xref: /linux/fs/jbd2/transaction.c (revision dfff0fa65ab15db45acd64b3189787d37ab163cd)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 
30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
31 
32 /*
33  * jbd2_get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *	The journal MUST be locked.  We don't perform atomic mallocs on the
42  *	new transaction	and we can't block without protecting against other
43  *	processes trying to touch the journal while it is in transition.
44  *
45  */
46 
47 static transaction_t *
48 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
49 {
50 	transaction->t_journal = journal;
51 	transaction->t_state = T_RUNNING;
52 	transaction->t_start_time = ktime_get();
53 	transaction->t_tid = journal->j_transaction_sequence++;
54 	transaction->t_expires = jiffies + journal->j_commit_interval;
55 	spin_lock_init(&transaction->t_handle_lock);
56 	INIT_LIST_HEAD(&transaction->t_inode_list);
57 	INIT_LIST_HEAD(&transaction->t_private_list);
58 
59 	/* Set up the commit timer for the new transaction. */
60 	journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
61 	add_timer(&journal->j_commit_timer);
62 
63 	J_ASSERT(journal->j_running_transaction == NULL);
64 	journal->j_running_transaction = transaction;
65 	transaction->t_max_wait = 0;
66 	transaction->t_start = jiffies;
67 
68 	return transaction;
69 }
70 
71 /*
72  * Handle management.
73  *
74  * A handle_t is an object which represents a single atomic update to a
75  * filesystem, and which tracks all of the modifications which form part
76  * of that one update.
77  */
78 
79 /*
80  * start_this_handle: Given a handle, deal with any locking or stalling
81  * needed to make sure that there is enough journal space for the handle
82  * to begin.  Attach the handle to a transaction and set up the
83  * transaction's buffer credits.
84  */
85 
86 static int start_this_handle(journal_t *journal, handle_t *handle)
87 {
88 	transaction_t *transaction;
89 	int needed;
90 	int nblocks = handle->h_buffer_credits;
91 	transaction_t *new_transaction = NULL;
92 	int ret = 0;
93 	unsigned long ts = jiffies;
94 
95 	if (nblocks > journal->j_max_transaction_buffers) {
96 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
97 		       current->comm, nblocks,
98 		       journal->j_max_transaction_buffers);
99 		ret = -ENOSPC;
100 		goto out;
101 	}
102 
103 alloc_transaction:
104 	if (!journal->j_running_transaction) {
105 		new_transaction = kzalloc(sizeof(*new_transaction),
106 						GFP_NOFS|__GFP_NOFAIL);
107 		if (!new_transaction) {
108 			ret = -ENOMEM;
109 			goto out;
110 		}
111 	}
112 
113 	jbd_debug(3, "New handle %p going live.\n", handle);
114 
115 repeat:
116 
117 	/*
118 	 * We need to hold j_state_lock until t_updates has been incremented,
119 	 * for proper journal barrier handling
120 	 */
121 	spin_lock(&journal->j_state_lock);
122 repeat_locked:
123 	if (is_journal_aborted(journal) ||
124 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
125 		spin_unlock(&journal->j_state_lock);
126 		ret = -EROFS;
127 		goto out;
128 	}
129 
130 	/* Wait on the journal's transaction barrier if necessary */
131 	if (journal->j_barrier_count) {
132 		spin_unlock(&journal->j_state_lock);
133 		wait_event(journal->j_wait_transaction_locked,
134 				journal->j_barrier_count == 0);
135 		goto repeat;
136 	}
137 
138 	if (!journal->j_running_transaction) {
139 		if (!new_transaction) {
140 			spin_unlock(&journal->j_state_lock);
141 			goto alloc_transaction;
142 		}
143 		jbd2_get_transaction(journal, new_transaction);
144 		new_transaction = NULL;
145 	}
146 
147 	transaction = journal->j_running_transaction;
148 
149 	/*
150 	 * If the current transaction is locked down for commit, wait for the
151 	 * lock to be released.
