xref: /linux/fs/jffs2/wbuf.c (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  * $Id: wbuf.c,v 1.92 2005/04/05 12:51:54 dedekind Exp $
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include "nodelist.h"
22 
23 /* For testing write failures */
24 #undef BREAKME
25 #undef BREAKMEHEADER
26 
27 #ifdef BREAKME
28 static unsigned char *brokenbuf;
29 #endif
30 
31 /* max. erase failures before we mark a block bad */
32 #define MAX_ERASE_FAILURES 	2
33 
34 /* two seconds timeout for timed wbuf-flushing */
35 #define WBUF_FLUSH_TIMEOUT	2 * HZ
36 
37 struct jffs2_inodirty {
38 	uint32_t ino;
39 	struct jffs2_inodirty *next;
40 };
41 
42 static struct jffs2_inodirty inodirty_nomem;
43 
44 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
45 {
46 	struct jffs2_inodirty *this = c->wbuf_inodes;
47 
48 	/* If a malloc failed, consider _everything_ dirty */
49 	if (this == &inodirty_nomem)
50 		return 1;
51 
52 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
53 	if (this && !ino)
54 		return 1;
55 
56 	/* Look to see if the inode in question is pending in the wbuf */
57 	while (this) {
58 		if (this->ino == ino)
59 			return 1;
60 		this = this->next;
61 	}
62 	return 0;
63 }
64 
65 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
66 {
67 	struct jffs2_inodirty *this;
68 
69 	this = c->wbuf_inodes;
70 
71 	if (this != &inodirty_nomem) {
72 		while (this) {
73 			struct jffs2_inodirty *next = this->next;
74 			kfree(this);
75 			this = next;
76 		}
77 	}
78 	c->wbuf_inodes = NULL;
79 }
80 
81 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
82 {
83 	struct jffs2_inodirty *new;
84 
85 	/* Mark the superblock dirty so that kupdated will flush... */
86 	jffs2_erase_pending_trigger(c);
87 
88 	if (jffs2_wbuf_pending_for_ino(c, ino))
89 		return;
90 
91 	new = kmalloc(sizeof(*new), GFP_KERNEL);
92 	if (!new) {
93 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
94 		jffs2_clear_wbuf_ino_list(c);
95 		c->wbuf_inodes = &inodirty_nomem;
96 		return;
97 	}
98 	new->ino = ino;
99 	new->next = c->wbuf_inodes;
100 	c->wbuf_inodes = new;
101 	return;
102 }
103 
104 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
105 {
106 	struct list_head *this, *next;
107 	static int n;
108 
109 	if (list_empty(&c->erasable_pending_wbuf_list))
110 		return;
111 
112 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
113 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
114 
115 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
116 		list_del(this);
117 		if ((jiffies + (n++)) & 127) {
118 			/* Most of the time, we just erase it immediately. Otherwise we
119 			   spend ages scanning it on mount, etc. */
120 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
121 			list_add_tail(&jeb->list, &c->erase_pending_list);
122 			c->nr_erasing_blocks++;
123 			jffs2_erase_pending_trigger(c);
124 		} else {
125 			/* Sometimes, however, we leave it elsewhere so it doesn't get
126 			   immediately reused, and we spread the load a bit. */
127 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
128 			list_add_tail(&jeb->list, &c->erasable_list);
129 		}
130 	}
131 }
132 
133 #define REFILE_NOTEMPTY 0
134 #define REFILE_ANYWAY   1
135 
136 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
137 {
138 	D1(printk("About to refile bad block at %08x\n", jeb->offset));
139 
140 	D2(jffs2_dump_block_lists(c));
141 	/* File the existing block on the bad_used_list.... */
142 	if (c->nextblock == jeb)
143 		c->nextblock = NULL;
144 	else /* Not sure this should ever happen... need more coffee */
145 		list_del(&jeb->list);
146 	if (jeb->first_node) {
147 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 		list_add(&jeb->list, &c->bad_used_list);
149 	} else {
150 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
151 		/* It has to have had some nodes or we couldn't be here */
152 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 		list_add(&jeb->list, &c->erase_pending_list);
154 		c->nr_erasing_blocks++;
155 		jffs2_erase_pending_trigger(c);
156 	}
157 	D2(jffs2_dump_block_lists(c));
158 
159 	/* Adjust its size counts accordingly */
160 	c->wasted_size += jeb->free_size;
161 	c->free_size -= jeb->free_size;
162 	jeb->wasted_size += jeb->free_size;
163 	jeb->free_size = 0;
164 
165 	ACCT_SANITY_CHECK(c,jeb);
