xref: /linux/fs/jffs2/wbuf.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22 #include <linux/sched.h>
23 #include <linux/writeback.h>
24 
25 #include "nodelist.h"
26 
27 /* For testing write failures */
28 #undef BREAKME
29 #undef BREAKMEHEADER
30 
31 #ifdef BREAKME
32 static unsigned char *brokenbuf;
33 #endif
34 
35 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
36 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
37 
38 /* max. erase failures before we mark a block bad */
39 #define MAX_ERASE_FAILURES 	2
40 
41 struct jffs2_inodirty {
42 	uint32_t ino;
43 	struct jffs2_inodirty *next;
44 };
45 
46 static struct jffs2_inodirty inodirty_nomem;
47 
48 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
49 {
50 	struct jffs2_inodirty *this = c->wbuf_inodes;
51 
52 	/* If a malloc failed, consider _everything_ dirty */
53 	if (this == &inodirty_nomem)
54 		return 1;
55 
56 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
57 	if (this && !ino)
58 		return 1;
59 
60 	/* Look to see if the inode in question is pending in the wbuf */
61 	while (this) {
62 		if (this->ino == ino)
63 			return 1;
64 		this = this->next;
65 	}
66 	return 0;
67 }
68 
69 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
70 {
71 	struct jffs2_inodirty *this;
72 
73 	this = c->wbuf_inodes;
74 
75 	if (this != &inodirty_nomem) {
76 		while (this) {
77 			struct jffs2_inodirty *next = this->next;
78 			kfree(this);
79 			this = next;
80 		}
81 	}
82 	c->wbuf_inodes = NULL;
83 }
84 
85 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
86 {
87 	struct jffs2_inodirty *new;
88 
89 	/* Schedule delayed write-buffer write-out */
90 	jffs2_dirty_trigger(c);
91 
92 	if (jffs2_wbuf_pending_for_ino(c, ino))
93 		return;
94 
95 	new = kmalloc(sizeof(*new), GFP_KERNEL);
96 	if (!new) {
97 		jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
98 		jffs2_clear_wbuf_ino_list(c);
99 		c->wbuf_inodes = &inodirty_nomem;
100 		return;
101 	}
102 	new->ino = ino;
103 	new->next = c->wbuf_inodes;
104 	c->wbuf_inodes = new;
105 	return;
106 }
107 
108 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
109 {
110 	struct list_head *this, *next;
111 	static int n;
112 
113 	if (list_empty(&c->erasable_pending_wbuf_list))
114 		return;
115 
116 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
117 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
118 
119 		jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
120 			  jeb->offset);
121 		list_del(this);
122 		if ((jiffies + (n++)) & 127) {
123 			/* Most of the time, we just erase it immediately. Otherwise we
124 			   spend ages scanning it on mount, etc. */
125 			jffs2_dbg(1, "...and adding to erase_pending_list\n");
126 			list_add_tail(&jeb->list, &c->erase_pending_list);
127 			c->nr_erasing_blocks++;
128 			jffs2_garbage_collect_trigger(c);
129 		} else {
130 			/* Sometimes, however, we leave it elsewhere so it doesn't get
131 			   immediately reused, and we spread the load a bit. */
132 			jffs2_dbg(1, "...and adding to erasable_list\n");
133 			list_add_tail(&jeb->list, &c->erasable_list);
134 		}
135 	}
136 }
137 
138 #define REFILE_NOTEMPTY 0
139 #define REFILE_ANYWAY   1
140 
141 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
142 {
143 	jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
144 
145 	/* File the existing block on the bad_used_list.... */
146 	if (c->nextblock == jeb)
147 		c->nextblock = NULL;
148 	else /* Not sure this should ever happen... need more coffee */
149 		list_del(&jeb->list);
150 	if (jeb->first_node) {
151 		jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
152 			  jeb->offset);
153 		list_add(&jeb->list, &c->bad_used_list);
154 	} else {
155 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
156 		/* It has to have had some nodes or we couldn't be here */
157 		jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
158 			  jeb->offset);
159 		list_add(&jeb->list, &c->erase_pending_list);
160 		c->nr_erasing_blocks++;
161 		jffs2_garbage_collect_trigger(c);
162 	}
163 
164 	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
165 		uint32_t oldfree = jeb->free_size;
166 
167 		jffs2_link_node_ref(c, jeb,
168 				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
169 				    oldfree, NULL);
170 		/* convert to wasted */
171 		c->wasted_size += oldfree;
172 		jeb->wasted_size += oldfree;
173 		c->dirty_size -= oldfree;
174 		jeb->dirty_size -= oldfree;
175 	}
176 
177 	jffs2_dbg_dump_block_lists_nolock(c);
178 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
179 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
180 }
181 
182 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
183 							    struct jffs2_inode_info *f,
184 							    struct jffs2_raw_node_ref *raw,
185 							    union jffs2_node_union *node)
186 {
