1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 * $Id: wbuf.c,v 1.92 2005/04/05 12:51:54 dedekind Exp $ 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/crc32.h> 20 #include <linux/mtd/nand.h> 21 #include "nodelist.h" 22 23 /* For testing write failures */ 24 #undef BREAKME 25 #undef BREAKMEHEADER 26 27 #ifdef BREAKME 28 static unsigned char *brokenbuf; 29 #endif 30 31 /* max. erase failures before we mark a block bad */ 32 #define MAX_ERASE_FAILURES 2 33 34 /* two seconds timeout for timed wbuf-flushing */ 35 #define WBUF_FLUSH_TIMEOUT 2 * HZ 36 37 struct jffs2_inodirty { 38 uint32_t ino; 39 struct jffs2_inodirty *next; 40 }; 41 42 static struct jffs2_inodirty inodirty_nomem; 43 44 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 45 { 46 struct jffs2_inodirty *this = c->wbuf_inodes; 47 48 /* If a malloc failed, consider _everything_ dirty */ 49 if (this == &inodirty_nomem) 50 return 1; 51 52 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 53 if (this && !ino) 54 return 1; 55 56 /* Look to see if the inode in question is pending in the wbuf */ 57 while (this) { 58 if (this->ino == ino) 59 return 1; 60 this = this->next; 61 } 62 return 0; 63 } 64 65 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 66 { 67 struct jffs2_inodirty *this; 68 69 this = c->wbuf_inodes; 70 71 if (this != &inodirty_nomem) { 72 while (this) { 73 struct jffs2_inodirty *next = this->next; 74 kfree(this); 75 this = next; 76 } 77 } 78 c->wbuf_inodes = NULL; 79 } 80 81 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 82 { 83 struct jffs2_inodirty *new; 84 85 /* Mark the superblock dirty so that kupdated will flush... */ 86 jffs2_erase_pending_trigger(c); 87 88 if (jffs2_wbuf_pending_for_ino(c, ino)) 89 return; 90 91 new = kmalloc(sizeof(*new), GFP_KERNEL); 92 if (!new) { 93 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 94 jffs2_clear_wbuf_ino_list(c); 95 c->wbuf_inodes = &inodirty_nomem; 96 return; 97 } 98 new->ino = ino; 99 new->next = c->wbuf_inodes; 100 c->wbuf_inodes = new; 101 return; 102 } 103 104 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 105 { 106 struct list_head *this, *next; 107 static int n; 108 109 if (list_empty(&c->erasable_pending_wbuf_list)) 110 return; 111 112 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 113 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 114 115 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 116 list_del(this); 117 if ((jiffies + (n++)) & 127) { 118 /* Most of the time, we just erase it immediately. Otherwise we 119 spend ages scanning it on mount, etc. */ 120 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 121 list_add_tail(&jeb->list, &c->erase_pending_list); 122 c->nr_erasing_blocks++; 123 jffs2_erase_pending_trigger(c); 124 } else { 125 /* Sometimes, however, we leave it elsewhere so it doesn't get 126 immediately reused, and we spread the load a bit. */ 127 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 128 list_add_tail(&jeb->list, &c->erasable_list); 129 } 130 } 131 } 132 133 #define REFILE_NOTEMPTY 0 134 #define REFILE_ANYWAY 1 135 136 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 137 { 138 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 139 140 D2(jffs2_dump_block_lists(c)); 141 /* File the existing block on the bad_used_list.... */ 142 if (c->nextblock == jeb) 143 c->nextblock = NULL; 144 else /* Not sure this should ever happen... need more coffee */ 145 list_del(&jeb->list); 146 if (jeb->first_node) { 147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 148 list_add(&jeb->list, &c->bad_used_list); 149 } else { 150 BUG_ON(allow_empty == REFILE_NOTEMPTY); 151 /* It has to have had some nodes or we couldn't be here */ 152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 153 list_add(&jeb->list, &c->erase_pending_list); 154 c->nr_erasing_blocks++; 155 jffs2_erase_pending_trigger(c); 156 } 157 D2(jffs2_dump_block_lists(c)); 158 159 /* Adjust its size counts accordingly */ 160 c->wasted_size += jeb->free_size; 161 c->free_size -= jeb->free_size; 162 jeb->wasted_size += jeb->free_size; 163 jeb->free_size = 0; 164 165 ACCT_SANITY_CHECK(c,jeb); 166 D1(ACCT_PARANOIA_CHECK(jeb)); 167 } 168 169 /* Recover from failure to write wbuf. Recover the nodes up to the 170 * wbuf, not the one which we were starting to try to write. */ 171 172 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 173 { 174 struct jffs2_eraseblock *jeb, *new_jeb; 175 struct jffs2_raw_node_ref **first_raw, **raw; 176 size_t retlen; 177 int ret; 178 unsigned char *buf; 179 uint32_t start, end, ofs, len; 180 181 spin_lock(&c->erase_completion_lock); 182 183 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 184 185 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); 186 187 /* Find the first node to be recovered, by skipping over every 188 node which ends before the wbuf starts, or which is obsolete. */ 189 first_raw = &jeb->first_node; 190 while (*first_raw && 191 (ref_obsolete(*first_raw) || 192 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { 193 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 194 ref_offset(*first_raw), ref_flags(*first_raw), 195 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), 196 c->wbuf_ofs)); 197 first_raw = &(*first_raw)->next_phys; 198 } 199 200 if (!*first_raw) { 201 /* All nodes were obsolete. Nothing to recover. */ 202 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 203 spin_unlock(&c->erase_completion_lock); 204 return; 205 } 206 207 start = ref_offset(*first_raw); 208 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); 209 210 /* Find the last node to be recovered */ 211 raw = first_raw; 212 while ((*raw)) { 213 if (!ref_obsolete(*raw)) 214 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); 215 216 raw = &(*raw)->next_phys; 217 } 218 spin_unlock(&c->erase_completion_lock); 219 220 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); 221 222 buf = NULL; 223 if (start < c->wbuf_ofs) { 224 /* First affected node was already partially written. 225 * Attempt to reread the old data into our buffer. */ 226 227 buf = kmalloc(end - start, GFP_KERNEL); 228 if (!buf) { 229 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 230 231 goto read_failed; 232 } 233 234 /* Do the read... */ 235 if (jffs2_cleanmarker_oob(c)) 236 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); 237 else 238 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); 239 240 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { 241 /* ECC recovered */ 242 ret = 0; 243 } 244 if (ret || retlen != c->wbuf_ofs - start) { 245 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 246 247 kfree(buf); 248 buf = NULL; 249 read_failed: 250 first_raw = &(*first_raw)->next_phys; 251 /* If this was the only node to be recovered, give up */ 252 if (!(*first_raw)) 253 return; 254 255 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 256 start = ref_offset(*first_raw); 257 } else { 258 /* Read succeeded. Copy the remaining data from the wbuf */ 259 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 260 } 261 } 262 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 263 Either 'buf' contains the data, or we find it in the wbuf */ 264 265 266 /* ... and get an allocation of space from a shiny new block instead */ 267 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len); 268 if (ret) { 269 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 270 kfree(buf); 271 return; 272 } 273 if (end-start >= c->wbuf_pagesize) { 274 /* Need to do another write immediately, but it's possible 275 that this is just because the wbuf itself is completely 276 full, and there's nothing earlier read back from the 277 flash. Hence 'buf' isn't necessarily what we're writing 278 from. */ 279 unsigned char *rewrite_buf = buf?:c->wbuf; 280 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 281 282 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 283 towrite, ofs)); 284 285 #ifdef BREAKMEHEADER 286 static int breakme; 287 if (breakme++ == 20) { 288 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 289 breakme = 0; 290 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, 291 brokenbuf, NULL, c->oobinfo); 292 ret = -EIO; 293 } else 294 #endif 295 if (jffs2_cleanmarker_oob(c)) 296 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, 297 rewrite_buf, NULL, c->oobinfo); 298 else 299 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf); 300 301 if (ret || retlen != towrite) { 302 /* Argh. We tried. Really we did. */ 303 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 304 kfree(buf); 305 306 if (retlen) { 307 struct jffs2_raw_node_ref *raw2; 308 309 raw2 = jffs2_alloc_raw_node_ref(); 310 if (!raw2) 311 return; 312 313 raw2->flash_offset = ofs | REF_OBSOLETE; 314 raw2->__totlen = ref_totlen(c, jeb, *first_raw); 315 raw2->next_phys = NULL; 316 raw2->next_in_ino = NULL; 317 318 jffs2_add_physical_node_ref(c, raw2); 319 } 320 return; 321 } 