xref: /linux/fs/jbd2/transaction.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 /*
37  * jbd2_get_transaction: obtain a new transaction_t object.
38  *
39  * Simply allocate and initialise a new transaction.  Create it in
40  * RUNNING state and add it to the current journal (which should not
41  * have an existing running transaction: we only make a new transaction
42  * once we have started to commit the old one).
43  *
44  * Preconditions:
45  *	The journal MUST be locked.  We don't perform atomic mallocs on the
46  *	new transaction	and we can't block without protecting against other
47  *	processes trying to touch the journal while it is in transition.
48  *
49  */
50 
51 static transaction_t *
52 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
53 {
54 	transaction->t_journal = journal;
55 	transaction->t_state = T_RUNNING;
56 	transaction->t_start_time = ktime_get();
57 	transaction->t_tid = journal->j_transaction_sequence++;
58 	transaction->t_expires = jiffies + journal->j_commit_interval;
59 	spin_lock_init(&transaction->t_handle_lock);
60 	atomic_set(&transaction->t_updates, 0);
61 	atomic_set(&transaction->t_outstanding_credits, 0);
62 	atomic_set(&transaction->t_handle_count, 0);
63 	INIT_LIST_HEAD(&transaction->t_inode_list);
64 	INIT_LIST_HEAD(&transaction->t_private_list);
65 
66 	/* Set up the commit timer for the new transaction. */
67 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
68 	add_timer(&journal->j_commit_timer);
69 
70 	J_ASSERT(journal->j_running_transaction == NULL);
71 	journal->j_running_transaction = transaction;
72 	transaction->t_max_wait = 0;
73 	transaction->t_start = jiffies;
74 
75 	return transaction;
76 }
77 
78 /*
79  * Handle management.
80  *
81  * A handle_t is an object which represents a single atomic update to a
82  * filesystem, and which tracks all of the modifications which form part
83  * of that one update.
84  */
85 
86 /*
87  * Update transaction's maximum wait time, if debugging is enabled.
88  *
89  * In order for t_max_wait to be reliable, it must be protected by a
90  * lock.  But doing so will mean that start_this_handle() can not be
91  * run in parallel on SMP systems, which limits our scalability.  So
92  * unless debugging is enabled, we no longer update t_max_wait, which
93  * means that maximum wait time reported by the jbd2_run_stats
94  * tracepoint will always be zero.
95  */
96 static inline void update_t_max_wait(transaction_t *transaction,
97 				     unsigned long ts)
98 {
99 #ifdef CONFIG_JBD2_DEBUG
100 	if (jbd2_journal_enable_debug &&
101 	    time_after(transaction->t_start, ts)) {
102 		ts = jbd2_time_diff(ts, transaction->t_start);
103 		spin_lock(&transaction->t_handle_lock);
104 		if (ts > transaction->t_max_wait)
105 			transaction->t_max_wait = ts;
106 		spin_unlock(&transaction->t_handle_lock);
107 	}
108 #endif
109 }
110 
111 /*
112  * start_this_handle: Given a handle, deal with any locking or stalling
113  * needed to make sure that there is enough journal space for the handle
114  * to begin.  Attach the handle to a transaction and set up the
115  * transaction's buffer credits.
116  */
117 
118 static int start_this_handle(journal_t *journal, handle_t *handle,
119 			     gfp_t gfp_mask)
120 {
121 	transaction_t	*transaction, *new_transaction = NULL;
122 	tid_t		tid;
123 	int		needed, need_to_start;
124 	int		nblocks = handle->h_buffer_credits;
125 	unsigned long ts = jiffies;
126 
127 	if (nblocks > journal->j_max_transaction_buffers) {
128 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
129 		       current->comm, nblocks,
130 		       journal->j_max_transaction_buffers);
131 		return -ENOSPC;
132 	}
133 
134 alloc_transaction:
135 	if (!journal->j_running_transaction) {
136 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
137 		if (!new_transaction) {
138 			/*
139 			 * If __GFP_FS is not present, then we may be
140 			 * being called from inside the fs writeback
141 			 * layer, so we MUST NOT fail.  Since
142 			 * __GFP_NOFAIL is going away, we will arrange
143 			 * to retry the allocation ourselves.
144 			 */
145 			if ((gfp_mask & __GFP_FS) == 0) {
146 				congestion_wait(BLK_RW_ASYNC, HZ/50);
147 				goto alloc_transaction;
148 			}
149 			return -ENOMEM;
150 		}
151 	}
152 
153 	jbd_debug(3, "New handle %p going live.\n", handle);
154 
155 	/*
156 	 * We need to hold j_state_lock until t_updates has been incremented,
157 	 * for proper journal barrier handling
158 	 */
159 repeat:
160 	read_lock(&journal->j_state_lock);
161 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
162 	if (is_journal_aborted(journal) ||
163 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
164 		read_unlock(&journal->j_state_lock);
165 		kfree(new_transaction);
166 		return -EROFS;
167 	}
168 
169 	/* Wait on the journal's transaction barrier if necessary */
170 	if (journal->j_barrier_count) {
171 		read_unlock(&journal->j_state_lock);
172 		wait_event(journal->j_wait_transaction_locked,
173 				journal->j_barrier_count == 0);
174 		goto repeat;
175 	}
176 
177 	if (!journal->j_running_transaction) {
178 		read_unlock(&journal->j_state_lock);
179 		if (!new_transaction)
180 			goto alloc_transaction;
181 		write_lock(&journal->j_state_lock);
182 		if (!journal->j_running_transaction) {
183 			jbd2_get_transaction(journal, new_transaction);
184 			new_transaction = NULL;
185 		}
186 		write_unlock(&journal->j_state_lock);
187 		goto repeat;
188 	}
189 
190 	transaction = journal->j_running_transaction;
191 
192 	/*
193 	 * If the current transaction is locked down for commit, wait for the
194 	 * lock to be released.
195 	 */
196 	if (transaction->t_state == T_LOCKED) {
197 		DEFINE_WAIT(wait);
198 
199 		prepare_to_wait(&journal->j_wait_transaction_locked,
200 					&wait, TASK_UNINTERRUPTIBLE);
201 		read_unlock(&journal->j_state_lock);
202 		schedule();
203 		finish_wait(&journal->j_wait_transaction_locked, &wait);
204 		goto repeat;
205 	}
206 
207 	/*
208 	 * If there is not enough space left in the log to write all potential
209 	 * buffers requested by this operation, we need to stall pending a log
210 	 * checkpoint to free some more log space.
211 	 */
212 	needed = atomic_add_return(nblocks,
213 				   &transaction->t_outstanding_credits);
214 
215 	if (needed > journal->j_max_transaction_buffers) {
216 		/*
217 		 * If the current transaction is already too large, then start
218 		 * to commit it: we can then go back and attach this handle to
219 		 * a new transaction.
220 		 */
221 		DEFINE_WAIT(wait);
222 
223 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
224 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
225 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
226 				TASK_UNINTERRUPTIBLE);
227 		tid = transaction->t_tid;
228 		need_to_start = !tid_geq(journal->j_commit_request, tid);
229 		read_unlock(&journal->j_state_lock);
230 		if (need_to_start)
231 			jbd2_log_start_commit(journal, tid);
232 		schedule();
233 		finish_wait(&journal->j_wait_transaction_locked, &wait);
234 		goto repeat;
235 	}
236 
237 	/*
238 	 * The commit code assumes that it can get enough log space
239 	 * without forcing a checkpoint.  This is *critical* for
240 	 * correctness: a checkpoint of a buffer which is also
241 	 * associated with a committing transaction creates a deadlock,
242 	 * so commit simply cannot force through checkpoints.
243 	 *
244 	 * We must therefore ensure the necessary space in the journal
245 	 * *before* starting to dirty potentially checkpointed buffers
246 	 * in the new transaction.
247 	 *
248 	 * The worst part is, any transaction currently committing can
249 	 * reduce the free space arbitrarily.  Be careful to account for
250 	 * those buffers when checkpointing.
251 	 */
252 
253 	/*
254 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
255 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
256 	 * the committing transaction.  Really, we only need to give it
257 	 * committing_transaction->t_outstanding_credits plus "enough" for
258 	 * the log control blocks.
259 	 * Also, this test is inconsistent with the matching one in
260 	 * jbd2_journal_extend().
261 	 */
262 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
263 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
264 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
265 		read_unlock(&journal->j_state_lock);
266 		write_lock(&journal->j_state_lock);
267 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
268 			__jbd2_log_wait_for_space(journal);
269 		write_unlock(&journal->j_state_lock);
270 		goto repeat;
271 	}
272 
273 	/* OK, account for the buffers that this operation expects to
274 	 * use and add the handle to the running transaction.
275 	 */
276 	update_t_max_wait(transaction, ts);
277 	handle->h_transaction = transaction;
278 	atomic_inc(&transaction->t_updates);
279 	atomic_inc(&transaction->t_handle_count);
280 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
281 		  handle, nblocks,
282 		  atomic_read(&transaction->t_outstanding_credits),
283 		  __jbd2_log_space_left(journal));
284 	read_unlock(&journal->j_state_lock);
285 
286 	lock_map_acquire(&handle->h_lockdep_map);
287 	kfree(new_transaction);
288 	return 0;
289 }
290 
291 static struct lock_class_key jbd2_handle_key;
292 
293 /* Allocate a new handle.  This should probably be in a slab... */
294 static handle_t *new_handle(int nblocks)
295 {
296 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
297 	if (!handle)
298 		return NULL;
299 	memset(handle, 0, sizeof(*handle));
300 	handle->h_buffer_credits = nblocks;
301 	handle->h_ref = 1;
302 
303 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
304 						&jbd2_handle_key, 0);
305 
306 	return handle;
307 }
308 
309 /**
310  * handle_t *jbd2_journal_start() - Obtain a new handle.
311  * @journal: Journal to start transaction on.
