1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 /* 37 * jbd2_get_transaction: obtain a new transaction_t object. 38 * 39 * Simply allocate and initialise a new transaction. Create it in 40 * RUNNING state and add it to the current journal (which should not 41 * have an existing running transaction: we only make a new transaction 42 * once we have started to commit the old one). 43 * 44 * Preconditions: 45 * The journal MUST be locked. We don't perform atomic mallocs on the 46 * new transaction and we can't block without protecting against other 47 * processes trying to touch the journal while it is in transition. 48 * 49 */ 50 51 static transaction_t * 52 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 53 { 54 transaction->t_journal = journal; 55 transaction->t_state = T_RUNNING; 56 transaction->t_start_time = ktime_get(); 57 transaction->t_tid = journal->j_transaction_sequence++; 58 transaction->t_expires = jiffies + journal->j_commit_interval; 59 spin_lock_init(&transaction->t_handle_lock); 60 atomic_set(&transaction->t_updates, 0); 61 atomic_set(&transaction->t_outstanding_credits, 0); 62 atomic_set(&transaction->t_handle_count, 0); 63 INIT_LIST_HEAD(&transaction->t_inode_list); 64 INIT_LIST_HEAD(&transaction->t_private_list); 65 66 /* Set up the commit timer for the new transaction. */ 67 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 68 add_timer(&journal->j_commit_timer); 69 70 J_ASSERT(journal->j_running_transaction == NULL); 71 journal->j_running_transaction = transaction; 72 transaction->t_max_wait = 0; 73 transaction->t_start = jiffies; 74 75 return transaction; 76 } 77 78 /* 79 * Handle management. 80 * 81 * A handle_t is an object which represents a single atomic update to a 82 * filesystem, and which tracks all of the modifications which form part 83 * of that one update. 84 */ 85 86 /* 87 * Update transaction's maximum wait time, if debugging is enabled. 88 * 89 * In order for t_max_wait to be reliable, it must be protected by a 90 * lock. But doing so will mean that start_this_handle() can not be 91 * run in parallel on SMP systems, which limits our scalability. So 92 * unless debugging is enabled, we no longer update t_max_wait, which 93 * means that maximum wait time reported by the jbd2_run_stats 94 * tracepoint will always be zero. 95 */ 96 static inline void update_t_max_wait(transaction_t *transaction, 97 unsigned long ts) 98 { 99 #ifdef CONFIG_JBD2_DEBUG 100 if (jbd2_journal_enable_debug && 101 time_after(transaction->t_start, ts)) { 102 ts = jbd2_time_diff(ts, transaction->t_start); 103 spin_lock(&transaction->t_handle_lock); 104 if (ts > transaction->t_max_wait) 105 transaction->t_max_wait = ts; 106 spin_unlock(&transaction->t_handle_lock); 107 } 108 #endif 109 } 110 111 /* 112 * start_this_handle: Given a handle, deal with any locking or stalling 113 * needed to make sure that there is enough journal space for the handle 114 * to begin. Attach the handle to a transaction and set up the 115 * transaction's buffer credits. 116 */ 117 118 static int start_this_handle(journal_t *journal, handle_t *handle, 119 gfp_t gfp_mask) 120 { 121 transaction_t *transaction, *new_transaction = NULL; 122 tid_t tid; 123 int needed, need_to_start; 124 int nblocks = handle->h_buffer_credits; 125 unsigned long ts = jiffies; 126 127 if (nblocks > journal->j_max_transaction_buffers) { 128 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 129 current->comm, nblocks, 130 journal->j_max_transaction_buffers); 131 return -ENOSPC; 132 } 133 134 alloc_transaction: 135 if (!journal->j_running_transaction) { 136 new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask); 137 if (!new_transaction) { 138 /* 139 * If __GFP_FS is not present, then we may be 140 * being called from inside the fs writeback 141 * layer, so we MUST NOT fail. Since 142 * __GFP_NOFAIL is going away, we will arrange 143 * to retry the allocation ourselves. 144 */ 145 if ((gfp_mask & __GFP_FS) == 0) { 146 congestion_wait(BLK_RW_ASYNC, HZ/50); 147 goto alloc_transaction; 148 } 149 return -ENOMEM; 150 } 151 } 152 153 jbd_debug(3, "New handle %p going live.\n", handle); 154 155 /* 156 * We need to hold j_state_lock until t_updates has been incremented, 157 * for proper journal barrier handling 158 */ 159 repeat: 160 read_lock(&journal->j_state_lock); 161 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 162 if (is_journal_aborted(journal) || 163 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 164 read_unlock(&journal->j_state_lock); 165 kfree(new_transaction); 166 return -EROFS; 167 } 168 169 /* Wait on the journal's transaction barrier if necessary */ 170 if (journal->j_barrier_count) { 171 read_unlock(&journal->j_state_lock); 172 wait_event(journal->j_wait_transaction_locked, 173 journal->j_barrier_count == 0); 174 goto repeat; 175 } 176 177 if (!journal->j_running_transaction) { 178 read_unlock(&journal->j_state_lock); 179 if (!new_transaction) 180 goto alloc_transaction; 181 write_lock(&journal->j_state_lock); 182 if (!journal->j_running_transaction) { 183 jbd2_get_transaction(journal, new_transaction); 184 new_transaction = NULL; 185 } 186 write_unlock(&journal->j_state_lock); 187 goto repeat; 188 } 189 190 transaction = journal->j_running_transaction; 191 192 /* 193 * If the current transaction is locked down for commit, wait for the 194 * lock to be released. 195 */ 196 if (transaction->t_state == T_LOCKED) { 197 DEFINE_WAIT(wait); 198 199 prepare_to_wait(&journal->j_wait_transaction_locked, 200 &wait, TASK_UNINTERRUPTIBLE); 201 read_unlock(&journal->j_state_lock); 202 schedule(); 203 finish_wait(&journal->j_wait_transaction_locked, &wait); 204 goto repeat; 205 } 206 207 /* 208 * If there is not enough space left in the log to write all potential 209 * buffers requested by this operation, we need to stall pending a log 210 * checkpoint to free some more log space. 211 */ 212 needed = atomic_add_return(nblocks, 213 &transaction->t_outstanding_credits); 214 215 if (needed > journal->j_max_transaction_buffers) { 216 /* 217 * If the current transaction is already too large, then start 218 * to commit it: we can then go back and attach this handle to 219 * a new transaction. 220 */ 221 DEFINE_WAIT(wait); 222 223 jbd_debug(2, "Handle %p starting new commit...\n", handle); 224 atomic_sub(nblocks, &transaction->t_outstanding_credits); 225 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 226 TASK_UNINTERRUPTIBLE); 227 tid = transaction->t_tid; 228 need_to_start = !tid_geq(journal->j_commit_request, tid); 229 read_unlock(&journal->j_state_lock); 230 if (need_to_start) 231 jbd2_log_start_commit(journal, tid); 232 schedule(); 233 finish_wait(&journal->j_wait_transaction_locked, &wait); 234 goto repeat; 235 } 236 237 /* 238 * The commit code assumes that it can get enough log space 239 * without forcing a checkpoint. This is *critical* for 240 * correctness: a checkpoint of a buffer which is also 241 * associated with a committing transaction creates a deadlock, 242 * so commit simply cannot force through checkpoints. 243 * 244 * We must therefore ensure the necessary space in the journal 245 * *before* starting to dirty potentially checkpointed buffers 246 * in the new transaction. 247 * 248 * The worst part is, any transaction currently committing can 249 * reduce the free space arbitrarily. Be careful to account for 250 * those buffers when checkpointing. 251 */ 252 253 /* 254 * @@@ AKPM: This seems rather over-defensive. We're giving commit 255 * a _lot_ of headroom: 1/4 of the journal plus the size of 256 * the committing transaction. Really, we only need to give it 257 * committing_transaction->t_outstanding_credits plus "enough" for 258 * the log control blocks. 259 * Also, this test is inconsistent with the matching one in 260 * jbd2_journal_extend(). 261 */ 262 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 263 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 264 atomic_sub(nblocks, &transaction->t_outstanding_credits); 265 read_unlock(&journal->j_state_lock); 266 write_lock(&journal->j_state_lock); 267 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) 268 __jbd2_log_wait_for_space(journal); 269 write_unlock(&journal->j_state_lock); 270 goto repeat; 271 } 272 273 /* OK, account for the buffers that this operation expects to 274 * use and add the handle to the running transaction. 275 */ 276 update_t_max_wait(transaction, ts); 277 handle->h_transaction = transaction; 278 atomic_inc(&transaction->t_updates); 279 atomic_inc(&transaction->t_handle_count); 280 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 281 handle, nblocks, 282 atomic_read(&transaction->t_outstanding_credits), 283 __jbd2_log_space_left(journal)); 284 read_unlock(&journal->j_state_lock); 285 286 lock_map_acquire(&handle->h_lockdep_map); 287 kfree(new_transaction); 288 return 0; 289 } 290 291 static struct lock_class_key jbd2_handle_key; 292 293 /* Allocate a new handle. This should probably be in a slab... */ 294 static handle_t *new_handle(int nblocks) 295 { 296 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 297 if (!handle) 298 return NULL; 299 memset(handle, 0, sizeof(*handle)); 300 handle->h_buffer_credits = nblocks; 301 handle->h_ref = 1; 302 303 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 304 &jbd2_handle_key, 0); 305 306 return handle; 307 } 308 309 /** 310 * handle_t *jbd2_journal_start() - Obtain a new handle. 