322 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 323 324 c->wbuf_len = (end - start) - towrite; 325 c->wbuf_ofs = ofs + towrite; 326 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); 327 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 328 if (buf) 329 kfree(buf); 330 } else { 331 /* OK, now we're left with the dregs in whichever buffer we're using */ 332 if (buf) { 333 memcpy(c->wbuf, buf, end-start); 334 kfree(buf); 335 } else { 336 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 337 } 338 c->wbuf_ofs = ofs; 339 c->wbuf_len = end - start; 340 } 341 342 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 343 new_jeb = &c->blocks[ofs / c->sector_size]; 344 345 spin_lock(&c->erase_completion_lock); 346 if (new_jeb->first_node) { 347 /* Odd, but possible with ST flash later maybe */ 348 new_jeb->last_node->next_phys = *first_raw; 349 } else { 350 new_jeb->first_node = *first_raw; 351 } 352 353 raw = first_raw; 354 while (*raw) { 355 uint32_t rawlen = ref_totlen(c, jeb, *raw); 356 357 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 358 rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); 359 360 if (ref_obsolete(*raw)) { 361 /* Shouldn't really happen much */ 362 new_jeb->dirty_size += rawlen; 363 new_jeb->free_size -= rawlen; 364 c->dirty_size += rawlen; 365 } else { 366 new_jeb->used_size += rawlen; 367 new_jeb->free_size -= rawlen; 368 jeb->dirty_size += rawlen; 369 jeb->used_size -= rawlen; 370 c->dirty_size += rawlen; 371 } 372 c->free_size -= rawlen; 373 (*raw)->flash_offset = ofs | ref_flags(*raw); 374 ofs += rawlen; 375 new_jeb->last_node = *raw; 376 377 raw = &(*raw)->next_phys; 378 } 379 380 /* Fix up the original jeb now it's on the bad_list */ 381 *first_raw = NULL; 382 if (first_raw == &jeb->first_node) { 383 jeb->last_node = NULL; 384 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 385 list_del(&jeb->list); 386 list_add(&jeb->list, &c->erase_pending_list); 387 c->nr_erasing_blocks++; 388 jffs2_erase_pending_trigger(c); 389 } 390 else 391 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); 392 393 ACCT_SANITY_CHECK(c,jeb); 394 D1(ACCT_PARANOIA_CHECK(jeb)); 395 396 ACCT_SANITY_CHECK(c,new_jeb); 397 D1(ACCT_PARANOIA_CHECK(new_jeb)); 398 399 spin_unlock(&c->erase_completion_lock); 400 401 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); 402 } 403 404 /* Meaning of pad argument: 405 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 406 1: Pad, do not adjust nextblock free_size 407 2: Pad, adjust nextblock free_size 408 */ 409 #define NOPAD 0 410 #define PAD_NOACCOUNT 1 411 #define PAD_ACCOUNTING 2 412 413 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 414 { 415 int ret; 416 size_t retlen; 417 418 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't 419 del_timer() the timer we never initialised. */ 420 if (!jffs2_is_writebuffered(c)) 421 return 0; 422 423 if (!down_trylock(&c->alloc_sem)) { 424 up(&c->alloc_sem); 425 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 426 BUG(); 427 } 428 429 if (!c->wbuf_len) /* already checked c->wbuf above */ 430 return 0; 431 432 /* claim remaining space on the page 433 this happens, if we have a change to a new block, 434 or if fsync forces us to flush the writebuffer. 435 if we have a switch to next page, we will not have 436 enough remaining space for this. 437 */ 438 if (pad && !jffs2_dataflash(c)) { 439 c->wbuf_len = PAD(c->wbuf_len); 440 441 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 442 with 8 byte page size */ 443 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 444 445 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 446 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 447 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 448 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 449 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 450 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 451 } 452 } 453 /* else jffs2_flash_writev has actually filled in the rest of the 454 buffer for us, and will deal with the node refs etc. later. */ 455 456 #ifdef BREAKME 457 static int breakme; 458 if (breakme++ == 20) { 459 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 460 breakme = 0; 461 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, 462 &retlen, brokenbuf, NULL, c->oobinfo); 463 ret = -EIO; 464 } else 465 #endif 466 467 if (jffs2_cleanmarker_oob(c)) 468 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); 469 else 