xref: /linux/fs/jffs2/gc.c (revision e631ddba588783edd521c5a89f7b2902772fb691)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: gc.c,v 1.154 2005/09/07 08:34:54 havasi Exp $
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
21 #include "nodelist.h"
22 #include "compr.h"
23 
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 					  struct jffs2_inode_cache *ic,
26 					  struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 				      uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 				       uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
40 			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41 
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44 {
45 	struct jffs2_eraseblock *ret;
46 	struct list_head *nextlist = NULL;
47 	int n = jiffies % 128;
48 
49 	/* Pick an eraseblock to garbage collect next. This is where we'll
50 	   put the clever wear-levelling algorithms. Eventually.  */
51 	/* We possibly want to favour the dirtier blocks more when the
52 	   number of free blocks is low. */
53 again:
54 	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 		D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 		nextlist = &c->bad_used_list;
57 	} else if (n < 50 && !list_empty(&c->erasable_list)) {
58 		/* Note that most of them will have gone directly to be erased.
59 		   So don't favour the erasable_list _too_ much. */
60 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 		nextlist = &c->erasable_list;
62 	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 		/* Most of the time, pick one off the very_dirty list */
64 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 		nextlist = &c->very_dirty_list;
66 	} else if (n < 126 && !list_empty(&c->dirty_list)) {
67 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 		nextlist = &c->dirty_list;
69 	} else if (!list_empty(&c->clean_list)) {
70 		D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 		nextlist = &c->clean_list;
72 	} else if (!list_empty(&c->dirty_list)) {
73 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74 
75 		nextlist = &c->dirty_list;
76 	} else if (!list_empty(&c->very_dirty_list)) {
77 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 		nextlist = &c->very_dirty_list;
79 	} else if (!list_empty(&c->erasable_list)) {
80 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81 
82 		nextlist = &c->erasable_list;
83 	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 		/* There are blocks are wating for the wbuf sync */
85 		D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 		spin_unlock(&c->erase_completion_lock);
87 		jffs2_flush_wbuf_pad(c);
88 		spin_lock(&c->erase_completion_lock);
89 		goto again;
90 	} else {
91 		/* Eep. All were empty */
92 		D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93 		return NULL;
94 	}
95 
96 	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 	list_del(&ret->list);
98 	c->gcblock = ret;
99 	ret->gc_node = ret->first_node;
100 	if (!ret->gc_node) {
101 		printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102 		BUG();
103 	}
104 
105 	/* Have we accidentally picked a clean block with wasted space ? */
106 	if (ret->wasted_size) {
107 		D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 		ret->dirty_size += ret->wasted_size;
109 		c->wasted_size -= ret->wasted_size;
110 		c->dirty_size += ret->wasted_size;
111 		ret->wasted_size = 0;
112 	}
113 
114 	return ret;
115 }
116 
117 /* jffs2_garbage_collect_pass
118  * Make a single attempt to progress GC. Move one node, and possibly
119  * start erasing one eraseblock.
120  */
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
122 {
123 	struct jffs2_inode_info *f;
124 	struct jffs2_inode_cache *ic;
125 	struct jffs2_eraseblock *jeb;
126 	struct jffs2_raw_node_ref *raw;
127 	int ret = 0, inum, nlink;
128 
129 	if (down_interruptible(&c->alloc_sem))
130 		return -EINTR;
131 
132 	for (;;) {
133 		spin_lock(&c->erase_completion_lock);
134 		if (!c->unchecked_size)
135 			break;
136 
137 		/* We can't start doing GC yet. We haven't finished checking
138 		   the node CRCs etc. Do it now. */
139 
140 		/* checked_ino is protected by the alloc_sem */
141 		if (c->checked_ino > c->highest_ino) {
142 			printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143 			       c->unchecked_size);
144 			jffs2_dbg_dump_block_lists_nolock(c);
145 			spin_unlock(&c->erase_completion_lock);
146 			BUG();
147 		}
148 
149 		spin_unlock(&c->erase_completion_lock);
150 
151 		spin_lock(&c->inocache_lock);
152 
153 		ic = jffs2_get_ino_cache(c, c->checked_ino++);
154 
155 		if (!ic) {
156 			spin_unlock(&c->inocache_lock);
157 			continue;
158 		}
159 
160 		if (!ic->nlink) {
161 			D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
162 				  ic->ino));
163 			spin_unlock(&c->inocache_lock);
164 			continue;
165 		}
166 		switch(ic->state) {
167 		case INO_STATE_CHECKEDABSENT:
168 		case INO_STATE_PRESENT:
169 			D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
170 			spin_unlock(&c->inocache_lock);
171 			continue;
172 
173 		case INO_STATE_GC:
174 		case INO_STATE_CHECKING:
175 			printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
176 			spin_unlock(&c->inocache_lock);
