xref: /linux/fs/jffs2/nodemgmt.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: nodemgmt.c,v 1.127 2005/09/20 15:49:12 dedekind Exp $
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/compiler.h>
18 #include <linux/sched.h> /* For cond_resched() */
19 #include "nodelist.h"
20 #include "debug.h"
21 
22 /**
23  *	jffs2_reserve_space - request physical space to write nodes to flash
24  *	@c: superblock info
25  *	@minsize: Minimum acceptable size of allocation
26  *	@len: Returned value of allocation length
27  *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
28  *
29  *	Requests a block of physical space on the flash. Returns zero for success
30  *	and puts 'len' into the appropriate place, or returns -ENOSPC or other
31  *	error if appropriate. Doesn't return len since that's
32  *
33  *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
34  *	allocation semaphore, to prevent more than one allocation from being
35  *	active at any time. The semaphore is later released by jffs2_commit_allocation()
36  *
37  *	jffs2_reserve_space() may trigger garbage collection in order to make room
38  *	for the requested allocation.
39  */
40 
41 static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
42 				  uint32_t *len, uint32_t sumsize);
43 
44 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
45 			uint32_t *len, int prio, uint32_t sumsize)
46 {
47 	int ret = -EAGAIN;
48 	int blocksneeded = c->resv_blocks_write;
49 	/* align it */
50 	minsize = PAD(minsize);
51 
52 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
53 	down(&c->alloc_sem);
54 
55 	D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
56 
57 	spin_lock(&c->erase_completion_lock);
58 
59 	/* this needs a little more thought (true <tglx> :)) */
60 	while(ret == -EAGAIN) {
61 		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
62 			int ret;
63 			uint32_t dirty, avail;
64 
65 			/* calculate real dirty size
66 			 * dirty_size contains blocks on erase_pending_list
67 			 * those blocks are counted in c->nr_erasing_blocks.
68 			 * If one block is actually erased, it is not longer counted as dirty_space
69 			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
70 			 * with c->nr_erasing_blocks * c->sector_size again.
71 			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
72 			 * This helps us to force gc and pick eventually a clean block to spread the load.
73 			 * We add unchecked_size here, as we hopefully will find some space to use.
74 			 * This will affect the sum only once, as gc first finishes checking
75 			 * of nodes.
76 			 */
77 			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
78 			if (dirty < c->nospc_dirty_size) {
79 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
80 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
81 					break;
82 				}
83 				D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
84 					  dirty, c->unchecked_size, c->sector_size));
85 
86 				spin_unlock(&c->erase_completion_lock);
87 				up(&c->alloc_sem);
88 				return -ENOSPC;
89 			}
90 
91 			/* Calc possibly available space. Possibly available means that we
92 			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
93 			 * more usable space. This will affect the sum only once, as gc first finishes checking
94 			 * of nodes.
95 			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
96 			 * blocksneeded * sector_size.
97 			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
98 			 * the check above passes.
99 			 */
100 			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
101 			if ( (avail / c->sector_size) <= blocksneeded) {
102 				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
103 					D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
104 					break;
105 				}
106 
107 				D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
108 					  avail, blocksneeded * c->sector_size));
109 				spin_unlock(&c->erase_completion_lock);
110 				up(&c->alloc_sem);
111 				return -ENOSPC;
112 			}
113 
114 			up(&c->alloc_sem);
115 
116 			D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
117 				  c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
118 				  c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
119 			spin_unlock(&c->erase_completion_lock);
120 
121 			ret = jffs2_garbage_collect_pass(c);
122 			if (ret)
123 				return ret;
124 
125 			cond_resched();
126 
127 			if (signal_pending(current))
128 				return -EINTR;
129 
130 			down(&c->alloc_sem);
131 			spin_lock(&c->erase_completion_lock);
132 		}
133 
134 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
135 		if (ret) {
136 			D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
137 		}
138 	}
139 	spin_unlock(&c->erase_completion_lock);
140 	if (!ret)
141 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
142 	if (ret)
143 		up(&c->alloc_sem);
144 	return ret;
145 }
146 
147 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
148 			   uint32_t *len, uint32_t sumsize)
149 {
150 	int ret = -EAGAIN;
151 	minsize = PAD(minsize);
152 
153 	D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
154 
155 	spin_lock(&c->erase_completion_lock);
156 	while(ret == -EAGAIN) {
157 		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
158 		if (ret) {
159 		        D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
160 		}
161 	}
162 	spin_unlock(&c->erase_completion_lock);
163 	if (!ret)
164 		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
165 
166 	return ret;
167 }
168 
169 
170 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
171 
172 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
173 {
174 
175 	/* Check, if we have a dirty block now, or if it was dirty already */
176 	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