470 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); 471 472 if (ret || retlen != c->wbuf_pagesize) { 473 if (ret) 474 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); 475 else { 476 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 477 retlen, c->wbuf_pagesize); 478 ret = -EIO; 479 } 480 481 jffs2_wbuf_recover(c); 482 483 return ret; 484 } 485 486 spin_lock(&c->erase_completion_lock); 487 488 /* Adjust free size of the block if we padded. */ 489 if (pad && !jffs2_dataflash(c)) { 490 struct jffs2_eraseblock *jeb; 491 492 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 493 494 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 495 (jeb==c->nextblock)?"next":"", jeb->offset)); 496 497 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 498 padded. If there is less free space in the block than that, 499 something screwed up */ 500 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { 501 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 502 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); 503 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 504 jeb->offset, jeb->free_size); 505 BUG(); 506 } 507 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); 508 c->free_size -= (c->wbuf_pagesize - c->wbuf_len); 509 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); 510 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); 511 } 512 513 /* Stick any now-obsoleted blocks on the erase_pending_list */ 514 jffs2_refile_wbuf_blocks(c); 515 jffs2_clear_wbuf_ino_list(c); 516 spin_unlock(&c->erase_completion_lock); 517 518 memset(c->wbuf,0xff,c->wbuf_pagesize); 519 /* adjust write buffer offset, else we get a non contiguous write bug */ 520 c->wbuf_ofs += c->wbuf_pagesize; 521 c->wbuf_len = 0; 522 return 0; 523 } 524 525 /* Trigger garbage collection to flush the write-buffer. 526 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 527 outstanding. If ino arg non-zero, do it only if a write for the 528 given inode is outstanding. */ 529 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 530 { 531 uint32_t old_wbuf_ofs; 532 uint32_t old_wbuf_len; 533 int ret = 0; 534 535 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 536 537 if (!c->wbuf) 538 return 0; 539 540 down(&c->alloc_sem); 541 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 542 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 543 up(&c->alloc_sem); 544 return 0; 545 } 546 547 old_wbuf_ofs = c->wbuf_ofs; 548 old_wbuf_len = c->wbuf_len; 549 550 if (c->unchecked_size) { 551 /* GC won't make any progress for a while */ 552 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 553 down_write(&c->wbuf_sem); 554 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 555 /* retry flushing wbuf in case jffs2_wbuf_recover 556 left some data in the wbuf */ 557 if (ret) 558 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 559 up_write(&c->wbuf_sem); 560 } else while (old_wbuf_len && 561 old_wbuf_ofs == c->wbuf_ofs) { 562 563 up(&c->alloc_sem); 564 565 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 566 567 ret = jffs2_garbage_collect_pass(c); 568 if (ret) { 569 /* GC failed. Flush it with padding instead */ 570 down(&c->alloc_sem); 571 down_write(&c->wbuf_sem); 572 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 573 /* retry flushing wbuf in case jffs2_wbuf_recover 574 left some data in the wbuf */ 575 if (ret) 576 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 577 up_write(&c->wbuf_sem); 578 break; 579 } 580 down(&c->alloc_sem); 581 } 582 583 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 584 585 up(&c->alloc_sem); 586 return ret; 587 } 588 589 /* Pad write-buffer to end and write it, wasting space. */ 590 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 591 { 592 int ret; 593 594 if (!c->wbuf) 595 return 0; 596 597 down_write(&c->wbuf_sem); 598 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 599 /* retry - maybe wbuf recover left some data in wbuf. */ 600 if (ret) 601 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 602 up_write(&c->wbuf_sem); 603 604 return ret; 605 } 606 607 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 608 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) 609 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) 610 #else 611 #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) ) 612 #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) ) 613 #endif 614 615 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) 