizeof(*new), GFP_KERNEL);
94 	if (!new) {
95 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
96 		jffs2_clear_wbuf_ino_list(c);
97 		c->wbuf_inodes = &inodirty_nomem;
98 		return;
99 	}
100 	new->ino = ino;
101 	new->next = c->wbuf_inodes;
102 	c->wbuf_inodes = new;
103 	return;
104 }
105 
106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
107 {
108 	struct list_head *this, *next;
109 	static int n;
110 
111 	if (list_empty(&c->erasable_pending_wbuf_list))
112 		return;
113 
114 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
115 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
116 
117 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
118 		list_del(this);
119 		if ((jiffies + (n++)) & 127) {
120 			/* Most of the time, we just erase it immediately. Otherwise we
121 			   spend ages scanning it on mount, etc. */
122 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
123 			list_add_tail(&jeb->list, &c->erase_pending_list);
124 			c->nr_erasing_blocks++;
125 			jffs2_erase_pending_trigger(c);
126 		} else {
127 			/* Sometimes, however, we leave it elsewhere so it doesn't get
128 			   immediately reused, and we spread the load a bit. */
129 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
130 			list_add_tail(&jeb->list, &c->erasable_list);
131 		}
132 	}
133 }
134 
135 #define REFILE_NOTEMPTY 0
136 #define REFILE_ANYWAY   1
137 
138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
139 {
140 	D1(printk("About to refile bad block at %08x\n", jeb->offset));
141 
142 	/* File the existing block on the bad_used_list.... */
143 	if (c->nextblock == jeb)
144 		c->nextblock = NULL;
145 	else /* Not sure this should ever happen... need more coffee */
146 		list_del(&jeb->list);
147 	if (jeb->first_node) {
148 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
149 		list_add(&jeb->list, &c->bad_used_list);
150 	} else {
151 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
152 		/* It has to have had some nodes or we couldn't be here */
153 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 		list_add(&jeb->list, &c->erase_pending_list);
155 		c->nr_erasing_blocks++;
156 		jffs2_erase_pending_trigger(c);
157 	}
158 
159 	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
160 		uint32_t oldfree = jeb->free_size;
161 
162 		jffs2_link_node_ref(c, jeb,
163 				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
164 				    oldfree, NULL);
165 		/* convert to wasted */
166 		c->wasted_size += oldfree;
167 		jeb->wasted_size += oldfree;
168 		c->dirty_size -= oldfree;
169 		jeb->dirty_size -= oldfree;
170 	}
171 
172 	jffs2_dbg_dump_block_lists_nolock(c);
173 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
174 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
175 }
176 
177 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
178 							    struct jffs2_inode_info *f,
179 							    struct jffs2_raw_node_ref *raw,
180 							    union jffs2_node_union *node)
181 {
182 	struct jffs2_node_frag *frag;
183 	struct jffs2_full_dirent *fd;
184 
185 	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
186 		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
187 
188 	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
189 	       je16_to_cpu(node->u.magic) != 0);
190 
191 	switch (je16_to_cpu(node->u.nodetype)) {
192 	case JFFS2_NODETYPE_INODE:
193 		if (f->metadata && f->metadata->raw == raw) {
194 			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
195 			return &f->metadata->raw;
196 		}
197 		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
198 		BUG_ON(!frag);
199 		/* Find a frag which refers to the full_dnode we want to modify */
200 		while (!frag->node || frag->node->raw != raw) {
201 			frag = frag_next(frag);
202 			BUG_ON(!frag);
203 		}
204 		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
205 		return &frag->node->raw;
206 
207 	case JFFS2_NODETYPE_DIRENT:
208 		for (fd = f->dents; fd; fd = fd->next) {
209 			if (fd->raw == raw) {
210 				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
211 				return &fd->raw;
212 			}
213 		}
214 		BUG();
215 
216 	default:
217 		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
218 			    je16_to_cpu(node->u.nodetype));
219 		break;
220 	}
221 	return NULL;
222 }
223 
224 /* Recover from failure to write wbuf. Recover the nodes up to the
225  * wbuf, not the one which we were starting to try to write. */
226 
227 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
228 {
229 	struct jffs2_eraseblock *jeb, *new_jeb;
230 	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
231 	size_t retlen;
232 	int ret;
233 	int nr_refile = 0;
234 	unsigned char *buf;
235 	uint32_t start, end, ofs, len;
236 
237 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
238 
239 	spin_lock(&c->erase_completion_lock);
240 	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
241 	spin_unlock(&c->erase_completion_lock);
242 
243 	BUG_ON(!ref_obsolete(jeb->last_node));
244 
245 	/* Find the first node to be recovered, by skipping over every