177 		c->dirty_size += jeb->wasted_size;
178 		c->wasted_size -= jeb->wasted_size;
179 		jeb->dirty_size += jeb->wasted_size;
180 		jeb->wasted_size = 0;
181 		if (VERYDIRTY(c, jeb->dirty_size)) {
182 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
183 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
184 			list_add_tail(&jeb->list, &c->very_dirty_list);
185 		} else {
186 			D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
187 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
188 			list_add_tail(&jeb->list, &c->dirty_list);
189 		}
190 	} else {
191 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
192 		  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
193 		list_add_tail(&jeb->list, &c->clean_list);
194 	}
195 	c->nextblock = NULL;
196 
197 }
198 
199 /* Select a new jeb for nextblock */
200 
201 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
202 {
203 	struct list_head *next;
204 
205 	/* Take the next block off the 'free' list */
206 
207 	if (list_empty(&c->free_list)) {
208 
209 		if (!c->nr_erasing_blocks &&
210 			!list_empty(&c->erasable_list)) {
211 			struct jffs2_eraseblock *ejeb;
212 
213 			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
214 			list_move_tail(&ejeb->list, &c->erase_pending_list);
215 			c->nr_erasing_blocks++;
216 			jffs2_erase_pending_trigger(c);
217 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
218 				  ejeb->offset));
219 		}
220 
221 		if (!c->nr_erasing_blocks &&
222 			!list_empty(&c->erasable_pending_wbuf_list)) {
223 			D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
224 			/* c->nextblock is NULL, no update to c->nextblock allowed */
225 			spin_unlock(&c->erase_completion_lock);
226 			jffs2_flush_wbuf_pad(c);
227 			spin_lock(&c->erase_completion_lock);
228 			/* Have another go. It'll be on the erasable_list now */
229 			return -EAGAIN;
230 		}
231 
232 		if (!c->nr_erasing_blocks) {
233 			/* Ouch. We're in GC, or we wouldn't have got here.
234 			   And there's no space left. At all. */
235 			printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
236 				   c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
237 				   list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
238 			return -ENOSPC;
239 		}
240 
241 		spin_unlock(&c->erase_completion_lock);
242 		/* Don't wait for it; just erase one right now */
243 		jffs2_erase_pending_blocks(c, 1);
244 		spin_lock(&c->erase_completion_lock);
245 
246 		/* An erase may have failed, decreasing the
247 		   amount of free space available. So we must
248 		   restart from the beginning */
249 		return -EAGAIN;
250 	}
251 
252 	next = c->free_list.next;
253 	list_del(next);
254 	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
255 	c->nr_free_blocks--;
256 
257 	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
258 
259 	D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
260 
261 	return 0;
262 }
263 
264 /* Called with alloc sem _and_ erase_completion_lock */
265 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
266 				  uint32_t *len, uint32_t sumsize)
267 {
268 	struct jffs2_eraseblock *jeb = c->nextblock;
269 	uint32_t reserved_size;				/* for summary information at the end of the jeb */
270 	int ret;
271 
272  restart:
273 	reserved_size = 0;
274 
275 	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
276 							/* NOSUM_SIZE means not to generate summary */
277 
278 		if (jeb) {
279 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
280 			dbg_summary("minsize=%d , jeb->free=%d ,"
281 						"summary->size=%d , sumsize=%d\n",
282 						minsize, jeb->free_size,
283 						c->summary->sum_size, sumsize);
284 		}
285 
286 		/* Is there enough space for writing out the current node, or we have to
287 		   write out summary information now, close this jeb and select new nextblock? */
288 		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
289 					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
290 
291 			/* Has summary been disabled for this jeb? */
292 			if (jffs2_sum_is_disabled(c->summary)) {
293 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
294 				goto restart;
295 			}
296 
297 			/* Writing out the collected summary information */
298 			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
299 			ret = jffs2_sum_write_sumnode(c);
300 
301 			if (ret)
302 				return ret;
303 
304 			if (jffs2_sum_is_disabled(c->summary)) {
305 				/* jffs2_write_sumnode() couldn't write out the summary information
306 				   diabling summary for this jeb and free the collected information
307 				 */
308 				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
309 				goto restart;
310 			}
311 
312 			jffs2_close_nextblock(c, jeb);
313 			jeb = NULL;
314 			/* keep always valid value in reserved_size */
315 			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
316 		}
317 	} else {
318 		if (jeb && minsize > jeb->free_size) {
319 			uint32_t waste;
320 
321 			/* Skip the end of this block and file it as having some dirty space */
322 			/* If there's a pending write to it, flush now */
323 
324 			if (jffs2_wbuf_dirty(c)) {
325 				spin_unlock(&c->erase_completion_lock);
326 				D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
327 				jffs2_flush_wbuf_pad(c);
328 				spin_lock(&c->erase_completion_lock);
329 				jeb = c->nextblock;
330 				goto restart;
331 			}
332 
333 			spin_unlock(&c->erase_completion_lock);
334 
335 			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
336 			if (ret)
337 				return ret;
338 			/* Just lock it again and continue. Nothing much can change because
339 			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
340 			   we hold c->erase_completion_lock in the majority of this function...
