1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 31 32 /* 33 * jbd2_get_transaction: obtain a new transaction_t object. 34 * 35 * Simply allocate and initialise a new transaction. Create it in 36 * RUNNING state and add it to the current journal (which should not 37 * have an existing running transaction: we only make a new transaction 38 * once we have started to commit the old one). 39 * 40 * Preconditions: 41 * The journal MUST be locked. We don't perform atomic mallocs on the 42 * new transaction and we can't block without protecting against other 43 * processes trying to touch the journal while it is in transition. 44 * 45 */ 46 47 static transaction_t * 48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 49 { 50 transaction->t_journal = journal; 51 transaction->t_state = T_RUNNING; 52 transaction->t_start_time = ktime_get(); 53 transaction->t_tid = journal->j_transaction_sequence++; 54 transaction->t_expires = jiffies + journal->j_commit_interval; 55 spin_lock_init(&transaction->t_handle_lock); 56 INIT_LIST_HEAD(&transaction->t_inode_list); 57 INIT_LIST_HEAD(&transaction->t_private_list); 58 59 /* Set up the commit timer for the new transaction. */ 60 journal->j_commit_timer.expires = round_jiffies(transaction->t_expires); 61 add_timer(&journal->j_commit_timer); 62 63 J_ASSERT(journal->j_running_transaction == NULL); 64 journal->j_running_transaction = transaction; 65 transaction->t_max_wait = 0; 66 transaction->t_start = jiffies; 67 68 return transaction; 69 } 70 71 /* 72 * Handle management. 73 * 74 * A handle_t is an object which represents a single atomic update to a 75 * filesystem, and which tracks all of the modifications which form part 76 * of that one update. 77 */ 78 79 /* 80 * start_this_handle: Given a handle, deal with any locking or stalling 81 * needed to make sure that there is enough journal space for the handle 82 * to begin. Attach the handle to a transaction and set up the 83 * transaction's buffer credits. 84 */ 85 86 static int start_this_handle(journal_t *journal, handle_t *handle) 87 { 88 transaction_t *transaction; 89 int needed; 90 int nblocks = handle->h_buffer_credits; 91 transaction_t *new_transaction = NULL; 92 int ret = 0; 93 unsigned long ts = jiffies; 94 95 if (nblocks > journal->j_max_transaction_buffers) { 96 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 97 current->comm, nblocks, 98 journal->j_max_transaction_buffers); 99 ret = -ENOSPC; 100 goto out; 101 } 102 103 alloc_transaction: 104 if (!journal->j_running_transaction) { 105 new_transaction = kzalloc(sizeof(*new_transaction), 106 GFP_NOFS|__GFP_NOFAIL); 107 if (!new_transaction) { 108 ret = -ENOMEM; 109 goto out; 110 } 111 } 112 113 jbd_debug(3, "New handle %p going live.\n", handle); 114 115 repeat: 116 117 /* 118 * We need to hold j_state_lock until t_updates has been incremented, 119 * for proper journal barrier handling 120 */ 121 spin_lock(&journal->j_state_lock); 122 repeat_locked: 123 if (is_journal_aborted(journal) || 124 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 125 spin_unlock(&journal->j_state_lock); 126 ret = -EROFS; 127 goto out; 128 } 129 130 /* Wait on the journal's transaction barrier if necessary */ 131 if (journal->j_barrier_count) { 132 spin_unlock(&journal->j_state_lock); 133 wait_event(journal->j_wait_transaction_locked, 134 journal->j_barrier_count == 0); 135 goto repeat; 136 } 137 138 if (!journal->j_running_transaction) { 139 if (!new_transaction) { 140 spin_unlock(&journal->j_state_lock); 141 goto alloc_transaction; 142 } 143 jbd2_get_transaction(journal, new_transaction); 144 new_transaction = NULL; 145 } 146 147 transaction = journal->j_running_transaction; 148 149 /* 150 * If the current transaction is locked down for commit, wait for the 151 * lock to be released. 152 */ 153 if (transaction->t_state == T_LOCKED) { 154 DEFINE_WAIT(wait); 155 156 prepare_to_wait(&journal->j_wait_transaction_locked, 157 &wait, TASK_UNINTERRUPTIBLE); 158 spin_unlock(&journal->j_state_lock); 159 schedule(); 160 finish_wait(&journal->j_wait_transaction_locked, &wait); 161 goto repeat; 162 } 163 164 /* 165 * If there is not enough space left in the log to write all potential 166 * buffers requested by this operation, we need to stall pending a log 167 * checkpoint to free some more log space. 168 */ 169 spin_lock(&transaction->t_handle_lock); 170 needed = transaction->t_outstanding_credits + nblocks; 171 172 if (needed > journal->j_max_transaction_buffers) { 173 /* 174 * If the current transaction is already too large, then start 175 * to commit it: we can then go back and attach this handle to 176 * a new transaction. 177 */ 178 DEFINE_WAIT(wait); 179 180 jbd_debug(2, "Handle %p starting new commit...\n", handle); 181 spin_unlock(&transaction->t_handle_lock); 182 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 183 TASK_UNINTERRUPTIBLE); 184 __jbd2_log_start_commit(journal, transaction->t_tid); 185 spin_unlock(&journal->j_state_lock); 186 schedule(); 187 finish_wait(&journal->j_wait_transaction_locked, &wait); 188 goto repeat; 189 } 190 191 /* 192 * The commit code assumes that it can get enough log space 193 * without forcing a checkpoint. This is *critical* for 194 * correctness: a checkpoint of a buffer which is also 195 * associated with a committing transaction creates a deadlock, 196 * so commit simply cannot force through checkpoints. 197 * 198 * We must therefore ensure the necessary space in the journal 199 * *before* starting to dirty potentially checkpointed buffers 200 * in the new transaction. 201 * 202 * The worst part is, any transaction currently committing can 203 * reduce the free space arbitrarily. Be careful to account for 204 * those buffers when checkpointing. 205 */ 206 207 /* 208 * @@@ AKPM: This seems rather over-defensive. We're giving commit 209 * a _lot_ of headroom: 1/4 of the journal plus the size of 210 * the committing transaction. Really, we only need to give it 211 * committing_transaction->t_outstanding_credits plus "enough" for 212 * the log control blocks. 213 * Also, this test is inconsitent with the matching one in 214 * jbd2_journal_extend(). 215 */ 216 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 217 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 218 spin_unlock(&transaction->t_handle_lock); 219 __jbd2_log_wait_for_space(journal); 220 goto repeat_locked; 221 } 222 223 /* OK, account for the buffers that this operation expects to 224 * use and add the handle to the running transaction. */ 225 226 if (time_after(transaction->t_start, ts)) { 227 ts = jbd2_time_diff(ts, transaction->t_start); 228 if (ts > transaction->t_max_wait) 229 transaction->t_max_wait = ts; 230 } 231 232 handle->h_transaction = transaction; 233 transaction->t_outstanding_credits += nblocks; 234 transaction->t_updates++; 235 transaction->t_handle_count++; 236 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 237 handle, nblocks, transaction->t_outstanding_credits, 238 __jbd2_log_space_left(journal)); 239 spin_unlock(&transaction->t_handle_lock); 240 spin_unlock(&journal->j_state_lock); 241 out: 242 if (unlikely(new_transaction)) /* It's usually NULL */ 243 kfree(new_transaction); 244 return ret; 245 } 246 247 static struct lock_class_key jbd2_handle_key; 248 249 /* Allocate a new handle. This should probably be in a slab... */ 250 static handle_t *new_handle(int nblocks) 251 { 252 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 253 if (!handle) 254 return NULL; 255 memset(handle, 0, sizeof(*handle)); 256 handle->h_buffer_credits = nblocks; 257 handle->h_ref = 1; 258 259 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 260 &jbd2_handle_key, 0); 261 262 return handle; 263 } 264 265 /** 266 * handle_t *jbd2_journal_start() - Obtain a new handle. 267 * @journal: Journal to start transaction on. 268 * @nblocks: number of block buffer we might modify 269 * 270 * We make sure that the transaction can guarantee at least nblocks of 271 * modified buffers in the log. We block until the log can guarantee 272 * that much space. 273 * 274 * This function is visible to journal users (like ext3fs), so is not 275 * called with the journal already locked. 276 * 277 * Return a pointer to a newly allocated handle, or NULL on failure 278 */ 279 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 280 { 281 handle_t *handle = journal_current_handle(); 282 int err; 283 284 if (!journal) 285 return ERR_PTR(-EROFS); 286 287 if (handle) { 288 J_ASSERT(handle->h_transaction->t_journal == journal); 289 handle->h_ref++; 290 return handle; 291 } 292 293 handle = new_handle(nblocks); 294 if (!handle) 295 return ERR_PTR(-ENOMEM); 296 297 current->journal_info = handle; 298 299 err = start_this_handle(journal, handle); 300 if (err < 0) { 301 jbd2_free_handle(handle); 302 current->journal_info = NULL; 303 handle = ERR_PTR(err); 304 goto out; 305 } 306 307 lock_map_acquire(&handle->h_lockdep_map); 308 out: 309 return handle; 310 } 311 312 /** 313 * int jbd2_journal_extend() - extend buffer credits. 