616 { 617 struct kvec outvecs[3]; 618 uint32_t totlen = 0; 619 uint32_t split_ofs = 0; 620 uint32_t old_totlen; 621 int ret, splitvec = -1; 622 int invec, outvec; 623 size_t wbuf_retlen; 624 unsigned char *wbuf_ptr; 625 size_t donelen = 0; 626 uint32_t outvec_to = to; 627 628 /* If not NAND flash, don't bother */ 629 if (!jffs2_is_writebuffered(c)) 630 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 631 632 down_write(&c->wbuf_sem); 633 634 /* If wbuf_ofs is not initialized, set it to target address */ 635 if (c->wbuf_ofs == 0xFFFFFFFF) { 636 c->wbuf_ofs = PAGE_DIV(to); 637 c->wbuf_len = PAGE_MOD(to); 638 memset(c->wbuf,0xff,c->wbuf_pagesize); 639 } 640 641 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below 642 fail for ECC'd NOR because cleanmarker == 16, so a block starts at 643 xxx0010. */ 644 if (jffs2_nor_ecc(c)) { 645 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { 646 c->wbuf_ofs = PAGE_DIV(to); 647 c->wbuf_len = PAGE_MOD(to); 648 memset(c->wbuf,0xff,c->wbuf_pagesize); 649 } 650 } 651 652 /* Sanity checks on target address. 653 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), 654 and it's permitted to write at the beginning of a new 655 erase block. Anything else, and you die. 656 New block starts at xxx000c (0-b = block header) 657 */ 658 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 659 /* It's a write to a new block */ 660 if (c->wbuf_len) { 661 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); 662 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 663 if (ret) { 664 /* the underlying layer has to check wbuf_len to do the cleanup */ 665 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); 666 *retlen = 0; 667 goto exit; 668 } 669 } 670 /* set pointer to new block */ 671 c->wbuf_ofs = PAGE_DIV(to); 672 c->wbuf_len = PAGE_MOD(to); 673 } 674 675 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 676 /* We're not writing immediately after the writebuffer. Bad. */ 677 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); 678 if (c->wbuf_len) 679 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 680 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 681 BUG(); 682 } 683 684 /* Note outvecs[3] above. We know count is never greater than 2 */ 685 if (count > 2) { 686 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); 687 BUG(); 688 } 689 690 invec = 0; 691 outvec = 0; 692 693 /* Fill writebuffer first, if already in use */ 694 if (c->wbuf_len) { 695 uint32_t invec_ofs = 0; 696 697 /* adjust alignment offset */ 698 if (c->wbuf_len != PAGE_MOD(to)) { 699 c->wbuf_len = PAGE_MOD(to); 700 /* take care of alignment to next page */ 701 if (!c->wbuf_len) 702 c->wbuf_len = c->wbuf_pagesize; 703 } 704 705 while(c->wbuf_len < c->wbuf_pagesize) { 706 uint32_t thislen; 707 708 if (invec == count) 709 goto alldone; 710 711 thislen = c->wbuf_pagesize - c->wbuf_len; 712 713 if (thislen >= invecs[invec].iov_len) 714 thislen = invecs[invec].iov_len; 715 716 invec_ofs = thislen; 717 718 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); 719 c->wbuf_len += thislen; 720 donelen += thislen; 721 /* Get next invec, if actual did not fill the buffer */ 722 if (c->wbuf_len < c->wbuf_pagesize) 723 invec++; 724 } 725 726 /* write buffer is full, flush buffer */ 727 ret = __jffs2_flush_wbuf(c, NOPAD); 728 if (ret) { 729 /* the underlying layer has to check wbuf_len to do the cleanup */ 730 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); 731 /* Retlen zero to make sure our caller doesn't mark the space dirty. 732 We've already done everything that's necessary */ 733 *retlen = 0; 734 goto exit; 735 } 736 outvec_to += donelen; 737 c->wbuf_ofs = outvec_to; 738 739 /* All invecs done ? */ 740 if (invec == count) 741 goto alldone; 742 743 /* Set up the first outvec, containing the remainder of the 744 invec we partially used */ 745 if (invecs[invec].iov_len > invec_ofs) { 746 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; 747 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; 748 if (totlen > c->wbuf_pagesize) { 749 splitvec = outvec; 750 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); 751 } 752 outvec++; 753 } 754 invec++; 755 } 756 757 /* OK, now we've flushed the wbuf and the start of the bits 758 we have been asked to write, now to write the rest.... */ 759 760 /* totlen holds the amount of data still to be written */ 761 old_totlen = totlen; 762 for ( ; invec < count; invec++,outvec++ ) { 