312  * @nblocks: number of block buffer we might modify
313  *
314  * We make sure that the transaction can guarantee at least nblocks of
315  * modified buffers in the log.  We block until the log can guarantee
316  * that much space.
317  *
318  * This function is visible to journal users (like ext3fs), so is not
319  * called with the journal already locked.
320  *
321  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
322  * on failure.
323  */
324 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask)
325 {
326 	handle_t *handle = journal_current_handle();
327 	int err;
328 
329 	if (!journal)
330 		return ERR_PTR(-EROFS);
331 
332 	if (handle) {
333 		J_ASSERT(handle->h_transaction->t_journal == journal);
334 		handle->h_ref++;
335 		return handle;
336 	}
337 
338 	handle = new_handle(nblocks);
339 	if (!handle)
340 		return ERR_PTR(-ENOMEM);
341 
342 	current->journal_info = handle;
343 
344 	err = start_this_handle(journal, handle, gfp_mask);
345 	if (err < 0) {
346 		jbd2_free_handle(handle);
347 		current->journal_info = NULL;
348 		handle = ERR_PTR(err);
349 	}
350 	return handle;
351 }
352 EXPORT_SYMBOL(jbd2__journal_start);
353 
354 
355 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
356 {
357 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
358 }
359 EXPORT_SYMBOL(jbd2_journal_start);
360 
361 
362 /**
363  * int jbd2_journal_extend() - extend buffer credits.
364  * @handle:  handle to 'extend'
365  * @nblocks: nr blocks to try to extend by.
366  *
367  * Some transactions, such as large extends and truncates, can be done
368  * atomically all at once or in several stages.  The operation requests
369  * a credit for a number of buffer modications in advance, but can
370  * extend its credit if it needs more.
371  *
372  * jbd2_journal_extend tries to give the running handle more buffer credits.
373  * It does not guarantee that allocation - this is a best-effort only.
374  * The calling process MUST be able to deal cleanly with a failure to
375  * extend here.
376  *
377  * Return 0 on success, non-zero on failure.
378  *
379  * return code < 0 implies an error
380  * return code > 0 implies normal transaction-full status.
381  */
382 int jbd2_journal_extend(handle_t *handle, int nblocks)
383 {
384 	transaction_t *transaction = handle->h_transaction;
385 	journal_t *journal = transaction->t_journal;
386 	int result;
387 	int wanted;
388 
389 	result = -EIO;
390 	if (is_handle_aborted(handle))
391 		goto out;
392 
393 	result = 1;
394 
395 	read_lock(&journal->j_state_lock);
396 
397 	/* Don't extend a locked-down transaction! */
398 	if (handle->h_transaction->t_state != T_RUNNING) {
399 		jbd_debug(3, "denied handle %p %d blocks: "
400 			  "transaction not running\n", handle, nblocks);
401 		goto error_out;
402 	}
403 
404 	spin_lock(&transaction->t_handle_lock);
405 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
406 
407 	if (wanted > journal->j_max_transaction_buffers) {
408 		jbd_debug(3, "denied handle %p %d blocks: "
409 			  "transaction too large\n", handle, nblocks);
410 		goto unlock;
411 	}
412 
413 	if (wanted > __jbd2_log_space_left(journal)) {
414 		jbd_debug(3, "denied handle %p %d blocks: "
415 			  "insufficient log space\n", handle, nblocks);
416 		goto unlock;
417 	}
418 
419 	handle->h_buffer_credits += nblocks;
420 	atomic_add(nblocks, &transaction->t_outstanding_credits);
421 	result = 0;
422 
423 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
424 unlock:
425 	spin_unlock(&transaction->t_handle_lock);
426 error_out:
427 	read_unlock(&journal->j_state_lock);
428 out:
429 	return result;
430 }
431 
432 
433 /**
434  * int jbd2_journal_restart() - restart a handle .
435  * @handle:  handle to restart
436  * @nblocks: nr credits requested
437  *
438  * Restart a handle for a multi-transaction filesystem
439  * operation.
440  *
441  * If the jbd2_journal_extend() call above fails to grant new buffer credits
442  * to a running handle, a call to jbd2_journal_restart will commit the
443  * handle's transaction so far and reattach the handle to a new
444  * transaction capabable of guaranteeing the requested number of
445  * credits.
446  */
447 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
448 {
449 	transaction_t *transaction = handle->h_transaction;
450 	journal_t *journal = transaction->t_journal;
451 	tid_t		tid;
452 	int		need_to_start, ret;
453 
454 	/* If we've had an abort of any type, don't even think about
455 	 * actually doing the restart! */
456 	if (is_handle_aborted(handle))
457 		return 0;
458 
459 	/*
460 	 * First unlink the handle from its current transaction, and start the
461 	 * commit on that.
462 	 */
463 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
464 	J_ASSERT(journal_current_handle() == handle);
465 
466 	read_lock(&journal->j_state_lock);
467 	spin_lock(&transaction->t_handle_lock);
468 	atomic_sub(handle->h_buffer_credits,
469 		   &transaction->t_outstanding_credits);
470 	if (atomic_dec_and_test(&transaction->t_updates))
471 		wake_up(&journal->j_wait_updates);
472 	spin_unlock(&transaction->t_handle_lock);
473 
474 	jbd_debug(2, "restarting handle %p\n", handle);
475 	tid = transaction->t_tid;
476 	need_to_start = !tid_geq(journal->j_commit_request, tid);
477 	read_unlock(&journal->j_state_lock);
478 	if (need_to_start)
479 		jbd2_log_start_commit(journal, tid);
480 
481 	lock_map_release(&handle->h_lockdep_map);
482 	handle->h_buffer_credits = nblocks;
483 	ret = start_this_handle(journal, handle, gfp_mask);
484 	return ret;
485 }
486 EXPORT_SYMBOL(jbd2__journal_restart);
487 
488 
489 int jbd2_journal_restart(handle_t *handle, int nblocks)
490 {
491 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
492 }
493 EXPORT_SYMBOL(jbd2_journal_restart);
494 
495 /**
496  * void jbd2_journal_lock_updates () - establish a transaction barrier.
497  * @journal:  Journal to establish a barrier on.
498  *
499  * This locks out any further updates from being started, and blocks
500  * until all existing updates have completed, returning only once the
501  * journal is in a quiescent state with no updates running.
502  *
503  * The journal lock should not be held on entry.
504  */
505 void jbd2_journal_lock_updates(journal_t *journal)
506 {
507 	DEFINE_WAIT(wait);
508 
509 	write_lock(&journal->j_state_lock);
510 	++journal->j_barrier_count;
511 
512 	/* Wait until there are no running updates */
513 	while (1) {
514 		transaction_t *transaction = journal->j_running_transaction;
515 
516 		if (!transaction)
517 			break;
518 
519 		spin_lock(&transaction->t_handle_lock);
520 		if (!atomic_read(&transaction->t_updates)) {
521 			spin_unlock(&transaction->t_handle_lock);
522 			break;
523 		}
524 		prepare_to_wait(&journal->j_wait_updates, &wait,
525 				TASK_UNINTERRUPTIBLE);
526 		spin_unlock(&transaction->t_handle_lock);
527 		write_unlock(&journal->j_state_lock);
528 		schedule();
529 		finish_wait(&journal->j_wait_updates, &wait);
530 		write_lock(&journal->j_state_lock);
531 	}
532 	write_unlock(&journal->j_state_lock);
533 
534 	/*
535 	 * We have now established a barrier against other normal updates, but
536 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
537 	 * to make sure that we serialise special journal-locked operations
538 	 * too.
539 	 */
540 	mutex_lock(&journal->j_barrier);
541 }
542 
543 /**
544  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
545  * @journal:  Journal to release the barrier on.
546  *
547  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
548  *
549  * Should be called without the journal lock held.
550  */
551 void jbd2_journal_unlock_updates (journal_t *journal)
552 {
553 	J_ASSERT(journal->j_barrier_count != 0);
554 
555 	mutex_unlock(&journal->j_barrier);
556 	write_lock(&journal->j_state_lock);
557 	--journal->j_barrier_count;
558 	write_unlock(&journal->j_state_lock);
559 	wake_up(&journal->j_wait_transaction_locked);
560 }
561 
562 static void warn_dirty_buffer(struct buffer_head *bh)
563 {
564 	char b[BDEVNAME_SIZE];
565 
566 	printk(KERN_WARNING
567 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
568 	       "There's a risk of filesystem corruption in case of system "
569 	       "crash.\n",
570 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
571 }
572 
573 /*
574  * If the buffer is already part of the current transaction, then there
575  * is nothing we need to do.  If it is already part of a prior
576  * transaction which we are still committing to disk, then we need to
577  * make sure that we do not overwrite the old copy: we do copy-out to
578  * preserve the copy going to disk.  We also account the buffer against
579  * the handle's metadata buffer credits (unless the buffer is already
580  * part of the transaction, that is).
581  *
582  */
583 static int
584 do_get_write_access(handle_t *handle, struct journal_head *jh,
585 			int force_copy)
586 {
587 	struct buffer_head *bh;
588 	transaction_t *transaction;
589 	journal_t *journal;
590 	int error;
591 	char *frozen_buffer = NULL;
592 	int need_copy = 0;
593 
594 	if (is_handle_aborted(handle))
595 		return -EROFS;
596 
597 	transaction = handle->h_transaction;
598 	journal = transaction->t_journal;
599 
600 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
601 
602 	JBUFFER_TRACE(jh, "entry");
603 repeat:
604 	bh = jh2bh(jh);
605 
606 	/* @@@ Need to check for errors here at some point. */
607 
608 	lock_buffer(bh);
609 	jbd_lock_bh_state(bh);
610 
611 	/* We now hold the buffer lock so it is safe to query the buffer
612 	 * state.  Is the buffer dirty?
613 	 *
614 	 * If so, there are two possibilities.  The buffer may be
615 	 * non-journaled, and undergoing a quite legitimate writeback.