152 	 */
153 	if (transaction->t_state == T_LOCKED) {
154 		DEFINE_WAIT(wait);
155 
156 		prepare_to_wait(&journal->j_wait_transaction_locked,
157 					&wait, TASK_UNINTERRUPTIBLE);
158 		spin_unlock(&journal->j_state_lock);
159 		schedule();
160 		finish_wait(&journal->j_wait_transaction_locked, &wait);
161 		goto repeat;
162 	}
163 
164 	/*
165 	 * If there is not enough space left in the log to write all potential
166 	 * buffers requested by this operation, we need to stall pending a log
167 	 * checkpoint to free some more log space.
168 	 */
169 	spin_lock(&transaction->t_handle_lock);
170 	needed = transaction->t_outstanding_credits + nblocks;
171 
172 	if (needed > journal->j_max_transaction_buffers) {
173 		/*
174 		 * If the current transaction is already too large, then start
175 		 * to commit it: we can then go back and attach this handle to
176 		 * a new transaction.
177 		 */
178 		DEFINE_WAIT(wait);
179 
180 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
181 		spin_unlock(&transaction->t_handle_lock);
182 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
183 				TASK_UNINTERRUPTIBLE);
184 		__jbd2_log_start_commit(journal, transaction->t_tid);
185 		spin_unlock(&journal->j_state_lock);
186 		schedule();
187 		finish_wait(&journal->j_wait_transaction_locked, &wait);
188 		goto repeat;
189 	}
190 
191 	/*
192 	 * The commit code assumes that it can get enough log space
193 	 * without forcing a checkpoint.  This is *critical* for
194 	 * correctness: a checkpoint of a buffer which is also
195 	 * associated with a committing transaction creates a deadlock,
196 	 * so commit simply cannot force through checkpoints.
197 	 *
198 	 * We must therefore ensure the necessary space in the journal
199 	 * *before* starting to dirty potentially checkpointed buffers
200 	 * in the new transaction.
201 	 *
202 	 * The worst part is, any transaction currently committing can
203 	 * reduce the free space arbitrarily.  Be careful to account for
204 	 * those buffers when checkpointing.
205 	 */
206 
207 	/*
208 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
209 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
210 	 * the committing transaction.  Really, we only need to give it
211 	 * committing_transaction->t_outstanding_credits plus "enough" for
212 	 * the log control blocks.
213 	 * Also, this test is inconsitent with the matching one in
214 	 * jbd2_journal_extend().
215 	 */
216 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
217 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
218 		spin_unlock(&transaction->t_handle_lock);
219 		__jbd2_log_wait_for_space(journal);
220 		goto repeat_locked;
221 	}
222 
223 	/* OK, account for the buffers that this operation expects to
224 	 * use and add the handle to the running transaction. */
225 
226 	if (time_after(transaction->t_start, ts)) {
227 		ts = jbd2_time_diff(ts, transaction->t_start);
228 		if (ts > transaction->t_max_wait)
229 			transaction->t_max_wait = ts;
230 	}
231 
232 	handle->h_transaction = transaction;
233 	transaction->t_outstanding_credits += nblocks;
234 	transaction->t_updates++;
235 	transaction->t_handle_count++;
236 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
237 		  handle, nblocks, transaction->t_outstanding_credits,
238 		  __jbd2_log_space_left(journal));
239 	spin_unlock(&transaction->t_handle_lock);
240 	spin_unlock(&journal->j_state_lock);
241 out:
242 	if (unlikely(new_transaction))		/* It's usually NULL */
243 		kfree(new_transaction);
244 	return ret;
245 }
246 
247 static struct lock_class_key jbd2_handle_key;
248 
249 /* Allocate a new handle.  This should probably be in a slab... */
250 static handle_t *new_handle(int nblocks)
251 {
252 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
253 	if (!handle)
254 		return NULL;
255 	memset(handle, 0, sizeof(*handle));
256 	handle->h_buffer_credits = nblocks;
257 	handle->h_ref = 1;
258 
259 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
260 						&jbd2_handle_key, 0);
261 
262 	return handle;
263 }
264 
265 /**
266  * handle_t *jbd2_journal_start() - Obtain a new handle.
267  * @journal: Journal to start transaction on.