246 	   node which ends before the wbuf starts, or which is obsolete. */
247 	for (next = raw = jeb->first_node; next; raw = next) {
248 		next = ref_next(raw);
249 
250 		if (ref_obsolete(raw) ||
251 		    (next && ref_offset(next) <= c->wbuf_ofs)) {
252 			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
253 				    ref_offset(raw), ref_flags(raw),
254 				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
255 				    c->wbuf_ofs);
256 			continue;
257 		}
258 		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
259 			    ref_offset(raw), ref_flags(raw),
260 			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
261 
262 		first_raw = raw;
263 		break;
264 	}
265 
266 	if (!first_raw) {
267 		/* All nodes were obsolete. Nothing to recover. */
268 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
269 		c->wbuf_len = 0;
270 		return;
271 	}
272 
273 	start = ref_offset(first_raw);
274 	end = ref_offset(jeb->last_node);
275 	nr_refile = 1;
276 
277 	/* Count the number of refs which need to be copied */
278 	while ((raw = ref_next(raw)) != jeb->last_node)
279 		nr_refile++;
280 
281 	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
282 		    start, end, end - start, nr_refile);
283 
284 	buf = NULL;
285 	if (start < c->wbuf_ofs) {
286 		/* First affected node was already partially written.
287 		 * Attempt to reread the old data into our buffer. */
288 
289 		buf = kmalloc(end - start, GFP_KERNEL);
290 		if (!buf) {
291 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
292 
293 			goto read_failed;
294 		}
295 
296 		/* Do the read... */
297 		ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
298 
299 		/* ECC recovered ? */
300 		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
301 		    (retlen == c->wbuf_ofs - start))
302 			ret = 0;
303 
304 		if (ret || retlen != c->wbuf_ofs - start) {
305 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
306 
307 			kfree(buf);
308 			buf = NULL;
309 		read_failed:
310 			first_raw = ref_next(first_raw);
311 			nr_refile--;
312 			while (first_raw && ref_obsolete(first_raw)) {
313 				first_raw = ref_next(first_raw);
314 				nr_refile--;
315 			}
316 
317 			/* If this was the only node to be recovered, give up */
318 			if (!first_raw) {
319 				c->wbuf_len = 0;
320 				return;
321 			}
322 
323 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
324 			start = ref_offset(first_raw);
325 			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
326 				    start, end, end - start, nr_refile);
327 
328 		} else {
329 			/* Read succeeded. Copy the remaining data from the wbuf */
330 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
331 		}
332 	}
333 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
334 	   Either 'buf' contains the data, or we find it in the wbuf */
335 
336 	/* ... and get an allocation of space from a shiny new block instead */
337 	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
338 	if (ret) {
339 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
340 		kfree(buf);
341 		return;
342 	}
343 
344 	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
345 	if (ret) {
346 		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
347 		kfree(buf);
348 		return;
349 	}
350 
351 	ofs = write_ofs(c);
352 
353 	if (end-start >= c->wbuf_pagesize) {
354 		/* Need to do another write immediately, but it's possible
355 		   that this is just because the wbuf itself is completely
356 		   full, and there's nothing earlier read back from the
357 		   flash. Hence 'buf' isn't necessarily what we're writing
358 		   from. */
359 		unsigned char *rewrite_buf = buf?:c->wbuf;
360 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
361 
362 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
363 			  towrite, ofs));
364 
365 #ifdef BREAKMEHEADER
366 		static int breakme;
367 		if (breakme++ == 20) {
368 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
369 			breakme = 0;
370 			c->mtd->write(c->mtd, ofs, towrite, &retlen,
371 				      brokenbuf);
372 			ret = -EIO;
373 		} else
374 #endif
375 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
376 					    rewrite_buf);
377 
378 		if (ret || retlen != towrite) {
379 			/* Argh. We tried. Really we did. */
380 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
381 			kfree(buf);
382 
383 			if (retlen)
384 				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
385 
386 			return;
387 		}
388 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
389 
390 		c->wbuf_len = (end - start) - towrite;
391 		c->wbuf_ofs = ofs + towrite;
392 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
393 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
394 	} else {
395 		/* OK, now we're left with the dregs in whichever buffer we're using */
396 		if (buf) {
397 			memcpy(c->wbuf, buf, end-start);
398 		} else {
399 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
400 		}
401 		c->wbuf_ofs = ofs;
402 		c->wbuf_len = end - start;
403 	}
404 