187 	struct jffs2_node_frag *frag;
188 	struct jffs2_full_dirent *fd;
189 
190 	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
191 		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
192 
193 	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
194 	       je16_to_cpu(node->u.magic) != 0);
195 
196 	switch (je16_to_cpu(node->u.nodetype)) {
197 	case JFFS2_NODETYPE_INODE:
198 		if (f->metadata && f->metadata->raw == raw) {
199 			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
200 			return &f->metadata->raw;
201 		}
202 		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
203 		BUG_ON(!frag);
204 		/* Find a frag which refers to the full_dnode we want to modify */
205 		while (!frag->node || frag->node->raw != raw) {
206 			frag = frag_next(frag);
207 			BUG_ON(!frag);
208 		}
209 		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
210 		return &frag->node->raw;
211 
212 	case JFFS2_NODETYPE_DIRENT:
213 		for (fd = f->dents; fd; fd = fd->next) {
214 			if (fd->raw == raw) {
215 				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
216 				return &fd->raw;
217 			}
218 		}
219 		BUG();
220 
221 	default:
222 		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
223 			    je16_to_cpu(node->u.nodetype));
224 		break;
225 	}
226 	return NULL;
227 }
228 
229 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
230 static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
231 			      uint32_t ofs)
232 {
233 	int ret;
234 	size_t retlen;
235 	char *eccstr;
236 
237 	ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
238 	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
239 		pr_warn("%s(): Read back of page at %08x failed: %d\n",
240 			__func__, c->wbuf_ofs, ret);
241 		return ret;
242 	} else if (retlen != c->wbuf_pagesize) {
243 		pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n",
244 			__func__, ofs, retlen, c->wbuf_pagesize);
245 		return -EIO;
246 	}
247 	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
248 		return 0;
249 
250 	if (ret == -EUCLEAN)
251 		eccstr = "corrected";
252 	else if (ret == -EBADMSG)
253 		eccstr = "correction failed";
254 	else
255 		eccstr = "OK or unused";
256 
257 	pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n",
258 		eccstr, c->wbuf_ofs);
259 	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
260 		       c->wbuf, c->wbuf_pagesize, 0);
261 
262 	pr_warn("Read back:\n");
263 	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
264 		       c->wbuf_verify, c->wbuf_pagesize, 0);
265 
266 	return -EIO;
267 }
268 #else
269 #define jffs2_verify_write(c,b,o) (0)
270 #endif
271 
272 /* Recover from failure to write wbuf. Recover the nodes up to the
273  * wbuf, not the one which we were starting to try to write. */
274 
275 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
276 {
277 	struct jffs2_eraseblock *jeb, *new_jeb;
278 	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
279 	size_t retlen;
280 	int ret;
281 	int nr_refile = 0;
282 	unsigned char *buf;
283 	uint32_t start, end, ofs, len;
284 
285 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
286 
287 	spin_lock(&c->erase_completion_lock);
288 	if (c->wbuf_ofs % c->mtd->erasesize)
289 		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
290 	else
291 		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
292 	spin_unlock(&c->erase_completion_lock);
293 
294 	BUG_ON(!ref_obsolete(jeb->last_node));
295 
296 	/* Find the first node to be recovered, by skipping over every
297 	   node which ends before the wbuf starts, or which is obsolete. */
298 	for (next = raw = jeb->first_node; next; raw = next) {
299 		next = ref_next(raw);
300 
301 		if (ref_obsolete(raw) ||
302 		    (next && ref_offset(next) <= c->wbuf_ofs)) {
303 			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
304 				    ref_offset(raw), ref_flags(raw),
305 				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
306 				    c->wbuf_ofs);
307 			continue;
308 		}
309 		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
310 			    ref_offset(raw), ref_flags(raw),
311 			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
312 
313 		first_raw = raw;
314 		break;
315 	}
316 
317 	if (!first_raw) {
318 		/* All nodes were obsolete. Nothing to recover. */
319 		jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
320 		c->wbuf_len = 0;
321 		return;
322 	}
323 
324 	start = ref_offset(first_raw);
325 	end = ref_offset(jeb->last_node);
326 	nr_refile = 1;
327 
328 	/* Count the number of refs which need to be copied */
329 	while ((raw = ref_next(raw)) != jeb->last_node)
330 		nr_refile++;
331 
332 	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
333 		    start, end, end - start, nr_refile);
334 
335 	buf = NULL;
336 	if (start < c->wbuf_ofs) {
337 		/* First affected node was already partially written.
