xref: /linux/fs/jffs2/gc.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/crc32.h>
17 #include <linux/compiler.h>
18 #include <linux/stat.h>
19 #include "nodelist.h"
20 #include "compr.h"
21 
22 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
23 					  struct jffs2_inode_cache *ic,
24 					  struct jffs2_raw_node_ref *raw);
25 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
26 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
27 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
29 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
33 				      uint32_t start, uint32_t end);
34 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36 				       uint32_t start, uint32_t end);
37 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
38 			       struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
39 
40 /* Called with erase_completion_lock held */
41 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
42 {
43 	struct jffs2_eraseblock *ret;
44 	struct list_head *nextlist = NULL;
45 	int n = jiffies % 128;
46 
47 	/* Pick an eraseblock to garbage collect next. This is where we'll
48 	   put the clever wear-levelling algorithms. Eventually.  */
49 	/* We possibly want to favour the dirtier blocks more when the
50 	   number of free blocks is low. */
51 again:
52 	if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
53 		D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
54 		nextlist = &c->bad_used_list;
55 	} else if (n < 50 && !list_empty(&c->erasable_list)) {
56 		/* Note that most of them will have gone directly to be erased.
57 		   So don't favour the erasable_list _too_ much. */
58 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
59 		nextlist = &c->erasable_list;
60 	} else if (n < 110 && !list_empty(&c->very_dirty_list)) {
61 		/* Most of the time, pick one off the very_dirty list */
62 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
63 		nextlist = &c->very_dirty_list;
64 	} else if (n < 126 && !list_empty(&c->dirty_list)) {
65 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
66 		nextlist = &c->dirty_list;
67 	} else if (!list_empty(&c->clean_list)) {
68 		D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
69 		nextlist = &c->clean_list;
70 	} else if (!list_empty(&c->dirty_list)) {
71 		D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
72 
73 		nextlist = &c->dirty_list;
74 	} else if (!list_empty(&c->very_dirty_list)) {
75 		D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
76 		nextlist = &c->very_dirty_list;
77 	} else if (!list_empty(&c->erasable_list)) {
78 		D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
79 
80 		nextlist = &c->erasable_list;
81 	} else if (!list_empty(&c->erasable_pending_wbuf_list)) {
82 		/* There are blocks are wating for the wbuf sync */
83 		D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
84 		spin_unlock(&c->erase_completion_lock);
85 		jffs2_flush_wbuf_pad(c);
86 		spin_lock(&c->erase_completion_lock);
87 		goto again;
88 	} else {
89 		/* Eep. All were empty */
90 		D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
91 		return NULL;
92 	}
93 
94 	ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
95 	list_del(&ret->list);
96 	c->gcblock = ret;
97 	ret->gc_node = ret->first_node;
98 	if (!ret->gc_node) {
99 		printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
100 		BUG();
101 	}
102 
103 	/* Have we accidentally picked a clean block with wasted space ? */
104 	if (ret->wasted_size) {
105 		D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106 		ret->dirty_size += ret->wasted_size;
107 		c->wasted_size -= ret->wasted_size;
108 		c->dirty_size += ret->wasted_size;
109 		ret->wasted_size = 0;
110 	}
111 
112 	return ret;
113 }
114 
115 /* jffs2_garbage_collect_pass
116  * Make a single attempt to progress GC. Move one node, and possibly
117  * start erasing one eraseblock.
118  */
119 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
120 {
121 	struct jffs2_inode_info *f;
122 	struct jffs2_inode_cache *ic;
123 	struct jffs2_eraseblock *jeb;
124 	struct jffs2_raw_node_ref *raw;
125 	uint32_t gcblock_dirty;
126 	int ret = 0, inum, nlink;
127 	int xattr = 0;
128 
129 	if (mutex_lock_interruptible(&c->alloc_sem))
130 		return -EINTR;
131 
132 	for (;;) {
133 		spin_lock(&c->erase_completion_lock);
134 		if (!c->unchecked_size)
135 			break;
136 
137 		/* We can't start doing GC yet. We haven't finished checking
138 		   the node CRCs etc. Do it now. */
139 
140 		/* checked_ino is protected by the alloc_sem */
141 		if (c->checked_ino > c->highest_ino && xattr) {
142 			printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143 			       c->unchecked_size);
144 			jffs2_dbg_dump_block_lists_nolock(c);
145 			spin_unlock(&c->erase_completion_lock);
146 			mutex_unlock(&c->alloc_sem);
147 			return -ENOSPC;
148 		}
149 
150 		spin_unlock(&c->erase_completion_lock);
151 
152 		if (!xattr)
153 			xattr = jffs2_verify_xattr(c);
154 
155 		spin_lock(&c->inocache_lock);
156 
157 		ic = jffs2_get_ino_cache(c, c->checked_ino++);
158 
159 		if (!ic) {
160 			spin_unlock(&c->inocache_lock);