177 			BUG();
178 
179 		case INO_STATE_READING:
180 			/* We need to wait for it to finish, lest we move on
181 			   and trigger the BUG() above while we haven't yet
182 			   finished checking all its nodes */
183 			D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
184 			up(&c->alloc_sem);
185 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
186 			return 0;
187 
188 		default:
189 			BUG();
190 
191 		case INO_STATE_UNCHECKED:
192 			;
193 		}
194 		ic->state = INO_STATE_CHECKING;
195 		spin_unlock(&c->inocache_lock);
196 
197 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
198 
199 		ret = jffs2_do_crccheck_inode(c, ic);
200 		if (ret)
201 			printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
202 
203 		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
204 		up(&c->alloc_sem);
205 		return ret;
206 	}
207 
208 	/* First, work out which block we're garbage-collecting */
209 	jeb = c->gcblock;
210 
211 	if (!jeb)
212 		jeb = jffs2_find_gc_block(c);
213 
214 	if (!jeb) {
215 		D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
216 		spin_unlock(&c->erase_completion_lock);
217 		up(&c->alloc_sem);
218 		return -EIO;
219 	}
220 
221 	D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
222 	D1(if (c->nextblock)
223 	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
224 
225 	if (!jeb->used_size) {
226 		up(&c->alloc_sem);
227 		goto eraseit;
228 	}
229 
230 	raw = jeb->gc_node;
231 
232 	while(ref_obsolete(raw)) {
233 		D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
234 		raw = raw->next_phys;
235 		if (unlikely(!raw)) {
236 			printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
237 			printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
238 			       jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
239 			jeb->gc_node = raw;
240 			spin_unlock(&c->erase_completion_lock);
241 			up(&c->alloc_sem);
242 			BUG();
243 		}
244 	}
245 	jeb->gc_node = raw;
246 
247 	D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
248 
249 	if (!raw->next_in_ino) {
250 		/* Inode-less node. Clean marker, snapshot or something like that */
251 		/* FIXME: If it's something that needs to be copied, including something
252 		   we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
253 		spin_unlock(&c->erase_completion_lock);
254 		jffs2_mark_node_obsolete(c, raw);
255 		up(&c->alloc_sem);
256 		goto eraseit_lock;
257 	}
258 
259 	ic = jffs2_raw_ref_to_ic(raw);
260 
261 	/* We need to hold the inocache. Either the erase_completion_lock or
262 	   the inocache_lock are sufficient; we trade down since the inocache_lock
263 	   causes less contention. */
264 	spin_lock(&c->inocache_lock);
265 
266 	spin_unlock(&c->erase_completion_lock);
267 
268 	D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
269 
270 	/* Three possibilities:
271 	   1. Inode is already in-core. We must iget it and do proper
272 	      updating to its fragtree, etc.
273 	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
274 	      inocache to prevent a read_inode(), copy the node intact.
275 	   3. Inode is not in-core, node is not pristine. We must iget()
276 	      and take the slow path.
277 	*/
278 
279 	switch(ic->state) {
280 	case INO_STATE_CHECKEDABSENT:
281 		/* It's been checked, but it's not currently in-core.
282 		   We can just copy any pristine nodes, but have
283 		   to prevent anyone else from doing read_inode() while
284 		   we're at it, so we set the state accordingly */
285 		if (ref_flags(raw) == REF_PRISTINE)
286 			ic->state = INO_STATE_GC;
287 		else {
288 			D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
289 				  ic->ino));
290 		}
291 		break;
292 
293 	case INO_STATE_PRESENT:
294 		/* It's in-core. GC must iget() it. */
295 		break;
296 
297 	case INO_STATE_UNCHECKED:
298 	case INO_STATE_CHECKING:
299 	case INO_STATE_GC:
300 		/* Should never happen. We should have finished checking
301 		   by the time we actually start doing any GC, and since
302 		   we're holding the alloc_sem, no other garbage collection
303 		   can happen.
304 		*/
305 		printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
306 		       ic->ino, ic->state);
307 		up(&c->alloc_sem);
308 		spin_unlock(&c->inocache_lock);
309 		BUG();
310 
311 	case INO_STATE_READING:
312 		/* Someone's currently trying to read it. We must wait for
313 		   them to finish and then go through the full iget() route
314 		   to do the GC. However, sometimes read_inode() needs to get
315 		   the alloc_sem() (for marking nodes invalid) so we must
316 		   drop the alloc_sem before sleeping. */
317 
318 		up(&c->alloc_sem);
319 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
320 			  ic->ino, ic->state));
321 		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
322 		/* And because we dropped the alloc_sem we must start again from the
323 		   beginning. Ponder chance of livelock here -- we're returning success
324 		   without actually making any progress.
325 
326 		   Q: What are the chances that the inode is back in INO_STATE_READING
327 		   again by the time we next enter this function? And that this happens
328 		   enough times to cause a real delay?