338 		 * Attempt to reread the old data into our buffer. */
339 
340 		buf = kmalloc(end - start, GFP_KERNEL);
341 		if (!buf) {
342 			pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n");
343 
344 			goto read_failed;
345 		}
346 
347 		/* Do the read... */
348 		ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
349 			       buf);
350 
351 		/* ECC recovered ? */
352 		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
353 		    (retlen == c->wbuf_ofs - start))
354 			ret = 0;
355 
356 		if (ret || retlen != c->wbuf_ofs - start) {
357 			pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n");
358 
359 			kfree(buf);
360 			buf = NULL;
361 		read_failed:
362 			first_raw = ref_next(first_raw);
363 			nr_refile--;
364 			while (first_raw && ref_obsolete(first_raw)) {
365 				first_raw = ref_next(first_raw);
366 				nr_refile--;
367 			}
368 
369 			/* If this was the only node to be recovered, give up */
370 			if (!first_raw) {
371 				c->wbuf_len = 0;
372 				return;
373 			}
374 
375 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
376 			start = ref_offset(first_raw);
377 			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
378 				    start, end, end - start, nr_refile);
379 
380 		} else {
381 			/* Read succeeded. Copy the remaining data from the wbuf */
382 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
383 		}
384 	}
385 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
386 	   Either 'buf' contains the data, or we find it in the wbuf */
387 
388 	/* ... and get an allocation of space from a shiny new block instead */
389 	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
390 	if (ret) {
391 		pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n");
392 		kfree(buf);
393 		return;
394 	}
395 
396 	/* The summary is not recovered, so it must be disabled for this erase block */
397 	jffs2_sum_disable_collecting(c->summary);
398 
399 	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
400 	if (ret) {
401 		pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
402 		kfree(buf);
403 		return;
404 	}
405 
406 	ofs = write_ofs(c);
407 
408 	if (end-start >= c->wbuf_pagesize) {
409 		/* Need to do another write immediately, but it's possible
410 		   that this is just because the wbuf itself is completely
411 		   full, and there's nothing earlier read back from the
412 		   flash. Hence 'buf' isn't necessarily what we're writing
413 		   from. */
414 		unsigned char *rewrite_buf = buf?:c->wbuf;
415 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
416 
417 		jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
418 			  towrite, ofs);
419 
420 #ifdef BREAKMEHEADER
421 		static int breakme;
422 		if (breakme++ == 20) {
423 			pr_notice("Faking write error at 0x%08x\n", ofs);
424 			breakme = 0;
425 			mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
426 			ret = -EIO;
427 		} else
428 #endif
429 			ret = mtd_write(c->mtd, ofs, towrite, &retlen,
430 					rewrite_buf);
431 
432 		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
433 			/* Argh. We tried. Really we did. */
434 			pr_crit("Recovery of wbuf failed due to a second write error\n");
435 			kfree(buf);
436 
437 			if (retlen)
438 				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
439 
440 			return;
441 		}
442 		pr_notice("Recovery of wbuf succeeded to %08x\n", ofs);
443 
444 		c->wbuf_len = (end - start) - towrite;
445 		c->wbuf_ofs = ofs + towrite;
446 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
447 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
448 	} else {
449 		/* OK, now we're left with the dregs in whichever buffer we're using */
450 		if (buf) {
451 			memcpy(c->wbuf, buf, end-start);
452 		} else {
453 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
454 		}
455 		c->wbuf_ofs = ofs;
456 		c->wbuf_len = end - start;
457 	}
458 
459 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
460 	new_jeb = &c->blocks[ofs / c->sector_size];
461 
462 	spin_lock(&c->erase_completion_lock);
463 	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
464 		uint32_t rawlen = ref_totlen(c, jeb, raw);
465 		struct jffs2_inode_cache *ic;
466 		struct jffs2_raw_node_ref *new_ref;
467 		struct jffs2_raw_node_ref **adjust_ref = NULL;
468 		struct jffs2_inode_info *f = NULL;
469 
470 		jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
471 			  rawlen, ref_offset(raw), ref_flags(raw), ofs);
472 
473 		ic = jffs2_raw_ref_to_ic(raw);
474 
475 		/* Ick. This XATTR mess should be fixed shortly... */
476 		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
477 			struct jffs2_xattr_datum *xd = (void *)ic;
478 			BUG_ON(xd->node != raw);
479 			adjust_ref = &xd->node;
480 			raw->next_in_ino = NULL;
481 			ic = NULL;
482 		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
483 			struct jffs2_xattr_datum *xr = (void *)ic;
484 			BUG_ON(xr->node != raw);
485 			adjust_ref = &xr->node;
486 			raw->next_in_ino = NULL;
487 			ic = NULL;
488 		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
489 			struct jffs2_raw_node_ref **p = &ic->nodes;
490 
491 			/* Remove the old node from the per-inode list */
492 			while (*p && *p != (void *)ic) {
493 				if (*p == raw) {
494 					(*p) = (raw->next_in_ino);
495 					raw->next_in_ino = NULL;
496 					break;
497 				}
498 				p = &((*p)->next_in_ino);
499 			}
500 
501 			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
502 				/* If it's an in-core inode, then we have to adjust any
503 				   full_dirent or full_dnode structure to point to the
504 				   new version instead of the old */
505 				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
506 				if (IS_ERR(f)) {
507 					/* Should never happen; it _must_ be present */
508 					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
509 						    ic->ino, PTR_ERR(f));
510 					BUG();
511 				}
512 				/* We don't lock f->sem. There's a number of ways we could
513 				   end up in here with it already being locked, and nobody's
514 				   going to modify it on us anyway because we hold the