311 * @journal: Journal to start transaction on. 312 * @nblocks: number of block buffer we might modify 313 * 314 * We make sure that the transaction can guarantee at least nblocks of 315 * modified buffers in the log. We block until the log can guarantee 316 * that much space. 317 * 318 * This function is visible to journal users (like ext3fs), so is not 319 * called with the journal already locked. 320 * 321 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 322 * on failure. 323 */ 324 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask) 325 { 326 handle_t *handle = journal_current_handle(); 327 int err; 328 329 if (!journal) 330 return ERR_PTR(-EROFS); 331 332 if (handle) { 333 J_ASSERT(handle->h_transaction->t_journal == journal); 334 handle->h_ref++; 335 return handle; 336 } 337 338 handle = new_handle(nblocks); 339 if (!handle) 340 return ERR_PTR(-ENOMEM); 341 342 current->journal_info = handle; 343 344 err = start_this_handle(journal, handle, gfp_mask); 345 if (err < 0) { 346 jbd2_free_handle(handle); 347 current->journal_info = NULL; 348 handle = ERR_PTR(err); 349 } 350 return handle; 351 } 352 EXPORT_SYMBOL(jbd2__journal_start); 353 354 355 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 356 { 357 return jbd2__journal_start(journal, nblocks, GFP_NOFS); 358 } 359 EXPORT_SYMBOL(jbd2_journal_start); 360 361 362 /** 363 * int jbd2_journal_extend() - extend buffer credits. 364 * @handle: handle to 'extend' 365 * @nblocks: nr blocks to try to extend by. 366 * 367 * Some transactions, such as large extends and truncates, can be done 368 * atomically all at once or in several stages. The operation requests 369 * a credit for a number of buffer modications in advance, but can 370 * extend its credit if it needs more. 371 * 372 * jbd2_journal_extend tries to give the running handle more buffer credits. 373 * It does not guarantee that allocation - this is a best-effort only. 374 * The calling process MUST be able to deal cleanly with a failure to 375 * extend here. 376 * 377 * Return 0 on success, non-zero on failure. 378 * 379 * return code < 0 implies an error 380 * return code > 0 implies normal transaction-full status. 381 */ 382 int jbd2_journal_extend(handle_t *handle, int nblocks) 383 { 384 transaction_t *transaction = handle->h_transaction; 385 journal_t *journal = transaction->t_journal; 386 int result; 387 int wanted; 388 389 result = -EIO; 390 if (is_handle_aborted(handle)) 391 goto out; 392 393 result = 1; 394 395 read_lock(&journal->j_state_lock); 396 397 /* Don't extend a locked-down transaction! */ 398 if (handle->h_transaction->t_state != T_RUNNING) { 399 jbd_debug(3, "denied handle %p %d blocks: " 400 "transaction not running\n", handle, nblocks); 401 goto error_out; 402 } 403 404 spin_lock(&transaction->t_handle_lock); 405 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks; 406 407 if (wanted > journal->j_max_transaction_buffers) { 408 jbd_debug(3, "denied handle %p %d blocks: " 409 "transaction too large\n", handle, nblocks); 410 goto unlock; 411 } 412 413 if (wanted > __jbd2_log_space_left(journal)) { 414 jbd_debug(3, "denied handle %p %d blocks: " 415 "insufficient log space\n", handle, nblocks); 416 goto unlock; 417 } 418 419 handle->h_buffer_credits += nblocks; 420 atomic_add(nblocks, &transaction->t_outstanding_credits); 421 result = 0; 422 423 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 424 unlock: 425 spin_unlock(&transaction->t_handle_lock); 426 error_out: 427 read_unlock(&journal->j_state_lock); 428 out: 429 return result; 430 } 431 432 433 /** 434 * int jbd2_journal_restart() - restart a handle . 435 * @handle: handle to restart 436 * @nblocks: nr credits requested 437 * 438 * Restart a handle for a multi-transaction filesystem 439 * operation. 440 * 441 * If the jbd2_journal_extend() call above fails to grant new buffer credits 442 * to a running handle, a call to jbd2_journal_restart will commit the 443 * handle's transaction so far and reattach the handle to a new 444 * transaction capabable of guaranteeing the requested number of 445 * credits. 446 */ 447 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 448 { 449 transaction_t *transaction = handle->h_transaction; 450 journal_t *journal = transaction->t_journal; 451 tid_t tid; 452 int need_to_start, ret; 453 454 /* If we've had an abort of any type, don't even think about 455 * actually doing the restart! */ 456 if (is_handle_aborted(handle)) 457 return 0; 458 459 /* 460 * First unlink the handle from its current transaction, and start the 461 * commit on that. 462 */ 463 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 464 J_ASSERT(journal_current_handle() == handle); 465 466 read_lock(&journal->j_state_lock); 467 spin_lock(&transaction->t_handle_lock); 468 atomic_sub(handle->h_buffer_credits, 469 &transaction->t_outstanding_credits); 470 if (atomic_dec_and_test(&transaction->t_updates)) 471 wake_up(&journal->j_wait_updates); 472 spin_unlock(&transaction->t_handle_lock); 473 474 jbd_debug(2, "restarting handle %p\n", handle); 475 tid = transaction->t_tid; 476 need_to_start = !tid_geq(journal->j_commit_request, tid); 477 read_unlock(&journal->j_state_lock); 478 if (need_to_start) 479 jbd2_log_start_commit(journal, tid); 480 481 lock_map_release(&handle->h_lockdep_map); 482 handle->h_buffer_credits = nblocks; 483 ret = start_this_handle(journal, handle, gfp_mask); 484 return ret; 485 } 486 EXPORT_SYMBOL(jbd2__journal_restart); 487 488 489 int jbd2_journal_restart(handle_t *handle, int nblocks) 490 { 491 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 492 } 493 EXPORT_SYMBOL(jbd2_journal_restart); 494 495 /** 496 * void jbd2_journal_lock_updates () - establish a transaction barrier. 497 * @journal: Journal to establish a barrier on. 498 * 499 * This locks out any further updates from being started, and blocks 500 * until all existing updates have completed, returning only once the 501 * journal is in a quiescent state with no updates running. 502 * 503 * The journal lock should not be held on entry. 504 */ 505 void jbd2_journal_lock_updates(journal_t *journal) 506 { 507 DEFINE_WAIT(wait); 508 509 write_lock(&journal->j_state_lock); 510 ++journal->j_barrier_count; 511 512 /* Wait until there are no running updates */ 513 while (1) { 514 transaction_t *transaction = journal->j_running_transaction; 515 516 if (!transaction) 517 break; 518 519 spin_lock(&transaction->t_handle_lock); 520 if (!atomic_read(&transaction->t_updates)) { 521 spin_unlock(&transaction->t_handle_lock); 522 break; 523 } 524 prepare_to_wait(&journal->j_wait_updates, &wait, 525 TASK_UNINTERRUPTIBLE); 526 spin_unlock(&transaction->t_handle_lock); 527 write_unlock(&journal->j_state_lock); 528 schedule(); 529 finish_wait(&journal->j_wait_updates, &wait); 530 write_lock(&journal->j_state_lock); 531 } 532 write_unlock(&journal->j_state_lock); 533 534 /* 535 * We have now established a barrier against other normal updates, but 536 * we also need to barrier against other jbd2_journal_lock_updates() calls 537 * to make sure that we serialise special journal-locked operations 538 * too. 539 */ 540 mutex_lock(&journal->j_barrier); 541 } 542 543 /** 544 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 545 * @journal: Journal to release the barrier on. 546 * 547 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 548 * 549 * Should be called without the journal lock held. 550 */ 551 void jbd2_journal_unlock_updates (journal_t *journal) 552 { 553 J_ASSERT(journal->j_barrier_count != 0); 554 555 mutex_unlock(&journal->j_barrier); 556 write_lock(&journal->j_state_lock); 557 --journal->j_barrier_count; 558 write_unlock(&journal->j_state_lock); 559 wake_up(&journal->j_wait_transaction_locked); 560 } 561 562 static void warn_dirty_buffer(struct buffer_head *bh) 563 { 564 char b[BDEVNAME_SIZE]; 565 566 printk(KERN_WARNING 567 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 568 "There's a risk of filesystem corruption in case of system " 569 "crash.\n", 570 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 571 } 572 573 /* 574 * If the buffer is already part of the current transaction, then there 575 * is nothing we need to do. If it is already part of a prior 576 * transaction which we are still committing to disk, then we need to 577 * make sure that we do not overwrite the old copy: we do copy-out to 578 * preserve the copy going to disk. We also account the buffer against 579 * the handle's metadata buffer credits (unless the buffer is already 580 * part of the transaction, that is). 581 * 582 */ 583 static int 584 do_get_write_access(handle_t *handle, struct journal_head *jh, 585 int force_copy) 586 { 587 struct buffer_head *bh; 588 transaction_t *transaction; 589 journal_t *journal; 590 int error; 591 char *frozen_buffer = NULL; 592 int need_copy = 0; 593 594 if (is_handle_aborted(handle)) 595 return -EROFS; 596 597 transaction = handle->h_transaction; 598 journal = transaction->t_journal; 599 600 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 601 602 JBUFFER_TRACE(jh, "entry"); 603 repeat: 604 bh = jh2bh(jh); 605 606 /* @@@ Need to check for errors here at some point. */ 607 608 lock_buffer(bh); 609 jbd_lock_bh_state(bh); 610 611 /* We now hold the buffer lock so it is safe to query the buffer 612 * state. Is the buffer dirty? 