329 
330 		   A: Small enough that I don't care :)
331 		*/
332 		return 0;
333 	}
334 
335 	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
336 	   node intact, and we don't have to muck about with the fragtree etc.
337 	   because we know it's not in-core. If it _was_ in-core, we go through
338 	   all the iget() crap anyway */
339 
340 	if (ic->state == INO_STATE_GC) {
341 		spin_unlock(&c->inocache_lock);
342 
343 		ret = jffs2_garbage_collect_pristine(c, ic, raw);
344 
345 		spin_lock(&c->inocache_lock);
346 		ic->state = INO_STATE_CHECKEDABSENT;
347 		wake_up(&c->inocache_wq);
348 
349 		if (ret != -EBADFD) {
350 			spin_unlock(&c->inocache_lock);
351 			goto release_sem;
352 		}
353 
354 		/* Fall through if it wanted us to, with inocache_lock held */
355 	}
356 
357 	/* Prevent the fairly unlikely race where the gcblock is
358 	   entirely obsoleted by the final close of a file which had
359 	   the only valid nodes in the block, followed by erasure,
360 	   followed by freeing of the ic because the erased block(s)
361 	   held _all_ the nodes of that inode.... never been seen but
362 	   it's vaguely possible. */
363 
364 	inum = ic->ino;
365 	nlink = ic->nlink;
366 	spin_unlock(&c->inocache_lock);
367 
368 	f = jffs2_gc_fetch_inode(c, inum, nlink);
369 	if (IS_ERR(f)) {
370 		ret = PTR_ERR(f);
371 		goto release_sem;
372 	}
373 	if (!f) {
374 		ret = 0;
375 		goto release_sem;
376 	}
377 
378 	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
379 
380 	jffs2_gc_release_inode(c, f);
381 
382  release_sem:
383 	up(&c->alloc_sem);
384 
385  eraseit_lock:
386 	/* If we've finished this block, start it erasing */
387 	spin_lock(&c->erase_completion_lock);
388 
389  eraseit:
390 	if (c->gcblock && !c->gcblock->used_size) {
391 		D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
392 		/* We're GC'ing an empty block? */
393 		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
394 		c->gcblock = NULL;
395 		c->nr_erasing_blocks++;
396 		jffs2_erase_pending_trigger(c);
397 	}
398 	spin_unlock(&c->erase_completion_lock);
399 
400 	return ret;
401 }
402 
403 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
404 				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
405 {
406 	struct jffs2_node_frag *frag;
407 	struct jffs2_full_dnode *fn = NULL;
408 	struct jffs2_full_dirent *fd;
409 	uint32_t start = 0, end = 0, nrfrags = 0;
410 	int ret = 0;
411 
412 	down(&f->sem);
413 
414 	/* Now we have the lock for this inode. Check that it's still the one at the head
415 	   of the list. */
416 
417 	spin_lock(&c->erase_completion_lock);
418 
419 	if (c->gcblock != jeb) {
420 		spin_unlock(&c->erase_completion_lock);
421 		D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
422 		goto upnout;
423 	}
424 	if (ref_obsolete(raw)) {
425 		spin_unlock(&c->erase_completion_lock);
426 		D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
427 		/* They'll call again */
428 		goto upnout;
429 	}
430 	spin_unlock(&c->erase_completion_lock);
431 
432 	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
433 	if (f->metadata && f->metadata->raw == raw) {
434 		fn = f->metadata;
435 		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
436 		goto upnout;
437 	}
438 
439 	/* FIXME. Read node and do lookup? */
440 	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
441 		if (frag->node && frag->node->raw == raw) {
442 			fn = frag->node;
443 			end = frag->ofs + frag->size;
444 			if (!nrfrags++)
445 				start = frag->ofs;
446 			if (nrfrags == frag->node->frags)
447 				break; /* We've found them all */
448 		}
449 	}
450 	if (fn) {
451 		if (ref_flags(raw) == REF_PRISTINE) {
452 			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
453 			if (!ret) {
454 				/* Urgh. Return it sensibly. */
455 				frag->node->raw = f->inocache->nodes;
456 			}
457 			if (ret != -EBADFD)
458 				goto upnout;
459 		}
460 		/* We found a datanode. Do the GC */
461 		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
462 			/* It crosses a page boundary. Therefore, it must be a hole. */
463 			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
464 		} else {
465 			/* It could still be a hole. But we GC the page this way anyway */
466 			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
467 		}
468 		goto upnout;
469 	}
470 
471 	/* Wasn't a dnode. Try dirent */
472 	for (fd = f->dents; fd; fd=fd->next) {
473 		if (fd->raw == raw)
474 			break;
475 	}
476 
477 	if (fd && fd->ino) {
478 		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
479 	} else if (fd) {
480 		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
481 	} else {
482 		printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
483 		       ref_offset(raw), f->inocache->ino);
484 		if (ref_obsolete(raw)) {
485 			printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
486 		} else {
487 			jffs2_dbg_dump_node(c, ref_offset(raw));
488 			BUG();
489 		}
490 	}
491  upnout:
492 	up(&f->sem);
493 
494 	return ret;
495 }
496 
497 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
498 					  struct jffs2_inode_cache *ic,
499 					  struct jffs2_raw_node_ref *raw)
500 {
501 	union jffs2_node_union *node;
502 	struct jffs2_raw_node_ref *nraw;
503 	size_t retlen;
504 	int ret;
505 	uint32_t phys_ofs, alloclen;
506 	uint32_t crc, rawlen;
507 	int retried = 0;
508 
509 	D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