161 			continue;
162 		}
163 
164 		if (!ic->pino_nlink) {
165 			D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n",
166 				  ic->ino));
167 			spin_unlock(&c->inocache_lock);
168 			jffs2_xattr_delete_inode(c, ic);
169 			continue;
170 		}
171 		switch(ic->state) {
172 		case INO_STATE_CHECKEDABSENT:
173 		case INO_STATE_PRESENT:
174 			D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
175 			spin_unlock(&c->inocache_lock);
176 			continue;
177 
178 		case INO_STATE_GC:
179 		case INO_STATE_CHECKING:
180 			printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
181 			spin_unlock(&c->inocache_lock);
182 			BUG();
183 
184 		case INO_STATE_READING:
185 			/* We need to wait for it to finish, lest we move on
186 			   and trigger the BUG() above while we haven't yet
187 			   finished checking all its nodes */
188 			D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
189 			/* We need to come back again for the _same_ inode. We've
190 			 made no progress in this case, but that should be OK */
191 			c->checked_ino--;
192 
193 			mutex_unlock(&c->alloc_sem);
194 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
195 			return 0;
196 
197 		default:
198 			BUG();
199 
200 		case INO_STATE_UNCHECKED:
201 			;
202 		}
203 		ic->state = INO_STATE_CHECKING;
204 		spin_unlock(&c->inocache_lock);
205 
206 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
207 
208 		ret = jffs2_do_crccheck_inode(c, ic);
209 		if (ret)
210 			printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
211 
212 		jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
213 		mutex_unlock(&c->alloc_sem);
214 		return ret;
215 	}
216 
217 	/* First, work out which block we're garbage-collecting */
218 	jeb = c->gcblock;
219 
220 	if (!jeb)
221 		jeb = jffs2_find_gc_block(c);
222 
223 	if (!jeb) {
224 		/* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
225 		if (!list_empty(&c->erase_pending_list)) {
226 			spin_unlock(&c->erase_completion_lock);
227 			mutex_unlock(&c->alloc_sem);
228 			return -EAGAIN;
229 		}
230 		D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
231 		spin_unlock(&c->erase_completion_lock);
232 		mutex_unlock(&c->alloc_sem);
233 		return -EIO;
234 	}
235 
236 	D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
237 	D1(if (c->nextblock)
238 	   printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
239 
240 	if (!jeb->used_size) {
241 		mutex_unlock(&c->alloc_sem);
242 		goto eraseit;
243 	}
244 
245 	raw = jeb->gc_node;
246 	gcblock_dirty = jeb->dirty_size;
247 
248 	while(ref_obsolete(raw)) {
249 		D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
250 		raw = ref_next(raw);
251 		if (unlikely(!raw)) {
252 			printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
253 			printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
254 			       jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
255 			jeb->gc_node = raw;
256 			spin_unlock(&c->erase_completion_lock);
257 			mutex_unlock(&c->alloc_sem);
258 			BUG();
259 		}
260 	}
261 	jeb->gc_node = raw;
262 
263 	D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
264 
265 	if (!raw->next_in_ino) {
266 		/* Inode-less node. Clean marker, snapshot or something like that */
267 		spin_unlock(&c->erase_completion_lock);
268 		if (ref_flags(raw) == REF_PRISTINE) {
269 			/* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
270 			jffs2_garbage_collect_pristine(c, NULL, raw);
271 		} else {
272 			/* Just mark it obsolete */
273 			jffs2_mark_node_obsolete(c, raw);
274 		}
275 		mutex_unlock(&c->alloc_sem);
276 		goto eraseit_lock;
277 	}
278 
279 	ic = jffs2_raw_ref_to_ic(raw);
280 
281 #ifdef CONFIG_JFFS2_FS_XATTR
282 	/* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
283 	 * We can decide whether this node is inode or xattr by ic->class.     */
284 	if (ic->class == RAWNODE_CLASS_XATTR_DATUM
285 	    || ic->class == RAWNODE_CLASS_XATTR_REF) {
286 		spin_unlock(&c->erase_completion_lock);
287 
288 		if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
289 			ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
290 		} else {
291 			ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
292 		}
293 		goto test_gcnode;
294 	}
295 #endif
296 
297 	/* We need to hold the inocache. Either the erase_completion_lock or
298 	   the inocache_lock are sufficient; we trade down since the inocache_lock
299 	   causes less contention. */
300 	spin_lock(&c->inocache_lock);
301 
302 	spin_unlock(&c->erase_completion_lock);
303 
304 	D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
305 
306 	/* Three possibilities:
307 	   1. Inode is already in-core. We must iget it and do proper
308 	      updating to its fragtree, etc.
309 	   2. Inode is not in-core, node is REF_PRISTINE. We lock the
310 	      inocache to prevent a read_inode(), copy the node intact.
311 	   3. Inode is not in-core, node is not pristine. We must iget()
312 	      and take the slow path.
313 	*/
314 
315 	switch(ic->state) {
316 	case INO_STATE_CHECKEDABSENT:
317 		/* It's been checked, but it's not currently in-core.