616 	 * Otherwise, it is journaled, and we don't expect dirty buffers
617 	 * in that state (the buffers should be marked JBD_Dirty
618 	 * instead.)  So either the IO is being done under our own
619 	 * control and this is a bug, or it's a third party IO such as
620 	 * dump(8) (which may leave the buffer scheduled for read ---
621 	 * ie. locked but not dirty) or tune2fs (which may actually have
622 	 * the buffer dirtied, ugh.)  */
623 
624 	if (buffer_dirty(bh)) {
625 		/*
626 		 * First question: is this buffer already part of the current
627 		 * transaction or the existing committing transaction?
628 		 */
629 		if (jh->b_transaction) {
630 			J_ASSERT_JH(jh,
631 				jh->b_transaction == transaction ||
632 				jh->b_transaction ==
633 					journal->j_committing_transaction);
634 			if (jh->b_next_transaction)
635 				J_ASSERT_JH(jh, jh->b_next_transaction ==
636 							transaction);
637 			warn_dirty_buffer(bh);
638 		}
639 		/*
640 		 * In any case we need to clean the dirty flag and we must
641 		 * do it under the buffer lock to be sure we don't race
642 		 * with running write-out.
643 		 */
644 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
645 		clear_buffer_dirty(bh);
646 		set_buffer_jbddirty(bh);
647 	}
648 
649 	unlock_buffer(bh);
650 
651 	error = -EROFS;
652 	if (is_handle_aborted(handle)) {
653 		jbd_unlock_bh_state(bh);
654 		goto out;
655 	}
656 	error = 0;
657 
658 	/*
659 	 * The buffer is already part of this transaction if b_transaction or
660 	 * b_next_transaction points to it
661 	 */
662 	if (jh->b_transaction == transaction ||
663 	    jh->b_next_transaction == transaction)
664 		goto done;
665 
666 	/*
667 	 * this is the first time this transaction is touching this buffer,
668 	 * reset the modified flag
669 	 */
670        jh->b_modified = 0;
671 
672 	/*
673 	 * If there is already a copy-out version of this buffer, then we don't
674 	 * need to make another one
675 	 */
676 	if (jh->b_frozen_data) {
677 		JBUFFER_TRACE(jh, "has frozen data");
678 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
679 		jh->b_next_transaction = transaction;
680 		goto done;
681 	}
682 
683 	/* Is there data here we need to preserve? */
684 
685 	if (jh->b_transaction && jh->b_transaction != transaction) {
686 		JBUFFER_TRACE(jh, "owned by older transaction");
687 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
688 		J_ASSERT_JH(jh, jh->b_transaction ==
689 					journal->j_committing_transaction);
690 
691 		/* There is one case we have to be very careful about.
692 		 * If the committing transaction is currently writing
693 		 * this buffer out to disk and has NOT made a copy-out,
694 		 * then we cannot modify the buffer contents at all
695 		 * right now.  The essence of copy-out is that it is the
696 		 * extra copy, not the primary copy, which gets
697 		 * journaled.  If the primary copy is already going to
698 		 * disk then we cannot do copy-out here. */
699 
700 		if (jh->b_jlist == BJ_Shadow) {
701 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
702 			wait_queue_head_t *wqh;
703 
704 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
705 
706 			JBUFFER_TRACE(jh, "on shadow: sleep");
707 			jbd_unlock_bh_state(bh);
708 			/* commit wakes up all shadow buffers after IO */
709 			for ( ; ; ) {
710 				prepare_to_wait(wqh, &wait.wait,
711 						TASK_UNINTERRUPTIBLE);
712 				if (jh->b_jlist != BJ_Shadow)
713 					break;
714 				schedule();
715 			}
716 			finish_wait(wqh, &wait.wait);
717 			goto repeat;
718 		}
719 
720 		/* Only do the copy if the currently-owning transaction
721 		 * still needs it.  If it is on the Forget list, the
722 		 * committing transaction is past that stage.  The
723 		 * buffer had better remain locked during the kmalloc,
724 		 * but that should be true --- we hold the journal lock
725 		 * still and the buffer is already on the BUF_JOURNAL
726 		 * list so won't be flushed.
727 		 *
728 		 * Subtle point, though: if this is a get_undo_access,
729 		 * then we will be relying on the frozen_data to contain
730 		 * the new value of the committed_data record after the
731 		 * transaction, so we HAVE to force the frozen_data copy
732 		 * in that case. */
733 
734 		if (jh->b_jlist != BJ_Forget || force_copy) {
735 			JBUFFER_TRACE(jh, "generate frozen data");
736 			if (!frozen_buffer) {
737 				JBUFFER_TRACE(jh, "allocate memory for buffer");
738 				jbd_unlock_bh_state(bh);
739 				frozen_buffer =
740 					jbd2_alloc(jh2bh(jh)->b_size,
741 							 GFP_NOFS);
742 				if (!frozen_buffer) {
743 					printk(KERN_EMERG
744 					       "%s: OOM for frozen_buffer\n",
745 					       __func__);
746 					JBUFFER_TRACE(jh, "oom!");
747 					error = -ENOMEM;
748 					jbd_lock_bh_state(bh);
749 					goto done;
750 				}
751 				goto repeat;
752 			}
753 			jh->b_frozen_data = frozen_buffer;
754 			frozen_buffer = NULL;
755 			need_copy = 1;
756 		}
757 		jh->b_next_transaction = transaction;
758 	}
759 
760 
761 	/*
762 	 * Finally, if the buffer is not journaled right now, we need to make
763 	 * sure it doesn't get written to disk before the caller actually
764 	 * commits the new data
765 	 */
766 	if (!jh->b_transaction) {
767 		JBUFFER_TRACE(jh, "no transaction");
768 		J_ASSERT_JH(jh, !jh->b_next_transaction);
769 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
770 		spin_lock(&journal->j_list_lock);
771 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
772 		spin_unlock(&journal->j_list_lock);
773 	}
774 
775 done:
776 	if (need_copy) {
777 		struct page *page;
778 		int offset;
779 		char *source;
780 
781 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
782 			    "Possible IO failure.\n");
783 		page = jh2bh(jh)->b_page;
784 		offset = offset_in_page(jh2bh(jh)->b_data);
785 		source = kmap_atomic(page, KM_USER0);
786 		/* Fire data frozen trigger just before we copy the data */
787 		jbd2_buffer_frozen_trigger(jh, source + offset,
788 					   jh->b_triggers);
789 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
790 		kunmap_atomic(source, KM_USER0);
791 
792 		/*
793 		 * Now that the frozen data is saved off, we need to store
794 		 * any matching triggers.
795 		 */
796 		jh->b_frozen_triggers = jh->b_triggers;
797 	}
798 	jbd_unlock_bh_state(bh);
799 
800 	/*
801 	 * If we are about to journal a buffer, then any revoke pending on it is
802 	 * no longer valid
803 	 */
804 	jbd2_journal_cancel_revoke(handle, jh);
805 
806 out:
807 	if (unlikely(frozen_buffer))	/* It's usually NULL */
808 		jbd2_free(frozen_buffer, bh->b_size);
809 
810 	JBUFFER_TRACE(jh, "exit");
811 	return error;
812 }
813 
814 /**
815  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
816  * @handle: transaction to add buffer modifications to
817  * @bh:     bh to be used for metadata writes
818  *
819  * Returns an error code or 0 on success.
820  *
821  * In full data journalling mode the buffer may be of type BJ_AsyncData,
822  * because we're write()ing a buffer which is also part of a shared mapping.
823  */
824 
825 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
826 {
827 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
828 	int rc;
829 
830 	/* We do not want to get caught playing with fields which the
831 	 * log thread also manipulates.  Make sure that the buffer
832 	 * completes any outstanding IO before proceeding. */
833 	rc = do_get_write_access(handle, jh, 0);
834 	jbd2_journal_put_journal_head(jh);
835 	return rc;
836 }
837 
838 
839 /*
840  * When the user wants to journal a newly created buffer_head
841  * (ie. getblk() returned a new buffer and we are going to populate it
842  * manually rather than reading off disk), then we need to keep the
843  * buffer_head locked until it has been completely filled with new
844  * data.  In this case, we should be able to make the assertion that
845  * the bh is not already part of an existing transaction.
846  *
847  * The buffer should already be locked by the caller by this point.
848  * There is no lock ranking violation: it was a newly created,
849  * unlocked buffer beforehand. */
850 
851 /**
852  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
853  * @handle: transaction to new buffer to
854  * @bh: new buffer.
855  *
856  * Call this if you create a new bh.
857  */
858 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
859 {
860 	transaction_t *transaction = handle->h_transaction;
861 	journal_t *journal = transaction->t_journal;
862 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
863 	int err;
864 
865 	jbd_debug(5, "journal_head %p\n", jh);
866 	err = -EROFS;
867 	if (is_handle_aborted(handle))
868 		goto out;
869 	err = 0;
870 
871 	JBUFFER_TRACE(jh, "entry");
872 	/*
873 	 * The buffer may already belong to this transaction due to pre-zeroing
874 	 * in the filesystem's new_block code.  It may also be on the previous,
875 	 * committing transaction's lists, but it HAS to be in Forget state in
876 	 * that case: the transaction must have deleted the buffer for it to be
877 	 * reused here.
878 	 */
879 	jbd_lock_bh_state(bh);
880 	spin_lock(&journal->j_list_lock);
881 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
882 		jh->b_transaction == NULL ||
883 		(jh->b_transaction == journal->j_committing_transaction &&
884 			  jh->b_jlist == BJ_Forget)));
885 
886 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
887 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
888 
889 	if (jh->b_transaction == NULL) {
890 		/*
891 		 * Previous jbd2_journal_forget() could have left the buffer
892 		 * with jbddirty bit set because it was being committed. When
893 		 * the commit finished, we've filed the buffer for
894 		 * checkpointing and marked it dirty. Now we are reallocating
895 		 * the buffer so the transaction freeing it must have
896 		 * committed and so it's safe to clear the dirty bit.