510 
511 	rawlen = ref_totlen(c, c->gcblock, raw);
512 
513 	/* Ask for a small amount of space (or the totlen if smaller) because we
514 	   don't want to force wastage of the end of a block if splitting would
515 	   work. */
516 	ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) +
517 				JFFS2_MIN_DATA_LEN, rawlen), &phys_ofs, &alloclen, rawlen);
518 				/* this is not the exact summary size of it,
519 					it is only an upper estimation */
520 
521 	if (ret)
522 		return ret;
523 
524 	if (alloclen < rawlen) {
525 		/* Doesn't fit untouched. We'll go the old route and split it */
526 		return -EBADFD;
527 	}
528 
529 	node = kmalloc(rawlen, GFP_KERNEL);
530 	if (!node)
531                return -ENOMEM;
532 
533 	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
534 	if (!ret && retlen != rawlen)
535 		ret = -EIO;
536 	if (ret)
537 		goto out_node;
538 
539 	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
540 	if (je32_to_cpu(node->u.hdr_crc) != crc) {
541 		printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
542 		       ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
543 		goto bail;
544 	}
545 
546 	switch(je16_to_cpu(node->u.nodetype)) {
547 	case JFFS2_NODETYPE_INODE:
548 		crc = crc32(0, node, sizeof(node->i)-8);
549 		if (je32_to_cpu(node->i.node_crc) != crc) {
550 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
551 			       ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
552 			goto bail;
553 		}
554 
555 		if (je32_to_cpu(node->i.dsize)) {
556 			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
557 			if (je32_to_cpu(node->i.data_crc) != crc) {
558 				printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
559 				       ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
560 				goto bail;
561 			}
562 		}
563 		break;
564 
565 	case JFFS2_NODETYPE_DIRENT:
566 		crc = crc32(0, node, sizeof(node->d)-8);
567 		if (je32_to_cpu(node->d.node_crc) != crc) {
568 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
569 			       ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
570 			goto bail;
571 		}
572 
573 		if (node->d.nsize) {
574 			crc = crc32(0, node->d.name, node->d.nsize);
575 			if (je32_to_cpu(node->d.name_crc) != crc) {
576 				printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
577 				       ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
578 				goto bail;
579 			}
580 		}
581 		break;
582 	default:
583 		printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
584 		       ref_offset(raw), je16_to_cpu(node->u.nodetype));
585 		goto bail;
586 	}
587 
588 	nraw = jffs2_alloc_raw_node_ref();
589 	if (!nraw) {
590 		ret = -ENOMEM;
591 		goto out_node;
592 	}
593 
594 	/* OK, all the CRCs are good; this node can just be copied as-is. */
595  retry:
596 	nraw->flash_offset = phys_ofs;
597 	nraw->__totlen = rawlen;
598 	nraw->next_phys = NULL;
599 
600 	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
601 
602 	if (ret || (retlen != rawlen)) {
603 		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
604                        rawlen, phys_ofs, ret, retlen);
605 		if (retlen) {
606                         /* Doesn't belong to any inode */
607 			nraw->next_in_ino = NULL;
608 
609 			nraw->flash_offset |= REF_OBSOLETE;
610 			jffs2_add_physical_node_ref(c, nraw);
611 			jffs2_mark_node_obsolete(c, nraw);
612 		} else {
613 			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
614                         jffs2_free_raw_node_ref(nraw);
615 		}
616 		if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
617 			/* Try to reallocate space and retry */
618 			uint32_t dummy;
619 			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
620 
621 			retried = 1;
622 
623 			D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
624 
625 			jffs2_dbg_acct_sanity_check(c,jeb);
626 			jffs2_dbg_acct_paranoia_check(c, jeb);
627 
628 			ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen);
629 						/* this is not the exact summary size of it,
630 							it is only an upper estimation */
631 
632 			if (!ret) {
633 				D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
634 
635 				jffs2_dbg_acct_sanity_check(c,jeb);
636 				jffs2_dbg_acct_paranoia_check(c, jeb);
637 
638 				goto retry;
639 			}
640 			D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
641 			jffs2_free_raw_node_ref(nraw);
642 		}
643 
644 		jffs2_free_raw_node_ref(nraw);
645 		if (!ret)
646 			ret = -EIO;
647 		goto out_node;
648 	}
649 	nraw->flash_offset |= REF_PRISTINE;
650 	jffs2_add_physical_node_ref(c, nraw);
651 
652 	/* Link into per-inode list. This is safe because of the ic
653 	   state being INO_STATE_GC. Note that if we're doing this
654 	   for an inode which is in-core, the 'nraw' pointer is then
655 	   going to be fetched from ic->nodes by our caller. */
656 	spin_lock(&c->erase_completion_lock);
657         nraw->next_in_ino = ic->nodes;
658         ic->nodes = nraw;
659 	spin_unlock(&c->erase_completion_lock);
660 
661 	jffs2_mark_node_obsolete(c, raw);
662 	D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
663 
664  out_node:
665 	kfree(node);
666 	return ret;
667  bail:
668 	ret = -EBADFD;
669 	goto out_node;
670 }
671 
672 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
673 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
674 {