613 * 614 * If so, there are two possibilities. The buffer may be 615 * non-journaled, and undergoing a quite legitimate writeback. 616 * Otherwise, it is journaled, and we don't expect dirty buffers 617 * in that state (the buffers should be marked JBD_Dirty 618 * instead.) So either the IO is being done under our own 619 * control and this is a bug, or it's a third party IO such as 620 * dump(8) (which may leave the buffer scheduled for read --- 621 * ie. locked but not dirty) or tune2fs (which may actually have 622 * the buffer dirtied, ugh.) */ 623 624 if (buffer_dirty(bh)) { 625 /* 626 * First question: is this buffer already part of the current 627 * transaction or the existing committing transaction? 628 */ 629 if (jh->b_transaction) { 630 J_ASSERT_JH(jh, 631 jh->b_transaction == transaction || 632 jh->b_transaction == 633 journal->j_committing_transaction); 634 if (jh->b_next_transaction) 635 J_ASSERT_JH(jh, jh->b_next_transaction == 636 transaction); 637 warn_dirty_buffer(bh); 638 } 639 /* 640 * In any case we need to clean the dirty flag and we must 641 * do it under the buffer lock to be sure we don't race 642 * with running write-out. 643 */ 644 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 645 clear_buffer_dirty(bh); 646 set_buffer_jbddirty(bh); 647 } 648 649 unlock_buffer(bh); 650 651 error = -EROFS; 652 if (is_handle_aborted(handle)) { 653 jbd_unlock_bh_state(bh); 654 goto out; 655 } 656 error = 0; 657 658 /* 659 * The buffer is already part of this transaction if b_transaction or 660 * b_next_transaction points to it 661 */ 662 if (jh->b_transaction == transaction || 663 jh->b_next_transaction == transaction) 664 goto done; 665 666 /* 667 * this is the first time this transaction is touching this buffer, 668 * reset the modified flag 669 */ 670 jh->b_modified = 0; 671 672 /* 673 * If there is already a copy-out version of this buffer, then we don't 674 * need to make another one 675 */ 676 if (jh->b_frozen_data) { 677 JBUFFER_TRACE(jh, "has frozen data"); 678 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 679 jh->b_next_transaction = transaction; 680 goto done; 681 } 682 683 /* Is there data here we need to preserve? */ 684 685 if (jh->b_transaction && jh->b_transaction != transaction) { 686 JBUFFER_TRACE(jh, "owned by older transaction"); 687 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 688 J_ASSERT_JH(jh, jh->b_transaction == 689 journal->j_committing_transaction); 690 691 /* There is one case we have to be very careful about. 692 * If the committing transaction is currently writing 693 * this buffer out to disk and has NOT made a copy-out, 694 * then we cannot modify the buffer contents at all 695 * right now. The essence of copy-out is that it is the 696 * extra copy, not the primary copy, which gets 697 * journaled. If the primary copy is already going to 698 * disk then we cannot do copy-out here. */ 699 700 if (jh->b_jlist == BJ_Shadow) { 701 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 702 wait_queue_head_t *wqh; 703 704 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 705 706 JBUFFER_TRACE(jh, "on shadow: sleep"); 707 jbd_unlock_bh_state(bh); 708 /* commit wakes up all shadow buffers after IO */ 709 for ( ; ; ) { 710 prepare_to_wait(wqh, &wait.wait, 711 TASK_UNINTERRUPTIBLE); 712 if (jh->b_jlist != BJ_Shadow) 713 break; 714 schedule(); 715 } 716 finish_wait(wqh, &wait.wait); 717 goto repeat; 718 } 719 720 /* Only do the copy if the currently-owning transaction 721 * still needs it. If it is on the Forget list, the 722 * committing transaction is past that stage. The 723 * buffer had better remain locked during the kmalloc, 724 * but that should be true --- we hold the journal lock 725 * still and the buffer is already on the BUF_JOURNAL 726 * list so won't be flushed. 727 * 728 * Subtle point, though: if this is a get_undo_access, 729 * then we will be relying on the frozen_data to contain 730 * the new value of the committed_data record after the 731 * transaction, so we HAVE to force the frozen_data copy 732 * in that case. */ 733 734 if (jh->b_jlist != BJ_Forget || force_copy) { 735 JBUFFER_TRACE(jh, "generate frozen data"); 736 if (!frozen_buffer) { 737 JBUFFER_TRACE(jh, "allocate memory for buffer"); 738 jbd_unlock_bh_state(bh); 739 frozen_buffer = 740 jbd2_alloc(jh2bh(jh)->b_size, 741 GFP_NOFS); 742 if (!frozen_buffer) { 743 printk(KERN_EMERG 744 "%s: OOM for frozen_buffer\n", 745 __func__); 746 JBUFFER_TRACE(jh, "oom!"); 747 error = -ENOMEM; 748 jbd_lock_bh_state(bh); 749 goto done; 750 } 751 goto repeat; 752 } 753 jh->b_frozen_data = frozen_buffer; 754 frozen_buffer = NULL; 755 need_copy = 1; 756 } 757 jh->b_next_transaction = transaction; 758 } 759 760 761 /* 762 * Finally, if the buffer is not journaled right now, we need to make 763 * sure it doesn't get written to disk before the caller actually 764 * commits the new data 765 */ 766 if (!jh->b_transaction) { 767 JBUFFER_TRACE(jh, "no transaction"); 768 J_ASSERT_JH(jh, !jh->b_next_transaction); 769 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 770 spin_lock(&journal->j_list_lock); 771 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 772 spin_unlock(&journal->j_list_lock); 773 } 774 775 done: 776 if (need_copy) { 777 struct page *page; 778 int offset; 779 char *source; 780 781 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 782 "Possible IO failure.\n"); 783 page = jh2bh(jh)->b_page; 784 offset = offset_in_page(jh2bh(jh)->b_data); 785 source = kmap_atomic(page, KM_USER0); 786 /* Fire data frozen trigger just before we copy the data */ 787 jbd2_buffer_frozen_trigger(jh, source + offset, 788 jh->b_triggers); 789 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 790 kunmap_atomic(source, KM_USER0); 791 792 /* 793 * Now that the frozen data is saved off, we need to store 794 * any matching triggers. 795 */ 796 jh->b_frozen_triggers = jh->b_triggers; 797 } 798 jbd_unlock_bh_state(bh); 799 800 /* 801 * If we are about to journal a buffer, then any revoke pending on it is 802 * no longer valid 803 */ 804 jbd2_journal_cancel_revoke(handle, jh); 805 806 out: 807 if (unlikely(frozen_buffer)) /* It's usually NULL */ 808 jbd2_free(frozen_buffer, bh->b_size); 809 810 JBUFFER_TRACE(jh, "exit"); 811 return error; 812 } 813 814 /** 815 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 816 * @handle: transaction to add buffer modifications to 817 * @bh: bh to be used for metadata writes 818 * 819 * Returns an error code or 0 on success. 820 * 821 * In full data journalling mode the buffer may be of type BJ_AsyncData, 822 * because we're write()ing a buffer which is also part of a shared mapping. 823 */ 824 825 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 826 { 827 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 828 int rc; 829 830 /* We do not want to get caught playing with fields which the 831 * log thread also manipulates. Make sure that the buffer 832 * completes any outstanding IO before proceeding. */ 833 rc = do_get_write_access(handle, jh, 0); 834 jbd2_journal_put_journal_head(jh); 835 return rc; 836 } 837 838 839 /* 840 * When the user wants to journal a newly created buffer_head 841 * (ie. getblk() returned a new buffer and we are going to populate it 842 * manually rather than reading off disk), then we need to keep the 843 * buffer_head locked until it has been completely filled with new 844 * data. In this case, we should be able to make the assertion that 845 * the bh is not already part of an existing transaction. 846 * 847 * The buffer should already be locked by the caller by this point. 848 * There is no lock ranking violation: it was a newly created, 849 * unlocked buffer beforehand. */ 850 851 /** 852 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 853 * @handle: transaction to new buffer to 854 * @bh: new buffer. 855 * 856 * Call this if you create a new bh. 857 */ 858 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 859 { 860 transaction_t *transaction = handle->h_transaction; 861 journal_t *journal = transaction->t_journal; 862 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 863 int err; 864 865 jbd_debug(5, "journal_head %p\n", jh); 866 err = -EROFS; 867 if (is_handle_aborted(handle)) 868 goto out; 869 err = 0; 870 871 JBUFFER_TRACE(jh, "entry"); 872 /* 873 * The buffer may already belong to this transaction due to pre-zeroing 874 * in the filesystem's new_block code. It may also be on the previous, 875 * committing transaction's lists, but it HAS to be in Forget state in 876 * that case: the transaction must have deleted the buffer for it to be 877 * reused here. 878 */ 879 jbd_lock_bh_state(bh); 880 spin_lock(&journal->j_list_lock); 881 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 882 jh->b_transaction == NULL || 883 (jh->b_transaction == journal->j_committing_transaction && 884 jh->b_jlist == BJ_Forget))); 885 886 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 887 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 888 889 if (jh->b_transaction == NULL) { 890 /* 891 * Previous jbd2_journal_forget() could have left the buffer 892 * with jbddirty bit set because it was being committed. When 893 * the commit finished, we've filed the buffer for 894 * checkpointing and marked it dirty. Now we are reallocating 895 * the buffer so the transaction freeing it must have 896 * committed and so it's safe to clear the dirty bit. 897 */ 898 clear_buffer_dirty(jh2bh(jh)); 899 /* first access by this transaction */ 900 jh->b_modified = 0; 901 902 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 903 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 904 } else if (jh->b_transaction == journal->j_committing_transaction) { 905 /* first access by this transaction */ 906 jh->b_modified = 0; 907 908 JBUFFER_TRACE(jh, "set next transaction"); 909 jh->b_next_transaction = transaction; 910 } 911 spin_unlock(&journal->j_list_lock); 912 jbd_unlock_bh_state(bh); 913 914 /* 915 * akpm: I added this. ext3_alloc_branch can pick up new indirect 916 * blocks which contain freed but then revoked metadata. We need 917 * to cancel the revoke in case we end up freeing it yet again 918 * and the reallocating as data - this would cause a second revoke, 919 * which hits an assertion error. 