318 		   We can just copy any pristine nodes, but have
319 		   to prevent anyone else from doing read_inode() while
320 		   we're at it, so we set the state accordingly */
321 		if (ref_flags(raw) == REF_PRISTINE)
322 			ic->state = INO_STATE_GC;
323 		else {
324 			D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
325 				  ic->ino));
326 		}
327 		break;
328 
329 	case INO_STATE_PRESENT:
330 		/* It's in-core. GC must iget() it. */
331 		break;
332 
333 	case INO_STATE_UNCHECKED:
334 	case INO_STATE_CHECKING:
335 	case INO_STATE_GC:
336 		/* Should never happen. We should have finished checking
337 		   by the time we actually start doing any GC, and since
338 		   we're holding the alloc_sem, no other garbage collection
339 		   can happen.
340 		*/
341 		printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
342 		       ic->ino, ic->state);
343 		mutex_unlock(&c->alloc_sem);
344 		spin_unlock(&c->inocache_lock);
345 		BUG();
346 
347 	case INO_STATE_READING:
348 		/* Someone's currently trying to read it. We must wait for
349 		   them to finish and then go through the full iget() route
350 		   to do the GC. However, sometimes read_inode() needs to get
351 		   the alloc_sem() (for marking nodes invalid) so we must
352 		   drop the alloc_sem before sleeping. */
353 
354 		mutex_unlock(&c->alloc_sem);
355 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
356 			  ic->ino, ic->state));
357 		sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
358 		/* And because we dropped the alloc_sem we must start again from the
359 		   beginning. Ponder chance of livelock here -- we're returning success
360 		   without actually making any progress.
361 
362 		   Q: What are the chances that the inode is back in INO_STATE_READING
363 		   again by the time we next enter this function? And that this happens
364 		   enough times to cause a real delay?
365 
366 		   A: Small enough that I don't care :)
367 		*/
368 		return 0;
369 	}
370 
371 	/* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
372 	   node intact, and we don't have to muck about with the fragtree etc.
373 	   because we know it's not in-core. If it _was_ in-core, we go through
374 	   all the iget() crap anyway */
375 
376 	if (ic->state == INO_STATE_GC) {
377 		spin_unlock(&c->inocache_lock);
378 
379 		ret = jffs2_garbage_collect_pristine(c, ic, raw);
380 
381 		spin_lock(&c->inocache_lock);
382 		ic->state = INO_STATE_CHECKEDABSENT;
383 		wake_up(&c->inocache_wq);
384 
385 		if (ret != -EBADFD) {
386 			spin_unlock(&c->inocache_lock);
387 			goto test_gcnode;
388 		}
389 
390 		/* Fall through if it wanted us to, with inocache_lock held */
391 	}
392 
393 	/* Prevent the fairly unlikely race where the gcblock is
394 	   entirely obsoleted by the final close of a file which had
395 	   the only valid nodes in the block, followed by erasure,
396 	   followed by freeing of the ic because the erased block(s)
397 	   held _all_ the nodes of that inode.... never been seen but
398 	   it's vaguely possible. */
399 
400 	inum = ic->ino;
401 	nlink = ic->pino_nlink;
402 	spin_unlock(&c->inocache_lock);
403 
404 	f = jffs2_gc_fetch_inode(c, inum, !nlink);
405 	if (IS_ERR(f)) {
406 		ret = PTR_ERR(f);
407 		goto release_sem;
408 	}
409 	if (!f) {
410 		ret = 0;
411 		goto release_sem;
412 	}
413 
414 	ret = jffs2_garbage_collect_live(c, jeb, raw, f);
415 
416 	jffs2_gc_release_inode(c, f);
417 
418  test_gcnode:
419 	if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
420 		/* Eep. This really should never happen. GC is broken */
421 		printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
422 		ret = -ENOSPC;
423 	}
424  release_sem:
425 	mutex_unlock(&c->alloc_sem);
426 
427  eraseit_lock:
428 	/* If we've finished this block, start it erasing */
429 	spin_lock(&c->erase_completion_lock);
430 
431  eraseit:
432 	if (c->gcblock && !c->gcblock->used_size) {
433 		D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
434 		/* We're GC'ing an empty block? */
435 		list_add_tail(&c->gcblock->list, &c->erase_pending_list);
436 		c->gcblock = NULL;
437 		c->nr_erasing_blocks++;
438 		jffs2_erase_pending_trigger(c);
439 	}
440 	spin_unlock(&c->erase_completion_lock);
441 
442 	return ret;
443 }
444 
445 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb,
446 				      struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
447 {
448 	struct jffs2_node_frag *frag;
449 	struct jffs2_full_dnode *fn = NULL;
450 	struct jffs2_full_dirent *fd;
451 	uint32_t start = 0, end = 0, nrfrags = 0;
452 	int ret = 0;
453 
454 	mutex_lock(&f->sem);
455 
456 	/* Now we have the lock for this inode. Check that it's still the one at the head
457 	   of the list. */
458 
459 	spin_lock(&c->erase_completion_lock);
460 
461 	if (c->gcblock != jeb) {
462 		spin_unlock(&c->erase_completion_lock);
463 		D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
464 		goto upnout;
465 	}
466 	if (ref_obsolete(raw)) {
467 		spin_unlock(&c->erase_completion_lock);
468 		D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
469 		/* They'll call again */
470 		goto upnout;
471 	}
472 	spin_unlock(&c->erase_completion_lock);
473 
474 	/* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
475 	if (f->metadata && f->metadata->raw == raw) {
476 		fn = f->metadata;
477 		ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
478 		goto upnout;
479 	}
480 
481 	/* FIXME. Read node and do lookup? */
482 	for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
483 		if (frag->node && frag->node->raw == raw) {
484 			fn = frag->node;
485 			end = frag->ofs + frag->size;
486 			if (!nrfrags++)
487 				start = frag->ofs;