897 		 */
898 		clear_buffer_dirty(jh2bh(jh));
899 		/* first access by this transaction */
900 		jh->b_modified = 0;
901 
902 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
903 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
904 	} else if (jh->b_transaction == journal->j_committing_transaction) {
905 		/* first access by this transaction */
906 		jh->b_modified = 0;
907 
908 		JBUFFER_TRACE(jh, "set next transaction");
909 		jh->b_next_transaction = transaction;
910 	}
911 	spin_unlock(&journal->j_list_lock);
912 	jbd_unlock_bh_state(bh);
913 
914 	/*
915 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
916 	 * blocks which contain freed but then revoked metadata.  We need
917 	 * to cancel the revoke in case we end up freeing it yet again
918 	 * and the reallocating as data - this would cause a second revoke,
919 	 * which hits an assertion error.
920 	 */
921 	JBUFFER_TRACE(jh, "cancelling revoke");
922 	jbd2_journal_cancel_revoke(handle, jh);
923 out:
924 	jbd2_journal_put_journal_head(jh);
925 	return err;
926 }
927 
928 /**
929  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
930  *     non-rewindable consequences
931  * @handle: transaction
932  * @bh: buffer to undo
933  *
934  * Sometimes there is a need to distinguish between metadata which has
935  * been committed to disk and that which has not.  The ext3fs code uses
936  * this for freeing and allocating space, we have to make sure that we
937  * do not reuse freed space until the deallocation has been committed,
938  * since if we overwrote that space we would make the delete
939  * un-rewindable in case of a crash.
940  *
941  * To deal with that, jbd2_journal_get_undo_access requests write access to a
942  * buffer for parts of non-rewindable operations such as delete
943  * operations on the bitmaps.  The journaling code must keep a copy of
944  * the buffer's contents prior to the undo_access call until such time
945  * as we know that the buffer has definitely been committed to disk.
946  *
947  * We never need to know which transaction the committed data is part
948  * of, buffers touched here are guaranteed to be dirtied later and so
949  * will be committed to a new transaction in due course, at which point
950  * we can discard the old committed data pointer.
951  *
952  * Returns error number or 0 on success.
953  */
954 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
955 {
956 	int err;
957 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
958 	char *committed_data = NULL;
959 
960 	JBUFFER_TRACE(jh, "entry");
961 
962 	/*
963 	 * Do this first --- it can drop the journal lock, so we want to
964 	 * make sure that obtaining the committed_data is done
965 	 * atomically wrt. completion of any outstanding commits.
966 	 */
967 	err = do_get_write_access(handle, jh, 1);
968 	if (err)
969 		goto out;
970 
971 repeat:
972 	if (!jh->b_committed_data) {
973 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
974 		if (!committed_data) {
975 			printk(KERN_EMERG "%s: No memory for committed data\n",
976 				__func__);
977 			err = -ENOMEM;
978 			goto out;
979 		}
980 	}
981 
982 	jbd_lock_bh_state(bh);
983 	if (!jh->b_committed_data) {
984 		/* Copy out the current buffer contents into the
985 		 * preserved, committed copy. */
986 		JBUFFER_TRACE(jh, "generate b_committed data");
987 		if (!committed_data) {
988 			jbd_unlock_bh_state(bh);
989 			goto repeat;
990 		}
991 
992 		jh->b_committed_data = committed_data;
993 		committed_data = NULL;
994 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
995 	}
996 	jbd_unlock_bh_state(bh);
997 out:
998 	jbd2_journal_put_journal_head(jh);
999 	if (unlikely(committed_data))
1000 		jbd2_free(committed_data, bh->b_size);
1001 	return err;
1002 }
1003 
1004 /**
1005  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1006  * @bh: buffer to trigger on
1007  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1008  *
1009  * Set any triggers on this journal_head.  This is always safe, because
1010  * triggers for a committing buffer will be saved off, and triggers for
1011  * a running transaction will match the buffer in that transaction.
1012  *
1013  * Call with NULL to clear the triggers.
1014  */
1015 void jbd2_journal_set_triggers(struct buffer_head *bh,
1016 			       struct jbd2_buffer_trigger_type *type)
1017 {
1018 	struct journal_head *jh = bh2jh(bh);
1019 
1020 	jh->b_triggers = type;
1021 }
1022 
1023 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1024 				struct jbd2_buffer_trigger_type *triggers)
1025 {
1026 	struct buffer_head *bh = jh2bh(jh);
1027 
1028 	if (!triggers || !triggers->t_frozen)
1029 		return;
1030 
1031 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1032 }
1033 
1034 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1035 			       struct jbd2_buffer_trigger_type *triggers)
1036 {
1037 	if (!triggers || !triggers->t_abort)
1038 		return;
1039 
1040 	triggers->t_abort(triggers, jh2bh(jh));
1041 }
1042 
1043 
1044 
1045 /**
1046  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1047  * @handle: transaction to add buffer to.
1048  * @bh: buffer to mark
1049  *
1050  * mark dirty metadata which needs to be journaled as part of the current
1051  * transaction.
1052  *
1053  * The buffer must have previously had jbd2_journal_get_write_access()
1054  * called so that it has a valid journal_head attached to the buffer
1055  * head.
1056  *
1057  * The buffer is placed on the transaction's metadata list and is marked
1058  * as belonging to the transaction.
1059  *
1060  * Returns error number or 0 on success.
1061  *
1062  * Special care needs to be taken if the buffer already belongs to the
1063  * current committing transaction (in which case we should have frozen
1064  * data present for that commit).  In that case, we don't relink the
1065  * buffer: that only gets done when the old transaction finally
1066  * completes its commit.
1067  */
1068 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1069 {
1070 	transaction_t *transaction = handle->h_transaction;
1071 	journal_t *journal = transaction->t_journal;
1072 	struct journal_head *jh = bh2jh(bh);
1073 	int ret = 0;
1074 
1075 	jbd_debug(5, "journal_head %p\n", jh);
1076 	JBUFFER_TRACE(jh, "entry");
1077 	if (is_handle_aborted(handle))
1078 		goto out;
1079 	if (!buffer_jbd(bh)) {
1080 		ret = -EUCLEAN;
1081 		goto out;
1082 	}
1083 
1084 	jbd_lock_bh_state(bh);
1085 
1086 	if (jh->b_modified == 0) {
1087 		/*
1088 		 * This buffer's got modified and becoming part
1089 		 * of the transaction. This needs to be done
1090 		 * once a transaction -bzzz
1091 		 */
1092 		jh->b_modified = 1;
1093 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1094 		handle->h_buffer_credits--;
1095 	}
1096 
1097 	/*
1098 	 * fastpath, to avoid expensive locking.  If this buffer is already
1099 	 * on the running transaction's metadata list there is nothing to do.
1100 	 * Nobody can take it off again because there is a handle open.
1101 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1102 	 * result in this test being false, so we go in and take the locks.
1103 	 */
1104 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1105 		JBUFFER_TRACE(jh, "fastpath");
1106 		if (unlikely(jh->b_transaction !=
1107 			     journal->j_running_transaction)) {
1108 			printk(KERN_EMERG "JBD: %s: "
1109 			       "jh->b_transaction (%llu, %p, %u) != "
1110 			       "journal->j_running_transaction (%p, %u)",
1111 			       journal->j_devname,
1112 			       (unsigned long long) bh->b_blocknr,
1113 			       jh->b_transaction,
1114 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1115 			       journal->j_running_transaction,
1116 			       journal->j_running_transaction ?
1117 			       journal->j_running_transaction->t_tid : 0);
1118 			ret = -EINVAL;
1119 		}
1120 		goto out_unlock_bh;
1121 	}
1122 
1123 	set_buffer_jbddirty(bh);
1124 
1125 	/*
1126 	 * Metadata already on the current transaction list doesn't
1127 	 * need to be filed.  Metadata on another transaction's list must
1128 	 * be committing, and will be refiled once the commit completes:
1129 	 * leave it alone for now.
1130 	 */
1131 	if (jh->b_transaction != transaction) {
1132 		JBUFFER_TRACE(jh, "already on other transaction");
1133 		if (unlikely(jh->b_transaction !=
1134 			     journal->j_committing_transaction)) {
1135 			printk(KERN_EMERG "JBD: %s: "
1136 			       "jh->b_transaction (%llu, %p, %u) != "
1137 			       "journal->j_committing_transaction (%p, %u)",
1138 			       journal->j_devname,
1139 			       (unsigned long long) bh->b_blocknr,
1140 			       jh->b_transaction,
1141 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1142 			       journal->j_committing_transaction,
1143 			       journal->j_committing_transaction ?
1144 			       journal->j_committing_transaction->t_tid : 0);
1145 			ret = -EINVAL;
1146 		}
1147 		if (unlikely(jh->b_next_transaction != transaction)) {
1148 			printk(KERN_EMERG "JBD: %s: "
1149 			       "jh->b_next_transaction (%llu, %p, %u) != "
1150 			       "transaction (%p, %u)",
1151 			       journal->j_devname,
1152 			       (unsigned long long) bh->b_blocknr,
1153 			       jh->b_next_transaction,
1154 			       jh->b_next_transaction ?
1155 			       jh->b_next_transaction->t_tid : 0,
1156 			       transaction, transaction->t_tid);
1157 			ret = -EINVAL;
1158 		}
1159 		/* And this case is illegal: we can't reuse another
1160 		 * transaction's data buffer, ever. */
1161 		goto out_unlock_bh;
1162 	}
1163 
1164 	/* That test should have eliminated the following case: */
1165 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1166 
1167 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1168 	spin_lock(&journal->j_list_lock);
1169 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1170 	spin_unlock(&journal->j_list_lock);
1171 out_unlock_bh:
1172 	jbd_unlock_bh_state(bh);
1173 out:
1174 	JBUFFER_TRACE(jh, "exit");
1175 	WARN_ON(ret);	/* All errors are bugs, so dump the stack */
1176 	return ret;
1177 }
1178 
1179 /*
1180  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1181  * updates, if the update decided in the end that it didn't need access.