920 */ 921 JBUFFER_TRACE(jh, "cancelling revoke"); 922 jbd2_journal_cancel_revoke(handle, jh); 923 out: 924 jbd2_journal_put_journal_head(jh); 925 return err; 926 } 927 928 /** 929 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 930 * non-rewindable consequences 931 * @handle: transaction 932 * @bh: buffer to undo 933 * 934 * Sometimes there is a need to distinguish between metadata which has 935 * been committed to disk and that which has not. The ext3fs code uses 936 * this for freeing and allocating space, we have to make sure that we 937 * do not reuse freed space until the deallocation has been committed, 938 * since if we overwrote that space we would make the delete 939 * un-rewindable in case of a crash. 940 * 941 * To deal with that, jbd2_journal_get_undo_access requests write access to a 942 * buffer for parts of non-rewindable operations such as delete 943 * operations on the bitmaps. The journaling code must keep a copy of 944 * the buffer's contents prior to the undo_access call until such time 945 * as we know that the buffer has definitely been committed to disk. 946 * 947 * We never need to know which transaction the committed data is part 948 * of, buffers touched here are guaranteed to be dirtied later and so 949 * will be committed to a new transaction in due course, at which point 950 * we can discard the old committed data pointer. 951 * 952 * Returns error number or 0 on success. 953 */ 954 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 955 { 956 int err; 957 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 958 char *committed_data = NULL; 959 960 JBUFFER_TRACE(jh, "entry"); 961 962 /* 963 * Do this first --- it can drop the journal lock, so we want to 964 * make sure that obtaining the committed_data is done 965 * atomically wrt. completion of any outstanding commits. 966 */ 967 err = do_get_write_access(handle, jh, 1); 968 if (err) 969 goto out; 970 971 repeat: 972 if (!jh->b_committed_data) { 973 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 974 if (!committed_data) { 975 printk(KERN_EMERG "%s: No memory for committed data\n", 976 __func__); 977 err = -ENOMEM; 978 goto out; 979 } 980 } 981 982 jbd_lock_bh_state(bh); 983 if (!jh->b_committed_data) { 984 /* Copy out the current buffer contents into the 985 * preserved, committed copy. */ 986 JBUFFER_TRACE(jh, "generate b_committed data"); 987 if (!committed_data) { 988 jbd_unlock_bh_state(bh); 989 goto repeat; 990 } 991 992 jh->b_committed_data = committed_data; 993 committed_data = NULL; 994 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 995 } 996 jbd_unlock_bh_state(bh); 997 out: 998 jbd2_journal_put_journal_head(jh); 999 if (unlikely(committed_data)) 1000 jbd2_free(committed_data, bh->b_size); 1001 return err; 1002 } 1003 1004 /** 1005 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1006 * @bh: buffer to trigger on 1007 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1008 * 1009 * Set any triggers on this journal_head. This is always safe, because 1010 * triggers for a committing buffer will be saved off, and triggers for 1011 * a running transaction will match the buffer in that transaction. 1012 * 1013 * Call with NULL to clear the triggers. 1014 */ 1015 void jbd2_journal_set_triggers(struct buffer_head *bh, 1016 struct jbd2_buffer_trigger_type *type) 1017 { 1018 struct journal_head *jh = bh2jh(bh); 1019 1020 jh->b_triggers = type; 1021 } 1022 1023 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1024 struct jbd2_buffer_trigger_type *triggers) 1025 { 1026 struct buffer_head *bh = jh2bh(jh); 1027 1028 if (!triggers || !triggers->t_frozen) 1029 return; 1030 1031 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1032 } 1033 1034 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1035 struct jbd2_buffer_trigger_type *triggers) 1036 { 1037 if (!triggers || !triggers->t_abort) 1038 return; 1039 1040 triggers->t_abort(triggers, jh2bh(jh)); 1041 } 1042 1043 1044 1045 /** 1046 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1047 * @handle: transaction to add buffer to. 1048 * @bh: buffer to mark 1049 * 1050 * mark dirty metadata which needs to be journaled as part of the current 1051 * transaction. 1052 * 1053 * The buffer must have previously had jbd2_journal_get_write_access() 1054 * called so that it has a valid journal_head attached to the buffer 1055 * head. 1056 * 1057 * The buffer is placed on the transaction's metadata list and is marked 1058 * as belonging to the transaction. 1059 * 1060 * Returns error number or 0 on success. 1061 * 1062 * Special care needs to be taken if the buffer already belongs to the 1063 * current committing transaction (in which case we should have frozen 1064 * data present for that commit). In that case, we don't relink the 1065 * buffer: that only gets done when the old transaction finally 1066 * completes its commit. 1067 */ 1068 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1069 { 1070 transaction_t *transaction = handle->h_transaction; 1071 journal_t *journal = transaction->t_journal; 1072 struct journal_head *jh = bh2jh(bh); 1073 int ret = 0; 1074 1075 jbd_debug(5, "journal_head %p\n", jh); 1076 JBUFFER_TRACE(jh, "entry"); 1077 if (is_handle_aborted(handle)) 1078 goto out; 1079 if (!buffer_jbd(bh)) { 1080 ret = -EUCLEAN; 1081 goto out; 1082 } 1083 1084 jbd_lock_bh_state(bh); 1085 1086 if (jh->b_modified == 0) { 1087 /* 1088 * This buffer's got modified and becoming part 1089 * of the transaction. This needs to be done 1090 * once a transaction -bzzz 1091 */ 1092 jh->b_modified = 1; 1093 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1094 handle->h_buffer_credits--; 1095 } 1096 1097 /* 1098 * fastpath, to avoid expensive locking. If this buffer is already 1099 * on the running transaction's metadata list there is nothing to do. 1100 * Nobody can take it off again because there is a handle open. 1101 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1102 * result in this test being false, so we go in and take the locks. 1103 */ 1104 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1105 JBUFFER_TRACE(jh, "fastpath"); 1106 if (unlikely(jh->b_transaction != 1107 journal->j_running_transaction)) { 1108 printk(KERN_EMERG "JBD: %s: " 1109 "jh->b_transaction (%llu, %p, %u) != " 1110 "journal->j_running_transaction (%p, %u)", 1111 journal->j_devname, 1112 (unsigned long long) bh->b_blocknr, 1113 jh->b_transaction, 1114 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1115 journal->j_running_transaction, 1116 journal->j_running_transaction ? 1117 journal->j_running_transaction->t_tid : 0); 1118 ret = -EINVAL; 1119 } 1120 goto out_unlock_bh; 1121 } 1122 1123 set_buffer_jbddirty(bh); 1124 1125 /* 1126 * Metadata already on the current transaction list doesn't 1127 * need to be filed. Metadata on another transaction's list must 1128 * be committing, and will be refiled once the commit completes: 1129 * leave it alone for now. 1130 */ 1131 if (jh->b_transaction != transaction) { 1132 JBUFFER_TRACE(jh, "already on other transaction"); 1133 if (unlikely(jh->b_transaction != 1134 journal->j_committing_transaction)) { 1135 printk(KERN_EMERG "JBD: %s: " 1136 "jh->b_transaction (%llu, %p, %u) != " 1137 "journal->j_committing_transaction (%p, %u)", 1138 journal->j_devname, 1139 (unsigned long long) bh->b_blocknr, 1140 jh->b_transaction, 1141 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1142 journal->j_committing_transaction, 1143 journal->j_committing_transaction ? 1144 journal->j_committing_transaction->t_tid : 0); 1145 ret = -EINVAL; 1146 } 1147 if (unlikely(jh->b_next_transaction != transaction)) { 1148 printk(KERN_EMERG "JBD: %s: " 1149 "jh->b_next_transaction (%llu, %p, %u) != " 1150 "transaction (%p, %u)", 1151 journal->j_devname, 1152 (unsigned long long) bh->b_blocknr, 1153 jh->b_next_transaction, 1154 jh->b_next_transaction ? 