405 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
406 	new_jeb = &c->blocks[ofs / c->sector_size];
407 
408 	spin_lock(&c->erase_completion_lock);
409 	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
410 		uint32_t rawlen = ref_totlen(c, jeb, raw);
411 		struct jffs2_inode_cache *ic;
412 		struct jffs2_raw_node_ref *new_ref;
413 		struct jffs2_raw_node_ref **adjust_ref = NULL;
414 		struct jffs2_inode_info *f = NULL;
415 
416 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
417 			  rawlen, ref_offset(raw), ref_flags(raw), ofs));
418 
419 		ic = jffs2_raw_ref_to_ic(raw);
420 
421 		/* Ick. This XATTR mess should be fixed shortly... */
422 		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
423 			struct jffs2_xattr_datum *xd = (void *)ic;
424 			BUG_ON(xd->node != raw);
425 			adjust_ref = &xd->node;
426 			raw->next_in_ino = NULL;
427 			ic = NULL;
428 		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
429 			struct jffs2_xattr_datum *xr = (void *)ic;
430 			BUG_ON(xr->node != raw);
431 			adjust_ref = &xr->node;
432 			raw->next_in_ino = NULL;
433 			ic = NULL;
434 		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
435 			struct jffs2_raw_node_ref **p = &ic->nodes;
436 
437 			/* Remove the old node from the per-inode list */
438 			while (*p && *p != (void *)ic) {
439 				if (*p == raw) {
440 					(*p) = (raw->next_in_ino);
441 					raw->next_in_ino = NULL;
442 					break;
443 				}
444 				p = &((*p)->next_in_ino);
445 			}
446 
447 			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
448 				/* If it's an in-core inode, then we have to adjust any
449 				   full_dirent or full_dnode structure to point to the
450 				   new version instead of the old */
451 				f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
452 				if (IS_ERR(f)) {
453 					/* Should never happen; it _must_ be present */
454 					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
455 						    ic->ino, PTR_ERR(f));
456 					BUG();
457 				}
458 				/* We don't lock f->sem. There's a number of ways we could
459 				   end up in here with it already being locked, and nobody's
460 				   going to modify it on us anyway because we hold the
461 				   alloc_sem. We're only changing one ->raw pointer too,
462 				   which we can get away with without upsetting readers. */
463 				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
464 								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
465 			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
466 					    ic->state != INO_STATE_CHECKEDABSENT &&
467 					    ic->state != INO_STATE_GC)) {
468 				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
469 				BUG();
470 			}
471 		}
472 
473 		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
474 
475 		if (adjust_ref) {
476 			BUG_ON(*adjust_ref != raw);
477 			*adjust_ref = new_ref;
478 		}
479 		if (f)
480 			jffs2_gc_release_inode(c, f);
481 
482 		if (!ref_obsolete(raw)) {
483 			jeb->dirty_size += rawlen;
484 			jeb->used_size  -= rawlen;
485 			c->dirty_size += rawlen;
486 			c->used_size -= rawlen;
487 			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
488 			BUG_ON(raw->next_in_ino);
489 		}
490 		ofs += rawlen;
491 	}
492 
493 	kfree(buf);
494 
495 	/* Fix up the original jeb now it's on the bad_list */
496 	if (first_raw == jeb->first_node) {
497 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
498 		list_move(&jeb->list, &c->erase_pending_list);
499 		c->nr_erasing_blocks++;
500 		jffs2_erase_pending_trigger(c);
501 	}
502 
503 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
504 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
505 
506 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
507 	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
508 
509 	spin_unlock(&c->erase_completion_lock);
510 
511 	D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
512 
513 }
514 
515 /* Meaning of pad argument:
516    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
517    1: Pad, do not adjust nextblock free_size
518    2: Pad, adjust nextblock free_size
519 */
520 #define NOPAD		0
521 #define PAD_NOACCOUNT	1
522 #define PAD_ACCOUNTING	2
523 
524 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
525 {
526 	struct jffs2_eraseblock *wbuf_jeb;
527 	int ret;
528 	size_t retlen;
529 
530 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
531 	   del_timer() the timer we never initialised. */
532 	if (!jffs2_is_writebuffered(c))
533 		return 0;
534 
535 	if (!down_trylock(&c->alloc_sem)) {
536 		up(&c->alloc_sem);
537 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
538 		BUG();
539 	}
540 
541 	if (!c->wbuf_len)	/* already checked c->wbuf above */
542 		return 0;
543 
544 	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
545 	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
546 		return -ENOMEM;
547 
548 	/* claim remaining space on the page
549 	   this happens, if we have a change to a new block,
550 	   or if fsync forces us to flush the writebuffer.