763 outvecs[outvec].iov_base = invecs[invec].iov_base; 764 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; 765 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { 766 splitvec = outvec; 767 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); 768 old_totlen = totlen; 769 } 770 } 771 772 /* Now the outvecs array holds all the remaining data to write */ 773 /* Up to splitvec,split_ofs is to be written immediately. The rest 774 goes into the (now-empty) wbuf */ 775 776 if (splitvec != -1) { 777 uint32_t remainder; 778 779 remainder = outvecs[splitvec].iov_len - split_ofs; 780 outvecs[splitvec].iov_len = split_ofs; 781 782 /* We did cross a page boundary, so we write some now */ 783 if (jffs2_cleanmarker_oob(c)) 784 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); 785 else 786 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); 787 788 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { 789 /* At this point we have no problem, 790 c->wbuf is empty. However refile nextblock to avoid 791 writing again to same address. 792 */ 793 struct jffs2_eraseblock *jeb; 794 795 spin_lock(&c->erase_completion_lock); 796 797 jeb = &c->blocks[outvec_to / c->sector_size]; 798 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 799 800 *retlen = 0; 801 spin_unlock(&c->erase_completion_lock); 802 goto exit; 803 } 804 805 donelen += wbuf_retlen; 806 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); 807 808 if (remainder) { 809 outvecs[splitvec].iov_base += split_ofs; 810 outvecs[splitvec].iov_len = remainder; 811 } else { 812 splitvec++; 813 } 814 815 } else { 816 splitvec = 0; 817 } 818 819 /* Now splitvec points to the start of the bits we have to copy 820 into the wbuf */ 821 wbuf_ptr = c->wbuf; 822 823 for ( ; splitvec < outvec; splitvec++) { 824 /* Don't copy the wbuf into itself */ 825 if (outvecs[splitvec].iov_base == c->wbuf) 826 continue; 827 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); 828 wbuf_ptr += outvecs[splitvec].iov_len; 829 donelen += outvecs[splitvec].iov_len; 830 } 831 c->wbuf_len = wbuf_ptr - c->wbuf; 832 833 /* If there's a remainder in the wbuf and it's a non-GC write, 834 remember that the wbuf affects this ino */ 835 alldone: 836 *retlen = donelen; 837 838 if (c->wbuf_len && ino) 839 jffs2_wbuf_dirties_inode(c, ino); 840 841 ret = 0; 842 843 exit: 844 up_write(&c->wbuf_sem); 845 return ret; 846 } 847 848 /* 849 * This is the entry for flash write. 850 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 851 */ 852 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) 853 { 854 struct kvec vecs[1]; 855 856 if (!jffs2_is_writebuffered(c)) 857 return c->mtd->write(c->mtd, ofs, len, retlen, buf); 858 859 vecs[0].iov_base = (unsigned char *) buf; 860 vecs[0].iov_len = len; 861 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 862 } 863 864 /* 865 Handle readback from writebuffer and ECC failure return 866 */ 867 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 868 { 869 loff_t orbf = 0, owbf = 0, lwbf = 0; 870 int ret; 871 872 if (!jffs2_is_writebuffered(c)) 873 return c->mtd->read(c->mtd, ofs, len, retlen, buf); 874 875 /* Read flash */ 876 down_read(&c->wbuf_sem); 877 if (jffs2_cleanmarker_oob(c)) 878 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); 879 else 880 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); 881 882 if ( (ret == -EBADMSG) && (*retlen == len) ) { 883 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", 884 len, ofs); 885 /* 886 * We have the raw data without ECC correction in the buffer, maybe 887 * we are lucky and all data or parts are correct. We check the node. 888 * If data are corrupted node check will sort it out. 889 * We keep this block, it will fail on write or erase and the we 890 * mark it bad. Or should we do that now? But we should give him a chance. 891 * Maybe we had a system crash or power loss before the ecc write or 892 * a erase was completed. 