488 			if (nrfrags == frag->node->frags)
489 				break; /* We've found them all */
490 		}
491 	}
492 	if (fn) {
493 		if (ref_flags(raw) == REF_PRISTINE) {
494 			ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
495 			if (!ret) {
496 				/* Urgh. Return it sensibly. */
497 				frag->node->raw = f->inocache->nodes;
498 			}
499 			if (ret != -EBADFD)
500 				goto upnout;
501 		}
502 		/* We found a datanode. Do the GC */
503 		if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
504 			/* It crosses a page boundary. Therefore, it must be a hole. */
505 			ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
506 		} else {
507 			/* It could still be a hole. But we GC the page this way anyway */
508 			ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
509 		}
510 		goto upnout;
511 	}
512 
513 	/* Wasn't a dnode. Try dirent */
514 	for (fd = f->dents; fd; fd=fd->next) {
515 		if (fd->raw == raw)
516 			break;
517 	}
518 
519 	if (fd && fd->ino) {
520 		ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
521 	} else if (fd) {
522 		ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
523 	} else {
524 		printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
525 		       ref_offset(raw), f->inocache->ino);
526 		if (ref_obsolete(raw)) {
527 			printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
528 		} else {
529 			jffs2_dbg_dump_node(c, ref_offset(raw));
530 			BUG();
531 		}
532 	}
533  upnout:
534 	mutex_unlock(&f->sem);
535 
536 	return ret;
537 }
538 
539 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
540 					  struct jffs2_inode_cache *ic,
541 					  struct jffs2_raw_node_ref *raw)
542 {
543 	union jffs2_node_union *node;
544 	size_t retlen;
545 	int ret;
546 	uint32_t phys_ofs, alloclen;
547 	uint32_t crc, rawlen;
548 	int retried = 0;
549 
550 	D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
551 
552 	alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
553 
554 	/* Ask for a small amount of space (or the totlen if smaller) because we
555 	   don't want to force wastage of the end of a block if splitting would
556 	   work. */
557 	if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
558 		alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
559 
560 	ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
561 	/* 'rawlen' is not the exact summary size; it is only an upper estimation */
562 
563 	if (ret)
564 		return ret;
565 
566 	if (alloclen < rawlen) {
567 		/* Doesn't fit untouched. We'll go the old route and split it */
568 		return -EBADFD;
569 	}
570 
571 	node = kmalloc(rawlen, GFP_KERNEL);
572 	if (!node)
573 		return -ENOMEM;
574 
575 	ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
576 	if (!ret && retlen != rawlen)
577 		ret = -EIO;
578 	if (ret)
579 		goto out_node;
580 
581 	crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
582 	if (je32_to_cpu(node->u.hdr_crc) != crc) {
583 		printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
584 		       ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
585 		goto bail;
586 	}
587 
588 	switch(je16_to_cpu(node->u.nodetype)) {
589 	case JFFS2_NODETYPE_INODE:
590 		crc = crc32(0, node, sizeof(node->i)-8);
591 		if (je32_to_cpu(node->i.node_crc) != crc) {
592 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
593 			       ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
594 			goto bail;
595 		}
596 
597 		if (je32_to_cpu(node->i.dsize)) {
598 			crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
599 			if (je32_to_cpu(node->i.data_crc) != crc) {
600 				printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
601 				       ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
602 				goto bail;
603 			}
604 		}
605 		break;
606 
607 	case JFFS2_NODETYPE_DIRENT:
608 		crc = crc32(0, node, sizeof(node->d)-8);
609 		if (je32_to_cpu(node->d.node_crc) != crc) {
610 			printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
611 			       ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
612 			goto bail;
613 		}
614 
615 		if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
616 			printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw));
617 			goto bail;
618 		}
619 
620 		if (node->d.nsize) {
621 			crc = crc32(0, node->d.name, node->d.nsize);
622 			if (je32_to_cpu(node->d.name_crc) != crc) {
623 				printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
624 				       ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
625 				goto bail;
626 			}
627 		}
628 		break;
629 	default:
630 		/* If it's inode-less, we don't _know_ what it is. Just copy it intact */
631 		if (ic) {
632 			printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
633 			       ref_offset(raw), je16_to_cpu(node->u.nodetype));
634 			goto bail;
635 		}
636 	}
637 
638 	/* OK, all the CRCs are good; this node can just be copied as-is. */
639  retry:
640 	phys_ofs = write_ofs(c);
641 
642 	ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
643 
644 	if (ret || (retlen != rawlen)) {
645 		printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
646 		       rawlen, phys_ofs, ret, retlen);
647 		if (retlen) {
648 			jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
649 		} else {
650 			printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
651 		}
652 		if (!retried) {
653 			/* Try to reallocate space and retry */
654 			uint32_t dummy;
655 			struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
656 
657 			retried = 1;
658 
659 			D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
660 
661 			jffs2_dbg_acct_sanity_check(c,jeb);
662 			jffs2_dbg_acct_paranoia_check(c, jeb);
663 
664 			ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