551 	   if we have a switch to next page, we will not have
552 	   enough remaining space for this.
553 	*/
554 	if (pad ) {
555 		c->wbuf_len = PAD(c->wbuf_len);
556 
557 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
558 		   with 8 byte page size */
559 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
560 
561 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
562 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
563 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
564 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
565 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
566 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
567 		}
568 	}
569 	/* else jffs2_flash_writev has actually filled in the rest of the
570 	   buffer for us, and will deal with the node refs etc. later. */
571 
572 #ifdef BREAKME
573 	static int breakme;
574 	if (breakme++ == 20) {
575 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
576 		breakme = 0;
577 		c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
578 			      brokenbuf);
579 		ret = -EIO;
580 	} else
581 #endif
582 
583 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
584 
585 	if (ret || retlen != c->wbuf_pagesize) {
586 		if (ret)
587 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
588 		else {
589 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
590 				retlen, c->wbuf_pagesize);
591 			ret = -EIO;
592 		}
593 
594 		jffs2_wbuf_recover(c);
595 
596 		return ret;
597 	}
598 
599 	/* Adjust free size of the block if we padded. */
600 	if (pad) {
601 		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
602 
603 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
604 			  (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
605 
606 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
607 		   padded. If there is less free space in the block than that,
608 		   something screwed up */
609 		if (wbuf_jeb->free_size < waste) {
610 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
611 			       c->wbuf_ofs, c->wbuf_len, waste);
612 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
613 			       wbuf_jeb->offset, wbuf_jeb->free_size);
614 			BUG();
615 		}
616 
617 		spin_lock(&c->erase_completion_lock);
618 
619 		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
620 		/* FIXME: that made it count as dirty. Convert to wasted */
621 		wbuf_jeb->dirty_size -= waste;
622 		c->dirty_size -= waste;
623 		wbuf_jeb->wasted_size += waste;
624 		c->wasted_size += waste;
625 	} else
626 		spin_lock(&c->erase_completion_lock);
627 
628 	/* Stick any now-obsoleted blocks on the erase_pending_list */
629 	jffs2_refile_wbuf_blocks(c);
630 	jffs2_clear_wbuf_ino_list(c);
631 	spin_unlock(&c->erase_completion_lock);
632 
633 	memset(c->wbuf,0xff,c->wbuf_pagesize);
634 	/* adjust write buffer offset, else we get a non contiguous write bug */
635 	c->wbuf_ofs += c->wbuf_pagesize;
636 	c->wbuf_len = 0;
637 	return 0;
638 }
639 
640 /* Trigger garbage collection to flush the write-buffer.
641    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
642    outstanding. If ino arg non-zero, do it only if a write for the
643    given inode is outstanding. */
644 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
645 {
646 	uint32_t old_wbuf_ofs;
647 	uint32_t old_wbuf_len;
648 	int ret = 0;
649 
650 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
651 
652 	if (!c->wbuf)
653 		return 0;
654 
655 	down(&c->alloc_sem);
656 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
657 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
658 		up(&c->alloc_sem);
659 		return 0;
660 	}
661 
662 	old_wbuf_ofs = c->wbuf_ofs;
663 	old_wbuf_len = c->wbuf_len;
664 
665 	if (c->unchecked_size) {
666 		/* GC won't make any progress for a while */
667 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
668 		down_write(&c->wbuf_sem);
669 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
670 		/* retry flushing wbuf in case jffs2_wbuf_recover
671 		   left some data in the wbuf */
672 		if (ret)
673 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
674 		up_write(&c->wbuf_sem);
675 	} else while (old_wbuf_len &&
676 		      old_wbuf_ofs == c->wbuf_ofs) {
677 
678 		up(&c->alloc_sem);
679 
680 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
681 
682 		ret = jffs2_garbage_collect_pass(c);
683 		if (ret) {
684 			/* GC failed. Flush it with padding instead */
685 			down(&c->alloc_sem);
686 			down_write(&c->wbuf_sem);
687 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
688 			/* retry flushing wbuf in case jffs2_wbuf_recover
689 			   left some data in the wbuf */
690 			if (ret)
691 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
692 			up_write(&c->wbuf_sem);
693 			break;
694 		}
695 		down(&c->alloc_sem);
696 	}
697 