515 				   alloc_sem. We're only changing one ->raw pointer too,
516 				   which we can get away with without upsetting readers. */
517 				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
518 								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
519 			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
520 					    ic->state != INO_STATE_CHECKEDABSENT &&
521 					    ic->state != INO_STATE_GC)) {
522 				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
523 				BUG();
524 			}
525 		}
526 
527 		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
528 
529 		if (adjust_ref) {
530 			BUG_ON(*adjust_ref != raw);
531 			*adjust_ref = new_ref;
532 		}
533 		if (f)
534 			jffs2_gc_release_inode(c, f);
535 
536 		if (!ref_obsolete(raw)) {
537 			jeb->dirty_size += rawlen;
538 			jeb->used_size  -= rawlen;
539 			c->dirty_size += rawlen;
540 			c->used_size -= rawlen;
541 			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
542 			BUG_ON(raw->next_in_ino);
543 		}
544 		ofs += rawlen;
545 	}
546 
547 	kfree(buf);
548 
549 	/* Fix up the original jeb now it's on the bad_list */
550 	if (first_raw == jeb->first_node) {
551 		jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
552 			  jeb->offset);
553 		list_move(&jeb->list, &c->erase_pending_list);
554 		c->nr_erasing_blocks++;
555 		jffs2_garbage_collect_trigger(c);
556 	}
557 
558 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
559 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
560 
561 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
562 	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
563 
564 	spin_unlock(&c->erase_completion_lock);
565 
566 	jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
567 		  c->wbuf_ofs, c->wbuf_len);
568 
569 }
570 
571 /* Meaning of pad argument:
572    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
573    1: Pad, do not adjust nextblock free_size
574    2: Pad, adjust nextblock free_size
575 */
576 #define NOPAD		0
577 #define PAD_NOACCOUNT	1
578 #define PAD_ACCOUNTING	2
579 
580 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
581 {
582 	struct jffs2_eraseblock *wbuf_jeb;
583 	int ret;
584 	size_t retlen;
585 
586 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
587 	   del_timer() the timer we never initialised. */
588 	if (!jffs2_is_writebuffered(c))
589 		return 0;
590 
591 	if (!mutex_is_locked(&c->alloc_sem)) {
592 		pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n");
593 		BUG();
594 	}
595 
596 	if (!c->wbuf_len)	/* already checked c->wbuf above */
597 		return 0;
598 
599 	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
600 	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
601 		return -ENOMEM;
602 
603 	/* claim remaining space on the page
604 	   this happens, if we have a change to a new block,
605 	   or if fsync forces us to flush the writebuffer.
606 	   if we have a switch to next page, we will not have
607 	   enough remaining space for this.
608 	*/
609 	if (pad ) {
610 		c->wbuf_len = PAD(c->wbuf_len);
611 
612 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
613 		   with 8 byte page size */
614 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
615 
616 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
617 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
618 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
619 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
620 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
621 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
622 		}
623 	}
624 	/* else jffs2_flash_writev has actually filled in the rest of the
625 	   buffer for us, and will deal with the node refs etc. later. */
626 
627 #ifdef BREAKME
628 	static int breakme;
629 	if (breakme++ == 20) {
630 		pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs);
631 		breakme = 0;
632 		mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
633 			  brokenbuf);
634 		ret = -EIO;
635 	} else
636 #endif
637 
638 		ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
639 				&retlen, c->wbuf);
640 
641 	if (ret) {
642 		pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret);
643 		goto wfail;
644 	} else if (retlen != c->wbuf_pagesize) {
645 		pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
646 			retlen, c->wbuf_pagesize);
647 		ret = -EIO;
648 		goto wfail;
649 	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
650 	wfail:
651 		jffs2_wbuf_recover(c);
652 
653 		return ret;
654 	}
655 
656 	/* Adjust free size of the block if we padded. */
657 	if (pad) {
658 		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
659 
660 		jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
661 			  (wbuf_jeb == c->nextblock) ? "next" : "",
662 			  wbuf_jeb->offset);
663 
664 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
665 		   padded. If there is less free space in the block than that,
666 		   something screwed up */
667 		if (wbuf_jeb->free_size < waste) {
668 			pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
669 				c->wbuf_ofs, c->wbuf_len, waste);
670 			pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
671 				wbuf_jeb->offset, wbuf_jeb->free_size);
672 			BUG();
673 		}
674 
675 		spin_lock(&c->erase_completion_lock);
676 
677 		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
678 		/* FIXME: that made it count as dirty. Convert to wasted */
679 		wbuf_jeb->dirty_size -= waste;
680 		c->dirty_size -= waste;
681 		wbuf_jeb->wasted_size += waste;
682 		c->wasted_size += waste;
683 	} else
684 		spin_lock(&c->erase_completion_lock);
685 
686 	/* Stick any now-obsoleted blocks on the erase_pending_list */
687 	jffs2_refile_wbuf_blocks(c);
688 	jffs2_clear_wbuf_ino_list(c);
689 	spin_unlock(&c->erase_completion_lock);
690 
691 	memset(c->wbuf,0xff,c->wbuf_pagesize);
692 	/* adjust write buffer offset, else we get a non contiguous write bug */
693 	c->wbuf_ofs += c->wbuf_pagesize;
694 	c->wbuf_len = 0;
695 	return 0;
696 }
697 
698 /* Trigger garbage collection to flush the write-buffer.