268  * @nblocks: number of block buffer we might modify
269  *
270  * We make sure that the transaction can guarantee at least nblocks of
271  * modified buffers in the log.  We block until the log can guarantee
272  * that much space.
273  *
274  * This function is visible to journal users (like ext3fs), so is not
275  * called with the journal already locked.
276  *
277  * Return a pointer to a newly allocated handle, or NULL on failure
278  */
279 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
280 {
281 	handle_t *handle = journal_current_handle();
282 	int err;
283 
284 	if (!journal)
285 		return ERR_PTR(-EROFS);
286 
287 	if (handle) {
288 		J_ASSERT(handle->h_transaction->t_journal == journal);
289 		handle->h_ref++;
290 		return handle;
291 	}
292 
293 	handle = new_handle(nblocks);
294 	if (!handle)
295 		return ERR_PTR(-ENOMEM);
296 
297 	current->journal_info = handle;
298 
299 	err = start_this_handle(journal, handle);
300 	if (err < 0) {
301 		jbd2_free_handle(handle);
302 		current->journal_info = NULL;
303 		handle = ERR_PTR(err);
304 		goto out;
305 	}
306 
307 	lock_map_acquire(&handle->h_lockdep_map);
308 out:
309 	return handle;
310 }
311 
312 /**
313  * int jbd2_journal_extend() - extend buffer credits.
314  * @handle:  handle to 'extend'
315  * @nblocks: nr blocks to try to extend by.
316  *
317  * Some transactions, such as large extends and truncates, can be done
318  * atomically all at once or in several stages.  The operation requests
319  * a credit for a number of buffer modications in advance, but can
320  * extend its credit if it needs more.
321  *
322  * jbd2_journal_extend tries to give the running handle more buffer credits.
323  * It does not guarantee that allocation - this is a best-effort only.
324  * The calling process MUST be able to deal cleanly with a failure to
325  * extend here.
326  *
327  * Return 0 on success, non-zero on failure.
328  *
329  * return code < 0 implies an error
330  * return code > 0 implies normal transaction-full status.
331  */
332 int jbd2_journal_extend(handle_t *handle, int nblocks)
333 {
334 	transaction_t *transaction = handle->h_transaction;
335 	journal_t *journal = transaction->t_journal;
336 	int result;
337 	int wanted;
338 
339 	result = -EIO;
340 	if (is_handle_aborted(handle))
341 		goto out;
342 
343 	result = 1;
344 
345 	spin_lock(&journal->j_state_lock);
346 
347 	/* Don't extend a locked-down transaction! */
348 	if (handle->h_transaction->t_state != T_RUNNING) {
349 		jbd_debug(3, "denied handle %p %d blocks: "
350 			  "transaction not running\n", handle, nblocks);
351 		goto error_out;
352 	}
353 
354 	spin_lock(&transaction->t_handle_lock);
355 	wanted = transaction->t_outstanding_credits + nblocks;
356 
357 	if (wanted > journal->j_max_transaction_buffers) {
358 		jbd_debug(3, "denied handle %p %d blocks: "
359 			  "transaction too large\n", handle, nblocks);
360 		goto unlock;
361 	}
362 
363 	if (wanted > __jbd2_log_space_left(journal)) {
364 		jbd_debug(3, "denied handle %p %d blocks: "
365 			  "insufficient log space\n", handle, nblocks);
366 		goto unlock;
367 	}
368 
369 	handle->h_buffer_credits += nblocks;
370 	transaction->t_outstanding_credits += nblocks;
371 	result = 0;
372 
373 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
374 unlock:
375 	spin_unlock(&transaction->t_handle_lock);
376 error_out:
377 	spin_unlock(&journal->j_state_lock);
378 out:
379 	return result;
380 }
381 
382 
383 /**
384  * int jbd2_journal_restart() - restart a handle .
385  * @handle:  handle to restart
386  * @nblocks: nr credits requested
387  *
388  * Restart a handle for a multi-transaction filesystem
389  * operation.
390  *
391  * If the jbd2_journal_extend() call above fails to grant new buffer credits
392  * to a running handle, a call to jbd2_journal_restart will commit the
393  * handle's transaction so far and reattach the handle to a new
394  * transaction capabable of guaranteeing the requested number of
395  * credits.