698 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
699 
700 	up(&c->alloc_sem);
701 	return ret;
702 }
703 
704 /* Pad write-buffer to end and write it, wasting space. */
705 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
706 {
707 	int ret;
708 
709 	if (!c->wbuf)
710 		return 0;
711 
712 	down_write(&c->wbuf_sem);
713 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
714 	/* retry - maybe wbuf recover left some data in wbuf. */
715 	if (ret)
716 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
717 	up_write(&c->wbuf_sem);
718 
719 	return ret;
720 }
721 
722 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
723 			      size_t len)
724 {
725 	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
726 		return 0;
727 
728 	if (len > (c->wbuf_pagesize - c->wbuf_len))
729 		len = c->wbuf_pagesize - c->wbuf_len;
730 	memcpy(c->wbuf + c->wbuf_len, buf, len);
731 	c->wbuf_len += (uint32_t) len;
732 	return len;
733 }
734 
735 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
736 		       unsigned long count, loff_t to, size_t *retlen,
737 		       uint32_t ino)
738 {
739 	struct jffs2_eraseblock *jeb;
740 	size_t wbuf_retlen, donelen = 0;
741 	uint32_t outvec_to = to;
742 	int ret, invec;
743 
744 	/* If not writebuffered flash, don't bother */
745 	if (!jffs2_is_writebuffered(c))
746 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
747 
748 	down_write(&c->wbuf_sem);
749 
750 	/* If wbuf_ofs is not initialized, set it to target address */
751 	if (c->wbuf_ofs == 0xFFFFFFFF) {
752 		c->wbuf_ofs = PAGE_DIV(to);
753 		c->wbuf_len = PAGE_MOD(to);
754 		memset(c->wbuf,0xff,c->wbuf_pagesize);
755 	}
756 
757 	/*
758 	 * Sanity checks on target address.  It's permitted to write
759 	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
760 	 * write at the beginning of a new erase block. Anything else,
761 	 * and you die.  New block starts at xxx000c (0-b = block
762 	 * header)
763 	 */
764 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
765 		/* It's a write to a new block */
766 		if (c->wbuf_len) {
767 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
768 				  "causes flush of wbuf at 0x%08x\n",
769 				  (unsigned long)to, c->wbuf_ofs));
770 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
771 			if (ret)
772 				goto outerr;
773 		}
774 		/* set pointer to new block */
775 		c->wbuf_ofs = PAGE_DIV(to);
776 		c->wbuf_len = PAGE_MOD(to);
777 	}
778 
779 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
780 		/* We're not writing immediately after the writebuffer. Bad. */
781 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
782 		       "to %08lx\n", (unsigned long)to);
783 		if (c->wbuf_len)
784 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
785 			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
786 		BUG();
787 	}
788 
789 	/* adjust alignment offset */
790 	if (c->wbuf_len != PAGE_MOD(to)) {
791 		c->wbuf_len = PAGE_MOD(to);
792 		/* take care of alignment to next page */
793 		if (!c->wbuf_len) {
794 			c->wbuf_len = c->wbuf_pagesize;
795 			ret = __jffs2_flush_wbuf(c, NOPAD);
796 			if (ret)
797 				goto outerr;
798 		}
799 	}
800 
801 	for (invec = 0; invec < count; invec++) {
802 		int vlen = invecs[invec].iov_len;
803 		uint8_t *v = invecs[invec].iov_base;
804 
805 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
806 
807 		if (c->wbuf_len == c->wbuf_pagesize) {
808 			ret = __jffs2_flush_wbuf(c, NOPAD);
809 			if (ret)
810 				goto outerr;
811 		}
812 		vlen -= wbuf_retlen;
813 		outvec_to += wbuf_retlen;
814 		donelen += wbuf_retlen;
815 		v += wbuf_retlen;
816 
817 		if (vlen >= c->wbuf_pagesize) {
818 			ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
819 					    &wbuf_retlen, v);
820 			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
821 				goto outfile;
822 
823 			vlen -= wbuf_retlen;
824 			outvec_to += wbuf_retlen;
825 			c->wbuf_ofs = outvec_to;
826 			donelen += wbuf_retlen;
827 			v += wbuf_retlen;
828 		}
829 
830 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
831 		if (c->wbuf_len == c->wbuf_pagesize) {
832 			ret = __jffs2_flush_wbuf(c, NOPAD);
833 			if (ret)
834 				goto outerr;
835 		}
836 
837 		outvec_to += wbuf_retlen;
838 		donelen += wbuf_retlen;
839 	}
840 
841 	/*
842 	 * If there's a remainder in the wbuf and it's a non-GC write,
843 	 * remember that the wbuf affects this ino
844 	 */
845 	*retlen = donelen;
846 
847 	if (jffs2_sum_active()) {
848 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
849 		if (res)
850 			return res;
851 	}
852 
853 	if (c->wbuf_len && ino)
854 		jffs2_wbuf_dirties_inode(c, ino);
855 
856 	ret = 0;
857 	up_write(&c->wbuf_sem);
858 	return ret;
859 
860 outfile:
861 	/*
862 	 * At this point we have no problem, c->wbuf is empty. However
863 	 * refile nextblock to avoid writing again to same address.