314 * @handle: handle to 'extend' 315 * @nblocks: nr blocks to try to extend by. 316 * 317 * Some transactions, such as large extends and truncates, can be done 318 * atomically all at once or in several stages. The operation requests 319 * a credit for a number of buffer modications in advance, but can 320 * extend its credit if it needs more. 321 * 322 * jbd2_journal_extend tries to give the running handle more buffer credits. 323 * It does not guarantee that allocation - this is a best-effort only. 324 * The calling process MUST be able to deal cleanly with a failure to 325 * extend here. 326 * 327 * Return 0 on success, non-zero on failure. 328 * 329 * return code < 0 implies an error 330 * return code > 0 implies normal transaction-full status. 331 */ 332 int jbd2_journal_extend(handle_t *handle, int nblocks) 333 { 334 transaction_t *transaction = handle->h_transaction; 335 journal_t *journal = transaction->t_journal; 336 int result; 337 int wanted; 338 339 result = -EIO; 340 if (is_handle_aborted(handle)) 341 goto out; 342 343 result = 1; 344 345 spin_lock(&journal->j_state_lock); 346 347 /* Don't extend a locked-down transaction! */ 348 if (handle->h_transaction->t_state != T_RUNNING) { 349 jbd_debug(3, "denied handle %p %d blocks: " 350 "transaction not running\n", handle, nblocks); 351 goto error_out; 352 } 353 354 spin_lock(&transaction->t_handle_lock); 355 wanted = transaction->t_outstanding_credits + nblocks; 356 357 if (wanted > journal->j_max_transaction_buffers) { 358 jbd_debug(3, "denied handle %p %d blocks: " 359 "transaction too large\n", handle, nblocks); 360 goto unlock; 361 } 362 363 if (wanted > __jbd2_log_space_left(journal)) { 364 jbd_debug(3, "denied handle %p %d blocks: " 365 "insufficient log space\n", handle, nblocks); 366 goto unlock; 367 } 368 369 handle->h_buffer_credits += nblocks; 370 transaction->t_outstanding_credits += nblocks; 371 result = 0; 372 373 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 374 unlock: 375 spin_unlock(&transaction->t_handle_lock); 376 error_out: 377 spin_unlock(&journal->j_state_lock); 378 out: 379 return result; 380 } 381 382 383 /** 384 * int jbd2_journal_restart() - restart a handle . 385 * @handle: handle to restart 386 * @nblocks: nr credits requested 387 * 388 * Restart a handle for a multi-transaction filesystem 389 * operation. 390 * 391 * If the jbd2_journal_extend() call above fails to grant new buffer credits 392 * to a running handle, a call to jbd2_journal_restart will commit the 393 * handle's transaction so far and reattach the handle to a new 394 * transaction capabable of guaranteeing the requested number of 395 * credits. 396 */ 397 398 int jbd2_journal_restart(handle_t *handle, int nblocks) 399 { 400 transaction_t *transaction = handle->h_transaction; 401 journal_t *journal = transaction->t_journal; 402 int ret; 403 404 /* If we've had an abort of any type, don't even think about 405 * actually doing the restart! */ 406 if (is_handle_aborted(handle)) 407 return 0; 408 409 /* 410 * First unlink the handle from its current transaction, and start the 411 * commit on that. 412 */ 413 J_ASSERT(transaction->t_updates > 0); 414 J_ASSERT(journal_current_handle() == handle); 415 416 spin_lock(&journal->j_state_lock); 417 spin_lock(&transaction->t_handle_lock); 418 transaction->t_outstanding_credits -= handle->h_buffer_credits; 419 transaction->t_updates--; 420 421 if (!transaction->t_updates) 422 wake_up(&journal->j_wait_updates); 423 spin_unlock(&transaction->t_handle_lock); 424 425 jbd_debug(2, "restarting handle %p\n", handle); 426 __jbd2_log_start_commit(journal, transaction->t_tid); 427 spin_unlock(&journal->j_state_lock); 428 429 handle->h_buffer_credits = nblocks; 430 ret = start_this_handle(journal, handle); 431 return ret; 432 } 433 434 435 /** 436 * void jbd2_journal_lock_updates () - establish a transaction barrier. 437 * @journal: Journal to establish a barrier on. 438 * 439 * This locks out any further updates from being started, and blocks 440 * until all existing updates have completed, returning only once the 441 * journal is in a quiescent state with no updates running. 442 * 443 * The journal lock should not be held on entry. 444 */ 445 void jbd2_journal_lock_updates(journal_t *journal) 446 { 447 DEFINE_WAIT(wait); 448 449 spin_lock(&journal->j_state_lock); 450 ++journal->j_barrier_count; 451 452 /* Wait until there are no running updates */ 453 while (1) { 454 transaction_t *transaction = journal->j_running_transaction; 455 456 if (!transaction) 457 break; 458 459 spin_lock(&transaction->t_handle_lock); 460 if (!transaction->t_updates) { 461 spin_unlock(&transaction->t_handle_lock); 462 break; 463 } 464 prepare_to_wait(&journal->j_wait_updates, &wait, 465 TASK_UNINTERRUPTIBLE); 466 spin_unlock(&transaction->t_handle_lock); 467 spin_unlock(&journal->j_state_lock); 468 schedule(); 469 finish_wait(&journal->j_wait_updates, &wait); 470 spin_lock(&journal->j_state_lock); 471 } 472 spin_unlock(&journal->j_state_lock); 473 474 /* 475 * We have now established a barrier against other normal updates, but 476 * we also need to barrier against other jbd2_journal_lock_updates() calls 477 * to make sure that we serialise special journal-locked operations 478 * too. 479 */ 480 mutex_lock(&journal->j_barrier); 481 } 482 483 /** 484 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 485 * @journal: Journal to release the barrier on. 486 * 487 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 488 * 489 * Should be called without the journal lock held. 490 */ 491 void jbd2_journal_unlock_updates (journal_t *journal) 492 { 493 J_ASSERT(journal->j_barrier_count != 0); 494 495 mutex_unlock(&journal->j_barrier); 496 spin_lock(&journal->j_state_lock); 497 --journal->j_barrier_count; 498 spin_unlock(&journal->j_state_lock); 499 wake_up(&journal->j_wait_transaction_locked); 500 } 501 502 static void warn_dirty_buffer(struct buffer_head *bh) 503 { 504 char b[BDEVNAME_SIZE]; 505 506 printk(KERN_WARNING 507 "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 508 "There's a risk of filesystem corruption in case of system " 509 "crash.\n", 510 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 511 } 512 513 /* 514 * If the buffer is already part of the current transaction, then there 515 * is nothing we need to do. If it is already part of a prior 516 * transaction which we are still committing to disk, then we need to 517 * make sure that we do not overwrite the old copy: we do copy-out to 518 * preserve the copy going to disk. We also account the buffer against 519 * the handle's metadata buffer credits (unless the buffer is already 520 * part of the transaction, that is). 521 * 522 */ 523 static int 524 do_get_write_access(handle_t *handle, struct journal_head *jh, 525 int force_copy) 526 { 527 struct buffer_head *bh; 528 transaction_t *transaction; 529 journal_t *journal; 530 int error; 531 char *frozen_buffer = NULL; 532 int need_copy = 0; 533 534 if (is_handle_aborted(handle)) 535 return -EROFS; 536 537 transaction = handle->h_transaction; 538 journal = transaction->t_journal; 539 540 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy); 541 542 JBUFFER_TRACE(jh, "entry"); 543 repeat: 544 bh = jh2bh(jh); 545 546 /* @@@ Need to check for errors here at some point. */ 547 548 lock_buffer(bh); 549 jbd_lock_bh_state(bh); 550 551 /* We now hold the buffer lock so it is safe to query the buffer 552 * state. Is the buffer dirty? 553 * 554 * If so, there are two possibilities. The buffer may be 555 * non-journaled, and undergoing a quite legitimate writeback. 556 * Otherwise, it is journaled, and we don't expect dirty buffers 557 * in that state (the buffers should be marked JBD_Dirty 558 * instead.) So either the IO is being done under our own 559 * control and this is a bug, or it's a third party IO such as 560 * dump(8) (which may leave the buffer scheduled for read --- 561 * ie. locked but not dirty) or tune2fs (which may actually have 562 * the buffer dirtied, ugh.) */ 563 564 if (buffer_dirty(bh)) { 565 /* 566 * First question: is this buffer already part of the current 567 * transaction or the existing committing transaction? 