675 	struct jffs2_full_dnode *new_fn;
676 	struct jffs2_raw_inode ri;
677 	struct jffs2_node_frag *last_frag;
678 	jint16_t dev;
679 	char *mdata = NULL, mdatalen = 0;
680 	uint32_t alloclen, phys_ofs, ilen;
681 	int ret;
682 
683 	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
684 	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
685 		/* For these, we don't actually need to read the old node */
686 		/* FIXME: for minor or major > 255. */
687 		dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
688 			JFFS2_F_I_RDEV_MIN(f)));
689 		mdata = (char *)&dev;
690 		mdatalen = sizeof(dev);
691 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
692 	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
693 		mdatalen = fn->size;
694 		mdata = kmalloc(fn->size, GFP_KERNEL);
695 		if (!mdata) {
696 			printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
697 			return -ENOMEM;
698 		}
699 		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
700 		if (ret) {
701 			printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
702 			kfree(mdata);
703 			return ret;
704 		}
705 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
706 
707 	}
708 
709 	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen,
710 				JFFS2_SUMMARY_INODE_SIZE);
711 	if (ret) {
712 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
713 		       sizeof(ri)+ mdatalen, ret);
714 		goto out;
715 	}
716 
717 	last_frag = frag_last(&f->fragtree);
718 	if (last_frag)
719 		/* Fetch the inode length from the fragtree rather then
720 		 * from i_size since i_size may have not been updated yet */
721 		ilen = last_frag->ofs + last_frag->size;
722 	else
723 		ilen = JFFS2_F_I_SIZE(f);
724 
725 	memset(&ri, 0, sizeof(ri));
726 	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
727 	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
728 	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
729 	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
730 
731 	ri.ino = cpu_to_je32(f->inocache->ino);
732 	ri.version = cpu_to_je32(++f->highest_version);
733 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
734 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
735 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
736 	ri.isize = cpu_to_je32(ilen);
737 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
738 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
739 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
740 	ri.offset = cpu_to_je32(0);
741 	ri.csize = cpu_to_je32(mdatalen);
742 	ri.dsize = cpu_to_je32(mdatalen);
743 	ri.compr = JFFS2_COMPR_NONE;
744 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
745 	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
746 
747 	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
748 
749 	if (IS_ERR(new_fn)) {
750 		printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
751 		ret = PTR_ERR(new_fn);
752 		goto out;
753 	}
754 	jffs2_mark_node_obsolete(c, fn->raw);
755 	jffs2_free_full_dnode(fn);
756 	f->metadata = new_fn;
757  out:
758 	if (S_ISLNK(JFFS2_F_I_MODE(f)))
759 		kfree(mdata);
760 	return ret;
761 }
762 
763 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
764 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
765 {
766 	struct jffs2_full_dirent *new_fd;
767 	struct jffs2_raw_dirent rd;
768 	uint32_t alloclen, phys_ofs;
769 	int ret;
770 
771 	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
772 	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
773 	rd.nsize = strlen(fd->name);
774 	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
775 	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
776 
777 	rd.pino = cpu_to_je32(f->inocache->ino);
778 	rd.version = cpu_to_je32(++f->highest_version);
779 	rd.ino = cpu_to_je32(fd->ino);
780 	/* If the times on this inode were set by explicit utime() they can be different,
781 	   so refrain from splatting them. */
782 	if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
783 		rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
784 	else
785 		rd.mctime = cpu_to_je32(0);
786 	rd.type = fd->type;
787 	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
788 	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
789 
790 	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen,
791 				JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
792 	if (ret) {
793 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
794 		       sizeof(rd)+rd.nsize, ret);
795 		return ret;
796 	}
797 	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
798 
799 	if (IS_ERR(new_fd)) {
800 		printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
801 		return PTR_ERR(new_fd);
802 	}
803 	jffs2_add_fd_to_list(c, new_fd, &f->dents);
804 	return 0;
805 }
806 
807 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
808 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
809 {
810 	struct jffs2_full_dirent **fdp = &f->dents;
811 	int found = 0;
812 
813 	/* On a medium where we can't actually mark nodes obsolete
814 	   pernamently, such as NAND flash, we need to work out
815 	   whether this deletion dirent is still needed to actively
816 	   delete a 'real' dirent with the same name that's still
817 	   somewhere else on the flash. */
818 	if (!jffs2_can_mark_obsolete(c)) {
819 		struct jffs2_raw_dirent *rd;
820 		struct jffs2_raw_node_ref *raw;