1182  *
1183  */
1184 void
1185 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1186 {
1187 	BUFFER_TRACE(bh, "entry");
1188 }
1189 
1190 /**
1191  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1192  * @handle: transaction handle
1193  * @bh:     bh to 'forget'
1194  *
1195  * We can only do the bforget if there are no commits pending against the
1196  * buffer.  If the buffer is dirty in the current running transaction we
1197  * can safely unlink it.
1198  *
1199  * bh may not be a journalled buffer at all - it may be a non-JBD
1200  * buffer which came off the hashtable.  Check for this.
1201  *
1202  * Decrements bh->b_count by one.
1203  *
1204  * Allow this call even if the handle has aborted --- it may be part of
1205  * the caller's cleanup after an abort.
1206  */
1207 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1208 {
1209 	transaction_t *transaction = handle->h_transaction;
1210 	journal_t *journal = transaction->t_journal;
1211 	struct journal_head *jh;
1212 	int drop_reserve = 0;
1213 	int err = 0;
1214 	int was_modified = 0;
1215 
1216 	BUFFER_TRACE(bh, "entry");
1217 
1218 	jbd_lock_bh_state(bh);
1219 	spin_lock(&journal->j_list_lock);
1220 
1221 	if (!buffer_jbd(bh))
1222 		goto not_jbd;
1223 	jh = bh2jh(bh);
1224 
1225 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1226 	 * Don't do any jbd operations, and return an error. */
1227 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1228 			 "inconsistent data on disk")) {
1229 		err = -EIO;
1230 		goto not_jbd;
1231 	}
1232 
1233 	/* keep track of wether or not this transaction modified us */
1234 	was_modified = jh->b_modified;
1235 
1236 	/*
1237 	 * The buffer's going from the transaction, we must drop
1238 	 * all references -bzzz
1239 	 */
1240 	jh->b_modified = 0;
1241 
1242 	if (jh->b_transaction == handle->h_transaction) {
1243 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1244 
1245 		/* If we are forgetting a buffer which is already part
1246 		 * of this transaction, then we can just drop it from
1247 		 * the transaction immediately. */
1248 		clear_buffer_dirty(bh);
1249 		clear_buffer_jbddirty(bh);
1250 
1251 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1252 
1253 		/*
1254 		 * we only want to drop a reference if this transaction
1255 		 * modified the buffer
1256 		 */
1257 		if (was_modified)
1258 			drop_reserve = 1;
1259 
1260 		/*
1261 		 * We are no longer going to journal this buffer.
1262 		 * However, the commit of this transaction is still
1263 		 * important to the buffer: the delete that we are now
1264 		 * processing might obsolete an old log entry, so by
1265 		 * committing, we can satisfy the buffer's checkpoint.
1266 		 *
1267 		 * So, if we have a checkpoint on the buffer, we should
1268 		 * now refile the buffer on our BJ_Forget list so that
1269 		 * we know to remove the checkpoint after we commit.
1270 		 */
1271 
1272 		if (jh->b_cp_transaction) {
1273 			__jbd2_journal_temp_unlink_buffer(jh);
1274 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1275 		} else {
1276 			__jbd2_journal_unfile_buffer(jh);
1277 			if (!buffer_jbd(bh)) {
1278 				spin_unlock(&journal->j_list_lock);
1279 				jbd_unlock_bh_state(bh);
1280 				__bforget(bh);
1281 				goto drop;
1282 			}
1283 		}
1284 	} else if (jh->b_transaction) {
1285 		J_ASSERT_JH(jh, (jh->b_transaction ==
1286 				 journal->j_committing_transaction));
1287 		/* However, if the buffer is still owned by a prior
1288 		 * (committing) transaction, we can't drop it yet... */
1289 		JBUFFER_TRACE(jh, "belongs to older transaction");
1290 		/* ... but we CAN drop it from the new transaction if we
1291 		 * have also modified it since the original commit. */
1292 
1293 		if (jh->b_next_transaction) {
1294 			J_ASSERT(jh->b_next_transaction == transaction);
1295 			jh->b_next_transaction = NULL;
1296 
1297 			/*
1298 			 * only drop a reference if this transaction modified
1299 			 * the buffer
1300 			 */
1301 			if (was_modified)
1302 				drop_reserve = 1;
1303 		}
1304 	}
1305 
1306 not_jbd:
1307 	spin_unlock(&journal->j_list_lock);
1308 	jbd_unlock_bh_state(bh);
1309 	__brelse(bh);
1310 drop:
1311 	if (drop_reserve) {
1312 		/* no need to reserve log space for this block -bzzz */
1313 		handle->h_buffer_credits++;
1314 	}
1315 	return err;
1316 }
1317 
1318 /**
1319  * int jbd2_journal_stop() - complete a transaction
1320  * @handle: tranaction to complete.
1321  *
1322  * All done for a particular handle.
1323  *
1324  * There is not much action needed here.  We just return any remaining
1325  * buffer credits to the transaction and remove the handle.  The only
1326  * complication is that we need to start a commit operation if the
1327  * filesystem is marked for synchronous update.
1328  *
1329  * jbd2_journal_stop itself will not usually return an error, but it may
1330  * do so in unusual circumstances.  In particular, expect it to
1331  * return -EIO if a jbd2_journal_abort has been executed since the
1332  * transaction began.
1333  */
1334 int jbd2_journal_stop(handle_t *handle)
1335 {
1336 	transaction_t *transaction = handle->h_transaction;
1337 	journal_t *journal = transaction->t_journal;
1338 	int err, wait_for_commit = 0;
1339 	tid_t tid;
1340 	pid_t pid;
1341 
1342 	J_ASSERT(journal_current_handle() == handle);
1343 
1344 	if (is_handle_aborted(handle))
1345 		err = -EIO;
1346 	else {
1347 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1348 		err = 0;
1349 	}
1350 
1351 	if (--handle->h_ref > 0) {
1352 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1353 			  handle->h_ref);
1354 		return err;
1355 	}
1356 
1357 	jbd_debug(4, "Handle %p going down\n", handle);
1358 
1359 	/*
1360 	 * Implement synchronous transaction batching.  If the handle
1361 	 * was synchronous, don't force a commit immediately.  Let's
1362 	 * yield and let another thread piggyback onto this
1363 	 * transaction.  Keep doing that while new threads continue to
1364 	 * arrive.  It doesn't cost much - we're about to run a commit
1365 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1366 	 * operations by 30x or more...
1367 	 *
1368 	 * We try and optimize the sleep time against what the
1369 	 * underlying disk can do, instead of having a static sleep
1370 	 * time.  This is useful for the case where our storage is so
1371 	 * fast that it is more optimal to go ahead and force a flush
1372 	 * and wait for the transaction to be committed than it is to
1373 	 * wait for an arbitrary amount of time for new writers to
1374 	 * join the transaction.  We achieve this by measuring how
1375 	 * long it takes to commit a transaction, and compare it with
1376 	 * how long this transaction has been running, and if run time
1377 	 * < commit time then we sleep for the delta and commit.  This
1378 	 * greatly helps super fast disks that would see slowdowns as
1379 	 * more threads started doing fsyncs.
1380 	 *
1381 	 * But don't do this if this process was the most recent one
1382 	 * to perform a synchronous write.  We do this to detect the
1383 	 * case where a single process is doing a stream of sync
1384 	 * writes.  No point in waiting for joiners in that case.
1385 	 */
1386 	pid = current->pid;
1387 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1388 		u64 commit_time, trans_time;
1389 
1390 		journal->j_last_sync_writer = pid;
1391 
1392 		read_lock(&journal->j_state_lock);
1393 		commit_time = journal->j_average_commit_time;
1394 		read_unlock(&journal->j_state_lock);
1395 
1396 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1397 						   transaction->t_start_time));
1398 
1399 		commit_time = max_t(u64, commit_time,
1400 				    1000*journal->j_min_batch_time);
1401 		commit_time = min_t(u64, commit_time,
1402 				    1000*journal->j_max_batch_time);
1403 
1404 		if (trans_time < commit_time) {
1405 			ktime_t expires = ktime_add_ns(ktime_get(),
1406 						       commit_time);
1407 			set_current_state(TASK_UNINTERRUPTIBLE);
1408 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1409 		}
1410 	}
1411 
1412 	if (handle->h_sync)
1413 		transaction->t_synchronous_commit = 1;
1414 	current->journal_info = NULL;
1415 	atomic_sub(handle->h_buffer_credits,
1416 		   &transaction->t_outstanding_credits);
1417 
1418 	/*
1419 	 * If the handle is marked SYNC, we need to set another commit
1420 	 * going!  We also want to force a commit if the current
1421 	 * transaction is occupying too much of the log, or if the
1422 	 * transaction is too old now.
1423 	 */
1424 	if (handle->h_sync ||
1425 	    (atomic_read(&transaction->t_outstanding_credits) >
1426 	     journal->j_max_transaction_buffers) ||
1427 	    time_after_eq(jiffies, transaction->t_expires)) {
1428 		/* Do this even for aborted journals: an abort still
1429 		 * completes the commit thread, it just doesn't write
1430 		 * anything to disk. */
1431 
1432 		jbd_debug(2, "transaction too old, requesting commit for "
1433 					"handle %p\n", handle);
1434 		/* This is non-blocking */
1435 		jbd2_log_start_commit(journal, transaction->t_tid);
1436 
1437 		/*
1438 		 * Special case: JBD2_SYNC synchronous updates require us
1439 		 * to wait for the commit to complete.