341 			   but that's a question for another (more caffeine-rich) day. */
342 			spin_lock(&c->erase_completion_lock);
343 
344 			waste = jeb->free_size;
345 			jffs2_link_node_ref(c, jeb,
346 					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
347 					    waste, NULL);
348 			/* FIXME: that made it count as dirty. Convert to wasted */
349 			jeb->dirty_size -= waste;
350 			c->dirty_size -= waste;
351 			jeb->wasted_size += waste;
352 			c->wasted_size += waste;
353 
354 			jffs2_close_nextblock(c, jeb);
355 			jeb = NULL;
356 		}
357 	}
358 
359 	if (!jeb) {
360 
361 		ret = jffs2_find_nextblock(c);
362 		if (ret)
363 			return ret;
364 
365 		jeb = c->nextblock;
366 
367 		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
368 			printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
369 			goto restart;
370 		}
371 	}
372 	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
373 	   enough space */
374 	*len = jeb->free_size - reserved_size;
375 
376 	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
377 	    !jeb->first_node->next_in_ino) {
378 		/* Only node in it beforehand was a CLEANMARKER node (we think).
379 		   So mark it obsolete now that there's going to be another node
380 		   in the block. This will reduce used_size to zero but We've
381 		   already set c->nextblock so that jffs2_mark_node_obsolete()
382 		   won't try to refile it to the dirty_list.
383 		*/
384 		spin_unlock(&c->erase_completion_lock);
385 		jffs2_mark_node_obsolete(c, jeb->first_node);
386 		spin_lock(&c->erase_completion_lock);
387 	}
388 
389 	D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
390 		  *len, jeb->offset + (c->sector_size - jeb->free_size)));
391 	return 0;
392 }
393 
394 /**
395  *	jffs2_add_physical_node_ref - add a physical node reference to the list
396  *	@c: superblock info
397  *	@new: new node reference to add
398  *	@len: length of this physical node
399  *
400  *	Should only be used to report nodes for which space has been allocated
401  *	by jffs2_reserve_space.
402  *
403  *	Must be called with the alloc_sem held.
404  */
405 
406 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
407 						       uint32_t ofs, uint32_t len,
408 						       struct jffs2_inode_cache *ic)
409 {
410 	struct jffs2_eraseblock *jeb;
411 	struct jffs2_raw_node_ref *new;
412 
413 	jeb = &c->blocks[ofs / c->sector_size];
414 
415 	D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
416 		  ofs & ~3, ofs & 3, len));
417 #if 1
418 	/* Allow non-obsolete nodes only to be added at the end of c->nextblock,
419 	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
420 	   even after refiling c->nextblock */
421 	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
422 	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
423 		printk(KERN_WARNING "argh. node added in wrong place\n");
424 		return ERR_PTR(-EINVAL);
425 	}
426 #endif
427 	spin_lock(&c->erase_completion_lock);
428 
429 	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
430 
431 	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
432 		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
433 		D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
434 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
435 		if (jffs2_wbuf_dirty(c)) {
436 			/* Flush the last write in the block if it's outstanding */
437 			spin_unlock(&c->erase_completion_lock);
438 			jffs2_flush_wbuf_pad(c);
439 			spin_lock(&c->erase_completion_lock);
440 		}
441 
442 		list_add_tail(&jeb->list, &c->clean_list);
443 		c->nextblock = NULL;
444 	}
445 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
446 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
447 
448 	spin_unlock(&c->erase_completion_lock);
449 
450 	return new;
451 }
452 
453 
454 void jffs2_complete_reservation(struct jffs2_sb_info *c)
455 {
456 	D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
457 	jffs2_garbage_collect_trigger(c);
458 	up(&c->alloc_sem);
459 }
460 
461 static inline int on_list(struct list_head *obj, struct list_head *head)
462 {
463 	struct list_head *this;
464 
465 	list_for_each(this, head) {
466 		if (this == obj) {
467 			D1(printk("%p is on list at %p\n", obj, head));
468 			return 1;
469 
470 		}
471 	}
472 	return 0;
473 }
474 
475 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
476 {
477 	struct jffs2_eraseblock *jeb;
478 	int blocknr;
479 	struct jffs2_unknown_node n;
480 	int ret, addedsize;
481 	size_t retlen;
482 	uint32_t freed_len;
483 
484 	if(unlikely(!ref)) {
485 		printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
486 		return;
487 	}
488 	if (ref_obsolete(ref)) {
489 		D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
490 		return;
491 	}