568 */ 569 if (jh->b_transaction) { 570 J_ASSERT_JH(jh, 571 jh->b_transaction == transaction || 572 jh->b_transaction == 573 journal->j_committing_transaction); 574 if (jh->b_next_transaction) 575 J_ASSERT_JH(jh, jh->b_next_transaction == 576 transaction); 577 warn_dirty_buffer(bh); 578 } 579 /* 580 * In any case we need to clean the dirty flag and we must 581 * do it under the buffer lock to be sure we don't race 582 * with running write-out. 583 */ 584 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 585 clear_buffer_dirty(bh); 586 set_buffer_jbddirty(bh); 587 } 588 589 unlock_buffer(bh); 590 591 error = -EROFS; 592 if (is_handle_aborted(handle)) { 593 jbd_unlock_bh_state(bh); 594 goto out; 595 } 596 error = 0; 597 598 /* 599 * The buffer is already part of this transaction if b_transaction or 600 * b_next_transaction points to it 601 */ 602 if (jh->b_transaction == transaction || 603 jh->b_next_transaction == transaction) 604 goto done; 605 606 /* 607 * this is the first time this transaction is touching this buffer, 608 * reset the modified flag 609 */ 610 jh->b_modified = 0; 611 612 /* 613 * If there is already a copy-out version of this buffer, then we don't 614 * need to make another one 615 */ 616 if (jh->b_frozen_data) { 617 JBUFFER_TRACE(jh, "has frozen data"); 618 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 619 jh->b_next_transaction = transaction; 620 goto done; 621 } 622 623 /* Is there data here we need to preserve? */ 624 625 if (jh->b_transaction && jh->b_transaction != transaction) { 626 JBUFFER_TRACE(jh, "owned by older transaction"); 627 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 628 J_ASSERT_JH(jh, jh->b_transaction == 629 journal->j_committing_transaction); 630 631 /* There is one case we have to be very careful about. 632 * If the committing transaction is currently writing 633 * this buffer out to disk and has NOT made a copy-out, 634 * then we cannot modify the buffer contents at all 635 * right now. The essence of copy-out is that it is the 636 * extra copy, not the primary copy, which gets 637 * journaled. If the primary copy is already going to 638 * disk then we cannot do copy-out here. */ 639 640 if (jh->b_jlist == BJ_Shadow) { 641 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 642 wait_queue_head_t *wqh; 643 644 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 645 646 JBUFFER_TRACE(jh, "on shadow: sleep"); 647 jbd_unlock_bh_state(bh); 648 /* commit wakes up all shadow buffers after IO */ 649 for ( ; ; ) { 650 prepare_to_wait(wqh, &wait.wait, 651 TASK_UNINTERRUPTIBLE); 652 if (jh->b_jlist != BJ_Shadow) 653 break; 654 schedule(); 655 } 656 finish_wait(wqh, &wait.wait); 657 goto repeat; 658 } 659 660 /* Only do the copy if the currently-owning transaction 661 * still needs it. If it is on the Forget list, the 662 * committing transaction is past that stage. The 663 * buffer had better remain locked during the kmalloc, 664 * but that should be true --- we hold the journal lock 665 * still and the buffer is already on the BUF_JOURNAL 666 * list so won't be flushed. 667 * 668 * Subtle point, though: if this is a get_undo_access, 669 * then we will be relying on the frozen_data to contain 670 * the new value of the committed_data record after the 671 * transaction, so we HAVE to force the frozen_data copy 672 * in that case. */ 673 674 if (jh->b_jlist != BJ_Forget || force_copy) { 675 JBUFFER_TRACE(jh, "generate frozen data"); 676 if (!frozen_buffer) { 677 JBUFFER_TRACE(jh, "allocate memory for buffer"); 678 jbd_unlock_bh_state(bh); 679 frozen_buffer = 680 jbd2_alloc(jh2bh(jh)->b_size, 681 GFP_NOFS); 682 if (!frozen_buffer) { 683 printk(KERN_EMERG 684 "%s: OOM for frozen_buffer\n", 685 __func__); 686 JBUFFER_TRACE(jh, "oom!"); 687 error = -ENOMEM; 688 jbd_lock_bh_state(bh); 689 goto done; 690 } 691 goto repeat; 692 } 693 jh->b_frozen_data = frozen_buffer; 694 frozen_buffer = NULL; 695 need_copy = 1; 696 } 697 jh->b_next_transaction = transaction; 698 } 699 700 701 /* 702 * Finally, if the buffer is not journaled right now, we need to make 703 * sure it doesn't get written to disk before the caller actually 704 * commits the new data 705 */ 706 if (!jh->b_transaction) { 707 JBUFFER_TRACE(jh, "no transaction"); 708 J_ASSERT_JH(jh, !jh->b_next_transaction); 709 jh->b_transaction = transaction; 710 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 711 spin_lock(&journal->j_list_lock); 712 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 713 spin_unlock(&journal->j_list_lock); 714 } 715 716 done: 717 if (need_copy) { 718 struct page *page; 719 int offset; 720 char *source; 721 722 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 723 "Possible IO failure.\n"); 724 page = jh2bh(jh)->b_page; 725 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK; 726 source = kmap_atomic(page, KM_USER0); 727 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 728 kunmap_atomic(source, KM_USER0); 729 730 /* 731 * Now that the frozen data is saved off, we need to store 732 * any matching triggers. 733 */ 734 jh->b_frozen_triggers = jh->b_triggers; 735 } 736 jbd_unlock_bh_state(bh); 737 738 /* 739 * If we are about to journal a buffer, then any revoke pending on it is 740 * no longer valid 741 */ 742 jbd2_journal_cancel_revoke(handle, jh); 743 744 out: 745 if (unlikely(frozen_buffer)) /* It's usually NULL */ 746 jbd2_free(frozen_buffer, bh->b_size); 747 748 JBUFFER_TRACE(jh, "exit"); 749 return error; 750 } 751 752 /** 753 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 754 * @handle: transaction to add buffer modifications to 755 * @bh: bh to be used for metadata writes 756 * @credits: variable that will receive credits for the buffer 757 * 758 * Returns an error code or 0 on success. 759 * 760 * In full data journalling mode the buffer may be of type BJ_AsyncData, 761 * because we're write()ing a buffer which is also part of a shared mapping. 762 */ 763 764 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 765 { 766 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 767 int rc; 768 769 /* We do not want to get caught playing with fields which the 770 * log thread also manipulates. Make sure that the buffer 771 * completes any outstanding IO before proceeding. */ 772 rc = do_get_write_access(handle, jh, 0); 773 jbd2_journal_put_journal_head(jh); 774 return rc; 775 } 776 777 778 /* 779 * When the user wants to journal a newly created buffer_head 780 * (ie. getblk() returned a new buffer and we are going to populate it 781 * manually rather than reading off disk), then we need to keep the 782 * buffer_head locked until it has been completely filled with new 783 * data. In this case, we should be able to make the assertion that 784 * the bh is not already part of an existing transaction. 785 * 786 * The buffer should already be locked by the caller by this point. 787 * There is no lock ranking violation: it was a newly created, 788 * unlocked buffer beforehand. */ 789 790 /** 791 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 792 * @handle: transaction to new buffer to 793 * @bh: new buffer. 794 * 795 * Call this if you create a new bh. 796 */ 797 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 798 { 799 transaction_t *transaction = handle->h_transaction; 800 journal_t *journal = transaction->t_journal; 801 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 802 int err; 803 804 jbd_debug(5, "journal_head %p\n", jh); 805 err = -EROFS; 806 if (is_handle_aborted(handle)) 807 goto out; 808 err = 0; 809 810 JBUFFER_TRACE(jh, "entry"); 811 /* 812 * The buffer may already belong to this transaction due to pre-zeroing 813 * in the filesystem's new_block code. It may also be on the previous, 814 * committing transaction's lists, but it HAS to be in Forget state in 815 * that case: the transaction must have deleted the buffer for it to be 816 * reused here. 817 */ 818 jbd_lock_bh_state(bh); 819 spin_lock(&journal->j_list_lock); 820 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 821 jh->b_transaction == NULL || 822 (jh->b_transaction == journal->j_committing_transaction && 823 jh->b_jlist == BJ_Forget))); 824 825 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 826 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 827 828 if (jh->b_transaction == NULL) { 829 /* 830 * Previous jbd2_journal_forget() could have left the buffer 831 * with jbddirty bit set because it was being committed. When 832 * the commit finished, we've filed the buffer for 833 * checkpointing and marked it dirty. Now we are reallocating 834 * the buffer so the transaction freeing it must have 835 * committed and so it's safe to clear the dirty bit. 836 */ 837 clear_buffer_dirty(jh2bh(jh)); 838 jh->b_transaction = transaction; 839 840 /* first access by this transaction */ 841 jh->b_modified = 0; 842 843 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 844 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 845 } else if (jh->b_transaction == journal->j_committing_transaction) { 846 /* first access by this transaction */ 847 jh->b_modified = 0; 848 849 JBUFFER_TRACE(jh, "set next transaction"); 850 jh->b_next_transaction = transaction; 851 } 852 spin_unlock(&journal->j_list_lock); 853 jbd_unlock_bh_state(bh); 854 855 /* 856 * akpm: I added this. ext3_alloc_branch can pick up new indirect 857 * blocks which contain freed but then revoked metadata. We need 858 * to cancel the revoke in case we end up freeing it yet again 859 * and the reallocating as data - this would cause a second revoke, 860 * which hits an assertion error. 