864 	 */
865 
866 	spin_lock(&c->erase_completion_lock);
867 
868 	jeb = &c->blocks[outvec_to / c->sector_size];
869 	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
870 
871 	spin_unlock(&c->erase_completion_lock);
872 
873 outerr:
874 	*retlen = 0;
875 	up_write(&c->wbuf_sem);
876 	return ret;
877 }
878 
879 /*
880  *	This is the entry for flash write.
881  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
882 */
883 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
884 		      size_t *retlen, const u_char *buf)
885 {
886 	struct kvec vecs[1];
887 
888 	if (!jffs2_is_writebuffered(c))
889 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
890 
891 	vecs[0].iov_base = (unsigned char *) buf;
892 	vecs[0].iov_len = len;
893 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
894 }
895 
896 /*
897 	Handle readback from writebuffer and ECC failure return
898 */
899 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
900 {
901 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
902 	int	ret;
903 
904 	if (!jffs2_is_writebuffered(c))
905 		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
906 
907 	/* Read flash */
908 	down_read(&c->wbuf_sem);
909 	ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
910 
911 	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
912 		if (ret == -EBADMSG)
913 			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
914 			       " returned ECC error\n", len, ofs);
915 		/*
916 		 * We have the raw data without ECC correction in the buffer,
917 		 * maybe we are lucky and all data or parts are correct. We
918 		 * check the node.  If data are corrupted node check will sort
919 		 * it out.  We keep this block, it will fail on write or erase
920 		 * and the we mark it bad. Or should we do that now? But we
921 		 * should give him a chance.  Maybe we had a system crash or
922 		 * power loss before the ecc write or a erase was completed.
923 		 * So we return success. :)
924 		 */
925 		ret = 0;
926 	}
927 
928 	/* if no writebuffer available or write buffer empty, return */
929 	if (!c->wbuf_pagesize || !c->wbuf_len)
930 		goto exit;
931 
932 	/* if we read in a different block, return */
933 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
934 		goto exit;
935 
936 	if (ofs >= c->wbuf_ofs) {
937 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
938 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
939 			goto exit;
940 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
941 		if (lwbf > len)
942 			lwbf = len;
943 	} else {
944 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
945 		if (orbf > len)			/* is write beyond write buffer ? */
946 			goto exit;
947 		lwbf = len - orbf;		/* number of bytes to copy */
948 		if (lwbf > c->wbuf_len)
949 			lwbf = c->wbuf_len;
950 	}
951 	if (lwbf > 0)
952 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
953 
954 exit:
955 	up_read(&c->wbuf_sem);
956 	return ret;
957 }
958 
959 #define NR_OOB_SCAN_PAGES	4
960 
961 /*
962  * Check, if the out of band area is empty
963  */
964 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
965 			  struct jffs2_eraseblock *jeb, int mode)
966 {
967 	int i, page, ret;
968 	int oobsize = c->mtd->oobsize;
969 	struct mtd_oob_ops ops;
970 
971 	ops.ooblen = NR_OOB_SCAN_PAGES * oobsize;
972 	ops.oobbuf = c->oobbuf;
973 	ops.ooboffs = 0;
974 	ops.datbuf = NULL;
975 	ops.mode = MTD_OOB_PLACE;
976 
977 	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
978 	if (ret) {
979 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
980 			  "failed %d for block at %08x\n", ret, jeb->offset));
981 		return ret;
982 	}
983 
984 	if (ops.oobretlen < ops.ooblen) {
985 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB "
986 			  "returned short read (%zd bytes not %d) for block "
987 			  "at %08x\n", ops.oobretlen, ops.ooblen, jeb->offset));
988 		return -EIO;
989 	}
990 
991 	/* Special check for first page */
992 	for(i = 0; i < oobsize ; i++) {