492 	blocknr = ref->flash_offset / c->sector_size;
493 	if (blocknr >= c->nr_blocks) {
494 		printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
495 		BUG();
496 	}
497 	jeb = &c->blocks[blocknr];
498 
499 	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
500 	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
501 		/* Hm. This may confuse static lock analysis. If any of the above
502 		   three conditions is false, we're going to return from this
503 		   function without actually obliterating any nodes or freeing
504 		   any jffs2_raw_node_refs. So we don't need to stop erases from
505 		   happening, or protect against people holding an obsolete
506 		   jffs2_raw_node_ref without the erase_completion_lock. */
507 		down(&c->erase_free_sem);
508 	}
509 
510 	spin_lock(&c->erase_completion_lock);
511 
512 	freed_len = ref_totlen(c, jeb, ref);
513 
514 	if (ref_flags(ref) == REF_UNCHECKED) {
515 		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
516 			printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
517 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
518 			BUG();
519 		})
520 		D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
521 		jeb->unchecked_size -= freed_len;
522 		c->unchecked_size -= freed_len;
523 	} else {
524 		D1(if (unlikely(jeb->used_size < freed_len)) {
525 			printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
526 			       freed_len, blocknr, ref->flash_offset, jeb->used_size);
527 			BUG();
528 		})
529 		D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
530 		jeb->used_size -= freed_len;
531 		c->used_size -= freed_len;
532 	}
533 
534 	// Take care, that wasted size is taken into concern
535 	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
536 		D1(printk("Dirtying\n"));
537 		addedsize = freed_len;
538 		jeb->dirty_size += freed_len;
539 		c->dirty_size += freed_len;
540 
541 		/* Convert wasted space to dirty, if not a bad block */
542 		if (jeb->wasted_size) {
543 			if (on_list(&jeb->list, &c->bad_used_list)) {
544 				D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
545 					  jeb->offset));
546 				addedsize = 0; /* To fool the refiling code later */
547 			} else {
548 				D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
549 					  jeb->wasted_size, jeb->offset));
550 				addedsize += jeb->wasted_size;
551 				jeb->dirty_size += jeb->wasted_size;
552 				c->dirty_size += jeb->wasted_size;
553 				c->wasted_size -= jeb->wasted_size;
554 				jeb->wasted_size = 0;
555 			}
556 		}
557 	} else {
558 		D1(printk("Wasting\n"));
559 		addedsize = 0;
560 		jeb->wasted_size += freed_len;
561 		c->wasted_size += freed_len;
562 	}
563 	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
564 
565 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
566 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
567 
568 	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
569 		/* Flash scanning is in progress. Don't muck about with the block
570 		   lists because they're not ready yet, and don't actually
571 		   obliterate nodes that look obsolete. If they weren't
572 		   marked obsolete on the flash at the time they _became_
573 		   obsolete, there was probably a reason for that. */
574 		spin_unlock(&c->erase_completion_lock);
575 		/* We didn't lock the erase_free_sem */
576 		return;
577 	}
578 
579 	if (jeb == c->nextblock) {
580 		D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
581 	} else if (!jeb->used_size && !jeb->unchecked_size) {
582 		if (jeb == c->gcblock) {
583 			D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
584 			c->gcblock = NULL;
585 		} else {
586 			D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
587 			list_del(&jeb->list);
588 		}
589 		if (jffs2_wbuf_dirty(c)) {
590 			D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
591 			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
592 		} else {
593 			if (jiffies & 127) {
594 				/* Most of the time, we just erase it immediately. Otherwise we
595 				   spend ages scanning it on mount, etc. */
596 				D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
597 				list_add_tail(&jeb->list, &c->erase_pending_list);
598 				c->nr_erasing_blocks++;
599 				jffs2_erase_pending_trigger(c);
600 			} else {
601 				/* Sometimes, however, we leave it elsewhere so it doesn't get
602 				   immediately reused, and we spread the load a bit. */
603 				D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
604 				list_add_tail(&jeb->list, &c->erasable_list);
605 			}
606 		}
607 		D1(printk(KERN_DEBUG "Done OK\n"));
608 	} else if (jeb == c->gcblock) {
609 		D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
610 	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