861 */ 862 JBUFFER_TRACE(jh, "cancelling revoke"); 863 jbd2_journal_cancel_revoke(handle, jh); 864 jbd2_journal_put_journal_head(jh); 865 out: 866 return err; 867 } 868 869 /** 870 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 871 * non-rewindable consequences 872 * @handle: transaction 873 * @bh: buffer to undo 874 * @credits: store the number of taken credits here (if not NULL) 875 * 876 * Sometimes there is a need to distinguish between metadata which has 877 * been committed to disk and that which has not. The ext3fs code uses 878 * this for freeing and allocating space, we have to make sure that we 879 * do not reuse freed space until the deallocation has been committed, 880 * since if we overwrote that space we would make the delete 881 * un-rewindable in case of a crash. 882 * 883 * To deal with that, jbd2_journal_get_undo_access requests write access to a 884 * buffer for parts of non-rewindable operations such as delete 885 * operations on the bitmaps. The journaling code must keep a copy of 886 * the buffer's contents prior to the undo_access call until such time 887 * as we know that the buffer has definitely been committed to disk. 888 * 889 * We never need to know which transaction the committed data is part 890 * of, buffers touched here are guaranteed to be dirtied later and so 891 * will be committed to a new transaction in due course, at which point 892 * we can discard the old committed data pointer. 893 * 894 * Returns error number or 0 on success. 895 */ 896 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 897 { 898 int err; 899 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 900 char *committed_data = NULL; 901 902 JBUFFER_TRACE(jh, "entry"); 903 904 /* 905 * Do this first --- it can drop the journal lock, so we want to 906 * make sure that obtaining the committed_data is done 907 * atomically wrt. completion of any outstanding commits. 908 */ 909 err = do_get_write_access(handle, jh, 1); 910 if (err) 911 goto out; 912 913 repeat: 914 if (!jh->b_committed_data) { 915 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 916 if (!committed_data) { 917 printk(KERN_EMERG "%s: No memory for committed data\n", 918 __func__); 919 err = -ENOMEM; 920 goto out; 921 } 922 } 923 924 jbd_lock_bh_state(bh); 925 if (!jh->b_committed_data) { 926 /* Copy out the current buffer contents into the 927 * preserved, committed copy. */ 928 JBUFFER_TRACE(jh, "generate b_committed data"); 929 if (!committed_data) { 930 jbd_unlock_bh_state(bh); 931 goto repeat; 932 } 933 934 jh->b_committed_data = committed_data; 935 committed_data = NULL; 936 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 937 } 938 jbd_unlock_bh_state(bh); 939 out: 940 jbd2_journal_put_journal_head(jh); 941 if (unlikely(committed_data)) 942 jbd2_free(committed_data, bh->b_size); 943 return err; 944 } 945 946 /** 947 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 948 * @bh: buffer to trigger on 949 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 950 * 951 * Set any triggers on this journal_head. This is always safe, because 952 * triggers for a committing buffer will be saved off, and triggers for 953 * a running transaction will match the buffer in that transaction. 954 * 955 * Call with NULL to clear the triggers. 956 */ 957 void jbd2_journal_set_triggers(struct buffer_head *bh, 958 struct jbd2_buffer_trigger_type *type) 959 { 960 struct journal_head *jh = bh2jh(bh); 961 962 jh->b_triggers = type; 963 } 964 965 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data, 966 struct jbd2_buffer_trigger_type *triggers) 967 { 968 struct buffer_head *bh = jh2bh(jh); 969 970 if (!triggers || !triggers->t_commit) 971 return; 972 973 triggers->t_commit(triggers, bh, mapped_data, bh->b_size); 974 } 975 976 void jbd2_buffer_abort_trigger(struct journal_head *jh, 977 struct jbd2_buffer_trigger_type *triggers) 978 { 979 if (!triggers || !triggers->t_abort) 980 return; 981 982 triggers->t_abort(triggers, jh2bh(jh)); 983 } 984 985 986 987 /** 988 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 989 * @handle: transaction to add buffer to. 990 * @bh: buffer to mark 991 * 992 * mark dirty metadata which needs to be journaled as part of the current 993 * transaction. 994 * 995 * The buffer is placed on the transaction's metadata list and is marked 996 * as belonging to the transaction. 997 * 998 * Returns error number or 0 on success. 999 * 1000 * Special care needs to be taken if the buffer already belongs to the 1001 * current committing transaction (in which case we should have frozen 1002 * data present for that commit). In that case, we don't relink the 1003 * buffer: that only gets done when the old transaction finally 1004 * completes its commit. 1005 */ 1006 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1007 { 1008 transaction_t *transaction = handle->h_transaction; 1009 journal_t *journal = transaction->t_journal; 1010 struct journal_head *jh = bh2jh(bh); 1011 1012 jbd_debug(5, "journal_head %p\n", jh); 1013 JBUFFER_TRACE(jh, "entry"); 1014 if (is_handle_aborted(handle)) 1015 goto out; 1016 1017 jbd_lock_bh_state(bh); 1018 1019 if (jh->b_modified == 0) { 1020 /* 1021 * This buffer's got modified and becoming part 1022 * of the transaction. This needs to be done 1023 * once a transaction -bzzz 1024 */ 1025 jh->b_modified = 1; 1026 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1027 handle->h_buffer_credits--; 1028 } 1029 1030 /* 1031 * fastpath, to avoid expensive locking. If this buffer is already 1032 * on the running transaction's metadata list there is nothing to do. 1033 * Nobody can take it off again because there is a handle open. 1034 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1035 * result in this test being false, so we go in and take the locks. 1036 */ 1037 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1038 JBUFFER_TRACE(jh, "fastpath"); 1039 J_ASSERT_JH(jh, jh->b_transaction == 1040 journal->j_running_transaction); 1041 goto out_unlock_bh; 1042 } 1043 1044 set_buffer_jbddirty(bh); 1045 1046 /* 1047 * Metadata already on the current transaction list doesn't 1048 * need to be filed. Metadata on another transaction's list must 1049 * be committing, and will be refiled once the commit completes: 1050 * leave it alone for now. 1051 */ 1052 if (jh->b_transaction != transaction) { 1053 JBUFFER_TRACE(jh, "already on other transaction"); 1054 J_ASSERT_JH(jh, jh->b_transaction == 1055 journal->j_committing_transaction); 1056 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1057 /* And this case is illegal: we can't reuse another 1058 * transaction's data buffer, ever. */ 1059 goto out_unlock_bh; 1060 } 1061 1062 /* That test should have eliminated the following case: */ 1063 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1064 1065 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1066 spin_lock(&journal->j_list_lock); 1067 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1068 spin_unlock(&journal->j_list_lock); 1069 out_unlock_bh: 1070 jbd_unlock_bh_state(bh); 1071 out: 1072 JBUFFER_TRACE(jh, "exit"); 1073 return 0; 1074 } 1075 1076 /* 1077 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1078 * updates, if the update decided in the end that it didn't need access. 1079 * 1080 */ 1081 void 1082 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1083 { 1084 BUFFER_TRACE(bh, "entry"); 1085 } 1086 1087 /** 1088 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1089 * @handle: transaction handle 1090 * @bh: bh to 'forget' 1091 * 1092 * We can only do the bforget if there are no commits pending against the 1093 * buffer. If the buffer is dirty in the current running transaction we 1094 * can safely unlink it. 1095 * 1096 * bh may not be a journalled buffer at all - it may be a non-JBD 1097 * buffer which came off the hashtable. Check for this. 1098 * 1099 * Decrements bh->b_count by one. 1100 * 1101 * Allow this call even if the handle has aborted --- it may be part of 1102 * the caller's cleanup after an abort. 