166 	D1(ACCT_PARANOIA_CHECK(jeb));
167 }
168 
169 /* Recover from failure to write wbuf. Recover the nodes up to the
170  * wbuf, not the one which we were starting to try to write. */
171 
172 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
173 {
174 	struct jffs2_eraseblock *jeb, *new_jeb;
175 	struct jffs2_raw_node_ref **first_raw, **raw;
176 	size_t retlen;
177 	int ret;
178 	unsigned char *buf;
179 	uint32_t start, end, ofs, len;
180 
181 	spin_lock(&c->erase_completion_lock);
182 
183 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
184 
185 	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
186 
187 	/* Find the first node to be recovered, by skipping over every
188 	   node which ends before the wbuf starts, or which is obsolete. */
189 	first_raw = &jeb->first_node;
190 	while (*first_raw &&
191 	       (ref_obsolete(*first_raw) ||
192 		(ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
193 		D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
194 			  ref_offset(*first_raw), ref_flags(*first_raw),
195 			  (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
196 			  c->wbuf_ofs));
197 		first_raw = &(*first_raw)->next_phys;
198 	}
199 
200 	if (!*first_raw) {
201 		/* All nodes were obsolete. Nothing to recover. */
202 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
203 		spin_unlock(&c->erase_completion_lock);
204 		return;
205 	}
206 
207 	start = ref_offset(*first_raw);
208 	end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
209 
210 	/* Find the last node to be recovered */
211 	raw = first_raw;
212 	while ((*raw)) {
213 		if (!ref_obsolete(*raw))
214 			end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
215 
216 		raw = &(*raw)->next_phys;
217 	}
218 	spin_unlock(&c->erase_completion_lock);
219 
220 	D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
221 
222 	buf = NULL;
223 	if (start < c->wbuf_ofs) {
224 		/* First affected node was already partially written.
225 		 * Attempt to reread the old data into our buffer. */
226 
227 		buf = kmalloc(end - start, GFP_KERNEL);
228 		if (!buf) {
229 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
230 
231 			goto read_failed;
232 		}
233 
234 		/* Do the read... */
235 		if (jffs2_cleanmarker_oob(c))
236 			ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
237 		else
238 			ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
239 
240 		if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
241 			/* ECC recovered */
242 			ret = 0;
243 		}
244 		if (ret || retlen != c->wbuf_ofs - start) {
245 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
246 
247 			kfree(buf);
248 			buf = NULL;
249 		read_failed:
250 			first_raw = &(*first_raw)->next_phys;
251 			/* If this was the only node to be recovered, give up */
252 			if (!(*first_raw))
253 				return;
254 
255 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
256 			start = ref_offset(*first_raw);
257 		} else {
258 			/* Read succeeded. Copy the remaining data from the wbuf */
259 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
260 		}
261 	}
262 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
263 	   Either 'buf' contains the data, or we find it in the wbuf */
264 
265 
266 	/* ... and get an allocation of space from a shiny new block instead */
267 	ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
268 	if (ret) {
269 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
270 		kfree(buf);
271 		return;
272 	}
273 	if (end-start >= c->wbuf_pagesize) {
274 		/* Need to do another write immediately, but it's possible
275 		   that this is just because the wbuf itself is completely
276 		   full, and there's nothing earlier read back from the
277 		   flash. Hence 'buf' isn't necessarily what we're writing
278 		   from. */
279 		unsigned char *rewrite_buf = buf?:c->wbuf;
280 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
281 
282 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
283 			  towrite, ofs));
284 
285 #ifdef BREAKMEHEADER
286 		static int breakme;
287 		if (breakme++ == 20) {
288 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
289 			breakme = 0;
290 			c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
291 					  brokenbuf, NULL, c->oobinfo);
292 			ret = -EIO;
293 		} else
294 #endif