993 		/* Yeah, we know about the cleanmarker. */
994 		if (mode && i >= c->fsdata_pos &&
995 		    i < c->fsdata_pos + c->fsdata_len)
996 			continue;
997 
998 		if (ops.oobbuf[i] != 0xFF) {
999 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1000 				  "%08x\n", ops.oobbuf[i], i, jeb->offset));
1001 			return 1;
1002 		}
1003 	}
1004 
1005 	/* we know, we are aligned :) */
1006 	for (page = oobsize; page < ops.ooblen; page += sizeof(long)) {
1007 		long dat = *(long *)(&ops.oobbuf[page]);
1008 		if(dat != -1)
1009 			return 1;
1010 	}
1011 	return 0;
1012 }
1013 
1014 /*
1015  * Scan for a valid cleanmarker and for bad blocks
1016  */
1017 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c,
1018 				  struct jffs2_eraseblock *jeb)
1019 {
1020 	struct jffs2_unknown_node n;
1021 	struct mtd_oob_ops ops;
1022 	int oobsize = c->mtd->oobsize;
1023 	unsigned char *p,*b;
1024 	int i, ret;
1025 	size_t offset = jeb->offset;
1026 
1027 	/* Check first if the block is bad. */
1028 	if (c->mtd->block_isbad(c->mtd, offset)) {
1029 		D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker()"
1030 			   ": Bad block at %08x\n", jeb->offset));
1031 		return 2;
1032 	}
1033 
1034 	ops.ooblen = oobsize;
1035 	ops.oobbuf = c->oobbuf;
1036 	ops.ooboffs = 0;
1037 	ops.datbuf = NULL;
1038 	ops.mode = MTD_OOB_PLACE;
1039 
1040 	ret = c->mtd->read_oob(c->mtd, offset, &ops);
1041 	if (ret) {
1042 		D1 (printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1043 			   "Read OOB failed %d for block at %08x\n",
1044 			   ret, jeb->offset));
1045 		return ret;
1046 	}
1047 
1048 	if (ops.oobretlen < ops.ooblen) {
1049 		D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1050 			    "Read OOB return short read (%zd bytes not %d) "
1051 			    "for block at %08x\n", ops.oobretlen, ops.ooblen,
1052 			    jeb->offset));
1053 		return -EIO;
1054 	}
1055 
1056 	n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1057 	n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1058 	n.totlen = cpu_to_je32 (8);
1059 	p = (unsigned char *) &n;
1060 	b = c->oobbuf + c->fsdata_pos;
1061 
1062 	for (i = c->fsdata_len; i; i--) {
1063 		if (*b++ != *p++)
1064 			ret = 1;
1065 	}
1066 
1067 	D1(if (ret == 1) {
1068 		printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): "
1069 		       "Cleanmarker node not detected in block at %08x\n",
1070 		       offset);
1071 		printk(KERN_WARNING "OOB at %08zx was ", offset);
1072 		for (i=0; i < oobsize; i++)
1073 			printk("%02x ", c->oobbuf[i]);
1074 		printk("\n");
1075 	});
1076 	return ret;
1077 }
1078 
1079 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1080 				 struct jffs2_eraseblock *jeb)
1081 {
1082 	struct jffs2_unknown_node n;
1083 	int	ret;
1084 	struct mtd_oob_ops ops;
1085 
1086 	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1087 	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1088 	n.totlen = cpu_to_je32(8);
1089 
1090 	ops.ooblen = c->fsdata_len;
1091 	ops.oobbuf = (uint8_t *)&n;
1092 	ops.ooboffs = c->fsdata_pos;
1093 	ops.datbuf = NULL;
1094 	ops.mode = MTD_OOB_PLACE;
1095 
1096 	ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1097 
1098 	if (ret) {
1099 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1100 			  "Write failed for block at %08x: error %d\n",
1101 			  jeb->offset, ret));
1102 		return ret;
1103 	}
1104 	if (ops.oobretlen != ops.ooblen) {
1105 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): "
1106 			  "Short write for block at %08x: %zd not %d\n",
1107 			  jeb->offset, ops.oobretlen, ops.ooblen));
1108 		return -EIO;
1109 	}
1110 	return 0;
1111 }
1112 
1113 /*
1114  * On NAND we try to mark this block bad. If the block was erased more
1115  * than MAX_ERASE_FAILURES we mark it finaly bad.
1116  * Don't care about failures. This block remains on the erase-pending
1117  * or badblock list as long as nobody manipulates the flash with
1118  * a bootloader or something like that.