1103 */ 1104 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1105 { 1106 transaction_t *transaction = handle->h_transaction; 1107 journal_t *journal = transaction->t_journal; 1108 struct journal_head *jh; 1109 int drop_reserve = 0; 1110 int err = 0; 1111 int was_modified = 0; 1112 1113 BUFFER_TRACE(bh, "entry"); 1114 1115 jbd_lock_bh_state(bh); 1116 spin_lock(&journal->j_list_lock); 1117 1118 if (!buffer_jbd(bh)) 1119 goto not_jbd; 1120 jh = bh2jh(bh); 1121 1122 /* Critical error: attempting to delete a bitmap buffer, maybe? 1123 * Don't do any jbd operations, and return an error. */ 1124 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1125 "inconsistent data on disk")) { 1126 err = -EIO; 1127 goto not_jbd; 1128 } 1129 1130 /* keep track of wether or not this transaction modified us */ 1131 was_modified = jh->b_modified; 1132 1133 /* 1134 * The buffer's going from the transaction, we must drop 1135 * all references -bzzz 1136 */ 1137 jh->b_modified = 0; 1138 1139 if (jh->b_transaction == handle->h_transaction) { 1140 J_ASSERT_JH(jh, !jh->b_frozen_data); 1141 1142 /* If we are forgetting a buffer which is already part 1143 * of this transaction, then we can just drop it from 1144 * the transaction immediately. */ 1145 clear_buffer_dirty(bh); 1146 clear_buffer_jbddirty(bh); 1147 1148 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1149 1150 /* 1151 * we only want to drop a reference if this transaction 1152 * modified the buffer 1153 */ 1154 if (was_modified) 1155 drop_reserve = 1; 1156 1157 /* 1158 * We are no longer going to journal this buffer. 1159 * However, the commit of this transaction is still 1160 * important to the buffer: the delete that we are now 1161 * processing might obsolete an old log entry, so by 1162 * committing, we can satisfy the buffer's checkpoint. 1163 * 1164 * So, if we have a checkpoint on the buffer, we should 1165 * now refile the buffer on our BJ_Forget list so that 1166 * we know to remove the checkpoint after we commit. 1167 */ 1168 1169 if (jh->b_cp_transaction) { 1170 __jbd2_journal_temp_unlink_buffer(jh); 1171 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1172 } else { 1173 __jbd2_journal_unfile_buffer(jh); 1174 jbd2_journal_remove_journal_head(bh); 1175 __brelse(bh); 1176 if (!buffer_jbd(bh)) { 1177 spin_unlock(&journal->j_list_lock); 1178 jbd_unlock_bh_state(bh); 1179 __bforget(bh); 1180 goto drop; 1181 } 1182 } 1183 } else if (jh->b_transaction) { 1184 J_ASSERT_JH(jh, (jh->b_transaction == 1185 journal->j_committing_transaction)); 1186 /* However, if the buffer is still owned by a prior 1187 * (committing) transaction, we can't drop it yet... */ 1188 JBUFFER_TRACE(jh, "belongs to older transaction"); 1189 /* ... but we CAN drop it from the new transaction if we 1190 * have also modified it since the original commit. */ 1191 1192 if (jh->b_next_transaction) { 1193 J_ASSERT(jh->b_next_transaction == transaction); 1194 jh->b_next_transaction = NULL; 1195 1196 /* 1197 * only drop a reference if this transaction modified 1198 * the buffer 1199 */ 1200 if (was_modified) 1201 drop_reserve = 1; 1202 } 1203 } 1204 1205 not_jbd: 1206 spin_unlock(&journal->j_list_lock); 1207 jbd_unlock_bh_state(bh); 1208 __brelse(bh); 1209 drop: 1210 if (drop_reserve) { 1211 /* no need to reserve log space for this block -bzzz */ 1212 handle->h_buffer_credits++; 1213 } 1214 return err; 1215 } 1216 1217 /** 1218 * int jbd2_journal_stop() - complete a transaction 1219 * @handle: tranaction to complete. 1220 * 1221 * All done for a particular handle. 1222 * 1223 * There is not much action needed here. We just return any remaining 1224 * buffer credits to the transaction and remove the handle. The only 1225 * complication is that we need to start a commit operation if the 1226 * filesystem is marked for synchronous update. 1227 * 1228 * jbd2_journal_stop itself will not usually return an error, but it may 1229 * do so in unusual circumstances. In particular, expect it to 1230 * return -EIO if a jbd2_journal_abort has been executed since the 1231 * transaction began. 1232 */ 1233 int jbd2_journal_stop(handle_t *handle) 1234 { 1235 transaction_t *transaction = handle->h_transaction; 1236 journal_t *journal = transaction->t_journal; 1237 int err; 1238 pid_t pid; 1239 1240 J_ASSERT(journal_current_handle() == handle); 1241 1242 if (is_handle_aborted(handle)) 1243 err = -EIO; 1244 else { 1245 J_ASSERT(transaction->t_updates > 0); 1246 err = 0; 1247 } 1248 1249 if (--handle->h_ref > 0) { 1250 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1251 handle->h_ref); 1252 return err; 1253 } 1254 1255 jbd_debug(4, "Handle %p going down\n", handle); 1256 1257 /* 1258 * Implement synchronous transaction batching. If the handle 1259 * was synchronous, don't force a commit immediately. Let's 1260 * yield and let another thread piggyback onto this 1261 * transaction. Keep doing that while new threads continue to 1262 * arrive. It doesn't cost much - we're about to run a commit 1263 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1264 * operations by 30x or more... 1265 * 1266 * We try and optimize the sleep time against what the 1267 * underlying disk can do, instead of having a static sleep 1268 * time. This is useful for the case where our storage is so 1269 * fast that it is more optimal to go ahead and force a flush 1270 * and wait for the transaction to be committed than it is to 1271 * wait for an arbitrary amount of time for new writers to 1272 * join the transaction. We achieve this by measuring how 1273 * long it takes to commit a transaction, and compare it with 1274 * how long this transaction has been running, and if run time 1275 * < commit time then we sleep for the delta and commit. This 1276 * greatly helps super fast disks that would see slowdowns as 1277 * more threads started doing fsyncs. 1278 * 1279 * But don't do this if this process was the most recent one 1280 * to perform a synchronous write. We do this to detect the 1281 * case where a single process is doing a stream of sync 1282 * writes. No point in waiting for joiners in that case. 1283 */ 1284 pid = current->pid; 1285 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1286 u64 commit_time, trans_time; 1287 1288 journal->j_last_sync_writer = pid; 1289 1290 spin_lock(&journal->j_state_lock); 1291 commit_time = journal->j_average_commit_time; 1292 spin_unlock(&journal->j_state_lock); 1293 1294 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1295 transaction->t_start_time)); 1296 1297 commit_time = max_t(u64, commit_time, 1298 1000*journal->j_min_batch_time); 1299 commit_time = min_t(u64, commit_time, 1300 1000*journal->j_max_batch_time); 1301 1302 if (trans_time < commit_time) { 1303 ktime_t expires = ktime_add_ns(ktime_get(), 1304 commit_time); 1305 set_current_state(TASK_UNINTERRUPTIBLE); 1306 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1307 } 1308 } 1309 1310 if (handle->h_sync) 1311 transaction->t_synchronous_commit = 1; 1312 current->journal_info = NULL; 1313 spin_lock(&journal->j_state_lock); 1314 spin_lock(&transaction->t_handle_lock); 1315 transaction->t_outstanding_credits -= handle->h_buffer_credits; 1316 transaction->t_updates--; 1317 if (!transaction->t_updates) { 1318 wake_up(&journal->j_wait_updates); 1319 if (journal->j_barrier_count) 1320 wake_up(&journal->j_wait_transaction_locked); 1321 } 1322 1323 /* 1324 * If the handle is marked SYNC, we need to set another commit 1325 * going! We also want to force a commit if the current 1326 * transaction is occupying too much of the log, or if the 1327 * transaction is too old now. 1328 */ 1329 if (handle->h_sync || 1330 transaction->t_outstanding_credits > 1331 journal->j_max_transaction_buffers || 1332 time_after_eq(jiffies, transaction->t_expires)) { 1333 /* Do this even for aborted journals: an abort still 1334 * completes the commit thread, it just doesn't write 1335 * anything to disk. */ 1336 tid_t tid = transaction->t_tid; 1337 1338 spin_unlock(&transaction->t_handle_lock); 1339 jbd_debug(2, "transaction too old, requesting commit for " 1340 "handle %p\n", handle); 1341 /* This is non-blocking */ 1342 __jbd2_log_start_commit(journal, transaction->t_tid); 1343 spin_unlock(&journal->j_state_lock); 1344 1345 /* 1346 * Special case: JBD2_SYNC synchronous updates require us 1347 * to wait for the commit to complete. 