295 		if (jffs2_cleanmarker_oob(c))
296 			ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
297 						rewrite_buf, NULL, c->oobinfo);
298 		else
299 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
300 
301 		if (ret || retlen != towrite) {
302 			/* Argh. We tried. Really we did. */
303 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
304 			kfree(buf);
305 
306 			if (retlen) {
307 				struct jffs2_raw_node_ref *raw2;
308 
309 				raw2 = jffs2_alloc_raw_node_ref();
310 				if (!raw2)
311 					return;
312 
313 				raw2->flash_offset = ofs | REF_OBSOLETE;
314 				raw2->__totlen = ref_totlen(c, jeb, *first_raw);
315 				raw2->next_phys = NULL;
316 				raw2->next_in_ino = NULL;
317 
318 				jffs2_add_physical_node_ref(c, raw2);
319 			}
320 			return;
321 		}
322 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
323 
324 		c->wbuf_len = (end - start) - towrite;
325 		c->wbuf_ofs = ofs + towrite;
326 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
327 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
328 		if (buf)
329 			kfree(buf);
330 	} else {
331 		/* OK, now we're left with the dregs in whichever buffer we're using */
332 		if (buf) {
333 			memcpy(c->wbuf, buf, end-start);
334 			kfree(buf);
335 		} else {
336 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
337 		}
338 		c->wbuf_ofs = ofs;
339 		c->wbuf_len = end - start;
340 	}
341 
342 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
343 	new_jeb = &c->blocks[ofs / c->sector_size];
344 
345 	spin_lock(&c->erase_completion_lock);
346 	if (new_jeb->first_node) {
347 		/* Odd, but possible with ST flash later maybe */
348 		new_jeb->last_node->next_phys = *first_raw;
349 	} else {
350 		new_jeb->first_node = *first_raw;
351 	}
352 
353 	raw = first_raw;
354 	while (*raw) {
355 		uint32_t rawlen = ref_totlen(c, jeb, *raw);
356 
357 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
358 			  rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
359 
360 		if (ref_obsolete(*raw)) {
361 			/* Shouldn't really happen much */
362 			new_jeb->dirty_size += rawlen;
363 			new_jeb->free_size -= rawlen;
364 			c->dirty_size += rawlen;
365 		} else {
366 			new_jeb->used_size += rawlen;
367 			new_jeb->free_size -= rawlen;
368 			jeb->dirty_size += rawlen;
369 			jeb->used_size  -= rawlen;
370 			c->dirty_size += rawlen;
371 		}
372 		c->free_size -= rawlen;
373 		(*raw)->flash_offset = ofs | ref_flags(*raw);
374 		ofs += rawlen;
375 		new_jeb->last_node = *raw;
376 
377 		raw = &(*raw)->next_phys;
378 	}
379 
380 	/* Fix up the original jeb now it's on the bad_list */
381 	*first_raw = NULL;
382 	if (first_raw == &jeb->first_node) {
383 		jeb->last_node = NULL;
384 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
385 		list_del(&jeb->list);
386 		list_add(&jeb->list, &c->erase_pending_list);
387 		c->nr_erasing_blocks++;
388 		jffs2_erase_pending_trigger(c);
389 	}
390 	else
391 		jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
392 
393 	ACCT_SANITY_CHECK(c,jeb);
394         D1(ACCT_PARANOIA_CHECK(jeb));
395 
396 	ACCT_SANITY_CHECK(c,new_jeb);
397         D1(ACCT_PARANOIA_CHECK(new_jeb));
398 
399 	spin_unlock(&c->erase_completion_lock);
400 
401 	D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
402 }
403 
404 /* Meaning of pad argument:
405    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
406    1: Pad, do not adjust nextblock free_size
407    2: Pad, adjust nextblock free_size
408 */
409 #define NOPAD		0
410 #define PAD_NOACCOUNT	1
411 #define PAD_ACCOUNTING	2
412 
413 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
414 {
415 	int ret;
416 	size_t retlen;
417 
418 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
419 	   del_timer() the timer we never initialised. */
420 	if (!jffs2_is_writebuffered(c))
421 		return 0;
422 
423 	if (!down_trylock(&c->alloc_sem)) {
424 		up(&c->alloc_sem);
425 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
426 		BUG();
427 	}
428 
429 	if (!c->wbuf_len)	/* already checked c->wbuf above */
430 		return 0;
431 
432 	/* claim remaining space on the page
433 	   this happens, if we have a change to a new block,
434 	   or if fsync forces us to flush the writebuffer.
435 	   if we have a switch to next page, we will not have
436 	   enough remaining space for this.