1155 jh->b_next_transaction->t_tid : 0, 1156 transaction, transaction->t_tid); 1157 ret = -EINVAL; 1158 } 1159 /* And this case is illegal: we can't reuse another 1160 * transaction's data buffer, ever. */ 1161 goto out_unlock_bh; 1162 } 1163 1164 /* That test should have eliminated the following case: */ 1165 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1166 1167 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1168 spin_lock(&journal->j_list_lock); 1169 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1170 spin_unlock(&journal->j_list_lock); 1171 out_unlock_bh: 1172 jbd_unlock_bh_state(bh); 1173 out: 1174 JBUFFER_TRACE(jh, "exit"); 1175 WARN_ON(ret); /* All errors are bugs, so dump the stack */ 1176 return ret; 1177 } 1178 1179 /* 1180 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1181 * updates, if the update decided in the end that it didn't need access. 1182 * 1183 */ 1184 void 1185 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1186 { 1187 BUFFER_TRACE(bh, "entry"); 1188 } 1189 1190 /** 1191 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1192 * @handle: transaction handle 1193 * @bh: bh to 'forget' 1194 * 1195 * We can only do the bforget if there are no commits pending against the 1196 * buffer. If the buffer is dirty in the current running transaction we 1197 * can safely unlink it. 1198 * 1199 * bh may not be a journalled buffer at all - it may be a non-JBD 1200 * buffer which came off the hashtable. Check for this. 1201 * 1202 * Decrements bh->b_count by one. 1203 * 1204 * Allow this call even if the handle has aborted --- it may be part of 1205 * the caller's cleanup after an abort. 1206 */ 1207 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1208 { 1209 transaction_t *transaction = handle->h_transaction; 1210 journal_t *journal = transaction->t_journal; 1211 struct journal_head *jh; 1212 int drop_reserve = 0; 1213 int err = 0; 1214 int was_modified = 0; 1215 1216 BUFFER_TRACE(bh, "entry"); 1217 1218 jbd_lock_bh_state(bh); 1219 spin_lock(&journal->j_list_lock); 1220 1221 if (!buffer_jbd(bh)) 1222 goto not_jbd; 1223 jh = bh2jh(bh); 1224 1225 /* Critical error: attempting to delete a bitmap buffer, maybe? 1226 * Don't do any jbd operations, and return an error. */ 1227 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1228 "inconsistent data on disk")) { 1229 err = -EIO; 1230 goto not_jbd; 1231 } 1232 1233 /* keep track of wether or not this transaction modified us */ 1234 was_modified = jh->b_modified; 1235 1236 /* 1237 * The buffer's going from the transaction, we must drop 1238 * all references -bzzz 1239 */ 1240 jh->b_modified = 0; 1241 1242 if (jh->b_transaction == handle->h_transaction) { 1243 J_ASSERT_JH(jh, !jh->b_frozen_data); 1244 1245 /* If we are forgetting a buffer which is already part 1246 * of this transaction, then we can just drop it from 1247 * the transaction immediately. */ 1248 clear_buffer_dirty(bh); 1249 clear_buffer_jbddirty(bh); 1250 1251 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1252 1253 /* 1254 * we only want to drop a reference if this transaction 1255 * modified the buffer 1256 */ 1257 if (was_modified) 1258 drop_reserve = 1; 1259 1260 /* 1261 * We are no longer going to journal this buffer. 1262 * However, the commit of this transaction is still 1263 * important to the buffer: the delete that we are now 1264 * processing might obsolete an old log entry, so by 1265 * committing, we can satisfy the buffer's checkpoint. 1266 * 1267 * So, if we have a checkpoint on the buffer, we should 1268 * now refile the buffer on our BJ_Forget list so that 1269 * we know to remove the checkpoint after we commit. 1270 */ 1271 1272 if (jh->b_cp_transaction) { 1273 __jbd2_journal_temp_unlink_buffer(jh); 1274 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1275 } else { 1276 __jbd2_journal_unfile_buffer(jh); 1277 if (!buffer_jbd(bh)) { 1278 spin_unlock(&journal->j_list_lock); 1279 jbd_unlock_bh_state(bh); 1280 __bforget(bh); 1281 goto drop; 1282 } 1283 } 1284 } else if (jh->b_transaction) { 1285 J_ASSERT_JH(jh, (jh->b_transaction == 1286 journal->j_committing_transaction)); 1287 /* However, if the buffer is still owned by a prior 1288 * (committing) transaction, we can't drop it yet... */ 1289 JBUFFER_TRACE(jh, "belongs to older transaction"); 1290 /* ... but we CAN drop it from the new transaction if we 1291 * have also modified it since the original commit. */ 1292 1293 if (jh->b_next_transaction) { 1294 J_ASSERT(jh->b_next_transaction == transaction); 1295 jh->b_next_transaction = NULL; 1296 1297 /* 1298 * only drop a reference if this transaction modified 1299 * the buffer 1300 */ 1301 if (was_modified) 1302 drop_reserve = 1; 1303 } 1304 } 1305 1306 not_jbd: 1307 spin_unlock(&journal->j_list_lock); 1308 jbd_unlock_bh_state(bh); 1309 __brelse(bh); 1310 drop: 1311 if (drop_reserve) { 1312 /* no need to reserve log space for this block -bzzz */ 1313 handle->h_buffer_credits++; 1314 } 1315 return err; 1316 } 1317 1318 /** 1319 * int jbd2_journal_stop() - complete a transaction 1320 * @handle: tranaction to complete. 1321 * 1322 * All done for a particular handle. 1323 * 1324 * There is not much action needed here. We just return any remaining 1325 * buffer credits to the transaction and remove the handle. The only 1326 * complication is that we need to start a commit operation if the 1327 * filesystem is marked for synchronous update. 1328 * 1329 * jbd2_journal_stop itself will not usually return an error, but it may 1330 * do so in unusual circumstances. In particular, expect it to 1331 * return -EIO if a jbd2_journal_abort has been executed since the 1332 * transaction began. 1333 */ 1334 int jbd2_journal_stop(handle_t *handle) 1335 { 1336 transaction_t *transaction = handle->h_transaction; 1337 journal_t *journal = transaction->t_journal; 1338 int err, wait_for_commit = 0; 1339 tid_t tid; 1340 pid_t pid; 1341 1342 J_ASSERT(journal_current_handle() == handle); 1343 1344 if (is_handle_aborted(handle)) 1345 err = -EIO; 1346 else { 1347 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1348 err = 0; 1349 } 1350 1351 if (--handle->h_ref > 0) { 1352 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1353 handle->h_ref); 1354 return err; 1355 } 1356 1357 jbd_debug(4, "Handle %p going down\n", handle); 1358 1359 /* 1360 * Implement synchronous transaction batching. If the handle 1361 * was synchronous, don't force a commit immediately. Let's 1362 * yield and let another thread piggyback onto this 1363 * transaction. Keep doing that while new threads continue to 1364 * arrive. It doesn't cost much - we're about to run a commit 1365 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1366 * operations by 30x or more... 1367 * 1368 * We try and optimize the sleep time against what the 1369 * underlying disk can do, instead of having a static sleep 1370 * time. This is useful for the case where our storage is so 1371 * fast that it is more optimal to go ahead and force a flush 1372 * and wait for the transaction to be committed than it is to 1373 * wait for an arbitrary amount of time for new writers to 1374 * join the transaction. We achieve this by measuring how 1375 * long it takes to commit a transaction, and compare it with 1376 * how long this transaction has been running, and if run time 1377 * < commit time then we sleep for the delta and commit. This 1378 * greatly helps super fast disks that would see slowdowns as 1379 * more threads started doing fsyncs. 1380 * 1381 * But don't do this if this process was the most recent one 1382 * to perform a synchronous write. We do this to detect the 1383 * case where a single process is doing a stream of sync 1384 * writes. No point in waiting for joiners in that case. 1385 */ 1386 pid = current->pid; 1387 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1388 u64 commit_time, trans_time; 1389 1390 journal->j_last_sync_writer = pid; 1391 1392 read_lock(&journal->j_state_lock); 1393 commit_time = journal->j_average_commit_time; 1394 read_unlock(&journal->j_state_lock); 1395 1396 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1397 transaction->t_start_time)); 1398 1399 commit_time = max_t(u64, commit_time, 1400 1000*journal->j_min_batch_time); 1401 commit_time = min_t(u64, commit_time, 1402 1000*journal->j_max_batch_time); 1403 1404 if (trans_time < commit_time) { 1405 ktime_t expires = ktime_add_ns(ktime_get(), 1406 commit_time); 1407 set_current_state(TASK_UNINTERRUPTIBLE); 1408 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1409 } 1410 } 1411 1412 if (handle->h_sync) 1413 transaction->t_synchronous_commit = 1; 1414 current->journal_info = NULL; 1415 atomic_sub(handle->h_buffer_credits, 1416 &transaction->t_outstanding_credits); 1417 1418 /* 1419 * If the handle is marked SYNC, we need to set another commit 1420 * going! We also want to force a commit if the current 1421 * transaction is occupying too much of the log, or if the 1422 * transaction is too old now. 1423 */ 1424 if (handle->h_sync || 1425 (atomic_read(&transaction->t_outstanding_credits) > 1426 journal->j_max_transaction_buffers) || 1427 time_after_eq(jiffies, transaction->t_expires)) { 1428 /* Do this even for aborted journals: an abort still 1429 * completes the commit thread, it just doesn't write 1430 * anything to disk. */ 1431 1432 jbd_debug(2, "transaction too old, requesting commit for " 1433 "handle %p\n", handle); 1434 /* This is non-blocking */ 1435 jbd2_log_start_commit(journal, transaction->t_tid); 1436 1437 /* 1438 * Special case: JBD2_SYNC synchronous updates require us 1439 * to wait for the commit to complete. 