665 						/* this is not the exact summary size of it,
666 							it is only an upper estimation */
667 
668 			if (!ret) {
669 				D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
670 
671 				jffs2_dbg_acct_sanity_check(c,jeb);
672 				jffs2_dbg_acct_paranoia_check(c, jeb);
673 
674 				goto retry;
675 			}
676 			D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
677 		}
678 
679 		if (!ret)
680 			ret = -EIO;
681 		goto out_node;
682 	}
683 	jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
684 
685 	jffs2_mark_node_obsolete(c, raw);
686 	D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
687 
688  out_node:
689 	kfree(node);
690 	return ret;
691  bail:
692 	ret = -EBADFD;
693 	goto out_node;
694 }
695 
696 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
697 					struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
698 {
699 	struct jffs2_full_dnode *new_fn;
700 	struct jffs2_raw_inode ri;
701 	struct jffs2_node_frag *last_frag;
702 	union jffs2_device_node dev;
703 	char *mdata = NULL, mdatalen = 0;
704 	uint32_t alloclen, ilen;
705 	int ret;
706 
707 	if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
708 	    S_ISCHR(JFFS2_F_I_MODE(f)) ) {
709 		/* For these, we don't actually need to read the old node */
710 		mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
711 		mdata = (char *)&dev;
712 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
713 	} else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
714 		mdatalen = fn->size;
715 		mdata = kmalloc(fn->size, GFP_KERNEL);
716 		if (!mdata) {
717 			printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
718 			return -ENOMEM;
719 		}
720 		ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
721 		if (ret) {
722 			printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
723 			kfree(mdata);
724 			return ret;
725 		}
726 		D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
727 
728 	}
729 
730 	ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
731 				JFFS2_SUMMARY_INODE_SIZE);
732 	if (ret) {
733 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
734 		       sizeof(ri)+ mdatalen, ret);
735 		goto out;
736 	}
737 
738 	last_frag = frag_last(&f->fragtree);
739 	if (last_frag)
740 		/* Fetch the inode length from the fragtree rather then
741 		 * from i_size since i_size may have not been updated yet */
742 		ilen = last_frag->ofs + last_frag->size;
743 	else
744 		ilen = JFFS2_F_I_SIZE(f);
745 
746 	memset(&ri, 0, sizeof(ri));
747 	ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
748 	ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
749 	ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
750 	ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
751 
752 	ri.ino = cpu_to_je32(f->inocache->ino);
753 	ri.version = cpu_to_je32(++f->highest_version);
754 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
755 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
756 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
757 	ri.isize = cpu_to_je32(ilen);
758 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
759 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
760 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
761 	ri.offset = cpu_to_je32(0);
762 	ri.csize = cpu_to_je32(mdatalen);
763 	ri.dsize = cpu_to_je32(mdatalen);
764 	ri.compr = JFFS2_COMPR_NONE;
765 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
766 	ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
767 
768 	new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
769 
770 	if (IS_ERR(new_fn)) {
771 		printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
772 		ret = PTR_ERR(new_fn);
773 		goto out;
774 	}
775 	jffs2_mark_node_obsolete(c, fn->raw);
776 	jffs2_free_full_dnode(fn);
777 	f->metadata = new_fn;
778  out:
779 	if (S_ISLNK(JFFS2_F_I_MODE(f)))
780 		kfree(mdata);
781 	return ret;
782 }
783 
784 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
785 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
786 {
787 	struct jffs2_full_dirent *new_fd;
788 	struct jffs2_raw_dirent rd;
789 	uint32_t alloclen;
790 	int ret;
791 
792 	rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
793 	rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
794 	rd.nsize = strlen(fd->name);
795 	rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
796 	rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
797 
798 	rd.pino = cpu_to_je32(f->inocache->ino);
799 	rd.version = cpu_to_je32(++f->highest_version);
800 	rd.ino = cpu_to_je32(fd->ino);
801 	/* If the times on this inode were set by explicit utime() they can be different,
802 	   so refrain from splatting them. */
803 	if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
804 		rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
805 	else
806 		rd.mctime = cpu_to_je32(0);
807 	rd.type = fd->type;
808 	rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
809 	rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
810 
811 	ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
812 				JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
813 	if (ret) {
814 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
815 		       sizeof(rd)+rd.nsize, ret);
816 		return ret;
817 	}
818 	new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
819 
820 	if (IS_ERR(new_fd)) {
821 		printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
822 		return PTR_ERR(new_fd);
823 	}
824 	jffs2_add_fd_to_list(c, new_fd, &f->dents);
825 	return 0;
826 }
827 
828 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
829 					struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
830 {