437 	*/
438 	if (pad && !jffs2_dataflash(c)) {
439 		c->wbuf_len = PAD(c->wbuf_len);
440 
441 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
442 		   with 8 byte page size */
443 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
444 
445 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
446 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
447 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
448 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
449 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
450 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
451 		}
452 	}
453 	/* else jffs2_flash_writev has actually filled in the rest of the
454 	   buffer for us, and will deal with the node refs etc. later. */
455 
456 #ifdef BREAKME
457 	static int breakme;
458 	if (breakme++ == 20) {
459 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
460 		breakme = 0;
461 		c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
462 					&retlen, brokenbuf, NULL, c->oobinfo);
463 		ret = -EIO;
464 	} else
465 #endif
466 
467 	if (jffs2_cleanmarker_oob(c))
468 		ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
469 	else
470 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
471 
472 	if (ret || retlen != c->wbuf_pagesize) {
473 		if (ret)
474 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
475 		else {
476 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
477 				retlen, c->wbuf_pagesize);
478 			ret = -EIO;
479 		}
480 
481 		jffs2_wbuf_recover(c);
482 
483 		return ret;
484 	}
485 
486 	spin_lock(&c->erase_completion_lock);
487 
488 	/* Adjust free size of the block if we padded. */
489 	if (pad && !jffs2_dataflash(c)) {
490 		struct jffs2_eraseblock *jeb;
491 
492 		jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
493 
494 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
495 			  (jeb==c->nextblock)?"next":"", jeb->offset));
496 
497 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
498 		   padded. If there is less free space in the block than that,
499 		   something screwed up */
500 		if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
501 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
502 			       c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
503 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
504 			       jeb->offset, jeb->free_size);
505 			BUG();
506 		}
507 		jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
508 		c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
509 		jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
510 		c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
511 	}
512 
513 	/* Stick any now-obsoleted blocks on the erase_pending_list */
514 	jffs2_refile_wbuf_blocks(c);
515 	jffs2_clear_wbuf_ino_list(c);
516 	spin_unlock(&c->erase_completion_lock);
517 
518 	memset(c->wbuf,0xff,c->wbuf_pagesize);
519 	/* adjust write buffer offset, else we get a non contiguous write bug */
520 	c->wbuf_ofs += c->wbuf_pagesize;
521 	c->wbuf_len = 0;
522 	return 0;
523 }
524 
525 /* Trigger garbage collection to flush the write-buffer.
526    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
527    outstanding. If ino arg non-zero, do it only if a write for the
528    given inode is outstanding. */
529 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
530 {
531 	uint32_t old_wbuf_ofs;
532 	uint32_t old_wbuf_len;
533 	int ret = 0;
534 
535 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
536 
537 	if (!c->wbuf)
538 		return 0;
539 
540 	down(&c->alloc_sem);
541 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
542 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
543 		up(&c->alloc_sem);
544 		return 0;
545 	}
546 
547 	old_wbuf_ofs = c->wbuf_ofs;
548 	old_wbuf_len = c->wbuf_len;
549 
550 	if (c->unchecked_size) {
551 		/* GC won't make any progress for a while */
552 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
553 		down_write(&c->wbuf_sem);
554 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
555 		/* retry flushing wbuf in case jffs2_wbuf_recover
556 		   left some data in the wbuf */
557 		if (ret)
558 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
559 		up_write(&c->wbuf_sem);
560 	} else while (old_wbuf_len &&
561 		      old_wbuf_ofs == c->wbuf_ofs) {
562 
563 		up(&c->alloc_sem);
564 
565 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
566 
567 		ret = jffs2_garbage_collect_pass(c);
568 		if (ret) {
569 			/* GC failed. Flush it with padding instead */
570 			down(&c->alloc_sem);
571 			down_write(&c->wbuf_sem);
572 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
573 			/* retry flushing wbuf in case jffs2_wbuf_recover
574 			   left some data in the wbuf */
575 			if (ret)
576 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
577 			up_write(&c->wbuf_sem);
578 			break;
579 		}
580 		down(&c->alloc_sem);
581 	}
582 
583 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
584 
585 	up(&c->alloc_sem);
586 	return ret;
587 }
588 
589 /* Pad write-buffer to end and write it, wasting space. */
590 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
591 {
592 	int ret;
593 
594 	if (!c->wbuf)
595 		return 0;
596 
597 	down_write(&c->wbuf_sem);
598 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
599 	/* retry - maybe wbuf recover left some data in wbuf. */
600 	if (ret)
601 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
602 	up_write(&c->wbuf_sem);
603 
604 	return ret;
605 }
606 
607 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
608 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
609 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
610 #else
611 #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
612 #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
613 #endif
614 
615 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
616 {
617 	struct kvec outvecs[3];
618 	uint32_t totlen = 0;
619 	uint32_t split_ofs = 0;
620 	uint32_t old_totlen;
621 	int ret, splitvec = -1;
622 	int invec, outvec;
623 	size_t wbuf_retlen;
624 	unsigned char *wbuf_ptr;
625 	size_t donelen = 0;
626 	uint32_t outvec_to = to;
627 
628 	/* If not NAND flash, don't bother */
629 	if (!jffs2_is_writebuffered(c))
630 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
631 
632 	down_write(&c->wbuf_sem);
633 
634 	/* If wbuf_ofs is not initialized, set it to target address */
635 	if (c->wbuf_ofs == 0xFFFFFFFF) {
636 		c->wbuf_ofs = PAGE_DIV(to);
637 		c->wbuf_len = PAGE_MOD(to);
638 		memset(c->wbuf,0xff,c->wbuf_pagesize);
639 	}
640 
641 	/* Fixup the wbuf if we are moving to a new eraseblock.  The checks below
642 	   fail for ECC'd NOR because cleanmarker == 16, so a block starts at
643 	   xxx0010.  */
644 	if (jffs2_nor_ecc(c)) {
645 		if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
646 			c->wbuf_ofs = PAGE_DIV(to);
647 			c->wbuf_len = PAGE_MOD(to);
648 			memset(c->wbuf,0xff,c->wbuf_pagesize);
649 		}
650 	}
651 
652 	/* Sanity checks on target address.