1440 */ 1441 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1442 wait_for_commit = 1; 1443 } 1444 1445 /* 1446 * Once we drop t_updates, if it goes to zero the transaction 1447 * could start committing on us and eventually disappear. So 1448 * once we do this, we must not dereference transaction 1449 * pointer again. 1450 */ 1451 tid = transaction->t_tid; 1452 if (atomic_dec_and_test(&transaction->t_updates)) { 1453 wake_up(&journal->j_wait_updates); 1454 if (journal->j_barrier_count) 1455 wake_up(&journal->j_wait_transaction_locked); 1456 } 1457 1458 if (wait_for_commit) 1459 err = jbd2_log_wait_commit(journal, tid); 1460 1461 lock_map_release(&handle->h_lockdep_map); 1462 1463 jbd2_free_handle(handle); 1464 return err; 1465 } 1466 1467 /** 1468 * int jbd2_journal_force_commit() - force any uncommitted transactions 1469 * @journal: journal to force 1470 * 1471 * For synchronous operations: force any uncommitted transactions 1472 * to disk. May seem kludgy, but it reuses all the handle batching 1473 * code in a very simple manner. 1474 */ 1475 int jbd2_journal_force_commit(journal_t *journal) 1476 { 1477 handle_t *handle; 1478 int ret; 1479 1480 handle = jbd2_journal_start(journal, 1); 1481 if (IS_ERR(handle)) { 1482 ret = PTR_ERR(handle); 1483 } else { 1484 handle->h_sync = 1; 1485 ret = jbd2_journal_stop(handle); 1486 } 1487 return ret; 1488 } 1489 1490 /* 1491 * 1492 * List management code snippets: various functions for manipulating the 1493 * transaction buffer lists. 1494 * 1495 */ 1496 1497 /* 1498 * Append a buffer to a transaction list, given the transaction's list head 1499 * pointer. 1500 * 1501 * j_list_lock is held. 1502 * 1503 * jbd_lock_bh_state(jh2bh(jh)) is held. 1504 */ 1505 1506 static inline void 1507 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1508 { 1509 if (!*list) { 1510 jh->b_tnext = jh->b_tprev = jh; 1511 *list = jh; 1512 } else { 1513 /* Insert at the tail of the list to preserve order */ 1514 struct journal_head *first = *list, *last = first->b_tprev; 1515 jh->b_tprev = last; 1516 jh->b_tnext = first; 1517 last->b_tnext = first->b_tprev = jh; 1518 } 1519 } 1520 1521 /* 1522 * Remove a buffer from a transaction list, given the transaction's list 1523 * head pointer. 1524 * 1525 * Called with j_list_lock held, and the journal may not be locked. 1526 * 1527 * jbd_lock_bh_state(jh2bh(jh)) is held. 1528 */ 1529 1530 static inline void 1531 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1532 { 1533 if (*list == jh) { 1534 *list = jh->b_tnext; 1535 if (*list == jh) 1536 *list = NULL; 1537 } 1538 jh->b_tprev->b_tnext = jh->b_tnext; 1539 jh->b_tnext->b_tprev = jh->b_tprev; 1540 } 1541 1542 /* 1543 * Remove a buffer from the appropriate transaction list. 1544 * 1545 * Note that this function can *change* the value of 1546 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1547 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1548 * of these pointers, it could go bad. Generally the caller needs to re-read 1549 * the pointer from the transaction_t. 1550 * 1551 * Called under j_list_lock. The journal may not be locked. 1552 */ 1553 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1554 { 1555 struct journal_head **list = NULL; 1556 transaction_t *transaction; 1557 struct buffer_head *bh = jh2bh(jh); 1558 1559 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1560 transaction = jh->b_transaction; 1561 if (transaction) 1562 assert_spin_locked(&transaction->t_journal->j_list_lock); 1563 1564 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1565 if (jh->b_jlist != BJ_None) 1566 J_ASSERT_JH(jh, transaction != NULL); 1567 1568 switch (jh->b_jlist) { 1569 case BJ_None: 1570 return; 1571 case BJ_Metadata: 1572 transaction->t_nr_buffers--; 1573 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1574 list = &transaction->t_buffers; 1575 break; 1576 case BJ_Forget: 1577 list = &transaction->t_forget; 1578 break; 1579 case BJ_IO: 1580 list = &transaction->t_iobuf_list; 1581 break; 1582 case BJ_Shadow: 1583 list = &transaction->t_shadow_list; 1584 break; 1585 case BJ_LogCtl: 1586 list = &transaction->t_log_list; 1587 break; 1588 case BJ_Reserved: 1589 list = &transaction->t_reserved_list; 1590 break; 1591 } 1592 1593 __blist_del_buffer(list, jh); 1594 jh->b_jlist = BJ_None; 1595 if (test_clear_buffer_jbddirty(bh)) 1596 mark_buffer_dirty(bh); /* Expose it to the VM */ 1597 } 1598 1599 /* 1600 * Remove buffer from all transactions. 1601 * 1602 * Called with bh_state lock and j_list_lock 1603 * 1604 * jh and bh may be already freed when this function returns. 1605 */ 1606 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1607 { 1608 __jbd2_journal_temp_unlink_buffer(jh); 1609 jh->b_transaction = NULL; 1610 jbd2_journal_put_journal_head(jh); 1611 } 1612 1613 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1614 { 1615 struct buffer_head *bh = jh2bh(jh); 1616 1617 /* Get reference so that buffer cannot be freed before we unlock it */ 1618 get_bh(bh); 1619 jbd_lock_bh_state(bh); 1620 spin_lock(&journal->j_list_lock); 1621 __jbd2_journal_unfile_buffer(jh); 1622 spin_unlock(&journal->j_list_lock); 1623 jbd_unlock_bh_state(bh); 1624 __brelse(bh); 1625 } 1626 1627 /* 1628 * Called from jbd2_journal_try_to_free_buffers(). 1629 * 1630 * Called under jbd_lock_bh_state(bh) 1631 */ 1632 static void 1633 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1634 { 1635 struct journal_head *jh; 1636 1637 jh = bh2jh(bh); 1638 1639 if (buffer_locked(bh) || buffer_dirty(bh)) 1640 goto out; 1641 1642 if (jh->b_next_transaction != NULL) 1643 goto out; 1644 1645 spin_lock(&journal->j_list_lock); 1646 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1647 /* written-back checkpointed metadata buffer */ 1648 if (jh->b_jlist == BJ_None) { 1649 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1650 __jbd2_journal_remove_checkpoint(jh); 1651 } 1652 } 1653 spin_unlock(&journal->j_list_lock); 1654 out: 1655 return; 1656 } 1657 1658 /** 1659 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1660 * @journal: journal for operation 1661 * @page: to try and free 1662 * @gfp_mask: we use the mask to detect how hard should we try to release 1663 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1664 * release the buffers. 1665 * 1666 * 1667 * For all the buffers on this page, 1668 * if they are fully written out ordered data, move them onto BUF_CLEAN 1669 * so try_to_free_buffers() can reap them. 1670 * 1671 * This function returns non-zero if we wish try_to_free_buffers() 1672 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1673 * We also do it if the page has locked or dirty buffers and the caller wants 1674 * us to perform sync or async writeout. 1675 * 1676 * This complicates JBD locking somewhat. We aren't protected by the 1677 * BKL here. We wish to remove the buffer from its committing or 1678 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1679 * 1680 * This may *change* the value of transaction_t->t_datalist, so anyone 1681 * who looks at t_datalist needs to lock against this function. 1682 * 1683 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1684 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1685 * will come out of the lock with the buffer dirty, which makes it 1686 * ineligible for release here. 1687 * 1688 * Who else is affected by this? hmm... Really the only contender 1689 * is do_get_write_access() - it could be looking at the buffer while 1690 * journal_try_to_free_buffer() is changing its state. But that 1691 * cannot happen because we never reallocate freed data as metadata 1692 * while the data is part of a transaction. Yes? 1693 * 1694 * Return 0 on failure, 1 on success 1695 */ 1696 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1697 struct page *page, gfp_t gfp_mask) 1698 { 1699 struct buffer_head *head; 1700 struct buffer_head *bh; 1701 int ret = 0; 1702 1703 J_ASSERT(PageLocked(page)); 1704 1705 head = page_buffers(page); 1706 bh = head; 1707 do { 1708 struct journal_head *jh; 1709 1710 /* 1711 * We take our own ref against the journal_head here to avoid 1712 * having to add tons of locking around each instance of 1713 * jbd2_journal_put_journal_head(). 1714 */ 1715 jh = jbd2_journal_grab_journal_head(bh); 1716 if (!jh) 1717 continue; 1718 1719 jbd_lock_bh_state(bh); 1720 __journal_try_to_free_buffer(journal, bh); 1721 jbd2_journal_put_journal_head(jh); 1722 jbd_unlock_bh_state(bh); 1723 if (buffer_jbd(bh)) 1724 goto busy; 1725 } while ((bh = bh->b_this_page) != head); 1726 1727 ret = try_to_free_buffers(page); 1728 1729 busy: 1730 return ret; 1731 } 1732 1733 /* 1734 * This buffer is no longer needed. If it is on an older transaction's 1735 * checkpoint list we need to record it on this transaction's forget list 1736 * to pin this buffer (and hence its checkpointing transaction) down until 1737 * this transaction commits. If the buffer isn't on a checkpoint list, we 1738 * release it. 1739 * Returns non-zero if JBD no longer has an interest in the buffer. 1740 * 1741 * Called under j_list_lock. 1742 * 1743 * Called under jbd_lock_bh_state(bh). 