1348 */ 1349 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1350 err = jbd2_log_wait_commit(journal, tid); 1351 } else { 1352 spin_unlock(&transaction->t_handle_lock); 1353 spin_unlock(&journal->j_state_lock); 1354 } 1355 1356 lock_map_release(&handle->h_lockdep_map); 1357 1358 jbd2_free_handle(handle); 1359 return err; 1360 } 1361 1362 /** 1363 * int jbd2_journal_force_commit() - force any uncommitted transactions 1364 * @journal: journal to force 1365 * 1366 * For synchronous operations: force any uncommitted transactions 1367 * to disk. May seem kludgy, but it reuses all the handle batching 1368 * code in a very simple manner. 1369 */ 1370 int jbd2_journal_force_commit(journal_t *journal) 1371 { 1372 handle_t *handle; 1373 int ret; 1374 1375 handle = jbd2_journal_start(journal, 1); 1376 if (IS_ERR(handle)) { 1377 ret = PTR_ERR(handle); 1378 } else { 1379 handle->h_sync = 1; 1380 ret = jbd2_journal_stop(handle); 1381 } 1382 return ret; 1383 } 1384 1385 /* 1386 * 1387 * List management code snippets: various functions for manipulating the 1388 * transaction buffer lists. 1389 * 1390 */ 1391 1392 /* 1393 * Append a buffer to a transaction list, given the transaction's list head 1394 * pointer. 1395 * 1396 * j_list_lock is held. 1397 * 1398 * jbd_lock_bh_state(jh2bh(jh)) is held. 1399 */ 1400 1401 static inline void 1402 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1403 { 1404 if (!*list) { 1405 jh->b_tnext = jh->b_tprev = jh; 1406 *list = jh; 1407 } else { 1408 /* Insert at the tail of the list to preserve order */ 1409 struct journal_head *first = *list, *last = first->b_tprev; 1410 jh->b_tprev = last; 1411 jh->b_tnext = first; 1412 last->b_tnext = first->b_tprev = jh; 1413 } 1414 } 1415 1416 /* 1417 * Remove a buffer from a transaction list, given the transaction's list 1418 * head pointer. 1419 * 1420 * Called with j_list_lock held, and the journal may not be locked. 1421 * 1422 * jbd_lock_bh_state(jh2bh(jh)) is held. 1423 */ 1424 1425 static inline void 1426 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1427 { 1428 if (*list == jh) { 1429 *list = jh->b_tnext; 1430 if (*list == jh) 1431 *list = NULL; 1432 } 1433 jh->b_tprev->b_tnext = jh->b_tnext; 1434 jh->b_tnext->b_tprev = jh->b_tprev; 1435 } 1436 1437 /* 1438 * Remove a buffer from the appropriate transaction list. 1439 * 1440 * Note that this function can *change* the value of 1441 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1442 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1443 * of these pointers, it could go bad. Generally the caller needs to re-read 1444 * the pointer from the transaction_t. 1445 * 1446 * Called under j_list_lock. The journal may not be locked. 1447 */ 1448 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1449 { 1450 struct journal_head **list = NULL; 1451 transaction_t *transaction; 1452 struct buffer_head *bh = jh2bh(jh); 1453 1454 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1455 transaction = jh->b_transaction; 1456 if (transaction) 1457 assert_spin_locked(&transaction->t_journal->j_list_lock); 1458 1459 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1460 if (jh->b_jlist != BJ_None) 1461 J_ASSERT_JH(jh, transaction != NULL); 1462 1463 switch (jh->b_jlist) { 1464 case BJ_None: 1465 return; 1466 case BJ_Metadata: 1467 transaction->t_nr_buffers--; 1468 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1469 list = &transaction->t_buffers; 1470 break; 1471 case BJ_Forget: 1472 list = &transaction->t_forget; 1473 break; 1474 case BJ_IO: 1475 list = &transaction->t_iobuf_list; 1476 break; 1477 case BJ_Shadow: 1478 list = &transaction->t_shadow_list; 1479 break; 1480 case BJ_LogCtl: 1481 list = &transaction->t_log_list; 1482 break; 1483 case BJ_Reserved: 1484 list = &transaction->t_reserved_list; 1485 break; 1486 } 1487 1488 __blist_del_buffer(list, jh); 1489 jh->b_jlist = BJ_None; 1490 if (test_clear_buffer_jbddirty(bh)) 1491 mark_buffer_dirty(bh); /* Expose it to the VM */ 1492 } 1493 1494 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1495 { 1496 __jbd2_journal_temp_unlink_buffer(jh); 1497 jh->b_transaction = NULL; 1498 } 1499 1500 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1501 { 1502 jbd_lock_bh_state(jh2bh(jh)); 1503 spin_lock(&journal->j_list_lock); 1504 __jbd2_journal_unfile_buffer(jh); 1505 spin_unlock(&journal->j_list_lock); 1506 jbd_unlock_bh_state(jh2bh(jh)); 1507 } 1508 1509 /* 1510 * Called from jbd2_journal_try_to_free_buffers(). 1511 * 1512 * Called under jbd_lock_bh_state(bh) 1513 */ 1514 static void 1515 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1516 { 1517 struct journal_head *jh; 1518 1519 jh = bh2jh(bh); 1520 1521 if (buffer_locked(bh) || buffer_dirty(bh)) 1522 goto out; 1523 1524 if (jh->b_next_transaction != NULL) 1525 goto out; 1526 1527 spin_lock(&journal->j_list_lock); 1528 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1529 /* written-back checkpointed metadata buffer */ 1530 if (jh->b_jlist == BJ_None) { 1531 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1532 __jbd2_journal_remove_checkpoint(jh); 1533 jbd2_journal_remove_journal_head(bh); 1534 __brelse(bh); 1535 } 1536 } 1537 spin_unlock(&journal->j_list_lock); 1538 out: 1539 return; 1540 } 1541 1542 /** 1543 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1544 * @journal: journal for operation 1545 * @page: to try and free 1546 * @gfp_mask: we use the mask to detect how hard should we try to release 1547 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1548 * release the buffers. 1549 * 1550 * 1551 * For all the buffers on this page, 1552 * if they are fully written out ordered data, move them onto BUF_CLEAN 1553 * so try_to_free_buffers() can reap them. 1554 * 1555 * This function returns non-zero if we wish try_to_free_buffers() 1556 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1557 * We also do it if the page has locked or dirty buffers and the caller wants 1558 * us to perform sync or async writeout. 1559 * 1560 * This complicates JBD locking somewhat. We aren't protected by the 1561 * BKL here. We wish to remove the buffer from its committing or 1562 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1563 * 1564 * This may *change* the value of transaction_t->t_datalist, so anyone 1565 * who looks at t_datalist needs to lock against this function. 1566 * 1567 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1568 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1569 * will come out of the lock with the buffer dirty, which makes it 1570 * ineligible for release here. 1571 * 1572 * Who else is affected by this? hmm... Really the only contender 1573 * is do_get_write_access() - it could be looking at the buffer while 1574 * journal_try_to_free_buffer() is changing its state. But that 1575 * cannot happen because we never reallocate freed data as metadata 1576 * while the data is part of a transaction. Yes? 1577 * 1578 * Return 0 on failure, 1 on success 1579 */ 1580 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1581 struct page *page, gfp_t gfp_mask) 1582 { 1583 struct buffer_head *head; 1584 struct buffer_head *bh; 1585 int ret = 0; 1586 1587 J_ASSERT(PageLocked(page)); 1588 1589 head = page_buffers(page); 1590 bh = head; 1591 do { 1592 struct journal_head *jh; 1593 1594 /* 1595 * We take our own ref against the journal_head here to avoid 1596 * having to add tons of locking around each instance of 1597 * jbd2_journal_remove_journal_head() and 1598 * jbd2_journal_put_journal_head(). 1599 */ 1600 jh = jbd2_journal_grab_journal_head(bh); 1601 if (!jh) 1602 continue; 1603 1604 jbd_lock_bh_state(bh); 1605 __journal_try_to_free_buffer(journal, bh); 1606 jbd2_journal_put_journal_head(jh); 1607 jbd_unlock_bh_state(bh); 1608 if (buffer_jbd(bh)) 1609 goto busy; 1610 } while ((bh = bh->b_this_page) != head); 1611 1612 ret = try_to_free_buffers(page); 1613 1614 busy: 1615 return ret; 1616 } 1617 1618 /* 1619 * This buffer is no longer needed. If it is on an older transaction's 1620 * checkpoint list we need to record it on this transaction's forget list 1621 * to pin this buffer (and hence its checkpointing transaction) down until 1622 * this transaction commits. If the buffer isn't on a checkpoint list, we 1623 * release it. 1624 * Returns non-zero if JBD no longer has an interest in the buffer. 1625 * 1626 * Called under j_list_lock. 1627 * 1628 * Called under jbd_lock_bh_state(bh). 