396  */
397 
398 int jbd2_journal_restart(handle_t *handle, int nblocks)
399 {
400 	transaction_t *transaction = handle->h_transaction;
401 	journal_t *journal = transaction->t_journal;
402 	int ret;
403 
404 	/* If we've had an abort of any type, don't even think about
405 	 * actually doing the restart! */
406 	if (is_handle_aborted(handle))
407 		return 0;
408 
409 	/*
410 	 * First unlink the handle from its current transaction, and start the
411 	 * commit on that.
412 	 */
413 	J_ASSERT(transaction->t_updates > 0);
414 	J_ASSERT(journal_current_handle() == handle);
415 
416 	spin_lock(&journal->j_state_lock);
417 	spin_lock(&transaction->t_handle_lock);
418 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
419 	transaction->t_updates--;
420 
421 	if (!transaction->t_updates)
422 		wake_up(&journal->j_wait_updates);
423 	spin_unlock(&transaction->t_handle_lock);
424 
425 	jbd_debug(2, "restarting handle %p\n", handle);
426 	__jbd2_log_start_commit(journal, transaction->t_tid);
427 	spin_unlock(&journal->j_state_lock);
428 
429 	handle->h_buffer_credits = nblocks;
430 	ret = start_this_handle(journal, handle);
431 	return ret;
432 }
433 
434 
435 /**
436  * void jbd2_journal_lock_updates () - establish a transaction barrier.
437  * @journal:  Journal to establish a barrier on.
438  *
439  * This locks out any further updates from being started, and blocks
440  * until all existing updates have completed, returning only once the
441  * journal is in a quiescent state with no updates running.
442  *
443  * The journal lock should not be held on entry.
444  */
445 void jbd2_journal_lock_updates(journal_t *journal)
446 {
447 	DEFINE_WAIT(wait);
448 
449 	spin_lock(&journal->j_state_lock);
450 	++journal->j_barrier_count;
451 
452 	/* Wait until there are no running updates */
453 	while (1) {
454 		transaction_t *transaction = journal->j_running_transaction;
455 
456 		if (!transaction)
457 			break;
458 
459 		spin_lock(&transaction->t_handle_lock);
460 		if (!transaction->t_updates) {
461 			spin_unlock(&transaction->t_handle_lock);
462 			break;
463 		}
464 		prepare_to_wait(&journal->j_wait_updates, &wait,
465 				TASK_UNINTERRUPTIBLE);
466 		spin_unlock(&transaction->t_handle_lock);
467 		spin_unlock(&journal->j_state_lock);
468 		schedule();
469 		finish_wait(&journal->j_wait_updates, &wait);
470 		spin_lock(&journal->j_state_lock);
471 	}
472 	spin_unlock(&journal->j_state_lock);
473 
474 	/*
475 	 * We have now established a barrier against other normal updates, but
476 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
477 	 * to make sure that we serialise special journal-locked operations
478 	 * too.
479 	 */
480 	mutex_lock(&journal->j_barrier);
481 }
482 
483 /**
484  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
485  * @journal:  Journal to release the barrier on.
486  *
487  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
488  *
489  * Should be called without the journal lock held.
490  */
491 void jbd2_journal_unlock_updates (journal_t *journal)
492 {
493 	J_ASSERT(journal->j_barrier_count != 0);
494 
495 	mutex_unlock(&journal->j_barrier);
496 	spin_lock(&journal->j_state_lock);
497 	--journal->j_barrier_count;
498 	spin_unlock(&journal->j_state_lock);
499 	wake_up(&journal->j_wait_transaction_locked);
500 }
501 
502 static void warn_dirty_buffer(struct buffer_head *bh)
503 {
504 	char b[BDEVNAME_SIZE];
505 
506 	printk(KERN_WARNING
507 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
508 	       "There's a risk of filesystem corruption in case of system "
509 	       "crash.\n",
510 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
511 }
512 
513 /*
514  * If the buffer is already part of the current transaction, then there
515  * is nothing we need to do.  If it is already part of a prior
516  * transaction which we are still committing to disk, then we need to
517  * make sure that we do not overwrite the old copy: we do copy-out to
518  * preserve the copy going to disk.  We also account the buffer against
519  * the handle's metadata buffer credits (unless the buffer is already
520  * part of the transaction, that is).