1744 */ 1745 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1746 { 1747 int may_free = 1; 1748 struct buffer_head *bh = jh2bh(jh); 1749 1750 if (jh->b_cp_transaction) { 1751 JBUFFER_TRACE(jh, "on running+cp transaction"); 1752 __jbd2_journal_temp_unlink_buffer(jh); 1753 /* 1754 * We don't want to write the buffer anymore, clear the 1755 * bit so that we don't confuse checks in 1756 * __journal_file_buffer 1757 */ 1758 clear_buffer_dirty(bh); 1759 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1760 may_free = 0; 1761 } else { 1762 JBUFFER_TRACE(jh, "on running transaction"); 1763 __jbd2_journal_unfile_buffer(jh); 1764 } 1765 return may_free; 1766 } 1767 1768 /* 1769 * jbd2_journal_invalidatepage 1770 * 1771 * This code is tricky. It has a number of cases to deal with. 1772 * 1773 * There are two invariants which this code relies on: 1774 * 1775 * i_size must be updated on disk before we start calling invalidatepage on the 1776 * data. 1777 * 1778 * This is done in ext3 by defining an ext3_setattr method which 1779 * updates i_size before truncate gets going. By maintaining this 1780 * invariant, we can be sure that it is safe to throw away any buffers 1781 * attached to the current transaction: once the transaction commits, 1782 * we know that the data will not be needed. 1783 * 1784 * Note however that we can *not* throw away data belonging to the 1785 * previous, committing transaction! 1786 * 1787 * Any disk blocks which *are* part of the previous, committing 1788 * transaction (and which therefore cannot be discarded immediately) are 1789 * not going to be reused in the new running transaction 1790 * 1791 * The bitmap committed_data images guarantee this: any block which is 1792 * allocated in one transaction and removed in the next will be marked 1793 * as in-use in the committed_data bitmap, so cannot be reused until 1794 * the next transaction to delete the block commits. This means that 1795 * leaving committing buffers dirty is quite safe: the disk blocks 1796 * cannot be reallocated to a different file and so buffer aliasing is 1797 * not possible. 1798 * 1799 * 1800 * The above applies mainly to ordered data mode. In writeback mode we 1801 * don't make guarantees about the order in which data hits disk --- in 1802 * particular we don't guarantee that new dirty data is flushed before 1803 * transaction commit --- so it is always safe just to discard data 1804 * immediately in that mode. --sct 1805 */ 1806 1807 /* 1808 * The journal_unmap_buffer helper function returns zero if the buffer 1809 * concerned remains pinned as an anonymous buffer belonging to an older 1810 * transaction. 1811 * 1812 * We're outside-transaction here. Either or both of j_running_transaction 1813 * and j_committing_transaction may be NULL. 1814 */ 1815 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1816 { 1817 transaction_t *transaction; 1818 struct journal_head *jh; 1819 int may_free = 1; 1820 int ret; 1821 1822 BUFFER_TRACE(bh, "entry"); 1823 1824 /* 1825 * It is safe to proceed here without the j_list_lock because the 1826 * buffers cannot be stolen by try_to_free_buffers as long as we are 1827 * holding the page lock. --sct 1828 */ 1829 1830 if (!buffer_jbd(bh)) 1831 goto zap_buffer_unlocked; 1832 1833 /* OK, we have data buffer in journaled mode */ 1834 write_lock(&journal->j_state_lock); 1835 jbd_lock_bh_state(bh); 1836 spin_lock(&journal->j_list_lock); 1837 1838 jh = jbd2_journal_grab_journal_head(bh); 1839 if (!jh) 1840 goto zap_buffer_no_jh; 1841 1842 /* 1843 * We cannot remove the buffer from checkpoint lists until the 1844 * transaction adding inode to orphan list (let's call it T) 1845 * is committed. Otherwise if the transaction changing the 1846 * buffer would be cleaned from the journal before T is 1847 * committed, a crash will cause that the correct contents of 1848 * the buffer will be lost. On the other hand we have to 1849 * clear the buffer dirty bit at latest at the moment when the 1850 * transaction marking the buffer as freed in the filesystem 1851 * structures is committed because from that moment on the 1852 * buffer can be reallocated and used by a different page. 1853 * Since the block hasn't been freed yet but the inode has 1854 * already been added to orphan list, it is safe for us to add 1855 * the buffer to BJ_Forget list of the newest transaction. 1856 */ 1857 transaction = jh->b_transaction; 1858 if (transaction == NULL) { 1859 /* First case: not on any transaction. If it 1860 * has no checkpoint link, then we can zap it: 1861 * it's a writeback-mode buffer so we don't care 1862 * if it hits disk safely. */ 1863 if (!jh->b_cp_transaction) { 1864 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1865 goto zap_buffer; 1866 } 1867 1868 if (!buffer_dirty(bh)) { 1869 /* bdflush has written it. We can drop it now */ 1870 goto zap_buffer; 1871 } 1872 1873 /* OK, it must be in the journal but still not 1874 * written fully to disk: it's metadata or 1875 * journaled data... */ 1876 1877 if (journal->j_running_transaction) { 1878 /* ... and once the current transaction has 1879 * committed, the buffer won't be needed any 1880 * longer. */ 1881 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1882 ret = __dispose_buffer(jh, 1883 journal->j_running_transaction); 1884 jbd2_journal_put_journal_head(jh); 1885 spin_unlock(&journal->j_list_lock); 1886 jbd_unlock_bh_state(bh); 1887 write_unlock(&journal->j_state_lock); 1888 return ret; 1889 } else { 1890 /* There is no currently-running transaction. So the 1891 * orphan record which we wrote for this file must have 1892 * passed into commit. We must attach this buffer to 1893 * the committing transaction, if it exists. */ 1894 if (journal->j_committing_transaction) { 1895 JBUFFER_TRACE(jh, "give to committing trans"); 1896 ret = __dispose_buffer(jh, 1897 journal->j_committing_transaction); 1898 jbd2_journal_put_journal_head(jh); 1899 spin_unlock(&journal->j_list_lock); 1900 jbd_unlock_bh_state(bh); 1901 write_unlock(&journal->j_state_lock); 1902 return ret; 1903 } else { 1904 /* The orphan record's transaction has 1905 * committed. We can cleanse this buffer */ 1906 clear_buffer_jbddirty(bh); 1907 goto zap_buffer; 1908 } 1909 } 1910 } else if (transaction == journal->j_committing_transaction) { 1911 JBUFFER_TRACE(jh, "on committing transaction"); 1912 /* 1913 * The buffer is committing, we simply cannot touch 1914 * it. So we just set j_next_transaction to the 1915 * running transaction (if there is one) and mark 1916 * buffer as freed so that commit code knows it should 1917 * clear dirty bits when it is done with the buffer. 1918 */ 1919 set_buffer_freed(bh); 1920 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1921 jh->b_next_transaction = journal->j_running_transaction; 1922 jbd2_journal_put_journal_head(jh); 1923 spin_unlock(&journal->j_list_lock); 1924 jbd_unlock_bh_state(bh); 1925 write_unlock(&journal->j_state_lock); 1926 return 0; 1927 } else { 1928 /* Good, the buffer belongs to the running transaction. 1929 * We are writing our own transaction's data, not any 1930 * previous one's, so it is safe to throw it away 1931 * (remember that we expect the filesystem to have set 1932 * i_size already for this truncate so recovery will not 1933 * expose the disk blocks we are discarding here.) */ 1934 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1935 JBUFFER_TRACE(jh, "on running transaction"); 1936 may_free = __dispose_buffer(jh, transaction); 1937 } 1938 1939 zap_buffer: 1940 jbd2_journal_put_journal_head(jh); 1941 zap_buffer_no_jh: 1942 spin_unlock(&journal->j_list_lock); 1943 jbd_unlock_bh_state(bh); 1944 write_unlock(&journal->j_state_lock); 1945 zap_buffer_unlocked: 1946 clear_buffer_dirty(bh); 1947 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1948 clear_buffer_mapped(bh); 1949 clear_buffer_req(bh); 1950 clear_buffer_new(bh); 1951 bh->b_bdev = NULL; 1952 return may_free; 1953 } 1954 1955 /** 1956 * void jbd2_journal_invalidatepage() 1957 * @journal: journal to use for flush... 1958 * @page: page to flush 1959 * @offset: length of page to invalidate. 