699    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
700    outstanding. If ino arg non-zero, do it only if a write for the
701    given inode is outstanding. */
702 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
703 {
704 	uint32_t old_wbuf_ofs;
705 	uint32_t old_wbuf_len;
706 	int ret = 0;
707 
708 	jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
709 
710 	if (!c->wbuf)
711 		return 0;
712 
713 	mutex_lock(&c->alloc_sem);
714 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
715 		jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
716 		mutex_unlock(&c->alloc_sem);
717 		return 0;
718 	}
719 
720 	old_wbuf_ofs = c->wbuf_ofs;
721 	old_wbuf_len = c->wbuf_len;
722 
723 	if (c->unchecked_size) {
724 		/* GC won't make any progress for a while */
725 		jffs2_dbg(1, "%s(): padding. Not finished checking\n",
726 			  __func__);
727 		down_write(&c->wbuf_sem);
728 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
729 		/* retry flushing wbuf in case jffs2_wbuf_recover
730 		   left some data in the wbuf */
731 		if (ret)
732 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
733 		up_write(&c->wbuf_sem);
734 	} else while (old_wbuf_len &&
735 		      old_wbuf_ofs == c->wbuf_ofs) {
736 
737 		mutex_unlock(&c->alloc_sem);
738 
739 		jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
740 
741 		ret = jffs2_garbage_collect_pass(c);
742 		if (ret) {
743 			/* GC failed. Flush it with padding instead */
744 			mutex_lock(&c->alloc_sem);
745 			down_write(&c->wbuf_sem);
746 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
747 			/* retry flushing wbuf in case jffs2_wbuf_recover
748 			   left some data in the wbuf */
749 			if (ret)
750 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
751 			up_write(&c->wbuf_sem);
752 			break;
753 		}
754 		mutex_lock(&c->alloc_sem);
755 	}
756 
757 	jffs2_dbg(1, "%s(): ends...\n", __func__);
758 
759 	mutex_unlock(&c->alloc_sem);
760 	return ret;
761 }
762 
763 /* Pad write-buffer to end and write it, wasting space. */
764 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
765 {
766 	int ret;
767 
768 	if (!c->wbuf)
769 		return 0;
770 
771 	down_write(&c->wbuf_sem);
772 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
773 	/* retry - maybe wbuf recover left some data in wbuf. */
774 	if (ret)
775 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
776 	up_write(&c->wbuf_sem);
777 
778 	return ret;
779 }
780 
781 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
782 			      size_t len)
783 {
784 	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
785 		return 0;
786 
787 	if (len > (c->wbuf_pagesize - c->wbuf_len))
788 		len = c->wbuf_pagesize - c->wbuf_len;
789 	memcpy(c->wbuf + c->wbuf_len, buf, len);
790 	c->wbuf_len += (uint32_t) len;
791 	return len;
792 }
793 
794 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
795 		       unsigned long count, loff_t to, size_t *retlen,
796 		       uint32_t ino)
797 {
798 	struct jffs2_eraseblock *jeb;
799 	size_t wbuf_retlen, donelen = 0;
800 	uint32_t outvec_to = to;
801 	int ret, invec;
802 
803 	/* If not writebuffered flash, don't bother */
804 	if (!jffs2_is_writebuffered(c))
805 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
806 
807 	down_write(&c->wbuf_sem);
808 
809 	/* If wbuf_ofs is not initialized, set it to target address */
810 	if (c->wbuf_ofs == 0xFFFFFFFF) {
811 		c->wbuf_ofs = PAGE_DIV(to);
812 		c->wbuf_len = PAGE_MOD(to);
813 		memset(c->wbuf,0xff,c->wbuf_pagesize);
814 	}
815 
816 	/*
817 	 * Sanity checks on target address.  It's permitted to write
818 	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
819 	 * write at the beginning of a new erase block. Anything else,
820 	 * and you die.  New block starts at xxx000c (0-b = block
821 	 * header)
822 	 */
823 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
824 		/* It's a write to a new block */
825 		if (c->wbuf_len) {
826 			jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
827 				  __func__, (unsigned long)to, c->wbuf_ofs);
828 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
829 			if (ret)
830 				goto outerr;
831 		}
832 		/* set pointer to new block */
833 		c->wbuf_ofs = PAGE_DIV(to);
834 		c->wbuf_len = PAGE_MOD(to);
835 	}
836 
837 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
838 		/* We're not writing immediately after the writebuffer. Bad. */
839 		pr_crit("%s(): Non-contiguous write to %08lx\n",
840 			__func__, (unsigned long)to);
841 		if (c->wbuf_len)
842 			pr_crit("wbuf was previously %08x-%08x\n",
843 				c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len);
844 		BUG();
845 	}
846 
847 	/* adjust alignment offset */
848 	if (c->wbuf_len != PAGE_MOD(to)) {
849 		c->wbuf_len = PAGE_MOD(to);
850 		/* take care of alignment to next page */
851 		if (!c->wbuf_len) {
852 			c->wbuf_len = c->wbuf_pagesize;
853 			ret = __jffs2_flush_wbuf(c, NOPAD);
854 			if (ret)
855 				goto outerr;
856 		}
857 	}
858 
859 	for (invec = 0; invec < count; invec++) {
860 		int vlen = invecs[invec].iov_len;