611 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
612 		list_del(&jeb->list);
613 		D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
614 		list_add_tail(&jeb->list, &c->dirty_list);
615 	} else if (VERYDIRTY(c, jeb->dirty_size) &&
616 		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
617 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
618 		list_del(&jeb->list);
619 		D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
620 		list_add_tail(&jeb->list, &c->very_dirty_list);
621 	} else {
622 		D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
623 			  jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
624 	}
625 
626 	spin_unlock(&c->erase_completion_lock);
627 
628 	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
629 		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
630 		/* We didn't lock the erase_free_sem */
631 		return;
632 	}
633 
634 	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
635 	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
636 	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
637 	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
638 
639 	D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
640 	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
641 	if (ret) {
642 		printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
643 		goto out_erase_sem;
644 	}
645 	if (retlen != sizeof(n)) {
646 		printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
647 		goto out_erase_sem;
648 	}
649 	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
650 		printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
651 		goto out_erase_sem;
652 	}
653 	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
654 		D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
655 		goto out_erase_sem;
656 	}
657 	/* XXX FIXME: This is ugly now */
658 	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
659 	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
660 	if (ret) {
661 		printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
662 		goto out_erase_sem;
663 	}
664 	if (retlen != sizeof(n)) {
665 		printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
666 		goto out_erase_sem;
667 	}
668 
669 	/* Nodes which have been marked obsolete no longer need to be
670 	   associated with any inode. Remove them from the per-inode list.
671 
672 	   Note we can't do this for NAND at the moment because we need
673 	   obsolete dirent nodes to stay on the lists, because of the
674 	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
675 	   because we delete the inocache, and on NAND we need that to
676 	   stay around until all the nodes are actually erased, in order
677 	   to stop us from giving the same inode number to another newly
678 	   created inode. */
679 	if (ref->next_in_ino) {
680 		struct jffs2_inode_cache *ic;
681 		struct jffs2_raw_node_ref **p;
682 
683 		spin_lock(&c->erase_completion_lock);
684 
685 		ic = jffs2_raw_ref_to_ic(ref);
686 		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
687 			;
688 
689 		*p = ref->next_in_ino;
690 		ref->next_in_ino = NULL;
691 
692 		switch (ic->class) {
693 #ifdef CONFIG_JFFS2_FS_XATTR
694 			case RAWNODE_CLASS_XATTR_DATUM:
695 				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
696 				break;
697 			case RAWNODE_CLASS_XATTR_REF:
698 				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
699 				break;
700 #endif
701 			default:
702 				if (ic->nodes == (void *)ic && ic->nlink == 0)
703 					jffs2_del_ino_cache(c, ic);
704 				break;
705 		}
706 		spin_unlock(&c->erase_completion_lock);
707 	}
708 
709  out_erase_sem:
710 	up(&c->erase_free_sem);
711 }
712 
713 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
714 {
715 	int ret = 0;
716 	uint32_t dirty;
717 
718 	if (c->unchecked_size) {
719 		D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
720 			  c->unchecked_size, c->checked_ino));
721 		return 1;
722 	}
723 
724 	/* dirty_size contains blocks on erase_pending_list
725 	 * those blocks are counted in c->nr_erasing_blocks.
726 	 * If one block is actually erased, it is not longer counted as dirty_space
727 	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
728 	 * with c->nr_erasing_blocks * c->sector_size again.
729 	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
730 	 * This helps us to force gc and pick eventually a clean block to spread the load.
731 	 */
732 	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
733 
734 	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
735 			(dirty > c->nospc_dirty_size))
736 		ret = 1;
737 
738 	D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n",
739 		  c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
740 
741 	return ret;
742 }
743