893 * So we return success. :) 894 */ 895 ret = 0; 896 } 897 898 /* if no writebuffer available or write buffer empty, return */ 899 if (!c->wbuf_pagesize || !c->wbuf_len) 900 goto exit; 901 902 /* if we read in a different block, return */ 903 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) 904 goto exit; 905 906 if (ofs >= c->wbuf_ofs) { 907 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 908 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 909 goto exit; 910 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 911 if (lwbf > len) 912 lwbf = len; 913 } else { 914 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 915 if (orbf > len) /* is write beyond write buffer ? */ 916 goto exit; 917 lwbf = len - orbf; /* number of bytes to copy */ 918 if (lwbf > c->wbuf_len) 919 lwbf = c->wbuf_len; 920 } 921 if (lwbf > 0) 922 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 923 924 exit: 925 up_read(&c->wbuf_sem); 926 return ret; 927 } 928 929 /* 930 * Check, if the out of band area is empty 931 */ 932 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) 933 { 934 unsigned char *buf; 935 int ret = 0; 936 int i,len,page; 937 size_t retlen; 938 int oob_size; 939 940 /* allocate a buffer for all oob data in this sector */ 941 oob_size = c->mtd->oobsize; 942 len = 4 * oob_size; 943 buf = kmalloc(len, GFP_KERNEL); 944 if (!buf) { 945 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); 946 return -ENOMEM; 947 } 948 /* 949 * if mode = 0, we scan for a total empty oob area, else we have 950 * to take care of the cleanmarker in the first page of the block 951 */ 952 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); 953 if (ret) { 954 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); 955 goto out; 956 } 957 958 if (retlen < len) { 959 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " 960 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); 961 ret = -EIO; 962 goto out; 963 } 964 965 /* Special check for first page */ 966 for(i = 0; i < oob_size ; i++) { 967 /* Yeah, we know about the cleanmarker. */ 968 if (mode && i >= c->fsdata_pos && 969 i < c->fsdata_pos + c->fsdata_len) 970 continue; 971 972 if (buf[i] != 0xFF) { 973 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", 974 buf[page+i], page+i, jeb->offset)); 975 ret = 1; 976 goto out; 977 } 978 } 979 980 /* we know, we are aligned :) */ 981 for (page = oob_size; page < len; page += sizeof(long)) { 982 unsigned long dat = *(unsigned long *)(&buf[page]); 983 if(dat != -1) { 984 ret = 1; 985 goto out; 986 } 987 } 988 989 out: 990 kfree(buf); 991 992 return ret; 993 } 994 995 /* 996 * Scan for a valid cleanmarker and for bad blocks 997 * For virtual blocks (concatenated physical blocks) check the cleanmarker 998 * only in the first page of the first physical block, but scan for bad blocks in all 999 * physical blocks 1000 */ 1001 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 1002 { 1003 struct jffs2_unknown_node n; 1004 unsigned char buf[2 * NAND_MAX_OOBSIZE]; 1005 unsigned char *p; 1006 int ret, i, cnt, retval = 0; 1007 size_t retlen, offset; 1008 int oob_size; 1009 1010 offset = jeb->offset; 1011 oob_size = c->mtd->oobsize; 1012 1013 /* Loop through the physical blocks */ 1014 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { 1015 /* Check first if the block is bad. */ 1016 if (c->mtd->block_isbad (c->mtd, offset)) { 1017 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); 1018 return 2; 1019 } 1020 /* 1021 * We read oob data from page 0 and 1 of the block. 1022 * page 0 contains cleanmarker and badblock info 1023 * page 1 contains failure count of this block 1024 */ 1025 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); 1026 1027 if (ret) { 1028 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); 1029 return ret; 1030 } 1031 if (retlen < (oob_size << 1)) { 1032 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); 1033 return -EIO; 1034 } 1035 1036 /* Check cleanmarker only on the first physical block */ 1037 if (!cnt) { 1038 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); 1039 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); 1040 n.totlen = cpu_to_je32 (8); 1041 p = (unsigned char *) &n; 1042 1043 for (i = 0; i < c->fsdata_len; i++) { 1044 if (buf[c->fsdata_pos + i] != p[i]) { 1045 retval = 1; 1046 } 1047 } 1048 D1(if (retval == 1) { 1049 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); 1050 printk(KERN_WARNING "OOB at %08x was ", offset); 1051 for (i=0; i < oob_size; i++) { 1052 printk("%02x ", buf[i]); 1053 } 1054 printk("\n"); 1055 }) 1056 } 1057 offset += c->mtd->erasesize; 1058 } 1059 return retval; 1060 } 1061 1062 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 1063 { 1064 struct jffs2_unknown_node n; 1065 int ret; 1066 size_t retlen; 1067 1068 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 1069 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); 1070 n.totlen = cpu_to_je32(8); 1071 1072 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); 