861 		uint8_t *v = invecs[invec].iov_base;
862 
863 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
864 
865 		if (c->wbuf_len == c->wbuf_pagesize) {
866 			ret = __jffs2_flush_wbuf(c, NOPAD);
867 			if (ret)
868 				goto outerr;
869 		}
870 		vlen -= wbuf_retlen;
871 		outvec_to += wbuf_retlen;
872 		donelen += wbuf_retlen;
873 		v += wbuf_retlen;
874 
875 		if (vlen >= c->wbuf_pagesize) {
876 			ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
877 					&wbuf_retlen, v);
878 			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
879 				goto outfile;
880 
881 			vlen -= wbuf_retlen;
882 			outvec_to += wbuf_retlen;
883 			c->wbuf_ofs = outvec_to;
884 			donelen += wbuf_retlen;
885 			v += wbuf_retlen;
886 		}
887 
888 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
889 		if (c->wbuf_len == c->wbuf_pagesize) {
890 			ret = __jffs2_flush_wbuf(c, NOPAD);
891 			if (ret)
892 				goto outerr;
893 		}
894 
895 		outvec_to += wbuf_retlen;
896 		donelen += wbuf_retlen;
897 	}
898 
899 	/*
900 	 * If there's a remainder in the wbuf and it's a non-GC write,
901 	 * remember that the wbuf affects this ino
902 	 */
903 	*retlen = donelen;
904 
905 	if (jffs2_sum_active()) {
906 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
907 		if (res)
908 			return res;
909 	}
910 
911 	if (c->wbuf_len && ino)
912 		jffs2_wbuf_dirties_inode(c, ino);
913 
914 	ret = 0;
915 	up_write(&c->wbuf_sem);
916 	return ret;
917 
918 outfile:
919 	/*
920 	 * At this point we have no problem, c->wbuf is empty. However
921 	 * refile nextblock to avoid writing again to same address.
922 	 */
923 
924 	spin_lock(&c->erase_completion_lock);
925 
926 	jeb = &c->blocks[outvec_to / c->sector_size];
927 	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
928 
929 	spin_unlock(&c->erase_completion_lock);
930 
931 outerr:
932 	*retlen = 0;
933 	up_write(&c->wbuf_sem);
934 	return ret;
935 }
936 
937 /*
938  *	This is the entry for flash write.
939  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
940 */
941 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
942 		      size_t *retlen, const u_char *buf)
943 {
944 	struct kvec vecs[1];
945 
946 	if (!jffs2_is_writebuffered(c))
947 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
948 
949 	vecs[0].iov_base = (unsigned char *) buf;
950 	vecs[0].iov_len = len;
951 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
952 }
953 
954 /*
955 	Handle readback from writebuffer and ECC failure return
956 */
957 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
958 {
959 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
960 	int	ret;
961 
962 	if (!jffs2_is_writebuffered(c))
963 		return mtd_read(c->mtd, ofs, len, retlen, buf);
964 
965 	/* Read flash */
966 	down_read(&c->wbuf_sem);
967 	ret = mtd_read(c->mtd, ofs, len, retlen, buf);
968 
969 	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
970 		if (ret == -EBADMSG)
971 			pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
972 				len, ofs);
973 		/*
974 		 * We have the raw data without ECC correction in the buffer,
975 		 * maybe we are lucky and all data or parts are correct. We
976 		 * check the node.  If data are corrupted node check will sort
977 		 * it out.  We keep this block, it will fail on write or erase
978 		 * and the we mark it bad. Or should we do that now? But we
979 		 * should give him a chance.  Maybe we had a system crash or
980 		 * power loss before the ecc write or a erase was completed.
981 		 * So we return success. :)
982 		 */
983 		ret = 0;
984 	}
985 
986 	/* if no writebuffer available or write buffer empty, return */
987 	if (!c->wbuf_pagesize || !c->wbuf_len)
988 		goto exit;
989 
990 	/* if we read in a different block, return */
991 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
992 		goto exit;
993 
994 	if (ofs >= c->wbuf_ofs) {
995 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
996 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
997 			goto exit;
998 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
999 		if (lwbf > len)
1000 			lwbf = len;
1001 	} else {
1002 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
1003 		if (orbf > len)			/* is write beyond write buffer ? */
1004 			goto exit;
1005 		lwbf = len - orbf;		/* number of bytes to copy */
1006 		if (lwbf > c->wbuf_len)
1007 			lwbf = c->wbuf_len;
1008 	}
1009 	if (lwbf > 0)
1010 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1011 
1012 exit:
1013 	up_read(&c->wbuf_sem);
1014 	return ret;
1015 }
1016 
1017 #define NR_OOB_SCAN_PAGES 4
1018 
1019 /* For historical reasons we use only 8 bytes for OOB clean marker */
1020 #define OOB_CM_SIZE 8
1021 
1022 static const struct jffs2_unknown_node oob_cleanmarker =
1023 {
1024 	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1025 	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1026 	.totlen = constant_cpu_to_je32(8)
1027 };
1028 
1029 /*
1030  * Check, if the out of band area is empty. This function knows about the clean
1031  * marker and if it is present in OOB, treats the OOB as empty anyway.