1629 */ 1630 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1631 { 1632 int may_free = 1; 1633 struct buffer_head *bh = jh2bh(jh); 1634 1635 __jbd2_journal_unfile_buffer(jh); 1636 1637 if (jh->b_cp_transaction) { 1638 JBUFFER_TRACE(jh, "on running+cp transaction"); 1639 /* 1640 * We don't want to write the buffer anymore, clear the 1641 * bit so that we don't confuse checks in 1642 * __journal_file_buffer 1643 */ 1644 clear_buffer_dirty(bh); 1645 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1646 may_free = 0; 1647 } else { 1648 JBUFFER_TRACE(jh, "on running transaction"); 1649 jbd2_journal_remove_journal_head(bh); 1650 __brelse(bh); 1651 } 1652 return may_free; 1653 } 1654 1655 /* 1656 * jbd2_journal_invalidatepage 1657 * 1658 * This code is tricky. It has a number of cases to deal with. 1659 * 1660 * There are two invariants which this code relies on: 1661 * 1662 * i_size must be updated on disk before we start calling invalidatepage on the 1663 * data. 1664 * 1665 * This is done in ext3 by defining an ext3_setattr method which 1666 * updates i_size before truncate gets going. By maintaining this 1667 * invariant, we can be sure that it is safe to throw away any buffers 1668 * attached to the current transaction: once the transaction commits, 1669 * we know that the data will not be needed. 1670 * 1671 * Note however that we can *not* throw away data belonging to the 1672 * previous, committing transaction! 1673 * 1674 * Any disk blocks which *are* part of the previous, committing 1675 * transaction (and which therefore cannot be discarded immediately) are 1676 * not going to be reused in the new running transaction 1677 * 1678 * The bitmap committed_data images guarantee this: any block which is 1679 * allocated in one transaction and removed in the next will be marked 1680 * as in-use in the committed_data bitmap, so cannot be reused until 1681 * the next transaction to delete the block commits. This means that 1682 * leaving committing buffers dirty is quite safe: the disk blocks 1683 * cannot be reallocated to a different file and so buffer aliasing is 1684 * not possible. 1685 * 1686 * 1687 * The above applies mainly to ordered data mode. In writeback mode we 1688 * don't make guarantees about the order in which data hits disk --- in 1689 * particular we don't guarantee that new dirty data is flushed before 1690 * transaction commit --- so it is always safe just to discard data 1691 * immediately in that mode. --sct 1692 */ 1693 1694 /* 1695 * The journal_unmap_buffer helper function returns zero if the buffer 1696 * concerned remains pinned as an anonymous buffer belonging to an older 1697 * transaction. 1698 * 1699 * We're outside-transaction here. Either or both of j_running_transaction 1700 * and j_committing_transaction may be NULL. 1701 */ 1702 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1703 { 1704 transaction_t *transaction; 1705 struct journal_head *jh; 1706 int may_free = 1; 1707 int ret; 1708 1709 BUFFER_TRACE(bh, "entry"); 1710 1711 /* 1712 * It is safe to proceed here without the j_list_lock because the 1713 * buffers cannot be stolen by try_to_free_buffers as long as we are 1714 * holding the page lock. --sct 1715 */ 1716 1717 if (!buffer_jbd(bh)) 1718 goto zap_buffer_unlocked; 1719 1720 /* OK, we have data buffer in journaled mode */ 1721 spin_lock(&journal->j_state_lock); 1722 jbd_lock_bh_state(bh); 1723 spin_lock(&journal->j_list_lock); 1724 1725 jh = jbd2_journal_grab_journal_head(bh); 1726 if (!jh) 1727 goto zap_buffer_no_jh; 1728 1729 transaction = jh->b_transaction; 1730 if (transaction == NULL) { 1731 /* First case: not on any transaction. If it 1732 * has no checkpoint link, then we can zap it: 1733 * it's a writeback-mode buffer so we don't care 1734 * if it hits disk safely. */ 1735 if (!jh->b_cp_transaction) { 1736 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1737 goto zap_buffer; 1738 } 1739 1740 if (!buffer_dirty(bh)) { 1741 /* bdflush has written it. We can drop it now */ 1742 goto zap_buffer; 1743 } 1744 1745 /* OK, it must be in the journal but still not 1746 * written fully to disk: it's metadata or 1747 * journaled data... */ 1748 1749 if (journal->j_running_transaction) { 1750 /* ... and once the current transaction has 1751 * committed, the buffer won't be needed any 1752 * longer. */ 1753 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1754 ret = __dispose_buffer(jh, 1755 journal->j_running_transaction); 1756 jbd2_journal_put_journal_head(jh); 1757 spin_unlock(&journal->j_list_lock); 1758 jbd_unlock_bh_state(bh); 1759 spin_unlock(&journal->j_state_lock); 1760 return ret; 1761 } else { 1762 /* There is no currently-running transaction. So the 1763 * orphan record which we wrote for this file must have 1764 * passed into commit. We must attach this buffer to 1765 * the committing transaction, if it exists. */ 1766 if (journal->j_committing_transaction) { 1767 JBUFFER_TRACE(jh, "give to committing trans"); 1768 ret = __dispose_buffer(jh, 1769 journal->j_committing_transaction); 1770 jbd2_journal_put_journal_head(jh); 1771 spin_unlock(&journal->j_list_lock); 1772 jbd_unlock_bh_state(bh); 1773 spin_unlock(&journal->j_state_lock); 1774 return ret; 1775 } else { 1776 /* The orphan record's transaction has 1777 * committed. We can cleanse this buffer */ 1778 clear_buffer_jbddirty(bh); 1779 goto zap_buffer; 1780 } 1781 } 1782 } else if (transaction == journal->j_committing_transaction) { 1783 JBUFFER_TRACE(jh, "on committing transaction"); 1784 /* 1785 * If it is committing, we simply cannot touch it. We 1786 * can remove it's next_transaction pointer from the 1787 * running transaction if that is set, but nothing 1788 * else. */ 1789 set_buffer_freed(bh); 1790 if (jh->b_next_transaction) { 1791 J_ASSERT(jh->b_next_transaction == 1792 journal->j_running_transaction); 1793 jh->b_next_transaction = NULL; 1794 } 1795 jbd2_journal_put_journal_head(jh); 1796 spin_unlock(&journal->j_list_lock); 1797 jbd_unlock_bh_state(bh); 1798 spin_unlock(&journal->j_state_lock); 1799 return 0; 1800 } else { 1801 /* Good, the buffer belongs to the running transaction. 1802 * We are writing our own transaction's data, not any 1803 * previous one's, so it is safe to throw it away 1804 * (remember that we expect the filesystem to have set 1805 * i_size already for this truncate so recovery will not 1806 * expose the disk blocks we are discarding here.) */ 1807 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1808 JBUFFER_TRACE(jh, "on running transaction"); 1809 may_free = __dispose_buffer(jh, transaction); 1810 } 1811 1812 zap_buffer: 1813 jbd2_journal_put_journal_head(jh); 1814 zap_buffer_no_jh: 1815 spin_unlock(&journal->j_list_lock); 1816 jbd_unlock_bh_state(bh); 1817 spin_unlock(&journal->j_state_lock); 1818 zap_buffer_unlocked: 1819 clear_buffer_dirty(bh); 1820 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1821 clear_buffer_mapped(bh); 1822 clear_buffer_req(bh); 1823 clear_buffer_new(bh); 1824 bh->b_bdev = NULL; 1825 return may_free; 1826 } 1827 1828 /** 1829 * void jbd2_journal_invalidatepage() 1830 * @journal: journal to use for flush... 1831 * @page: page to flush 1832 * @offset: length of page to invalidate. 1833 * 1834 * Reap page buffers containing data after offset in page. 1835 * 1836 */ 1837 void jbd2_journal_invalidatepage(journal_t *journal, 1838 struct page *page, 1839 unsigned long offset) 1840 { 1841 struct buffer_head *head, *bh, *next; 1842 unsigned int curr_off = 0; 1843 int may_free = 1; 1844 1845 if (!PageLocked(page)) 1846 BUG(); 1847 if (!page_has_buffers(page)) 1848 return; 1849 1850 /* We will potentially be playing with lists other than just the 1851 * data lists (especially for journaled data mode), so be 1852 * cautious in our locking. */ 1853 1854 head = bh = page_buffers(page); 1855 do { 1856 unsigned int next_off = curr_off + bh->b_size; 1857 next = bh->b_this_page; 1858 1859 if (offset <= curr_off) { 1860 /* This block is wholly outside the truncation point */ 1861 lock_buffer(bh); 1862 may_free &= journal_unmap_buffer(journal, bh); 1863 unlock_buffer(bh); 1864 } 1865 curr_off = next_off; 1866 bh = next; 1867 1868 } while (bh != head); 1869 1870 if (!offset) { 1871 if (may_free && try_to_free_buffers(page)) 1872 J_ASSERT(!page_has_buffers(page)); 1873 } 1874 } 1875 1876 /* 1877 * File a buffer on the given transaction list. 1878 */ 1879 void __jbd2_journal_file_buffer(struct journal_head *jh, 1880 transaction_t *transaction, int jlist) 1881 { 1882 struct journal_head **list = NULL; 1883 int was_dirty = 0; 1884 struct buffer_head *bh = jh2bh(jh); 1885 1886 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1887 assert_spin_locked(&transaction->t_journal->j_list_lock); 1888 1889 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1890 