831 	struct jffs2_full_dirent **fdp = &f->dents;
832 	int found = 0;
833 
834 	/* On a medium where we can't actually mark nodes obsolete
835 	   pernamently, such as NAND flash, we need to work out
836 	   whether this deletion dirent is still needed to actively
837 	   delete a 'real' dirent with the same name that's still
838 	   somewhere else on the flash. */
839 	if (!jffs2_can_mark_obsolete(c)) {
840 		struct jffs2_raw_dirent *rd;
841 		struct jffs2_raw_node_ref *raw;
842 		int ret;
843 		size_t retlen;
844 		int name_len = strlen(fd->name);
845 		uint32_t name_crc = crc32(0, fd->name, name_len);
846 		uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
847 
848 		rd = kmalloc(rawlen, GFP_KERNEL);
849 		if (!rd)
850 			return -ENOMEM;
851 
852 		/* Prevent the erase code from nicking the obsolete node refs while
853 		   we're looking at them. I really don't like this extra lock but
854 		   can't see any alternative. Suggestions on a postcard to... */
855 		mutex_lock(&c->erase_free_sem);
856 
857 		for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
858 
859 			cond_resched();
860 
861 			/* We only care about obsolete ones */
862 			if (!(ref_obsolete(raw)))
863 				continue;
864 
865 			/* Any dirent with the same name is going to have the same length... */
866 			if (ref_totlen(c, NULL, raw) != rawlen)
867 				continue;
868 
869 			/* Doesn't matter if there's one in the same erase block. We're going to
870 			   delete it too at the same time. */
871 			if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
872 				continue;
873 
874 			D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
875 
876 			/* This is an obsolete node belonging to the same directory, and it's of the right
877 			   length. We need to take a closer look...*/
878 			ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
879 			if (ret) {
880 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
881 				/* If we can't read it, we don't need to continue to obsolete it. Continue */
882 				continue;
883 			}
884 			if (retlen != rawlen) {
885 				printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
886 				       retlen, rawlen, ref_offset(raw));
887 				continue;
888 			}
889 
890 			if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
891 				continue;
892 
893 			/* If the name CRC doesn't match, skip */
894 			if (je32_to_cpu(rd->name_crc) != name_crc)
895 				continue;
896 
897 			/* If the name length doesn't match, or it's another deletion dirent, skip */
898 			if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
899 				continue;
900 
901 			/* OK, check the actual name now */
902 			if (memcmp(rd->name, fd->name, name_len))
903 				continue;
904 
905 			/* OK. The name really does match. There really is still an older node on
906 			   the flash which our deletion dirent obsoletes. So we have to write out
907 			   a new deletion dirent to replace it */
908 			mutex_unlock(&c->erase_free_sem);
909 
910 			D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
911 				  ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
912 			kfree(rd);
913 
914 			return jffs2_garbage_collect_dirent(c, jeb, f, fd);
915 		}
916 
917 		mutex_unlock(&c->erase_free_sem);
918 		kfree(rd);
919 	}
920 
921 	/* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
922 	   we should update the metadata node with those times accordingly */
923 
924 	/* No need for it any more. Just mark it obsolete and remove it from the list */
925 	while (*fdp) {
926 		if ((*fdp) == fd) {
927 			found = 1;
928 			*fdp = fd->next;
929 			break;
930 		}
931 		fdp = &(*fdp)->next;
932 	}
933 	if (!found) {
934 		printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
935 	}
936 	jffs2_mark_node_obsolete(c, fd->raw);
937 	jffs2_free_full_dirent(fd);
938 	return 0;
939 }
940 
941 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
942 				      struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
943 				      uint32_t start, uint32_t end)
944 {
945 	struct jffs2_raw_inode ri;
946 	struct jffs2_node_frag *frag;
947 	struct jffs2_full_dnode *new_fn;
948 	uint32_t alloclen, ilen;
949 	int ret;
950 
951 	D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
952 		  f->inocache->ino, start, end));
953 
954 	memset(&ri, 0, sizeof(ri));
955 
956 	if(fn->frags > 1) {
957 		size_t readlen;
958 		uint32_t crc;
959 		/* It's partially obsoleted by a later write. So we have to
960 		   write it out again with the _same_ version as before */
961 		ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
962 		if (readlen != sizeof(ri) || ret) {
963 			printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
964 			goto fill;
965 		}
966 		if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
967 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
968 			       ref_offset(fn->raw),
969 			       je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
970 			return -EIO;
971 		}
972 		if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
973 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
974 			       ref_offset(fn->raw),
975 			       je32_to_cpu(ri.totlen), sizeof(ri));
976 			return -EIO;
977 		}
978 		crc = crc32(0, &ri, sizeof(ri)-8);
979 		if (crc != je32_to_cpu(ri.node_crc)) {
980 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
981 			       ref_offset(fn->raw),
982 			       je32_to_cpu(ri.node_crc), crc);
983 			/* FIXME: We could possibly deal with this by writing new holes for each frag */
984 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
985 			       start, end, f->inocache->ino);
986 			goto fill;
987 		}
988 		if (ri.compr != JFFS2_COMPR_ZERO) {