521  *
522  */
523 static int
524 do_get_write_access(handle_t *handle, struct journal_head *jh,
525 			int force_copy)
526 {
527 	struct buffer_head *bh;
528 	transaction_t *transaction;
529 	journal_t *journal;
530 	int error;
531 	char *frozen_buffer = NULL;
532 	int need_copy = 0;
533 
534 	if (is_handle_aborted(handle))
535 		return -EROFS;
536 
537 	transaction = handle->h_transaction;
538 	journal = transaction->t_journal;
539 
540 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
541 
542 	JBUFFER_TRACE(jh, "entry");
543 repeat:
544 	bh = jh2bh(jh);
545 
546 	/* @@@ Need to check for errors here at some point. */
547 
548 	lock_buffer(bh);
549 	jbd_lock_bh_state(bh);
550 
551 	/* We now hold the buffer lock so it is safe to query the buffer
552 	 * state.  Is the buffer dirty?
553 	 *
554 	 * If so, there are two possibilities.  The buffer may be
555 	 * non-journaled, and undergoing a quite legitimate writeback.
556 	 * Otherwise, it is journaled, and we don't expect dirty buffers
557 	 * in that state (the buffers should be marked JBD_Dirty
558 	 * instead.)  So either the IO is being done under our own
559 	 * control and this is a bug, or it's a third party IO such as
560 	 * dump(8) (which may leave the buffer scheduled for read ---
561 	 * ie. locked but not dirty) or tune2fs (which may actually have
562 	 * the buffer dirtied, ugh.)  */
563 
564 	if (buffer_dirty(bh)) {
565 		/*
566 		 * First question: is this buffer already part of the current
567 		 * transaction or the existing committing transaction?
568 		 */
569 		if (jh->b_transaction) {
570 			J_ASSERT_JH(jh,
571 				jh->b_transaction == transaction ||
572 				jh->b_transaction ==
573 					journal->j_committing_transaction);
574 			if (jh->b_next_transaction)
575 				J_ASSERT_JH(jh, jh->b_next_transaction ==
576 							transaction);
577 			warn_dirty_buffer(bh);
578 		}
579 		/*
580 		 * In any case we need to clean the dirty flag and we must
581 		 * do it under the buffer lock to be sure we don't race
582 		 * with running write-out.
583 		 */
584 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
585 		clear_buffer_dirty(bh);
586 		set_buffer_jbddirty(bh);
587 	}
588 
589 	unlock_buffer(bh);
590 
591 	error = -EROFS;
592 	if (is_handle_aborted(handle)) {
593 		jbd_unlock_bh_state(bh);
594 		goto out;
595 	}
596 	error = 0;
597 
598 	/*
599 	 * The buffer is already part of this transaction if b_transaction or
600 	 * b_next_transaction points to it
601 	 */
602 	if (jh->b_transaction == transaction ||
603 	    jh->b_next_transaction == transaction)
604 		goto done;
605 
606 	/*
607 	 * this is the first time this transaction is touching this buffer,
608 	 * reset the modified flag
609 	 */
610        jh->b_modified = 0;
611 
612 	/*
613 	 * If there is already a copy-out version of this buffer, then we don't
614 	 * need to make another one
615 	 */
616 	if (jh->b_frozen_data) {
617 		JBUFFER_TRACE(jh, "has frozen data");
618 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
619 		jh->b_next_transaction = transaction;
620 		goto done;
621 	}
622 
623 	/* Is there data here we need to preserve? */
624 
625 	if (jh->b_transaction && jh->b_transaction != transaction) {
626 		JBUFFER_TRACE(jh, "owned by older transaction");
627 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
628 		J_ASSERT_JH(jh, jh->b_transaction ==
629 					journal->j_committing_transaction);
630 
631 		/* There is one case we have to be very careful about.