653 	   It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
654 	   and it's permitted to write at the beginning of a new
655 	   erase block. Anything else, and you die.
656 	   New block starts at xxx000c (0-b = block header)
657 	*/
658 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
659 		/* It's a write to a new block */
660 		if (c->wbuf_len) {
661 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
662 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
663 			if (ret) {
664 				/* the underlying layer has to check wbuf_len to do the cleanup */
665 				D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
666 				*retlen = 0;
667 				goto exit;
668 			}
669 		}
670 		/* set pointer to new block */
671 		c->wbuf_ofs = PAGE_DIV(to);
672 		c->wbuf_len = PAGE_MOD(to);
673 	}
674 
675 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
676 		/* We're not writing immediately after the writebuffer. Bad. */
677 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
678 		if (c->wbuf_len)
679 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
680 					  c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
681 		BUG();
682 	}
683 
684 	/* Note outvecs[3] above. We know count is never greater than 2 */
685 	if (count > 2) {
686 		printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
687 		BUG();
688 	}
689 
690 	invec = 0;
691 	outvec = 0;
692 
693 	/* Fill writebuffer first, if already in use */
694 	if (c->wbuf_len) {
695 		uint32_t invec_ofs = 0;
696 
697 		/* adjust alignment offset */
698 		if (c->wbuf_len != PAGE_MOD(to)) {
699 			c->wbuf_len = PAGE_MOD(to);
700 			/* take care of alignment to next page */
701 			if (!c->wbuf_len)
702 				c->wbuf_len = c->wbuf_pagesize;
703 		}
704 
705 		while(c->wbuf_len < c->wbuf_pagesize) {
706 			uint32_t thislen;
707 
708 			if (invec == count)
709 				goto alldone;
710 
711 			thislen = c->wbuf_pagesize - c->wbuf_len;
712 
713 			if (thislen >= invecs[invec].iov_len)
714 				thislen = invecs[invec].iov_len;
715 
716 			invec_ofs = thislen;
717 
718 			memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
719 			c->wbuf_len += thislen;
720 			donelen += thislen;
721 			/* Get next invec, if actual did not fill the buffer */
722 			if (c->wbuf_len < c->wbuf_pagesize)
723 				invec++;
724 		}
725 
726 		/* write buffer is full, flush buffer */
727 		ret = __jffs2_flush_wbuf(c, NOPAD);
728 		if (ret) {
729 			/* the underlying layer has to check wbuf_len to do the cleanup */
730 			D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
731 			/* Retlen zero to make sure our caller doesn't mark the space dirty.
732 			   We've already done everything that's necessary */
733 			*retlen = 0;
734 			goto exit;
735 		}
736 		outvec_to += donelen;
737 		c->wbuf_ofs = outvec_to;
738 
739 		/* All invecs done ? */
740 		if (invec == count)
741 			goto alldone;
742 
743 		/* Set up the first outvec, containing the remainder of the
744 		   invec we partially used */
745 		if (invecs[invec].iov_len > invec_ofs) {
746 			outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
747 			totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
748 			if (totlen > c->wbuf_pagesize) {
749 				splitvec = outvec;
750 				split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
751 			}
752 			outvec++;
753 		}
754 		invec++;
755 	}
756 
757 	/* OK, now we've flushed the wbuf and the start of the bits
758 	   we have been asked to write, now to write the rest.... */
759 
760 	/* totlen holds the amount of data still to be written */
761 	old_totlen = totlen;
762 	for ( ; invec < count; invec++,outvec++ ) {
763 		outvecs[outvec].iov_base = invecs[invec].iov_base;
764 		totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
765 		if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
766 			splitvec = outvec;
767 			split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
768 			old_totlen = totlen;
769 		}
770 	}
771 
772 	/* Now the outvecs array holds all the remaining data to write */
773 	/* Up to splitvec,split_ofs is to be written immediately. The rest
774 	   goes into the (now-empty) wbuf */
775 
776 	if (splitvec != -1) {
777 		uint32_t remainder;
778 
779 		remainder = outvecs[splitvec].iov_len - split_ofs;
780 		outvecs[splitvec].iov_len = split_ofs;
781 
782 		/* We did cross a page boundary, so we write some now */
783 		if (jffs2_cleanmarker_oob(c))
784 			ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
785 		else
786 			ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
787 
788 		if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
789 			/* At this point we have no problem,
790 			   c->wbuf is empty. However refile nextblock to avoid
791 			   writing again to same address.