989 			printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
990 			printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
991 			       start, end, f->inocache->ino);
992 			goto fill;
993 		}
994 	} else {
995 	fill:
996 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
997 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
998 		ri.totlen = cpu_to_je32(sizeof(ri));
999 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1000 
1001 		ri.ino = cpu_to_je32(f->inocache->ino);
1002 		ri.version = cpu_to_je32(++f->highest_version);
1003 		ri.offset = cpu_to_je32(start);
1004 		ri.dsize = cpu_to_je32(end - start);
1005 		ri.csize = cpu_to_je32(0);
1006 		ri.compr = JFFS2_COMPR_ZERO;
1007 	}
1008 
1009 	frag = frag_last(&f->fragtree);
1010 	if (frag)
1011 		/* Fetch the inode length from the fragtree rather then
1012 		 * from i_size since i_size may have not been updated yet */
1013 		ilen = frag->ofs + frag->size;
1014 	else
1015 		ilen = JFFS2_F_I_SIZE(f);
1016 
1017 	ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1018 	ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1019 	ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1020 	ri.isize = cpu_to_je32(ilen);
1021 	ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1022 	ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1023 	ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1024 	ri.data_crc = cpu_to_je32(0);
1025 	ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1026 
1027 	ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1028 				     JFFS2_SUMMARY_INODE_SIZE);
1029 	if (ret) {
1030 		printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1031 		       sizeof(ri), ret);
1032 		return ret;
1033 	}
1034 	new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1035 
1036 	if (IS_ERR(new_fn)) {
1037 		printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1038 		return PTR_ERR(new_fn);
1039 	}
1040 	if (je32_to_cpu(ri.version) == f->highest_version) {
1041 		jffs2_add_full_dnode_to_inode(c, f, new_fn);
1042 		if (f->metadata) {
1043 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1044 			jffs2_free_full_dnode(f->metadata);
1045 			f->metadata = NULL;
1046 		}
1047 		return 0;
1048 	}
1049 
1050 	/*
1051 	 * We should only get here in the case where the node we are
1052 	 * replacing had more than one frag, so we kept the same version
1053 	 * number as before. (Except in case of error -- see 'goto fill;'
1054 	 * above.)
1055 	 */
1056 	D1(if(unlikely(fn->frags <= 1)) {
1057 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1058 		       fn->frags, je32_to_cpu(ri.version), f->highest_version,
1059 		       je32_to_cpu(ri.ino));
1060 	});
1061 
1062 	/* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1063 	mark_ref_normal(new_fn->raw);
1064 
1065 	for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1066 	     frag; frag = frag_next(frag)) {
1067 		if (frag->ofs > fn->size + fn->ofs)
1068 			break;
1069 		if (frag->node == fn) {
1070 			frag->node = new_fn;
1071 			new_fn->frags++;
1072 			fn->frags--;
1073 		}
1074 	}
1075 	if (fn->frags) {
1076 		printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1077 		BUG();
1078 	}
1079 	if (!new_fn->frags) {
1080 		printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1081 		BUG();
1082 	}
1083 
1084 	jffs2_mark_node_obsolete(c, fn->raw);
1085 	jffs2_free_full_dnode(fn);
1086 
1087 	return 0;
1088 }
1089 
1090 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1091 				       struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1092 				       uint32_t start, uint32_t end)
1093 {
1094 	struct jffs2_full_dnode *new_fn;
1095 	struct jffs2_raw_inode ri;
1096 	uint32_t alloclen, offset, orig_end, orig_start;
1097 	int ret = 0;
1098 	unsigned char *comprbuf = NULL, *writebuf;
1099 	unsigned long pg;
1100 	unsigned char *pg_ptr;
1101 
1102 	memset(&ri, 0, sizeof(ri));
1103 
1104 	D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1105 		  f->inocache->ino, start, end));
1106 
1107 	orig_end = end;
1108 	orig_start = start;
1109 
1110 	if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1111 		/* Attempt to do some merging. But only expand to cover logically
1112 		   adjacent frags if the block containing them is already considered
1113 		   to be dirty. Otherwise we end up with GC just going round in
1114 		   circles dirtying the nodes it already wrote out, especially
1115 		   on NAND where we have small eraseblocks and hence a much higher
1116 		   chance of nodes having to be split to cross boundaries. */
1117 
1118 		struct jffs2_node_frag *frag;
1119 		uint32_t min, max;
1120 
1121 		min = start & ~(PAGE_CACHE_SIZE-1);
1122 		max = min + PAGE_CACHE_SIZE;
1123 
1124 		frag = jffs2_lookup_node_frag(&f->fragtree, start);
1125 
1126 		/* BUG_ON(!frag) but that'll happen anyway... */
1127 
1128 		BUG_ON(frag->ofs != start);
1129 
1130 		/* First grow down... */
1131 		while((frag = frag_prev(frag)) && frag->ofs >= min) {
1132 
1133 			/* If the previous frag doesn't even reach the beginning, there's
1134 			   excessive fragmentation. Just merge. */
1135 			if (frag->ofs > min) {
1136 				D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1137 					  frag->ofs, frag->ofs+frag->size));
1138 				start = frag->ofs;
1139 				continue;
1140 			}
1141 			/* OK. This frag holds the first byte of the page. */
1142 			if (!frag->node || !frag->node->raw) {
1143 				D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1144 					  frag->ofs, frag->ofs+frag->size));
1145 				break;
1146 			} else {
1147 
1148 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1149 				   in a block which is still considered clean? If so, don't obsolete it.