632 		 * If the committing transaction is currently writing
633 		 * this buffer out to disk and has NOT made a copy-out,
634 		 * then we cannot modify the buffer contents at all
635 		 * right now.  The essence of copy-out is that it is the
636 		 * extra copy, not the primary copy, which gets
637 		 * journaled.  If the primary copy is already going to
638 		 * disk then we cannot do copy-out here. */
639 
640 		if (jh->b_jlist == BJ_Shadow) {
641 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
642 			wait_queue_head_t *wqh;
643 
644 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
645 
646 			JBUFFER_TRACE(jh, "on shadow: sleep");
647 			jbd_unlock_bh_state(bh);
648 			/* commit wakes up all shadow buffers after IO */
649 			for ( ; ; ) {
650 				prepare_to_wait(wqh, &wait.wait,
651 						TASK_UNINTERRUPTIBLE);
652 				if (jh->b_jlist != BJ_Shadow)
653 					break;
654 				schedule();
655 			}
656 			finish_wait(wqh, &wait.wait);
657 			goto repeat;
658 		}
659 
660 		/* Only do the copy if the currently-owning transaction
661 		 * still needs it.  If it is on the Forget list, the
662 		 * committing transaction is past that stage.  The
663 		 * buffer had better remain locked during the kmalloc,
664 		 * but that should be true --- we hold the journal lock
665 		 * still and the buffer is already on the BUF_JOURNAL
666 		 * list so won't be flushed.
667 		 *
668 		 * Subtle point, though: if this is a get_undo_access,
669 		 * then we will be relying on the frozen_data to contain
670 		 * the new value of the committed_data record after the
671 		 * transaction, so we HAVE to force the frozen_data copy
672 		 * in that case. */
673 
674 		if (jh->b_jlist != BJ_Forget || force_copy) {
675 			JBUFFER_TRACE(jh, "generate frozen data");
676 			if (!frozen_buffer) {
677 				JBUFFER_TRACE(jh, "allocate memory for buffer");
678 				jbd_unlock_bh_state(bh);
679 				frozen_buffer =
680 					jbd2_alloc(jh2bh(jh)->b_size,
681 							 GFP_NOFS);
682 				if (!frozen_buffer) {
683 					printk(KERN_EMERG
684 					       "%s: OOM for frozen_buffer\n",
685 					       __func__);
686 					JBUFFER_TRACE(jh, "oom!");
687 					error = -ENOMEM;
688 					jbd_lock_bh_state(bh);
689 					goto done;
690 				}
691 				goto repeat;
692 			}
693 			jh->b_frozen_data = frozen_buffer;
694 			frozen_buffer = NULL;
695 			need_copy = 1;
696 		}
697 		jh->b_next_transaction = transaction;
698 	}
699 
700 
701 	/*
702 	 * Finally, if the buffer is not journaled right now, we need to make
703 	 * sure it doesn't get written to disk before the caller actually
704 	 * commits the new data
705 	 */
706 	if (!jh->b_transaction) {
707 		JBUFFER_TRACE(jh, "no transaction");
708 		J_ASSERT_JH(jh, !jh->b_next_transaction);
709 		jh->b_transaction = transaction;
710 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
711 		spin_lock(&journal->j_list_lock);
712 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
713 		spin_unlock(&journal->j_list_lock);
714 	}
715 
716 done:
717 	if (need_copy) {
718 		struct page *page;
719 		int offset;
720 		char *source;
721 
722 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
723 			    "Possible IO failure.\n");
724 		page = jh2bh(jh)->b_page;
725 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
726 		source = kmap_atomic(page, KM_USER0);
727 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
728 		kunmap_atomic(source, KM_USER0);
729 
730 		/*
731 		 * Now that the frozen data is saved off, we need to store
732 		 * any matching triggers.
733 		 */
734 		jh->b_frozen_triggers = jh->b_triggers;
735 	}
736 	jbd_unlock_bh_state(bh);
737 
738 	/*
739 	 * If we are about to journal a buffer, then any revoke pending on it is
740 	 * no longer valid
741 	 */
742 	jbd2_journal_cancel_revoke(handle, jh);
743 
744 out:
745 	if (unlikely(frozen_buffer))	/* It's usually NULL */
746 		jbd2_free(frozen_buffer, bh->b_size);
747 
748 	JBUFFER_TRACE(jh, "exit");
749 	return error;
750 }
751 
752 /**
753  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
754  * @handle: transaction to add buffer modifications to
755  * @bh:     bh to be used for metadata writes
756  * @credits: variable that will receive credits for the buffer
757  *
758  * Returns an error code or 0 on success.