1032  */
1033 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1034 			  struct jffs2_eraseblock *jeb, int mode)
1035 {
1036 	int i, ret;
1037 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1038 	struct mtd_oob_ops ops;
1039 
1040 	ops.mode = MTD_OPS_AUTO_OOB;
1041 	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1042 	ops.oobbuf = c->oobbuf;
1043 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1044 	ops.datbuf = NULL;
1045 
1046 	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1047 	if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1048 		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1049 		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1050 		if (!ret || mtd_is_bitflip(ret))
1051 			ret = -EIO;
1052 		return ret;
1053 	}
1054 
1055 	for(i = 0; i < ops.ooblen; i++) {
1056 		if (mode && i < cmlen)
1057 			/* Yeah, we know about the cleanmarker */
1058 			continue;
1059 
1060 		if (ops.oobbuf[i] != 0xFF) {
1061 			jffs2_dbg(2, "Found %02x at %x in OOB for "
1062 				  "%08x\n", ops.oobbuf[i], i, jeb->offset);
1063 			return 1;
1064 		}
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Check for a valid cleanmarker.
1072  * Returns: 0 if a valid cleanmarker was found
1073  *	    1 if no cleanmarker was found
1074  *	    negative error code if an error occurred
1075  */
1076 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1077 				 struct jffs2_eraseblock *jeb)
1078 {
1079 	struct mtd_oob_ops ops;
1080 	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1081 
1082 	ops.mode = MTD_OPS_AUTO_OOB;
1083 	ops.ooblen = cmlen;
1084 	ops.oobbuf = c->oobbuf;
1085 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1086 	ops.datbuf = NULL;
1087 
1088 	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1089 	if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) {
1090 		pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1091 		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1092 		if (!ret || mtd_is_bitflip(ret))
1093 			ret = -EIO;
1094 		return ret;
1095 	}
1096 
1097 	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1098 }
1099 
1100 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1101 				 struct jffs2_eraseblock *jeb)
1102 {
1103 	int ret;
1104 	struct mtd_oob_ops ops;
1105 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1106 
1107 	ops.mode = MTD_OPS_AUTO_OOB;
1108 	ops.ooblen = cmlen;
1109 	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1110 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1111 	ops.datbuf = NULL;
1112 
1113 	ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
1114 	if (ret || ops.oobretlen != ops.ooblen) {
1115 		pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n",
1116 		       jeb->offset, ops.ooblen, ops.oobretlen, ret);
1117 		if (!ret)
1118 			ret = -EIO;
1119 		return ret;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 /*
1126  * On NAND we try to mark this block bad. If the block was erased more
1127  * than MAX_ERASE_FAILURES we mark it finally bad.
1128  * Don't care about failures. This block remains on the erase-pending
1129  * or badblock list as long as nobody manipulates the flash with
1130  * a bootloader or something like that.
1131  */
1132 
1133 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1134 {
1135 	int 	ret;
1136 
1137 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1138 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1139 		return 0;
1140 
1141 	pr_warn("marking eraseblock at %08x as bad\n", bad_offset);
1142 	ret = mtd_block_markbad(c->mtd, bad_offset);
1143 
1144 	if (ret) {
1145 		jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
1146 			  __func__, jeb->offset, ret);
1147 		return ret;
1148 	}
1149 	return 1;
1150 }
1151 
1152 static struct jffs2_sb_info *work_to_sb(struct work_struct *work)
1153 {
1154 	struct delayed_work *dwork;
1155 
1156 	dwork = to_delayed_work(work);
1157 	return container_of(dwork, struct jffs2_sb_info, wbuf_dwork);
1158 }
1159 
1160 static void delayed_wbuf_sync(struct work_struct *work)
1161 {
1162 	struct jffs2_sb_info *c = work_to_sb(work);
1163 	struct super_block *sb = OFNI_BS_2SFFJ(c);
1164 
1165 	if (!(sb->s_flags & MS_RDONLY)) {
1166 		jffs2_dbg(1, "%s()\n", __func__);
1167 		jffs2_flush_wbuf_gc(c, 0);
1168 	}
1169 }
1170 
1171 void jffs2_dirty_trigger(struct jffs2_sb_info *c)
1172 {
1173 	struct super_block *sb = OFNI_BS_2SFFJ(c);
1174 	unsigned long delay;
1175 
1176 	if (sb->s_flags & MS_RDONLY)
1177 		return;
1178 
1179 	delay = msecs_to_jiffies(dirty_writeback_interval * 10);
1180 	if (queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay))
1181 		jffs2_dbg(1, "%s()\n", __func__);
1182 }
1183 
1184 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1185 {