1150 				   If not, cover it anyway. */
1151 
1152 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1153 				struct jffs2_eraseblock *jeb;
1154 
1155 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1156 
1157 				if (jeb == c->gcblock) {
1158 					D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1159 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1160 					start = frag->ofs;
1161 					break;
1162 				}
1163 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1164 					D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1165 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1166 					break;
1167 				}
1168 
1169 				D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1170 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1171 				start = frag->ofs;
1172 				break;
1173 			}
1174 		}
1175 
1176 		/* ... then up */
1177 
1178 		/* Find last frag which is actually part of the node we're to GC. */
1179 		frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1180 
1181 		while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1182 
1183 			/* If the previous frag doesn't even reach the beginning, there's lots
1184 			   of fragmentation. Just merge. */
1185 			if (frag->ofs+frag->size < max) {
1186 				D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1187 					  frag->ofs, frag->ofs+frag->size));
1188 				end = frag->ofs + frag->size;
1189 				continue;
1190 			}
1191 
1192 			if (!frag->node || !frag->node->raw) {
1193 				D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1194 					  frag->ofs, frag->ofs+frag->size));
1195 				break;
1196 			} else {
1197 
1198 				/* OK, it's a frag which extends to the beginning of the page. Does it live
1199 				   in a block which is still considered clean? If so, don't obsolete it.
1200 				   If not, cover it anyway. */
1201 
1202 				struct jffs2_raw_node_ref *raw = frag->node->raw;
1203 				struct jffs2_eraseblock *jeb;
1204 
1205 				jeb = &c->blocks[raw->flash_offset / c->sector_size];
1206 
1207 				if (jeb == c->gcblock) {
1208 					D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1209 						  frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1210 					end = frag->ofs + frag->size;
1211 					break;
1212 				}
1213 				if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1214 					D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1215 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1216 					break;
1217 				}
1218 
1219 				D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1220 						  frag->ofs, frag->ofs+frag->size, jeb->offset));
1221 				end = frag->ofs + frag->size;
1222 				break;
1223 			}
1224 		}
1225 		D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1226 			  orig_start, orig_end, start, end));
1227 
1228 		D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1229 		BUG_ON(end < orig_end);
1230 		BUG_ON(start > orig_start);
1231 	}
1232 
1233 	/* First, use readpage() to read the appropriate page into the page cache */
1234 	/* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1235 	 *    triggered garbage collection in the first place?
1236 	 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1237 	 *    page OK. We'll actually write it out again in commit_write, which is a little
1238 	 *    suboptimal, but at least we're correct.
1239 	 */
1240 	pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1241 
1242 	if (IS_ERR(pg_ptr)) {
1243 		printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1244 		return PTR_ERR(pg_ptr);
1245 	}
1246 
1247 	offset = start;
1248 	while(offset < orig_end) {
1249 		uint32_t datalen;
1250 		uint32_t cdatalen;
1251 		uint16_t comprtype = JFFS2_COMPR_NONE;
1252 
1253 		ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1254 					&alloclen, JFFS2_SUMMARY_INODE_SIZE);
1255 
1256 		if (ret) {
1257 			printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1258 			       sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1259 			break;
1260 		}
1261 		cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1262 		datalen = end - offset;
1263 
1264 		writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1265 
1266 		comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1267 
1268 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1269 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1270 		ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1271 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1272 
1273 		ri.ino = cpu_to_je32(f->inocache->ino);
1274 		ri.version = cpu_to_je32(++f->highest_version);
1275 		ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1276 		ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1277 		ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1278 		ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1279 		ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1280 		ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1281 		ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1282 		ri.offset = cpu_to_je32(offset);
1283 		ri.csize = cpu_to_je32(cdatalen);
1284 		ri.dsize = cpu_to_je32(datalen);
1285 		ri.compr = comprtype & 0xff;
1286 		ri.usercompr = (comprtype >> 8) & 0xff;
1287 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1288 		ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1289 
1290 		new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1291 
1292 		jffs2_free_comprbuf(comprbuf, writebuf);
1293 
1294 		if (IS_ERR(new_fn)) {
1295 			printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1296 			ret = PTR_ERR(new_fn);
1297 			break;
1298 		}
1299 		ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1300 		offset += datalen;
1301 		if (f->metadata) {
1302 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1303 			jffs2_free_full_dnode(f->metadata);
1304 			f->metadata = NULL;
1305 		}
1306 	}
1307 
1308 	jffs2_gc_release_page(c, pg_ptr, &pg);
1309 	return ret;
1310 }
1311