1073 1074 if (ret) { 1075 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1076 return ret; 1077 } 1078 if (retlen != c->fsdata_len) { 1079 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); 1080 return ret; 1081 } 1082 return 0; 1083 } 1084 1085 /* 1086 * On NAND we try to mark this block bad. If the block was erased more 1087 * than MAX_ERASE_FAILURES we mark it finaly bad. 1088 * Don't care about failures. This block remains on the erase-pending 1089 * or badblock list as long as nobody manipulates the flash with 1090 * a bootloader or something like that. 1091 */ 1092 1093 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1094 { 1095 int ret; 1096 1097 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1098 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1099 return 0; 1100 1101 if (!c->mtd->block_markbad) 1102 return 1; // What else can we do? 1103 1104 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); 1105 ret = c->mtd->block_markbad(c->mtd, bad_offset); 1106 1107 if (ret) { 1108 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1109 return ret; 1110 } 1111 return 1; 1112 } 1113 1114 #define NAND_JFFS2_OOB16_FSDALEN 8 1115 1116 static struct nand_oobinfo jffs2_oobinfo_docecc = { 1117 .useecc = MTD_NANDECC_PLACE, 1118 .eccbytes = 6, 1119 .eccpos = {0,1,2,3,4,5} 1120 }; 1121 1122 1123 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) 1124 { 1125 struct nand_oobinfo *oinfo = &c->mtd->oobinfo; 1126 1127 /* Do this only, if we have an oob buffer */ 1128 if (!c->mtd->oobsize) 1129 return 0; 1130 1131 /* Cleanmarker is out-of-band, so inline size zero */ 1132 c->cleanmarker_size = 0; 1133 1134 /* Should we use autoplacement ? */ 1135 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { 1136 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); 1137 /* Get the position of the free bytes */ 1138 if (!oinfo->oobfree[0][1]) { 1139 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); 1140 return -ENOSPC; 1141 } 1142 c->fsdata_pos = oinfo->oobfree[0][0]; 1143 c->fsdata_len = oinfo->oobfree[0][1]; 1144 if (c->fsdata_len > 8) 1145 c->fsdata_len = 8; 1146 } else { 1147 /* This is just a legacy fallback and should go away soon */ 1148 switch(c->mtd->ecctype) { 1149 case MTD_ECC_RS_DiskOnChip: 1150 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); 1151 c->oobinfo = &jffs2_oobinfo_docecc; 1152 c->fsdata_pos = 6; 1153 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; 1154 c->badblock_pos = 15; 1155 break; 1156 1157 default: 1158 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); 1159 return -EINVAL; 1160 } 1161 } 1162 return 0; 1163 } 1164 1165 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1166 { 1167 int res; 1168 1169 /* Initialise write buffer */ 1170 init_rwsem(&c->wbuf_sem); 1171 c->wbuf_pagesize = c->mtd->oobblock; 1172 c->wbuf_ofs = 0xFFFFFFFF; 1173 1174 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1175 if (!c->wbuf) 1176 return -ENOMEM; 1177 1178 res = jffs2_nand_set_oobinfo(c); 1179 1180 #ifdef BREAKME 1181 if (!brokenbuf) 1182 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1183 if (!brokenbuf) { 1184 kfree(c->wbuf); 1185 return -ENOMEM; 1186 } 1187 memset(brokenbuf, 0xdb, c->wbuf_pagesize); 1188 #endif 1189 return res; 1190 } 1191 1192 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1193 { 1194 kfree(c->wbuf); 1195 } 1196 1197 int jffs2_dataflash_setup(struct jffs2_sb_info *c) { 1198 c->cleanmarker_size = 0; /* No cleanmarkers needed */ 1199 1200 /* Initialize write buffer */ 1201 init_rwsem(&c->wbuf_sem); 1202 c->wbuf_pagesize = c->sector_size; 1203 c->wbuf_ofs = 0xFFFFFFFF; 1204 1205 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1206 if (!c->wbuf) 1207 return -ENOMEM; 1208 1209 printk(KERN_INFO "JFFS2 write-buffering enabled (%i)\n", c->wbuf_pagesize); 1210 1211 return 0; 1212 } 1213 1214 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { 1215 kfree(c->wbuf); 1216 } 1217 1218 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { 1219 /* Cleanmarker is actually larger on the flashes */ 1220 c->cleanmarker_size = 16; 1221 1222 /* Initialize write buffer */ 1223 init_rwsem(&c->wbuf_sem); 1224 c->wbuf_pagesize = c->mtd->eccsize; 1225 c->wbuf_ofs = 0xFFFFFFFF; 1226 1227 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1228 if (!c->wbuf) 1229 return -ENOMEM; 1230 1231 return 0; 1232 } 1233 1234 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { 1235 kfree(c->wbuf); 1236 } 1237