xref: /linux/fs/jffs2/file.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  * $Id: file.c,v 1.104 2005/10/18 23:29:35 tpoynor Exp $
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/fs.h>
17 #include <linux/time.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/crc32.h>
21 #include <linux/jffs2.h>
22 #include "nodelist.h"
23 
24 static int jffs2_commit_write (struct file *filp, struct page *pg,
25 			       unsigned start, unsigned end);
26 static int jffs2_prepare_write (struct file *filp, struct page *pg,
27 				unsigned start, unsigned end);
28 static int jffs2_readpage (struct file *filp, struct page *pg);
29 
30 int jffs2_fsync(struct file *filp, struct dentry *dentry, int datasync)
31 {
32 	struct inode *inode = dentry->d_inode;
33 	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
34 
35 	/* Trigger GC to flush any pending writes for this inode */
36 	jffs2_flush_wbuf_gc(c, inode->i_ino);
37 
38 	return 0;
39 }
40 
41 const struct file_operations jffs2_file_operations =
42 {
43 	.llseek =	generic_file_llseek,
44 	.open =		generic_file_open,
45  	.read =		do_sync_read,
46  	.aio_read =	generic_file_aio_read,
47  	.write =	do_sync_write,
48  	.aio_write =	generic_file_aio_write,
49 	.ioctl =	jffs2_ioctl,
50 	.mmap =		generic_file_readonly_mmap,
51 	.fsync =	jffs2_fsync,
52 	.sendfile =	generic_file_sendfile
53 };
54 
55 /* jffs2_file_inode_operations */
56 
57 const struct inode_operations jffs2_file_inode_operations =
58 {
59 	.permission =	jffs2_permission,
60 	.setattr =	jffs2_setattr,
61 	.setxattr =	jffs2_setxattr,
62 	.getxattr =	jffs2_getxattr,
63 	.listxattr =	jffs2_listxattr,
64 	.removexattr =	jffs2_removexattr
65 };
66 
67 const struct address_space_operations jffs2_file_address_operations =
68 {
69 	.readpage =	jffs2_readpage,
70 	.prepare_write =jffs2_prepare_write,
71 	.commit_write =	jffs2_commit_write
72 };
73 
74 static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
75 {
76 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
77 	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
78 	unsigned char *pg_buf;
79 	int ret;
80 
81 	D2(printk(KERN_DEBUG "jffs2_do_readpage_nolock(): ino #%lu, page at offset 0x%lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT));
82 
83 	BUG_ON(!PageLocked(pg));
84 
85 	pg_buf = kmap(pg);
86 	/* FIXME: Can kmap fail? */
87 
88 	ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
89 
90 	if (ret) {
91 		ClearPageUptodate(pg);
92 		SetPageError(pg);
93 	} else {
94 		SetPageUptodate(pg);
95 		ClearPageError(pg);
96 	}
97 
98 	flush_dcache_page(pg);
99 	kunmap(pg);
100 
101 	D2(printk(KERN_DEBUG "readpage finished\n"));
102 	return 0;
103 }
104 
105 int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
106 {
107 	int ret = jffs2_do_readpage_nolock(inode, pg);
108 	unlock_page(pg);
109 	return ret;
110 }
111 
112 
113 static int jffs2_readpage (struct file *filp, struct page *pg)
114 {
115 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
116 	int ret;
117 
118 	down(&f->sem);
119 	ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
120 	up(&f->sem);
121 	return ret;
122 }
123 
124 static int jffs2_prepare_write (struct file *filp, struct page *pg,
125 				unsigned start, unsigned end)
126 {
127 	struct inode *inode = pg->mapping->host;
128 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
129 	uint32_t pageofs = pg->index << PAGE_CACHE_SHIFT;
130 	int ret = 0;
131 
132 	D1(printk(KERN_DEBUG "jffs2_prepare_write()\n"));
133 
134 	if (pageofs > inode->i_size) {
135 		/* Make new hole frag from old EOF to new page */
136 		struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
137 		struct jffs2_raw_inode ri;
138 		struct jffs2_full_dnode *fn;
139 		uint32_t alloc_len;
140 
141 		D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
142 			  (unsigned int)inode->i_size, pageofs));
143 
144 		ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
145 					  ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
146 		if (ret)
147 			return ret;
148 
149 		down(&f->sem);
150 		memset(&ri, 0, sizeof(ri));
151 
152 		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
153 		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
154 		ri.totlen = cpu_to_je32(sizeof(ri));
155 		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
156 
157 		ri.ino = cpu_to_je32(f->inocache->ino);
158 		ri.version = cpu_to_je32(++f->highest_version);
159 		ri.mode = cpu_to_jemode(inode->i_mode);
160 		ri.uid = cpu_to_je16(inode->i_uid);
161 		ri.gid = cpu_to_je16(inode->i_gid);
162 		ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
163 		ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
164 		ri.offset = cpu_to_je32(inode->i_size);
165 		ri.dsize = cpu_to_je32(pageofs - inode->i_size);