1119  */
1120 
1121 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1122 {
1123 	int 	ret;
1124 
1125 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1126 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1127 		return 0;
1128 
1129 	if (!c->mtd->block_markbad)
1130 		return 1; // What else can we do?
1131 
1132 	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1133 	ret = c->mtd->block_markbad(c->mtd, bad_offset);
1134 
1135 	if (ret) {
1136 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1137 		return ret;
1138 	}
1139 	return 1;
1140 }
1141 
1142 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1143 {
1144 	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1145 
1146 	/* Do this only, if we have an oob buffer */
1147 	if (!c->mtd->oobsize)
1148 		return 0;
1149 
1150 	/* Cleanmarker is out-of-band, so inline size zero */
1151 	c->cleanmarker_size = 0;
1152 
1153 	/* Should we use autoplacement ? */
1154 	if (!oinfo) {
1155 		D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1156 		return -EINVAL;
1157 	}
1158 
1159 	D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1160 	/* Get the position of the free bytes */
1161 	if (!oinfo->oobfree[0].length) {
1162 		printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep."
1163 			" Autoplacement selected and no empty space in oob\n");
1164 		return -ENOSPC;
1165 	}
1166 	c->fsdata_pos = oinfo->oobfree[0].offset;
1167 	c->fsdata_len = oinfo->oobfree[0].length;
1168 	if (c->fsdata_len > 8)
1169 		c->fsdata_len = 8;
1170 
1171 	return 0;
1172 }
1173 
1174 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1175 {
1176 	int res;
1177 
1178 	/* Initialise write buffer */
1179 	init_rwsem(&c->wbuf_sem);
1180 	c->wbuf_pagesize = c->mtd->writesize;
1181 	c->wbuf_ofs = 0xFFFFFFFF;
1182 
1183 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1184 	if (!c->wbuf)
1185 		return -ENOMEM;
1186 
1187 	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->mtd->oobsize, GFP_KERNEL);
1188 	if (!c->oobbuf)
1189 		return -ENOMEM;
1190 
1191 	res = jffs2_nand_set_oobinfo(c);
1192 
1193 #ifdef BREAKME
1194 	if (!brokenbuf)
1195 		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1196 	if (!brokenbuf) {
1197 		kfree(c->wbuf);
1198 		return -ENOMEM;
1199 	}
1200 	memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1201 #endif
1202 	return res;
1203 }
1204 
1205 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1206 {
1207 	kfree(c->wbuf);
1208 	kfree(c->oobbuf);
1209 }
1210 
1211 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1212 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1213 
1214 	/* Initialize write buffer */
1215 	init_rwsem(&c->wbuf_sem);
1216 
1217 
1218 	c->wbuf_pagesize =  c->mtd->erasesize;
1219 
1220 	/* Find a suitable c->sector_size
1221 	 * - Not too much sectors
1222 	 * - Sectors have to be at least 4 K + some bytes
1223 	 * - All known dataflashes have erase sizes of 528 or 1056
1224 	 * - we take at least 8 eraseblocks and want to have at least 8K size
1225 	 * - The concatenation should be a power of 2
1226 	*/
1227 
1228 	c->sector_size = 8 * c->mtd->erasesize;
1229 
1230 	while (c->sector_size < 8192) {
1231 		c->sector_size *= 2;
1232 	}
1233 
1234 	/* It may be necessary to adjust the flash size */
1235 	c->flash_size = c->mtd->size;
1236 
1237 	if ((c->flash_size % c->sector_size) != 0) {
1238 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1239 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1240 	};
1241 
1242 	c->wbuf_ofs = 0xFFFFFFFF;
1243 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1244 	if (!c->wbuf)
1245 		return -ENOMEM;
1246 
1247 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1248 
1249 	return 0;
1250 }
1251 
1252 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1253 	kfree(c->wbuf);
1254 }
1255 
1256 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1257 	/* Cleanmarker currently occupies whole programming regions,
1258 	 * either one or 2 for 8Byte STMicro flashes. */
1259 	c->cleanmarker_size = max(16u, c->mtd->writesize);
1260 
1261 	/* Initialize write buffer */
1262 	init_rwsem(&c->wbuf_sem);
1263 	c->wbuf_pagesize = c->mtd->writesize;
1264 	c->wbuf_ofs = 0xFFFFFFFF;
1265 
1266 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1267 	if (!c->wbuf)
1268 		return -ENOMEM;
1269 
1270 	return 0;
1271 }
1272 
1273 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1274 	kfree(c->wbuf);
1275 }
1276