792 			*/
793 			struct jffs2_eraseblock *jeb;
794 
795 			spin_lock(&c->erase_completion_lock);
796 
797 			jeb = &c->blocks[outvec_to / c->sector_size];
798 			jffs2_block_refile(c, jeb, REFILE_ANYWAY);
799 
800 			*retlen = 0;
801 			spin_unlock(&c->erase_completion_lock);
802 			goto exit;
803 		}
804 
805 		donelen += wbuf_retlen;
806 		c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
807 
808 		if (remainder) {
809 			outvecs[splitvec].iov_base += split_ofs;
810 			outvecs[splitvec].iov_len = remainder;
811 		} else {
812 			splitvec++;
813 		}
814 
815 	} else {
816 		splitvec = 0;
817 	}
818 
819 	/* Now splitvec points to the start of the bits we have to copy
820 	   into the wbuf */
821 	wbuf_ptr = c->wbuf;
822 
823 	for ( ; splitvec < outvec; splitvec++) {
824 		/* Don't copy the wbuf into itself */
825 		if (outvecs[splitvec].iov_base == c->wbuf)
826 			continue;
827 		memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
828 		wbuf_ptr += outvecs[splitvec].iov_len;
829 		donelen += outvecs[splitvec].iov_len;
830 	}
831 	c->wbuf_len = wbuf_ptr - c->wbuf;
832 
833 	/* If there's a remainder in the wbuf and it's a non-GC write,
834 	   remember that the wbuf affects this ino */
835 alldone:
836 	*retlen = donelen;
837 
838 	if (c->wbuf_len && ino)
839 		jffs2_wbuf_dirties_inode(c, ino);
840 
841 	ret = 0;
842 
843 exit:
844 	up_write(&c->wbuf_sem);
845 	return ret;
846 }
847 
848 /*
849  *	This is the entry for flash write.
850  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
851 */
852 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
853 {
854 	struct kvec vecs[1];
855 
856 	if (!jffs2_is_writebuffered(c))
857 		return c->mtd->write(c->mtd, ofs, len, retlen, buf);
858 
859 	vecs[0].iov_base = (unsigned char *) buf;
860 	vecs[0].iov_len = len;
861 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
862 }
863 
864 /*
865 	Handle readback from writebuffer and ECC failure return
866 */
867 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
868 {
869 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
870 	int	ret;
871 
872 	if (!jffs2_is_writebuffered(c))
873 		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
874 
875 	/* Read flash */
876 	down_read(&c->wbuf_sem);
877 	if (jffs2_cleanmarker_oob(c))
878 		ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
879 	else
880 		ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
881 
882 	if ( (ret == -EBADMSG) && (*retlen == len) ) {
883 		printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
884 		       len, ofs);
885 		/*
886 		 * We have the raw data without ECC correction in the buffer, maybe
887 		 * we are lucky and all data or parts are correct. We check the node.
888 		 * If data are corrupted node check will sort it out.
889 		 * We keep this block, it will fail on write or erase and the we
890 		 * mark it bad. Or should we do that now? But we should give him a chance.
891 		 * Maybe we had a system crash or power loss before the ecc write or
892 		 * a erase was completed.