1440 		 */
1441 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1442 			wait_for_commit = 1;
1443 	}
1444 
1445 	/*
1446 	 * Once we drop t_updates, if it goes to zero the transaction
1447 	 * could start committing on us and eventually disappear.  So
1448 	 * once we do this, we must not dereference transaction
1449 	 * pointer again.
1450 	 */
1451 	tid = transaction->t_tid;
1452 	if (atomic_dec_and_test(&transaction->t_updates)) {
1453 		wake_up(&journal->j_wait_updates);
1454 		if (journal->j_barrier_count)
1455 			wake_up(&journal->j_wait_transaction_locked);
1456 	}
1457 
1458 	if (wait_for_commit)
1459 		err = jbd2_log_wait_commit(journal, tid);
1460 
1461 	lock_map_release(&handle->h_lockdep_map);
1462 
1463 	jbd2_free_handle(handle);
1464 	return err;
1465 }
1466 
1467 /**
1468  * int jbd2_journal_force_commit() - force any uncommitted transactions
1469  * @journal: journal to force
1470  *
1471  * For synchronous operations: force any uncommitted transactions
1472  * to disk.  May seem kludgy, but it reuses all the handle batching
1473  * code in a very simple manner.
1474  */
1475 int jbd2_journal_force_commit(journal_t *journal)
1476 {
1477 	handle_t *handle;
1478 	int ret;
1479 
1480 	handle = jbd2_journal_start(journal, 1);
1481 	if (IS_ERR(handle)) {
1482 		ret = PTR_ERR(handle);
1483 	} else {
1484 		handle->h_sync = 1;
1485 		ret = jbd2_journal_stop(handle);
1486 	}
1487 	return ret;
1488 }
1489 
1490 /*
1491  *
1492  * List management code snippets: various functions for manipulating the
1493  * transaction buffer lists.
1494  *
1495  */
1496 
1497 /*
1498  * Append a buffer to a transaction list, given the transaction's list head
1499  * pointer.
1500  *
1501  * j_list_lock is held.
1502  *
1503  * jbd_lock_bh_state(jh2bh(jh)) is held.
1504  */
1505 
1506 static inline void
1507 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1508 {
1509 	if (!*list) {
1510 		jh->b_tnext = jh->b_tprev = jh;
1511 		*list = jh;
1512 	} else {
1513 		/* Insert at the tail of the list to preserve order */
1514 		struct journal_head *first = *list, *last = first->b_tprev;
1515 		jh->b_tprev = last;
1516 		jh->b_tnext = first;
1517 		last->b_tnext = first->b_tprev = jh;
1518 	}
1519 }
1520 
1521 /*
1522  * Remove a buffer from a transaction list, given the transaction's list
1523  * head pointer.
1524  *
1525  * Called with j_list_lock held, and the journal may not be locked.
1526  *
1527  * jbd_lock_bh_state(jh2bh(jh)) is held.
1528  */
1529 
1530 static inline void
1531 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1532 {
1533 	if (*list == jh) {
1534 		*list = jh->b_tnext;
1535 		if (*list == jh)
1536 			*list = NULL;
1537 	}
1538 	jh->b_tprev->b_tnext = jh->b_tnext;
1539 	jh->b_tnext->b_tprev = jh->b_tprev;
1540 }
1541 
1542 /*
1543  * Remove a buffer from the appropriate transaction list.
1544  *
1545  * Note that this function can *change* the value of
1546  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1547  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1548  * of these pointers, it could go bad.  Generally the caller needs to re-read
1549  * the pointer from the transaction_t.
1550  *
1551  * Called under j_list_lock.  The journal may not be locked.
1552  */
1553 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1554 {
1555 	struct journal_head **list = NULL;
1556 	transaction_t *transaction;
1557 	struct buffer_head *bh = jh2bh(jh);
1558 
1559 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1560 	transaction = jh->b_transaction;
1561 	if (transaction)
1562 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1563 
1564 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1565 	if (jh->b_jlist != BJ_None)
1566 		J_ASSERT_JH(jh, transaction != NULL);
1567 
1568 	switch (jh->b_jlist) {
1569 	case BJ_None:
1570 		return;
1571 	case BJ_Metadata:
1572 		transaction->t_nr_buffers--;
1573 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1574 		list = &transaction->t_buffers;
1575 		break;
1576 	case BJ_Forget:
1577 		list = &transaction->t_forget;
1578 		break;
1579 	case BJ_IO:
1580 		list = &transaction->t_iobuf_list;
1581 		break;
1582 	case BJ_Shadow:
1583 		list = &transaction->t_shadow_list;
1584 		break;
1585 	case BJ_LogCtl:
1586 		list = &transaction->t_log_list;
1587 		break;
1588 	case BJ_Reserved:
1589 		list = &transaction->t_reserved_list;
1590 		break;
1591 	}
1592 
1593 	__blist_del_buffer(list, jh);
1594 	jh->b_jlist = BJ_None;
1595 	if (test_clear_buffer_jbddirty(bh))
1596 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1597 }
1598 
1599 /*
1600  * Remove buffer from all transactions.
1601  *
1602  * Called with bh_state lock and j_list_lock
1603  *
1604  * jh and bh may be already freed when this function returns.
1605  */
1606 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1607 {
1608 	__jbd2_journal_temp_unlink_buffer(jh);
1609 	jh->b_transaction = NULL;
1610 	jbd2_journal_put_journal_head(jh);
1611 }
1612 
1613 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1614 {
1615 	struct buffer_head *bh = jh2bh(jh);
1616 
1617 	/* Get reference so that buffer cannot be freed before we unlock it */
1618 	get_bh(bh);
1619 	jbd_lock_bh_state(bh);
1620 	spin_lock(&journal->j_list_lock);
1621 	__jbd2_journal_unfile_buffer(jh);
1622 	spin_unlock(&journal->j_list_lock);
1623 	jbd_unlock_bh_state(bh);
1624 	__brelse(bh);
1625 }
1626 
1627 /*
1628  * Called from jbd2_journal_try_to_free_buffers().
1629  *
1630  * Called under jbd_lock_bh_state(bh)
1631  */
1632 static void
1633 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1634 {
1635 	struct journal_head *jh;
1636 
1637 	jh = bh2jh(bh);
1638 
1639 	if (buffer_locked(bh) || buffer_dirty(bh))
1640 		goto out;
1641 
1642 	if (jh->b_next_transaction != NULL)
1643 		goto out;
1644 
1645 	spin_lock(&journal->j_list_lock);
1646 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1647 		/* written-back checkpointed metadata buffer */
1648 		if (jh->b_jlist == BJ_None) {
1649 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1650 			__jbd2_journal_remove_checkpoint(jh);
1651 		}
1652 	}
1653 	spin_unlock(&journal->j_list_lock);
1654 out:
1655 	return;
1656 }
1657 
1658 /**
1659  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1660  * @journal: journal for operation
1661  * @page: to try and free
1662  * @gfp_mask: we use the mask to detect how hard should we try to release
1663  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1664  * release the buffers.
1665  *
1666  *
1667  * For all the buffers on this page,
1668  * if they are fully written out ordered data, move them onto BUF_CLEAN
1669  * so try_to_free_buffers() can reap them.
1670  *
1671  * This function returns non-zero if we wish try_to_free_buffers()
1672  * to be called. We do this if the page is releasable by try_to_free_buffers().
1673  * We also do it if the page has locked or dirty buffers and the caller wants
1674  * us to perform sync or async writeout.
1675  *
1676  * This complicates JBD locking somewhat.  We aren't protected by the
1677  * BKL here.  We wish to remove the buffer from its committing or
1678  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1679  *
1680  * This may *change* the value of transaction_t->t_datalist, so anyone
1681  * who looks at t_datalist needs to lock against this function.
1682  *
1683  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1684  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1685  * will come out of the lock with the buffer dirty, which makes it
1686  * ineligible for release here.
1687  *
1688  * Who else is affected by this?  hmm...  Really the only contender
1689  * is do_get_write_access() - it could be looking at the buffer while
1690  * journal_try_to_free_buffer() is changing its state.  But that
1691  * cannot happen because we never reallocate freed data as metadata
1692  * while the data is part of a transaction.  Yes?
1693  *
1694  * Return 0 on failure, 1 on success
1695  */
1696 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1697 				struct page *page, gfp_t gfp_mask)
1698 {
1699 	struct buffer_head *head;
1700 	struct buffer_head *bh;
1701 	int ret = 0;
1702 
1703 	J_ASSERT(PageLocked(page));
1704 
1705 	head = page_buffers(page);
1706 	bh = head;
1707 	do {
1708 		struct journal_head *jh;
1709 
1710 		/*
1711 		 * We take our own ref against the journal_head here to avoid
1712 		 * having to add tons of locking around each instance of
1713 		 * jbd2_journal_put_journal_head().
1714 		 */
1715 		jh = jbd2_journal_grab_journal_head(bh);
1716 		if (!jh)
1717 			continue;
1718 
1719 		jbd_lock_bh_state(bh);
1720 		__journal_try_to_free_buffer(journal, bh);
1721 		jbd2_journal_put_journal_head(jh);
1722 		jbd_unlock_bh_state(bh);
1723 		if (buffer_jbd(bh))
1724 			goto busy;
1725 	} while ((bh = bh->b_this_page) != head);
1726 
1727 	ret = try_to_free_buffers(page);
1728 
1729 busy:
1730 	return ret;
1731 }
1732 
1733 /*
1734  * This buffer is no longer needed.  If it is on an older transaction's
1735  * checkpoint list we need to record it on this transaction's forget list
1736  * to pin this buffer (and hence its checkpointing transaction) down until
1737  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1738  * release it.
1739  * Returns non-zero if JBD no longer has an interest in the buffer.
1740  *
1741  * Called under j_list_lock.
1742  *
1743  * Called under jbd_lock_bh_state(bh).