821 		int ret;
822 		size_t retlen;
823 		int name_len = strlen(fd->name);
824 		uint32_t name_crc = crc32(0, fd->name, name_len);
825 		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
826 
827 		rd = kmalloc(rawlen, GFP_KERNEL);
828 		if (!rd)
829 			return -ENOMEM;
830 
831 		/* Prevent the erase code from nicking the obsolete node refs while
832 		   we're looking at them. I really don't like this extra lock but
833 		   can't see any alternative. Suggestions on a postcard to... */
834 		down(&c->erase_free_sem);
835 
836 		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
837 
838 			/* We only care about obsolete ones */
839 			if (!(ref_obsolete(raw)))
840 				continue;
841 
842 			/* Any dirent with the same name is going to have the same length... */
843 			if (ref_totlen(c, NULL, raw) != rawlen)
844 				continue;
845 
846 			/* Doesn't matter if there's one in the same erase block. We're going to
847 			   delete it too at the same time. */
848 			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
849 				continue;
850 
851 			D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
852 
853 			/* This is an obsolete node belonging to the same directory, and it's of the right
854 			   length. We need to take a closer look...*/
855 			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
856 			if (ret) {
857 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
858 				/* If we can't read it, we don't need to continue to obsolete it. Continue */
859 				continue;
860 			}
861 			if (retlen != rawlen) {
862 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
863 				       retlen, rawlen, ref_offset(raw));
864 				continue;
865 			}
866 
867 			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
868 				continue;
869 
870 			/* If the name CRC doesn't match, skip */
871 			if (je32_to_cpu(rd->name_crc) != name_crc)
872 				continue;
873 
874 			/* If the name length doesn't match, or it's another deletion dirent, skip */
875 			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
876 				continue;
877 
878 			/* OK, check the actual name now */
879 			if (memcmp(rd->name, fd->name, name_len))
880 				continue;
881 
882 			/* OK. The name really does match. There really is still an older node on
883 			   the flash which our deletion dirent obsoletes. So we have to write out
884 			   a new deletion dirent to replace it */
885 			up(&c->erase_free_sem);
886 
887 			D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
888 				  ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
889 			kfree(rd);
890 
891 			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
892 		}
893 
894 		up(&c->erase_free_sem);
895 		kfree(rd);
896 	}
897 
898 	/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
899 	   we should update the metadata node with those times accordingly */
900 
901 	/* No need for it any more. Just mark it obsolete and remove it from the list */
902 	while (*fdp) {
903 		if ((*fdp) == fd) {
904 			found = 1;
905 			*fdp = fd->next;
906 			break;
907 		}
908 		fdp = &(*fdp)->next;
909 	}
910 	if (!found) {
911 		printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
912 	}
913 	jffs2_mark_node_obsolete(c, fd->raw);
914 	jffs2_free_full_dirent(fd);
915 	return 0;
916 }
917 
918 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
919 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
920 				      uint32_t start, uint32_t end)
921 {
922 	struct jffs2_raw_inode ri;
923 	struct jffs2_node_frag *frag;
924 	struct jffs2_full_dnode *new_fn;
925 	uint32_t alloclen, phys_ofs, ilen;
926 	int ret;
927 
928 	D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
929 		  f->inocache->ino, start, end));
930 
931 	memset(&ri, 0, sizeof(ri));
932 
933 	if(fn->frags > 1) {
934 		size_t readlen;
935 		uint32_t crc;
936 		/* It's partially obsoleted by a later write. So we have to
937 		   write it out again with the _same_ version as before */
938 		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
939 		if (readlen != sizeof(ri) || ret) {
940 			printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
941 			goto fill;
942 		}
943 		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
944 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
945 			       ref_offset(fn->raw),
946 			       je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
947 			return -EIO;
948 		}
949 		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
950 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
951 			       ref_offset(fn->raw),
952 			       je32_to_cpu(ri.totlen), sizeof(ri));
953 			return -EIO;
954 		}
955 		crc = crc32(0, &ri, sizeof(ri)-8);
956 		if (crc != je32_to_cpu(ri.node_crc)) {
957 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
958 			       ref_offset(fn->raw),
959 			       je32_to_cpu(ri.node_crc), crc);
960 			/* FIXME: We could possibly deal with this by writing new holes for each frag */
961 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
962 			       start, end, f->inocache->ino);
963 			goto fill;
964 		}
965 		if (ri.compr != JFFS2_COMPR_ZERO) {
966 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
967 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
968 			       start, end, f->inocache->ino);
969 			goto fill;
970 		}
971 	} else {
972 	fill:
973 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