893 		 * So we return success. :)
894 		 */
895 	 	ret = 0;
896 	}
897 
898 	/* if no writebuffer available or write buffer empty, return */
899 	if (!c->wbuf_pagesize || !c->wbuf_len)
900 		goto exit;
901 
902 	/* if we read in a different block, return */
903 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
904 		goto exit;
905 
906 	if (ofs >= c->wbuf_ofs) {
907 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
908 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
909 			goto exit;
910 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
911 		if (lwbf > len)
912 			lwbf = len;
913 	} else {
914 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
915 		if (orbf > len)			/* is write beyond write buffer ? */
916 			goto exit;
917 		lwbf = len - orbf; 		/* number of bytes to copy */
918 		if (lwbf > c->wbuf_len)
919 			lwbf = c->wbuf_len;
920 	}
921 	if (lwbf > 0)
922 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
923 
924 exit:
925 	up_read(&c->wbuf_sem);
926 	return ret;
927 }
928 
929 /*
930  *	Check, if the out of band area is empty
931  */
932 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
933 {
934 	unsigned char *buf;
935 	int 	ret = 0;
936 	int	i,len,page;
937 	size_t  retlen;
938 	int	oob_size;
939 
940 	/* allocate a buffer for all oob data in this sector */
941 	oob_size = c->mtd->oobsize;
942 	len = 4 * oob_size;
943 	buf = kmalloc(len, GFP_KERNEL);
944 	if (!buf) {
945 		printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
946 		return -ENOMEM;
947 	}
948 	/*
949 	 * if mode = 0, we scan for a total empty oob area, else we have
950 	 * to take care of the cleanmarker in the first page of the block
951 	*/
952 	ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
953 	if (ret) {
954 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
955 		goto out;
956 	}
957 
958 	if (retlen < len) {
959 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
960 			  "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
961 		ret = -EIO;
962 		goto out;
963 	}
964 
965 	/* Special check for first page */
966 	for(i = 0; i < oob_size ; i++) {
967 		/* Yeah, we know about the cleanmarker. */
968 		if (mode && i >= c->fsdata_pos &&
969 		    i < c->fsdata_pos + c->fsdata_len)
970 			continue;
971 
972 		if (buf[i] != 0xFF) {
973 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
974 				  buf[page+i], page+i, jeb->offset));
975 			ret = 1;
976 			goto out;
977 		}
978 	}
979 
980 	/* we know, we are aligned :) */
981 	for (page = oob_size; page < len; page += sizeof(long)) {
982 		unsigned long dat = *(unsigned long *)(&buf[page]);
983 		if(dat != -1) {
984 			ret = 1;
985 			goto out;
986 		}
987 	}
988 
989 out:
990 	kfree(buf);
991 
992 	return ret;
993 }
994 
995 /*
996 *	Scan for a valid cleanmarker and for bad blocks
997 *	For virtual blocks (concatenated physical blocks) check the cleanmarker
998 *	only in the first page of the first physical block, but scan for bad blocks in all
999 *	physical blocks
1000 */
1001 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1002 {
1003 	struct jffs2_unknown_node n;
1004 	unsigned char buf[2 * NAND_MAX_OOBSIZE];
1005 	unsigned char *p;
1006 	int ret, i, cnt, retval = 0;
1007 	size_t retlen, offset;
1008 	int oob_size;
1009 
1010 	offset = jeb->offset;
1011 	oob_size = c->mtd->oobsize;
1012 
1013 	/* Loop through the physical blocks */
1014 	for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1015 		/* Check first if the block is bad. */
1016 		if (c->mtd->block_isbad (c->mtd, offset)) {
1017 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1018 			return 2;
1019 		}
1020 		/*
1021 		   *    We read oob data from page 0 and 1 of the block.
1022 		   *    page 0 contains cleanmarker and badblock info
1023 		   *    page 1 contains failure count of this block
1024 		 */
1025 		ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1026 
1027 		if (ret) {
1028 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1029 			return ret;
1030 		}
1031 		if (retlen < (oob_size << 1)) {
1032 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1033 			return -EIO;
1034 		}
1035 
1036 		/* Check cleanmarker only on the first physical block */
1037 		if (!cnt) {
1038 			n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1039 			n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1040 			n.totlen = cpu_to_je32 (8);
1041 			p = (unsigned char *) &n;
1042 
1043 			for (i = 0; i < c->fsdata_len; i++) {
1044 				if (buf[c->fsdata_pos + i] != p[i]) {
1045 					retval = 1;
1046 				}
1047 			}
1048 			D1(if (retval == 1) {
1049 				printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1050 				printk(KERN_WARNING "OOB at %08x was ", offset);
1051 				for (i=0; i < oob_size; i++) {
1052 					printk("%02x ", buf[i]);
1053 				}
1054 				printk("\n");
1055 			})
1056 		}
1057 		offset += c->mtd->erasesize;
1058 	}
1059 	return retval;
1060 }
1061 
1062 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1063 {
1064 	struct 	jffs2_unknown_node n;
1065 	int 	ret;
1066 	size_t 	retlen;
1067 
1068 	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1069 	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1070 	n.totlen = cpu_to_je32(8);
1071 
1072 	ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1073 
1074 	if (ret) {
1075 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1076 		return ret;
1077 	}
1078 	if (retlen != c->fsdata_len) {
1079 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1080 		return ret;
1081 	}
1082 	return 0;
1083 }
1084 
1085 /*
1086  * On NAND we try to mark this block bad. If the block was erased more
1087  * than MAX_ERASE_FAILURES we mark it finaly bad.