1960 * 1961 * Reap page buffers containing data after offset in page. 1962 * 1963 */ 1964 void jbd2_journal_invalidatepage(journal_t *journal, 1965 struct page *page, 1966 unsigned long offset) 1967 { 1968 struct buffer_head *head, *bh, *next; 1969 unsigned int curr_off = 0; 1970 int may_free = 1; 1971 1972 if (!PageLocked(page)) 1973 BUG(); 1974 if (!page_has_buffers(page)) 1975 return; 1976 1977 /* We will potentially be playing with lists other than just the 1978 * data lists (especially for journaled data mode), so be 1979 * cautious in our locking. */ 1980 1981 head = bh = page_buffers(page); 1982 do { 1983 unsigned int next_off = curr_off + bh->b_size; 1984 next = bh->b_this_page; 1985 1986 if (offset <= curr_off) { 1987 /* This block is wholly outside the truncation point */ 1988 lock_buffer(bh); 1989 may_free &= journal_unmap_buffer(journal, bh); 1990 unlock_buffer(bh); 1991 } 1992 curr_off = next_off; 1993 bh = next; 1994 1995 } while (bh != head); 1996 1997 if (!offset) { 1998 if (may_free && try_to_free_buffers(page)) 1999 J_ASSERT(!page_has_buffers(page)); 2000 } 2001 } 2002 2003 /* 2004 * File a buffer on the given transaction list. 2005 */ 2006 void __jbd2_journal_file_buffer(struct journal_head *jh, 2007 transaction_t *transaction, int jlist) 2008 { 2009 struct journal_head **list = NULL; 2010 int was_dirty = 0; 2011 struct buffer_head *bh = jh2bh(jh); 2012 2013 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2014 assert_spin_locked(&transaction->t_journal->j_list_lock); 2015 2016 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2017 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2018 jh->b_transaction == NULL); 2019 2020 if (jh->b_transaction && jh->b_jlist == jlist) 2021 return; 2022 2023 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2024 jlist == BJ_Shadow || jlist == BJ_Forget) { 2025 /* 2026 * For metadata buffers, we track dirty bit in buffer_jbddirty 2027 * instead of buffer_dirty. We should not see a dirty bit set 2028 * here because we clear it in do_get_write_access but e.g. 2029 * tune2fs can modify the sb and set the dirty bit at any time 2030 * so we try to gracefully handle that. 2031 */ 2032 if (buffer_dirty(bh)) 2033 warn_dirty_buffer(bh); 2034 if (test_clear_buffer_dirty(bh) || 2035 test_clear_buffer_jbddirty(bh)) 2036 was_dirty = 1; 2037 } 2038 2039 if (jh->b_transaction) 2040 __jbd2_journal_temp_unlink_buffer(jh); 2041 else 2042 jbd2_journal_grab_journal_head(bh); 2043 jh->b_transaction = transaction; 2044 2045 switch (jlist) { 2046 case BJ_None: 2047 J_ASSERT_JH(jh, !jh->b_committed_data); 2048 J_ASSERT_JH(jh, !jh->b_frozen_data); 2049 return; 2050 case BJ_Metadata: 2051 transaction->t_nr_buffers++; 2052 list = &transaction->t_buffers; 2053 break; 2054 case BJ_Forget: 2055 list = &transaction->t_forget; 2056 break; 2057 case BJ_IO: 2058 list = &transaction->t_iobuf_list; 2059 break; 2060 case BJ_Shadow: 2061 list = &transaction->t_shadow_list; 2062 break; 2063 case BJ_LogCtl: 2064 list = &transaction->t_log_list; 2065 break; 2066 case BJ_Reserved: 2067 list = &transaction->t_reserved_list; 2068 break; 2069 } 2070 2071 __blist_add_buffer(list, jh); 2072 jh->b_jlist = jlist; 2073 2074 if (was_dirty) 2075 set_buffer_jbddirty(bh); 2076 } 2077 2078 void jbd2_journal_file_buffer(struct journal_head *jh, 2079 transaction_t *transaction, int jlist) 2080 { 2081 jbd_lock_bh_state(jh2bh(jh)); 2082 spin_lock(&transaction->t_journal->j_list_lock); 2083 __jbd2_journal_file_buffer(jh, transaction, jlist); 2084 spin_unlock(&transaction->t_journal->j_list_lock); 2085 jbd_unlock_bh_state(jh2bh(jh)); 2086 } 2087 2088 /* 2089 * Remove a buffer from its current buffer list in preparation for 2090 * dropping it from its current transaction entirely. If the buffer has 2091 * already started to be used by a subsequent transaction, refile the 2092 * buffer on that transaction's metadata list. 2093 * 2094 * Called under j_list_lock 2095 * Called under jbd_lock_bh_state(jh2bh(jh)) 2096 * 2097 * jh and bh may be already free when this function returns 2098 */ 2099 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2100 { 2101 int was_dirty, jlist; 2102 struct buffer_head *bh = jh2bh(jh); 2103 2104 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2105 if (jh->b_transaction) 2106 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2107 2108 /* If the buffer is now unused, just drop it. */ 2109 if (jh->b_next_transaction == NULL) { 2110 __jbd2_journal_unfile_buffer(jh); 2111 return; 2112 } 2113 2114 /* 2115 * It has been modified by a later transaction: add it to the new 2116 * transaction's metadata list. 2117 */ 2118 2119 was_dirty = test_clear_buffer_jbddirty(bh); 2120 __jbd2_journal_temp_unlink_buffer(jh); 2121 /* 2122 * We set b_transaction here because b_next_transaction will inherit 2123 * our jh reference and thus __jbd2_journal_file_buffer() must not 2124 * take a new one. 2125 */ 2126 jh->b_transaction = jh->b_next_transaction; 2127 jh->b_next_transaction = NULL; 2128 if (buffer_freed(bh)) 2129 jlist = BJ_Forget; 2130 else if (jh->b_modified) 2131 jlist = BJ_Metadata; 2132 else 2133 jlist = BJ_Reserved; 2134 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2135 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2136 2137 if (was_dirty) 2138 set_buffer_jbddirty(bh); 2139 } 2140 2141 /* 2142 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2143 * bh reference so that we can safely unlock bh. 2144 * 2145 * The jh and bh may be freed by this call. 2146 */ 2147 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2148 { 2149 struct buffer_head *bh = jh2bh(jh); 2150 2151 /* Get reference so that buffer cannot be freed before we unlock it */ 2152 get_bh(bh); 2153 jbd_lock_bh_state(bh); 2154 spin_lock(&journal->j_list_lock); 2155 __jbd2_journal_refile_buffer(jh); 2156 jbd_unlock_bh_state(bh); 2157 spin_unlock(&journal->j_list_lock); 2158 __brelse(bh); 2159 } 2160 2161 /* 2162 * File inode in the inode list of the handle's transaction 2163 */ 2164 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2165 { 2166 transaction_t *transaction = handle->h_transaction; 2167 journal_t *journal = transaction->t_journal; 2168 2169 if (is_handle_aborted(handle)) 2170 return -EIO; 2171 2172 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2173 transaction->t_tid); 2174 2175 /* 2176 * First check whether inode isn't already on the transaction's 2177 * lists without taking the lock. Note that this check is safe 2178 * without the lock as we cannot race with somebody removing inode 2179 * from the transaction. The reason is that we remove inode from the 2180 * transaction only in journal_release_jbd_inode() and when we commit 2181 * the transaction. We are guarded from the first case by holding 2182 * a reference to the inode. We are safe against the second case 2183 * because if jinode->i_transaction == transaction, commit code 2184 * cannot touch the transaction because we hold reference to it, 2185 * and if jinode->i_next_transaction == transaction, commit code 2186 * will only file the inode where we want it. 2187 */ 2188 if (jinode->i_transaction == transaction || 2189 jinode->i_next_transaction == transaction) 2190 return 0; 2191 2192 spin_lock(&journal->j_list_lock); 2193 2194 if (jinode->i_transaction == transaction || 2195 jinode->i_next_transaction == transaction) 2196 goto done; 2197 2198 /* 2199 * We only ever set this variable to 1 so the test is safe. Since 2200 * t_need_data_flush is likely to be set, we do the test to save some 2201 * cacheline bouncing 2202 */ 2203 if (!transaction->t_need_data_flush) 2204 transaction->t_need_data_flush = 1; 2205 /* On some different transaction's list - should be 2206 * the committing one */ 2207 if (jinode->i_transaction) { 2208 J_ASSERT(jinode->i_next_transaction == NULL); 2209 J_ASSERT(jinode->i_transaction == 2210 journal->j_committing_transaction); 2211 jinode->i_next_transaction = transaction; 2212 goto done; 2213 } 2214 /* Not on any transaction list... */ 2215 J_ASSERT(!jinode->i_next_transaction); 2216 jinode->i_transaction = transaction; 2217 list_add(&jinode->i_list, &transaction->t_inode_list); 2218 done: 2219 spin_unlock(&journal->j_list_lock); 2220 2221 return 0; 2222 } 2223 2224 /* 2225 * File truncate and transaction commit interact with each other in a 2226 * non-trivial way. If a transaction writing data block A is 2227 * committing, we cannot discard the data by truncate until we have 2228 * written them. Otherwise if we crashed after the transaction with 2229 * write has committed but before the transaction with truncate has 2230 * committed, we could see stale data in block A. This function is a 2231 * helper to solve this problem. It starts writeout of the truncated 2232 * part in case it is in the committing transaction. 2233 * 2234 * Filesystem code must call this function when inode is journaled in 2235 * ordered mode before truncation happens and after the inode has been 2236 * placed on orphan list with the new inode size. The second condition 2237 * avoids the race that someone writes new data and we start 2238 * committing the transaction after this function has been called but 2239 * before a transaction for truncate is started (and furthermore it 2240 * allows us to optimize the case where the addition to orphan list 2241 * happens in the same transaction as write --- we don't have to write 2242 * any data in such case). 2243 */ 2244 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2245 struct jbd2_inode *jinode, 2246 loff_t new_size) 2247 { 2248 transaction_t *inode_trans, *commit_trans; 2249 int ret = 0; 2250 2251 /* This is a quick check to avoid locking if not necessary */ 2252 if (!jinode->i_transaction) 2253 goto out; 2254 /* Locks are here just to force reading of recent values, it is 2255 * enough that the transaction was not committing before we started 2256 * a transaction adding the inode to orphan list */ 2257 read_lock(&journal->j_state_lock); 2258 commit_trans = journal->j_committing_transaction; 2259 read_unlock(&journal->j_state_lock); 2260 spin_lock(&journal->j_list_lock); 2261 inode_trans = jinode->i_transaction; 2262 spin_unlock(&journal->j_list_lock); 2263 if (inode_trans == commit_trans) { 2264 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2265 new_size, LLONG_MAX); 2266 if (ret) 2267 jbd2_journal_abort(journal, ret); 2268 } 2269 out: 2270 return ret; 2271 } 2272