974 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
975 		ri.totlen = cpu_to_je32(sizeof(ri));
976 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
977 
978 		ri.ino = cpu_to_je32(f->inocache->ino);
979 		ri.version = cpu_to_je32(++f->highest_version);
980 		ri.offset = cpu_to_je32(start);
981 		ri.dsize = cpu_to_je32(end - start);
982 		ri.csize = cpu_to_je32(0);
983 		ri.compr = JFFS2_COMPR_ZERO;
984 	}
985 
986 	frag = frag_last(&f->fragtree);
987 	if (frag)
988 		/* Fetch the inode length from the fragtree rather then
989 		 * from i_size since i_size may have not been updated yet */
990 		ilen = frag->ofs + frag->size;
991 	else
992 		ilen = JFFS2_F_I_SIZE(f);
993 
994 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
995 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
996 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
997 	ri.isize = cpu_to_je32(ilen);
998 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
999 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1000 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1001 	ri.data_crc = cpu_to_je32(0);
1002 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1003 
1004 	ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen,
1005 				JFFS2_SUMMARY_INODE_SIZE);
1006 	if (ret) {
1007 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1008 		       sizeof(ri), ret);
1009 		return ret;
1010 	}
1011 	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
1012 
1013 	if (IS_ERR(new_fn)) {
1014 		printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1015 		return PTR_ERR(new_fn);
1016 	}
1017 	if (je32_to_cpu(ri.version) == f->highest_version) {
1018 		jffs2_add_full_dnode_to_inode(c, f, new_fn);
1019 		if (f->metadata) {
1020 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1021 			jffs2_free_full_dnode(f->metadata);
1022 			f->metadata = NULL;
1023 		}
1024 		return 0;
1025 	}
1026 
1027 	/*
1028 	 * We should only get here in the case where the node we are
1029 	 * replacing had more than one frag, so we kept the same version
1030 	 * number as before. (Except in case of error -- see 'goto fill;'
1031 	 * above.)
1032 	 */
1033 	D1(if(unlikely(fn->frags <= 1)) {
1034 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1035 		       fn->frags, je32_to_cpu(ri.version), f->highest_version,
1036 		       je32_to_cpu(ri.ino));
1037 	});
1038 
1039 	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1040 	mark_ref_normal(new_fn->raw);
1041 
1042 	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1043 	     frag; frag = frag_next(frag)) {
1044 		if (frag->ofs > fn->size + fn->ofs)
1045 			break;
1046 		if (frag->node == fn) {
1047 			frag->node = new_fn;
1048 			new_fn->frags++;
1049 			fn->frags--;
1050 		}
1051 	}
1052 	if (fn->frags) {
1053 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1054 		BUG();
1055 	}
1056 	if (!new_fn->frags) {
1057 		printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1058 		BUG();
1059 	}
1060 
1061 	jffs2_mark_node_obsolete(c, fn->raw);
1062 	jffs2_free_full_dnode(fn);
1063 
1064 	return 0;
1065 }
1066 
1067 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1068 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1069 				       uint32_t start, uint32_t end)
1070 {
1071 	struct jffs2_full_dnode *new_fn;
1072 	struct jffs2_raw_inode ri;
1073 	uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1074 	int ret = 0;
1075 	unsigned char *comprbuf = NULL, *writebuf;
1076 	unsigned long pg;
1077 	unsigned char *pg_ptr;
1078 
1079 	memset(&ri, 0, sizeof(ri));
1080 
1081 	D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1082 		  f->inocache->ino, start, end));
1083 
1084 	orig_end = end;
1085 	orig_start = start;
1086 
1087 	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1088 		/* Attempt to do some merging. But only expand to cover logically
1089 		   adjacent frags if the block containing them is already considered
1090 		   to be dirty. Otherwise we end up with GC just going round in
1091 		   circles dirtying the nodes it already wrote out, especially
1092 		   on NAND where we have small eraseblocks and hence a much higher
1093 		   chance of nodes having to be split to cross boundaries. */
1094 
1095 		struct jffs2_node_frag *frag;
1096 		uint32_t min, max;
1097 
1098 		min = start & ~(PAGE_CACHE_SIZE-1);
1099 		max = min + PAGE_CACHE_SIZE;
1100 
1101 		frag = jffs2_lookup_node_frag(&f->fragtree, start);
1102 
1103 		/* BUG_ON(!frag) but that'll happen anyway... */
1104 
1105 		BUG_ON(frag->ofs != start);
1106 
1107 		/* First grow down... */
1108 		while((frag = frag_prev(frag)) && frag->ofs >= min) {
1109 
1110 			/* If the previous frag doesn't even reach the beginning, there's
1111 			   excessive fragmentation. Just merge. */
1112 			if (frag->ofs > min) {
1113 				D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1114 					  frag->ofs, frag->ofs+frag->size));
1115 				start = frag->ofs;
1116 				continue;
1117 			}
1118 			/* OK. This frag holds the first byte of the page. */
1119 			if (!frag->node || !frag->node->raw) {
1120 				D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1121 					  frag->ofs, frag->ofs+frag->size));
1122 				break;
1123 			} else {
1124 
1125 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1126 				   in a block which is still considered clean? If so, don't obsolete it.