1088  * Don't care about failures. This block remains on the erase-pending
1089  * or badblock list as long as nobody manipulates the flash with
1090  * a bootloader or something like that.
1091  */
1092 
1093 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1094 {
1095 	int 	ret;
1096 
1097 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1098 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1099 		return 0;
1100 
1101 	if (!c->mtd->block_markbad)
1102 		return 1; // What else can we do?
1103 
1104 	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1105 	ret = c->mtd->block_markbad(c->mtd, bad_offset);
1106 
1107 	if (ret) {
1108 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1109 		return ret;
1110 	}
1111 	return 1;
1112 }
1113 
1114 #define NAND_JFFS2_OOB16_FSDALEN	8
1115 
1116 static struct nand_oobinfo jffs2_oobinfo_docecc = {
1117 	.useecc = MTD_NANDECC_PLACE,
1118 	.eccbytes = 6,
1119 	.eccpos = {0,1,2,3,4,5}
1120 };
1121 
1122 
1123 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1124 {
1125 	struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
1126 
1127 	/* Do this only, if we have an oob buffer */
1128 	if (!c->mtd->oobsize)
1129 		return 0;
1130 
1131 	/* Cleanmarker is out-of-band, so inline size zero */
1132 	c->cleanmarker_size = 0;
1133 
1134 	/* Should we use autoplacement ? */
1135 	if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
1136 		D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1137 		/* Get the position of the free bytes */
1138 		if (!oinfo->oobfree[0][1]) {
1139 			printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1140 			return -ENOSPC;
1141 		}
1142 		c->fsdata_pos = oinfo->oobfree[0][0];
1143 		c->fsdata_len = oinfo->oobfree[0][1];
1144 		if (c->fsdata_len > 8)
1145 			c->fsdata_len = 8;
1146 	} else {
1147 		/* This is just a legacy fallback and should go away soon */
1148 		switch(c->mtd->ecctype) {
1149 		case MTD_ECC_RS_DiskOnChip:
1150 			printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1151 			c->oobinfo = &jffs2_oobinfo_docecc;
1152 			c->fsdata_pos = 6;
1153 			c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
1154 			c->badblock_pos = 15;
1155 			break;
1156 
1157 		default:
1158 			D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1159 			return -EINVAL;
1160 		}
1161 	}
1162 	return 0;
1163 }
1164 
1165 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1166 {
1167 	int res;
1168 
1169 	/* Initialise write buffer */
1170 	init_rwsem(&c->wbuf_sem);
1171 	c->wbuf_pagesize = c->mtd->oobblock;
1172 	c->wbuf_ofs = 0xFFFFFFFF;
1173 
1174 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1175 	if (!c->wbuf)
1176 		return -ENOMEM;
1177 
1178 	res = jffs2_nand_set_oobinfo(c);
1179 
1180 #ifdef BREAKME
1181 	if (!brokenbuf)
1182 		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1183 	if (!brokenbuf) {
1184 		kfree(c->wbuf);
1185 		return -ENOMEM;
1186 	}
1187 	memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1188 #endif
1189 	return res;
1190 }
1191 
1192 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1193 {
1194 	kfree(c->wbuf);
1195 }
1196 
1197 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1198 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1199 
1200 	/* Initialize write buffer */
1201 	init_rwsem(&c->wbuf_sem);
1202 	c->wbuf_pagesize = c->sector_size;
1203 	c->wbuf_ofs = 0xFFFFFFFF;
1204 
1205 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1206 	if (!c->wbuf)
1207 		return -ENOMEM;
1208 
1209 	printk(KERN_INFO "JFFS2 write-buffering enabled (%i)\n", c->wbuf_pagesize);
1210 
1211 	return 0;
1212 }
1213 
1214 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1215 	kfree(c->wbuf);
1216 }
1217 
1218 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
1219 	/* Cleanmarker is actually larger on the flashes */
1220 	c->cleanmarker_size = 16;
1221 
1222 	/* Initialize write buffer */
1223 	init_rwsem(&c->wbuf_sem);
1224 	c->wbuf_pagesize = c->mtd->eccsize;
1225 	c->wbuf_ofs = 0xFFFFFFFF;
1226 
1227 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1228 	if (!c->wbuf)
1229 		return -ENOMEM;
1230 
1231 	return 0;
1232 }
1233 
1234 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
1235 	kfree(c->wbuf);
1236 }
1237