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1891 jh->b_transaction == NULL); 1892 1893 if (jh->b_transaction && jh->b_jlist == jlist) 1894 return; 1895 1896 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1897 jlist == BJ_Shadow || jlist == BJ_Forget) { 1898 /* 1899 * For metadata buffers, we track dirty bit in buffer_jbddirty 1900 * instead of buffer_dirty. We should not see a dirty bit set 1901 * here because we clear it in do_get_write_access but e.g. 1902 * tune2fs can modify the sb and set the dirty bit at any time 1903 * so we try to gracefully handle that. 1904 */ 1905 if (buffer_dirty(bh)) 1906 warn_dirty_buffer(bh); 1907 if (test_clear_buffer_dirty(bh) || 1908 test_clear_buffer_jbddirty(bh)) 1909 was_dirty = 1; 1910 } 1911 1912 if (jh->b_transaction) 1913 __jbd2_journal_temp_unlink_buffer(jh); 1914 jh->b_transaction = transaction; 1915 1916 switch (jlist) { 1917 case BJ_None: 1918 J_ASSERT_JH(jh, !jh->b_committed_data); 1919 J_ASSERT_JH(jh, !jh->b_frozen_data); 1920 return; 1921 case BJ_Metadata: 1922 transaction->t_nr_buffers++; 1923 list = &transaction->t_buffers; 1924 break; 1925 case BJ_Forget: 1926 list = &transaction->t_forget; 1927 break; 1928 case BJ_IO: 1929 list = &transaction->t_iobuf_list; 1930 break; 1931 case BJ_Shadow: 1932 list = &transaction->t_shadow_list; 1933 break; 1934 case BJ_LogCtl: 1935 list = &transaction->t_log_list; 1936 break; 1937 case BJ_Reserved: 1938 list = &transaction->t_reserved_list; 1939 break; 1940 } 1941 1942 __blist_add_buffer(list, jh); 1943 jh->b_jlist = jlist; 1944 1945 if (was_dirty) 1946 set_buffer_jbddirty(bh); 1947 } 1948 1949 void jbd2_journal_file_buffer(struct journal_head *jh, 1950 transaction_t *transaction, int jlist) 1951 { 1952 jbd_lock_bh_state(jh2bh(jh)); 1953 spin_lock(&transaction->t_journal->j_list_lock); 1954 __jbd2_journal_file_buffer(jh, transaction, jlist); 1955 spin_unlock(&transaction->t_journal->j_list_lock); 1956 jbd_unlock_bh_state(jh2bh(jh)); 1957 } 1958 1959 /* 1960 * Remove a buffer from its current buffer list in preparation for 1961 * dropping it from its current transaction entirely. If the buffer has 1962 * already started to be used by a subsequent transaction, refile the 1963 * buffer on that transaction's metadata list. 1964 * 1965 * Called under journal->j_list_lock 1966 * 1967 * Called under jbd_lock_bh_state(jh2bh(jh)) 1968 */ 1969 void __jbd2_journal_refile_buffer(struct journal_head *jh) 1970 { 1971 int was_dirty; 1972 struct buffer_head *bh = jh2bh(jh); 1973 1974 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1975 if (jh->b_transaction) 1976 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 1977 1978 /* If the buffer is now unused, just drop it. */ 1979 if (jh->b_next_transaction == NULL) { 1980 __jbd2_journal_unfile_buffer(jh); 1981 return; 1982 } 1983 1984 /* 1985 * It has been modified by a later transaction: add it to the new 1986 * transaction's metadata list. 1987 */ 1988 1989 was_dirty = test_clear_buffer_jbddirty(bh); 1990 __jbd2_journal_temp_unlink_buffer(jh); 1991 jh->b_transaction = jh->b_next_transaction; 1992 jh->b_next_transaction = NULL; 1993 __jbd2_journal_file_buffer(jh, jh->b_transaction, 1994 jh->b_modified ? BJ_Metadata : BJ_Reserved); 1995 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 1996 1997 if (was_dirty) 1998 set_buffer_jbddirty(bh); 1999 } 2000 2001 /* 2002 * For the unlocked version of this call, also make sure that any 2003 * hanging journal_head is cleaned up if necessary. 2004 * 2005 * __jbd2_journal_refile_buffer is usually called as part of a single locked 2006 * operation on a buffer_head, in which the caller is probably going to 2007 * be hooking the journal_head onto other lists. In that case it is up 2008 * to the caller to remove the journal_head if necessary. For the 2009 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 2010 * doing anything else to the buffer so we need to do the cleanup 2011 * ourselves to avoid a jh leak. 2012 * 2013 * *** The journal_head may be freed by this call! *** 2014 */ 2015 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2016 { 2017 struct buffer_head *bh = jh2bh(jh); 2018 2019 jbd_lock_bh_state(bh); 2020 spin_lock(&journal->j_list_lock); 2021 2022 __jbd2_journal_refile_buffer(jh); 2023 jbd_unlock_bh_state(bh); 2024 jbd2_journal_remove_journal_head(bh); 2025 2026 spin_unlock(&journal->j_list_lock); 2027 __brelse(bh); 2028 } 2029 2030 /* 2031 * File inode in the inode list of the handle's transaction 2032 */ 2033 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2034 { 2035 transaction_t *transaction = handle->h_transaction; 2036 journal_t *journal = transaction->t_journal; 2037 2038 if (is_handle_aborted(handle)) 2039 return -EIO; 2040 2041 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2042 transaction->t_tid); 2043 2044 /* 2045 * First check whether inode isn't already on the transaction's 2046 * lists without taking the lock. Note that this check is safe 2047 * without the lock as we cannot race with somebody removing inode 2048 * from the transaction. The reason is that we remove inode from the 2049 * transaction only in journal_release_jbd_inode() and when we commit 2050 * the transaction. We are guarded from the first case by holding 2051 * a reference to the inode. We are safe against the second case 2052 * because if jinode->i_transaction == transaction, commit code 2053 * cannot touch the transaction because we hold reference to it, 2054 * and if jinode->i_next_transaction == transaction, commit code 2055 * will only file the inode where we want it. 2056 */ 2057 if (jinode->i_transaction == transaction || 2058 jinode->i_next_transaction == transaction) 2059 return 0; 2060 2061 spin_lock(&journal->j_list_lock); 2062 2063 if (jinode->i_transaction == transaction || 2064 jinode->i_next_transaction == transaction) 2065 goto done; 2066 2067 /* On some different transaction's list - should be 2068 * the committing one */ 2069 if (jinode->i_transaction) { 2070 J_ASSERT(jinode->i_next_transaction == NULL); 2071 J_ASSERT(jinode->i_transaction == 2072 journal->j_committing_transaction); 2073 jinode->i_next_transaction = transaction; 2074 goto done; 2075 } 2076 /* Not on any transaction list... */ 2077 J_ASSERT(!jinode->i_next_transaction); 2078 jinode->i_transaction = transaction; 2079 list_add(&jinode->i_list, &transaction->t_inode_list); 2080 done: 2081 spin_unlock(&journal->j_list_lock); 2082 2083 return 0; 2084 } 2085 2086 /* 2087 * File truncate and transaction commit interact with each other in a 2088 * non-trivial way. If a transaction writing data block A is 2089 * committing, we cannot discard the data by truncate until we have 2090 * written them. Otherwise if we crashed after the transaction with 2091 * write has committed but before the transaction with truncate has 2092 * committed, we could see stale data in block A. This function is a 2093 * helper to solve this problem. It starts writeout of the truncated 2094 * part in case it is in the committing transaction. 2095 * 2096 * Filesystem code must call this function when inode is journaled in 2097 * ordered mode before truncation happens and after the inode has been 2098 * placed on orphan list with the new inode size. The second condition 2099 * avoids the race that someone writes new data and we start 2100 * committing the transaction after this function has been called but 2101 * before a transaction for truncate is started (and furthermore it 2102 * allows us to optimize the case where the addition to orphan list 2103 * happens in the same transaction as write --- we don't have to write 2104 * any data in such case). 2105 */ 2106 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2107 struct jbd2_inode *jinode, 2108 loff_t new_size) 2109 { 2110 transaction_t *inode_trans, *commit_trans; 2111 int ret = 0; 2112 2113 /* This is a quick check to avoid locking if not necessary */ 2114 if (!jinode->i_transaction) 2115 goto out; 2116 /* Locks are here just to force reading of recent values, it is 2117 * enough that the transaction was not committing before we started 2118 * a transaction adding the inode to orphan list */ 2119 spin_lock(&journal->j_state_lock); 2120 commit_trans = journal->j_committing_transaction; 2121 spin_unlock(&journal->j_state_lock); 2122 spin_lock(&journal->j_list_lock); 2123 inode_trans = jinode->i_transaction; 2124 spin_unlock(&journal->j_list_lock); 2125 if (inode_trans == commit_trans) { 2126 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2127 new_size, LLONG_MAX); 2128 if (ret) 2129 jbd2_journal_abort(journal, ret); 2130 } 2131 out: 2132 return ret; 2133 } 2134