1744  */
1745 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1746 {
1747 	int may_free = 1;
1748 	struct buffer_head *bh = jh2bh(jh);
1749 
1750 	if (jh->b_cp_transaction) {
1751 		JBUFFER_TRACE(jh, "on running+cp transaction");
1752 		__jbd2_journal_temp_unlink_buffer(jh);
1753 		/*
1754 		 * We don't want to write the buffer anymore, clear the
1755 		 * bit so that we don't confuse checks in
1756 		 * __journal_file_buffer
1757 		 */
1758 		clear_buffer_dirty(bh);
1759 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1760 		may_free = 0;
1761 	} else {
1762 		JBUFFER_TRACE(jh, "on running transaction");
1763 		__jbd2_journal_unfile_buffer(jh);
1764 	}
1765 	return may_free;
1766 }
1767 
1768 /*
1769  * jbd2_journal_invalidatepage
1770  *
1771  * This code is tricky.  It has a number of cases to deal with.
1772  *
1773  * There are two invariants which this code relies on:
1774  *
1775  * i_size must be updated on disk before we start calling invalidatepage on the
1776  * data.
1777  *
1778  *  This is done in ext3 by defining an ext3_setattr method which
1779  *  updates i_size before truncate gets going.  By maintaining this
1780  *  invariant, we can be sure that it is safe to throw away any buffers
1781  *  attached to the current transaction: once the transaction commits,
1782  *  we know that the data will not be needed.
1783  *
1784  *  Note however that we can *not* throw away data belonging to the
1785  *  previous, committing transaction!
1786  *
1787  * Any disk blocks which *are* part of the previous, committing
1788  * transaction (and which therefore cannot be discarded immediately) are
1789  * not going to be reused in the new running transaction
1790  *
1791  *  The bitmap committed_data images guarantee this: any block which is
1792  *  allocated in one transaction and removed in the next will be marked
1793  *  as in-use in the committed_data bitmap, so cannot be reused until
1794  *  the next transaction to delete the block commits.  This means that
1795  *  leaving committing buffers dirty is quite safe: the disk blocks
1796  *  cannot be reallocated to a different file and so buffer aliasing is
1797  *  not possible.
1798  *
1799  *
1800  * The above applies mainly to ordered data mode.  In writeback mode we
1801  * don't make guarantees about the order in which data hits disk --- in
1802  * particular we don't guarantee that new dirty data is flushed before
1803  * transaction commit --- so it is always safe just to discard data
1804  * immediately in that mode.  --sct
1805  */
1806 
1807 /*
1808  * The journal_unmap_buffer helper function returns zero if the buffer
1809  * concerned remains pinned as an anonymous buffer belonging to an older
1810  * transaction.
1811  *
1812  * We're outside-transaction here.  Either or both of j_running_transaction
1813  * and j_committing_transaction may be NULL.
1814  */
1815 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1816 {
1817 	transaction_t *transaction;
1818 	struct journal_head *jh;
1819 	int may_free = 1;
1820 	int ret;
1821 
1822 	BUFFER_TRACE(bh, "entry");
1823 
1824 	/*
1825 	 * It is safe to proceed here without the j_list_lock because the
1826 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1827 	 * holding the page lock. --sct
1828 	 */
1829 
1830 	if (!buffer_jbd(bh))
1831 		goto zap_buffer_unlocked;
1832 
1833 	/* OK, we have data buffer in journaled mode */
1834 	write_lock(&journal->j_state_lock);
1835 	jbd_lock_bh_state(bh);
1836 	spin_lock(&journal->j_list_lock);
1837 
1838 	jh = jbd2_journal_grab_journal_head(bh);
1839 	if (!jh)
1840 		goto zap_buffer_no_jh;
1841 
1842 	/*
1843 	 * We cannot remove the buffer from checkpoint lists until the
1844 	 * transaction adding inode to orphan list (let's call it T)
1845 	 * is committed.  Otherwise if the transaction changing the
1846 	 * buffer would be cleaned from the journal before T is
1847 	 * committed, a crash will cause that the correct contents of
1848 	 * the buffer will be lost.  On the other hand we have to
1849 	 * clear the buffer dirty bit at latest at the moment when the
1850 	 * transaction marking the buffer as freed in the filesystem
1851 	 * structures is committed because from that moment on the
1852 	 * buffer can be reallocated and used by a different page.
1853 	 * Since the block hasn't been freed yet but the inode has
1854 	 * already been added to orphan list, it is safe for us to add
1855 	 * the buffer to BJ_Forget list of the newest transaction.
1856 	 */
1857 	transaction = jh->b_transaction;
1858 	if (transaction == NULL) {
1859 		/* First case: not on any transaction.  If it
1860 		 * has no checkpoint link, then we can zap it:
1861 		 * it's a writeback-mode buffer so we don't care
1862 		 * if it hits disk safely. */
1863 		if (!jh->b_cp_transaction) {
1864 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1865 			goto zap_buffer;
1866 		}
1867 
1868 		if (!buffer_dirty(bh)) {
1869 			/* bdflush has written it.  We can drop it now */
1870 			goto zap_buffer;
1871 		}
1872 
1873 		/* OK, it must be in the journal but still not
1874 		 * written fully to disk: it's metadata or
1875 		 * journaled data... */
1876 
1877 		if (journal->j_running_transaction) {
1878 			/* ... and once the current transaction has
1879 			 * committed, the buffer won't be needed any
1880 			 * longer. */
1881 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1882 			ret = __dispose_buffer(jh,
1883 					journal->j_running_transaction);
1884 			jbd2_journal_put_journal_head(jh);
1885 			spin_unlock(&journal->j_list_lock);
1886 			jbd_unlock_bh_state(bh);
1887 			write_unlock(&journal->j_state_lock);
1888 			return ret;
1889 		} else {
1890 			/* There is no currently-running transaction. So the
1891 			 * orphan record which we wrote for this file must have
1892 			 * passed into commit.  We must attach this buffer to
1893 			 * the committing transaction, if it exists. */
1894 			if (journal->j_committing_transaction) {
1895 				JBUFFER_TRACE(jh, "give to committing trans");
1896 				ret = __dispose_buffer(jh,
1897 					journal->j_committing_transaction);
1898 				jbd2_journal_put_journal_head(jh);
1899 				spin_unlock(&journal->j_list_lock);
1900 				jbd_unlock_bh_state(bh);
1901 				write_unlock(&journal->j_state_lock);
1902 				return ret;
1903 			} else {
1904 				/* The orphan record's transaction has
1905 				 * committed.  We can cleanse this buffer */
1906 				clear_buffer_jbddirty(bh);
1907 				goto zap_buffer;
1908 			}
1909 		}
1910 	} else if (transaction == journal->j_committing_transaction) {
1911 		JBUFFER_TRACE(jh, "on committing transaction");
1912 		/*
1913 		 * The buffer is committing, we simply cannot touch
1914 		 * it. So we just set j_next_transaction to the
1915 		 * running transaction (if there is one) and mark
1916 		 * buffer as freed so that commit code knows it should
1917 		 * clear dirty bits when it is done with the buffer.
1918 		 */
1919 		set_buffer_freed(bh);
1920 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1921 			jh->b_next_transaction = journal->j_running_transaction;
1922 		jbd2_journal_put_journal_head(jh);
1923 		spin_unlock(&journal->j_list_lock);
1924 		jbd_unlock_bh_state(bh);
1925 		write_unlock(&journal->j_state_lock);
1926 		return 0;
1927 	} else {
1928 		/* Good, the buffer belongs to the running transaction.
1929 		 * We are writing our own transaction's data, not any
1930 		 * previous one's, so it is safe to throw it away
1931 		 * (remember that we expect the filesystem to have set
1932 		 * i_size already for this truncate so recovery will not
1933 		 * expose the disk blocks we are discarding here.) */
1934 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1935 		JBUFFER_TRACE(jh, "on running transaction");
1936 		may_free = __dispose_buffer(jh, transaction);
1937 	}
1938 
1939 zap_buffer:
1940 	jbd2_journal_put_journal_head(jh);
1941 zap_buffer_no_jh:
1942 	spin_unlock(&journal->j_list_lock);
1943 	jbd_unlock_bh_state(bh);
1944 	write_unlock(&journal->j_state_lock);
1945 zap_buffer_unlocked:
1946 	clear_buffer_dirty(bh);
1947 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1948 	clear_buffer_mapped(bh);
1949 	clear_buffer_req(bh);
1950 	clear_buffer_new(bh);
1951 	bh->b_bdev = NULL;
1952 	return may_free;
1953 }
1954 
1955 /**
1956  * void jbd2_journal_invalidatepage()
1957  * @journal: journal to use for flush...
1958  * @page:    page to flush
1959  * @offset:  length of page to invalidate.
1960  *
1961  * Reap page buffers containing data after offset in page.
1962  *
1963  */
1964 void jbd2_journal_invalidatepage(journal_t *journal,
1965 		      struct page *page,
1966 		      unsigned long offset)
1967 {
1968 	struct buffer_head *head, *bh, *next;
1969 	unsigned int curr_off = 0;
1970 	int may_free = 1;
1971 
1972 	if (!PageLocked(page))
1973 		BUG();
1974 	if (!page_has_buffers(page))
1975 		return;
1976 
1977 	/* We will potentially be playing with lists other than just the
1978 	 * data lists (especially for journaled data mode), so be
1979 	 * cautious in our locking. */
1980 
1981 	head = bh = page_buffers(page);
1982 	do {
1983 		unsigned int next_off = curr_off + bh->b_size;
1984 		next = bh->b_this_page;
1985 
1986 		if (offset <= curr_off) {
1987 			/* This block is wholly outside the truncation point */
1988 			lock_buffer(bh);
1989 			may_free &= journal_unmap_buffer(journal, bh);
1990 			unlock_buffer(bh);
1991 		}
1992 		curr_off = next_off;
1993 		bh = next;
1994 
1995 	} while (bh != head);
1996 
1997 	if (!offset) {
1998 		if (may_free && try_to_free_buffers(page))
1999 			J_ASSERT(!page_has_buffers(page));
2000 	}
2001 }
2002 
2003 /*
2004  * File a buffer on the given transaction list.