1127 				   If not, cover it anyway. */
1128 
1129 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1130 				struct jffs2_eraseblock *jeb;
1131 
1132 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1133 
1134 				if (jeb == c->gcblock) {
1135 					D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1136 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1137 					start = frag->ofs;
1138 					break;
1139 				}
1140 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1141 					D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1142 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1143 					break;
1144 				}
1145 
1146 				D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1147 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1148 				start = frag->ofs;
1149 				break;
1150 			}
1151 		}
1152 
1153 		/* ... then up */
1154 
1155 		/* Find last frag which is actually part of the node we're to GC. */
1156 		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1157 
1158 		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1159 
1160 			/* If the previous frag doesn't even reach the beginning, there's lots
1161 			   of fragmentation. Just merge. */
1162 			if (frag->ofs+frag->size < max) {
1163 				D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1164 					  frag->ofs, frag->ofs+frag->size));
1165 				end = frag->ofs + frag->size;
1166 				continue;
1167 			}
1168 
1169 			if (!frag->node || !frag->node->raw) {
1170 				D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1171 					  frag->ofs, frag->ofs+frag->size));
1172 				break;
1173 			} else {
1174 
1175 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1176 				   in a block which is still considered clean? If so, don't obsolete it.
1177 				   If not, cover it anyway. */
1178 
1179 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1180 				struct jffs2_eraseblock *jeb;
1181 
1182 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1183 
1184 				if (jeb == c->gcblock) {
1185 					D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1186 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1187 					end = frag->ofs + frag->size;
1188 					break;
1189 				}
1190 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1191 					D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1192 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1193 					break;
1194 				}
1195 
1196 				D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1197 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1198 				end = frag->ofs + frag->size;
1199 				break;
1200 			}
1201 		}
1202 		D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1203 			  orig_start, orig_end, start, end));
1204 
1205 		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1206 		BUG_ON(end < orig_end);
1207 		BUG_ON(start > orig_start);
1208 	}
1209 
1210 	/* First, use readpage() to read the appropriate page into the page cache */
1211 	/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1212 	 *    triggered garbage collection in the first place?
1213 	 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1214 	 *    page OK. We'll actually write it out again in commit_write, which is a little
1215 	 *    suboptimal, but at least we're correct.
1216 	 */
1217 	pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1218 
1219 	if (IS_ERR(pg_ptr)) {
1220 		printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1221 		return PTR_ERR(pg_ptr);
1222 	}
1223 
1224 	offset = start;
1225 	while(offset < orig_end) {
1226 		uint32_t datalen;
1227 		uint32_t cdatalen;
1228 		uint16_t comprtype = JFFS2_COMPR_NONE;
1229 
1230 		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs,
1231 					&alloclen, JFFS2_SUMMARY_INODE_SIZE);
1232 
1233 		if (ret) {
1234 			printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1235 			       sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1236 			break;
1237 		}
1238 		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1239 		datalen = end - offset;
1240 
1241 		writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1242 
1243 		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1244 
1245 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1246 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1247 		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1248 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1249 
1250 		ri.ino = cpu_to_je32(f->inocache->ino);
1251 		ri.version = cpu_to_je32(++f->highest_version);
1252 		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1253 		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1254 		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1255 		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1256 		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1257 		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1258 		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1259 		ri.offset = cpu_to_je32(offset);
1260 		ri.csize = cpu_to_je32(cdatalen);
1261 		ri.dsize = cpu_to_je32(datalen);
1262 		ri.compr = comprtype & 0xff;
1263 		ri.usercompr = (comprtype >> 8) & 0xff;
1264 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1265 		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1266 
1267 		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1268 
1269 		jffs2_free_comprbuf(comprbuf, writebuf);
1270 
1271 		if (IS_ERR(new_fn)) {
1272 			printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1273 			ret = PTR_ERR(new_fn);
1274 			break;
1275 		}
1276 		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1277 		offset += datalen;
1278 		if (f->metadata) {
1279 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1280 			jffs2_free_full_dnode(f->metadata);
1281 			f->metadata = NULL;
1282 		}
1283 	}
1284 
1285 	jffs2_gc_release_page(c, pg_ptr, &pg);
1286 	return ret;
1287 }
1288