1186 	if (!c->mtd->oobsize)
1187 		return 0;
1188 
1189 	/* Cleanmarker is out-of-band, so inline size zero */
1190 	c->cleanmarker_size = 0;
1191 
1192 	if (c->mtd->oobavail == 0) {
1193 		pr_err("inconsistent device description\n");
1194 		return -EINVAL;
1195 	}
1196 
1197 	jffs2_dbg(1, "using OOB on NAND\n");
1198 
1199 	c->oobavail = c->mtd->oobavail;
1200 
1201 	/* Initialise write buffer */
1202 	init_rwsem(&c->wbuf_sem);
1203 	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1204 	c->wbuf_pagesize = c->mtd->writesize;
1205 	c->wbuf_ofs = 0xFFFFFFFF;
1206 
1207 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1208 	if (!c->wbuf)
1209 		return -ENOMEM;
1210 
1211 	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1212 	if (!c->oobbuf) {
1213 		kfree(c->wbuf);
1214 		return -ENOMEM;
1215 	}
1216 
1217 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1218 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1219 	if (!c->wbuf_verify) {
1220 		kfree(c->oobbuf);
1221 		kfree(c->wbuf);
1222 		return -ENOMEM;
1223 	}
1224 #endif
1225 	return 0;
1226 }
1227 
1228 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1229 {
1230 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1231 	kfree(c->wbuf_verify);
1232 #endif
1233 	kfree(c->wbuf);
1234 	kfree(c->oobbuf);
1235 }
1236 
1237 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1238 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1239 
1240 	/* Initialize write buffer */
1241 	init_rwsem(&c->wbuf_sem);
1242 	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1243 	c->wbuf_pagesize =  c->mtd->erasesize;
1244 
1245 	/* Find a suitable c->sector_size
1246 	 * - Not too much sectors
1247 	 * - Sectors have to be at least 4 K + some bytes
1248 	 * - All known dataflashes have erase sizes of 528 or 1056
1249 	 * - we take at least 8 eraseblocks and want to have at least 8K size
1250 	 * - The concatenation should be a power of 2
1251 	*/
1252 
1253 	c->sector_size = 8 * c->mtd->erasesize;
1254 
1255 	while (c->sector_size < 8192) {
1256 		c->sector_size *= 2;
1257 	}
1258 
1259 	/* It may be necessary to adjust the flash size */
1260 	c->flash_size = c->mtd->size;
1261 
1262 	if ((c->flash_size % c->sector_size) != 0) {
1263 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1264 		pr_warn("flash size adjusted to %dKiB\n", c->flash_size);
1265 	}
1266 
1267 	c->wbuf_ofs = 0xFFFFFFFF;
1268 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1269 	if (!c->wbuf)
1270 		return -ENOMEM;
1271 
1272 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1273 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1274 	if (!c->wbuf_verify) {
1275 		kfree(c->wbuf);
1276 		return -ENOMEM;
1277 	}
1278 #endif
1279 
1280 	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1281 		c->wbuf_pagesize, c->sector_size);
1282 
1283 	return 0;
1284 }
1285 
1286 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1287 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1288 	kfree(c->wbuf_verify);
1289 #endif
1290 	kfree(c->wbuf);
1291 }
1292 
1293 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1294 	/* Cleanmarker currently occupies whole programming regions,
1295 	 * either one or 2 for 8Byte STMicro flashes. */
1296 	c->cleanmarker_size = max(16u, c->mtd->writesize);
1297 
1298 	/* Initialize write buffer */
1299 	init_rwsem(&c->wbuf_sem);
1300 	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1301 
1302 	c->wbuf_pagesize = c->mtd->writesize;
1303 	c->wbuf_ofs = 0xFFFFFFFF;
1304 
1305 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1306 	if (!c->wbuf)
1307 		return -ENOMEM;
1308 
1309 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1310 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1311 	if (!c->wbuf_verify) {
1312 		kfree(c->wbuf);
1313 		return -ENOMEM;
1314 	}
1315 #endif
1316 	return 0;
1317 }
1318 
1319 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1320 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1321 	kfree(c->wbuf_verify);
1322 #endif
1323 	kfree(c->wbuf);
1324 }
1325 
1326 int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1327 	c->cleanmarker_size = 0;
1328 
1329 	if (c->mtd->writesize == 1)
1330 		/* We do not need write-buffer */
1331 		return 0;
1332 
1333 	init_rwsem(&c->wbuf_sem);
1334 	INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync);
1335 
1336 	c->wbuf_pagesize =  c->mtd->writesize;
1337 	c->wbuf_ofs = 0xFFFFFFFF;
1338 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1339 	if (!c->wbuf)
1340 		return -ENOMEM;
1341 
1342 	pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n",
1343 		c->wbuf_pagesize, c->sector_size);
1344 
1345 	return 0;
1346 }
1347 
1348 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1349 	kfree(c->wbuf);
1350 }
1351