166 		ri.csize = cpu_to_je32(0);
167 		ri.compr = JFFS2_COMPR_ZERO;
168 		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
169 		ri.data_crc = cpu_to_je32(0);
170 
171 		fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
172 
173 		if (IS_ERR(fn)) {
174 			ret = PTR_ERR(fn);
175 			jffs2_complete_reservation(c);
176 			up(&f->sem);
177 			return ret;
178 		}
179 		ret = jffs2_add_full_dnode_to_inode(c, f, fn);
180 		if (f->metadata) {
181 			jffs2_mark_node_obsolete(c, f->metadata->raw);
182 			jffs2_free_full_dnode(f->metadata);
183 			f->metadata = NULL;
184 		}
185 		if (ret) {
186 			D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in prepare_write, returned %d\n", ret));
187 			jffs2_mark_node_obsolete(c, fn->raw);
188 			jffs2_free_full_dnode(fn);
189 			jffs2_complete_reservation(c);
190 			up(&f->sem);
191 			return ret;
192 		}
193 		jffs2_complete_reservation(c);
194 		inode->i_size = pageofs;
195 		up(&f->sem);
196 	}
197 
198 	/* Read in the page if it wasn't already present, unless it's a whole page */
199 	if (!PageUptodate(pg) && (start || end < PAGE_CACHE_SIZE)) {
200 		down(&f->sem);
201 		ret = jffs2_do_readpage_nolock(inode, pg);
202 		up(&f->sem);
203 	}
204 	D1(printk(KERN_DEBUG "end prepare_write(). pg->flags %lx\n", pg->flags));
205 	return ret;
206 }
207 
208 static int jffs2_commit_write (struct file *filp, struct page *pg,
209 			       unsigned start, unsigned end)
210 {
211 	/* Actually commit the write from the page cache page we're looking at.
212 	 * For now, we write the full page out each time. It sucks, but it's simple
213 	 */
214 	struct inode *inode = pg->mapping->host;
215 	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
216 	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
217 	struct jffs2_raw_inode *ri;
218 	unsigned aligned_start = start & ~3;
219 	int ret = 0;
220 	uint32_t writtenlen = 0;
221 
222 	D1(printk(KERN_DEBUG "jffs2_commit_write(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
223 		  inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));
224 
225 	if (end == PAGE_CACHE_SIZE) {
226 		if (!start) {
227 			/* We need to avoid deadlock with page_cache_read() in
228 			   jffs2_garbage_collect_pass(). So we have to mark the
229 			   page up to date, to prevent page_cache_read() from
230 			   trying to re-lock it. */
231 			SetPageUptodate(pg);
232 		} else {
233 			/* When writing out the end of a page, write out the
234 			   _whole_ page. This helps to reduce the number of
235 			   nodes in files which have many short writes, like
236 			   syslog files. */
237 			start = aligned_start = 0;
238 		}
239 	}
240 
241 	ri = jffs2_alloc_raw_inode();
242 
243 	if (!ri) {
244 		D1(printk(KERN_DEBUG "jffs2_commit_write(): Allocation of raw inode failed\n"));
245 		return -ENOMEM;
246 	}
247 
248 	/* Set the fields that the generic jffs2_write_inode_range() code can't find */
249 	ri->ino = cpu_to_je32(inode->i_ino);
250 	ri->mode = cpu_to_jemode(inode->i_mode);
251 	ri->uid = cpu_to_je16(inode->i_uid);
252 	ri->gid = cpu_to_je16(inode->i_gid);
253 	ri->isize = cpu_to_je32((uint32_t)inode->i_size);
254 	ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
255 
256 	/* In 2.4, it was already kmapped by generic_file_write(). Doesn't
257 	   hurt to do it again. The alternative is ifdefs, which are ugly. */
258 	kmap(pg);
259 
260 	ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
261 				      (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
262 				      end - aligned_start, &writtenlen);
263 
264 	kunmap(pg);
265 
266 	if (ret) {
267 		/* There was an error writing. */
268 		SetPageError(pg);
269 	}
270 
271 	/* Adjust writtenlen for the padding we did, so we don't confuse our caller */
272 	if (writtenlen < (start&3))
273 		writtenlen = 0;
274 	else
275 		writtenlen -= (start&3);
276 
277 	if (writtenlen) {
278 		if (inode->i_size < (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen) {
279 			inode->i_size = (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen;
280 			inode->i_blocks = (inode->i_size + 511) >> 9;
281 
282 			inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
283 		}
284 	}
285 
286 	jffs2_free_raw_inode(ri);
287 
288 	if (start+writtenlen < end) {
289 		/* generic_file_write has written more to the page cache than we've
290 		   actually written to the medium. Mark the page !Uptodate so that
291 		   it gets reread */
292 		D1(printk(KERN_DEBUG "jffs2_commit_write(): Not all bytes written. Marking page !uptodate\n"));
293 		SetPageError(pg);
294 		ClearPageUptodate(pg);
295 	}
296 
297 	D1(printk(KERN_DEBUG "jffs2_commit_write() returning %d\n",start+writtenlen==end?0:ret));
298 	return start+writtenlen==end?0:ret;
299 }
300