2005  */
2006 void __jbd2_journal_file_buffer(struct journal_head *jh,
2007 			transaction_t *transaction, int jlist)
2008 {
2009 	struct journal_head **list = NULL;
2010 	int was_dirty = 0;
2011 	struct buffer_head *bh = jh2bh(jh);
2012 
2013 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2014 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2015 
2016 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2017 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2018 				jh->b_transaction == NULL);
2019 
2020 	if (jh->b_transaction && jh->b_jlist == jlist)
2021 		return;
2022 
2023 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2024 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2025 		/*
2026 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2027 		 * instead of buffer_dirty. We should not see a dirty bit set
2028 		 * here because we clear it in do_get_write_access but e.g.
2029 		 * tune2fs can modify the sb and set the dirty bit at any time
2030 		 * so we try to gracefully handle that.
2031 		 */
2032 		if (buffer_dirty(bh))
2033 			warn_dirty_buffer(bh);
2034 		if (test_clear_buffer_dirty(bh) ||
2035 		    test_clear_buffer_jbddirty(bh))
2036 			was_dirty = 1;
2037 	}
2038 
2039 	if (jh->b_transaction)
2040 		__jbd2_journal_temp_unlink_buffer(jh);
2041 	else
2042 		jbd2_journal_grab_journal_head(bh);
2043 	jh->b_transaction = transaction;
2044 
2045 	switch (jlist) {
2046 	case BJ_None:
2047 		J_ASSERT_JH(jh, !jh->b_committed_data);
2048 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2049 		return;
2050 	case BJ_Metadata:
2051 		transaction->t_nr_buffers++;
2052 		list = &transaction->t_buffers;
2053 		break;
2054 	case BJ_Forget:
2055 		list = &transaction->t_forget;
2056 		break;
2057 	case BJ_IO:
2058 		list = &transaction->t_iobuf_list;
2059 		break;
2060 	case BJ_Shadow:
2061 		list = &transaction->t_shadow_list;
2062 		break;
2063 	case BJ_LogCtl:
2064 		list = &transaction->t_log_list;
2065 		break;
2066 	case BJ_Reserved:
2067 		list = &transaction->t_reserved_list;
2068 		break;
2069 	}
2070 
2071 	__blist_add_buffer(list, jh);
2072 	jh->b_jlist = jlist;
2073 
2074 	if (was_dirty)
2075 		set_buffer_jbddirty(bh);
2076 }
2077 
2078 void jbd2_journal_file_buffer(struct journal_head *jh,
2079 				transaction_t *transaction, int jlist)
2080 {
2081 	jbd_lock_bh_state(jh2bh(jh));
2082 	spin_lock(&transaction->t_journal->j_list_lock);
2083 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2084 	spin_unlock(&transaction->t_journal->j_list_lock);
2085 	jbd_unlock_bh_state(jh2bh(jh));
2086 }
2087 
2088 /*
2089  * Remove a buffer from its current buffer list in preparation for
2090  * dropping it from its current transaction entirely.  If the buffer has
2091  * already started to be used by a subsequent transaction, refile the
2092  * buffer on that transaction's metadata list.
2093  *
2094  * Called under j_list_lock
2095  * Called under jbd_lock_bh_state(jh2bh(jh))
2096  *
2097  * jh and bh may be already free when this function returns
2098  */
2099 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2100 {
2101 	int was_dirty, jlist;
2102 	struct buffer_head *bh = jh2bh(jh);
2103 
2104 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2105 	if (jh->b_transaction)
2106 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2107 
2108 	/* If the buffer is now unused, just drop it. */
2109 	if (jh->b_next_transaction == NULL) {
2110 		__jbd2_journal_unfile_buffer(jh);
2111 		return;
2112 	}
2113 
2114 	/*
2115 	 * It has been modified by a later transaction: add it to the new
2116 	 * transaction's metadata list.
2117 	 */
2118 
2119 	was_dirty = test_clear_buffer_jbddirty(bh);
2120 	__jbd2_journal_temp_unlink_buffer(jh);
2121 	/*
2122 	 * We set b_transaction here because b_next_transaction will inherit
2123 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2124 	 * take a new one.
2125 	 */
2126 	jh->b_transaction = jh->b_next_transaction;
2127 	jh->b_next_transaction = NULL;
2128 	if (buffer_freed(bh))
2129 		jlist = BJ_Forget;
2130 	else if (jh->b_modified)
2131 		jlist = BJ_Metadata;
2132 	else
2133 		jlist = BJ_Reserved;
2134 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2135 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2136 
2137 	if (was_dirty)
2138 		set_buffer_jbddirty(bh);
2139 }
2140 
2141 /*
2142  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2143  * bh reference so that we can safely unlock bh.
2144  *
2145  * The jh and bh may be freed by this call.
2146  */
2147 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2148 {
2149 	struct buffer_head *bh = jh2bh(jh);
2150 
2151 	/* Get reference so that buffer cannot be freed before we unlock it */
2152 	get_bh(bh);
2153 	jbd_lock_bh_state(bh);
2154 	spin_lock(&journal->j_list_lock);
2155 	__jbd2_journal_refile_buffer(jh);
2156 	jbd_unlock_bh_state(bh);
2157 	spin_unlock(&journal->j_list_lock);
2158 	__brelse(bh);
2159 }
2160 
2161 /*
2162  * File inode in the inode list of the handle's transaction
2163  */
2164 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2165 {
2166 	transaction_t *transaction = handle->h_transaction;
2167 	journal_t *journal = transaction->t_journal;
2168 
2169 	if (is_handle_aborted(handle))
2170 		return -EIO;
2171 
2172 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2173 			transaction->t_tid);
2174 
2175 	/*
2176 	 * First check whether inode isn't already on the transaction's
2177 	 * lists without taking the lock. Note that this check is safe
2178 	 * without the lock as we cannot race with somebody removing inode
2179 	 * from the transaction. The reason is that we remove inode from the
2180 	 * transaction only in journal_release_jbd_inode() and when we commit
2181 	 * the transaction. We are guarded from the first case by holding
2182 	 * a reference to the inode. We are safe against the second case
2183 	 * because if jinode->i_transaction == transaction, commit code
2184 	 * cannot touch the transaction because we hold reference to it,
2185 	 * and if jinode->i_next_transaction == transaction, commit code
2186 	 * will only file the inode where we want it.
2187 	 */
2188 	if (jinode->i_transaction == transaction ||
2189 	    jinode->i_next_transaction == transaction)
2190 		return 0;
2191 
2192 	spin_lock(&journal->j_list_lock);
2193 
2194 	if (jinode->i_transaction == transaction ||
2195 	    jinode->i_next_transaction == transaction)
2196 		goto done;
2197 
2198 	/*
2199 	 * We only ever set this variable to 1 so the test is safe. Since
2200 	 * t_need_data_flush is likely to be set, we do the test to save some
2201 	 * cacheline bouncing
2202 	 */
2203 	if (!transaction->t_need_data_flush)
2204 		transaction->t_need_data_flush = 1;
2205 	/* On some different transaction's list - should be
2206 	 * the committing one */
2207 	if (jinode->i_transaction) {
2208 		J_ASSERT(jinode->i_next_transaction == NULL);
2209 		J_ASSERT(jinode->i_transaction ==
2210 					journal->j_committing_transaction);
2211 		jinode->i_next_transaction = transaction;
2212 		goto done;
2213 	}
2214 	/* Not on any transaction list... */
2215 	J_ASSERT(!jinode->i_next_transaction);
2216 	jinode->i_transaction = transaction;
2217 	list_add(&jinode->i_list, &transaction->t_inode_list);
2218 done:
2219 	spin_unlock(&journal->j_list_lock);
2220 
2221 	return 0;
2222 }
2223 
2224 /*
2225  * File truncate and transaction commit interact with each other in a
2226  * non-trivial way.  If a transaction writing data block A is
2227  * committing, we cannot discard the data by truncate until we have
2228  * written them.  Otherwise if we crashed after the transaction with
2229  * write has committed but before the transaction with truncate has
2230  * committed, we could see stale data in block A.  This function is a
2231  * helper to solve this problem.  It starts writeout of the truncated
2232  * part in case it is in the committing transaction.
2233  *
2234  * Filesystem code must call this function when inode is journaled in
2235  * ordered mode before truncation happens and after the inode has been
2236  * placed on orphan list with the new inode size. The second condition
2237  * avoids the race that someone writes new data and we start
2238  * committing the transaction after this function has been called but
2239  * before a transaction for truncate is started (and furthermore it
2240  * allows us to optimize the case where the addition to orphan list
2241  * happens in the same transaction as write --- we don't have to write
2242  * any data in such case).
2243  */
2244 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2245 					struct jbd2_inode *jinode,
2246 					loff_t new_size)
2247 {
2248 	transaction_t *inode_trans, *commit_trans;
2249 	int ret = 0;
2250 
2251 	/* This is a quick check to avoid locking if not necessary */
2252 	if (!jinode->i_transaction)
2253 		goto out;
2254 	/* Locks are here just to force reading of recent values, it is
2255 	 * enough that the transaction was not committing before we started
2256 	 * a transaction adding the inode to orphan list */
2257 	read_lock(&journal->j_state_lock);
2258 	commit_trans = journal->j_committing_transaction;
2259 	read_unlock(&journal->j_state_lock);
2260 	spin_lock(&journal->j_list_lock);
2261 	inode_trans = jinode->i_transaction;
2262 	spin_unlock(&journal->j_list_lock);
2263 	if (inode_trans == commit_trans) {
2264 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2265 			new_size, LLONG_MAX);
2266 		if (ret)
2267 			jbd2_journal_abort(journal, ret);
2268 	}
2269 out:
2270 	return ret;
2271 }
2272