759  *
760  * In full data journalling mode the buffer may be of type BJ_AsyncData,
761  * because we're write()ing a buffer which is also part of a shared mapping.
762  */
763 
764 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
765 {
766 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
767 	int rc;
768 
769 	/* We do not want to get caught playing with fields which the
770 	 * log thread also manipulates.  Make sure that the buffer
771 	 * completes any outstanding IO before proceeding. */
772 	rc = do_get_write_access(handle, jh, 0);
773 	jbd2_journal_put_journal_head(jh);
774 	return rc;
775 }
776 
777 
778 /*
779  * When the user wants to journal a newly created buffer_head
780  * (ie. getblk() returned a new buffer and we are going to populate it
781  * manually rather than reading off disk), then we need to keep the
782  * buffer_head locked until it has been completely filled with new
783  * data.  In this case, we should be able to make the assertion that
784  * the bh is not already part of an existing transaction.
785  *
786  * The buffer should already be locked by the caller by this point.
787  * There is no lock ranking violation: it was a newly created,
788  * unlocked buffer beforehand. */
789 
790 /**
791  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
792  * @handle: transaction to new buffer to
793  * @bh: new buffer.
794  *
795  * Call this if you create a new bh.
796  */
797 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
798 {
799 	transaction_t *transaction = handle->h_transaction;
800 	journal_t *journal = transaction->t_journal;
801 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
802 	int err;
803 
804 	jbd_debug(5, "journal_head %p\n", jh);
805 	err = -EROFS;
806 	if (is_handle_aborted(handle))
807 		goto out;
808 	err = 0;
809 
810 	JBUFFER_TRACE(jh, "entry");
811 	/*
812 	 * The buffer may already belong to this transaction due to pre-zeroing
813 	 * in the filesystem's new_block code.  It may also be on the previous,
814 	 * committing transaction's lists, but it HAS to be in Forget state in
815 	 * that case: the transaction must have deleted the buffer for it to be
816 	 * reused here.
817 	 */
818 	jbd_lock_bh_state(bh);
819 	spin_lock(&journal->j_list_lock);
820 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
821 		jh->b_transaction == NULL ||
822 		(jh->b_transaction == journal->j_committing_transaction &&
823 			  jh->b_jlist == BJ_Forget)));
824 
825 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
826 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
827 
828 	if (jh->b_transaction == NULL) {
829 		/*
830 		 * Previous jbd2_journal_forget() could have left the buffer
831 		 * with jbddirty bit set because it was being committed. When
832 		 * the commit finished, we've filed the buffer for
833 		 * checkpointing and marked it dirty. Now we are reallocating
834 		 * the buffer so the transaction freeing it must have
835 		 * committed and so it's safe to clear the dirty bit.
836 		 */
837 		clear_buffer_dirty(jh2bh(jh));
838 		jh->b_transaction = transaction;
839 
840 		/* first access by this transaction */
841 		jh->b_modified = 0;
842 
843 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
844 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
845 	} else if (jh->b_transaction == journal->j_committing_transaction) {
846 		/* first access by this transaction */
847 		jh->b_modified = 0;
848 
849 		JBUFFER_TRACE(jh, "set next transaction");
850 		jh->b_next_transaction = transaction;
851 	}
852 	spin_unlock(&journal->j_list_lock);
853 	jbd_unlock_bh_state(bh);
854 
855 	/*
856 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
857 	 * blocks which contain freed but then revoked metadata.  We need
858 	 * to cancel the revoke in case we end up freeing it yet again
859 	 * and the reallocating as data - this would cause a second revoke,
860 	 * which hits an assertion error.
861 	 */
862 	JBUFFER_TRACE(jh, "cancelling revoke");
863 	jbd2_journal_cancel_revoke(handle, jh);
864 	jbd2_journal_put_journal_head(jh);
865 out:
866 	return err;
867 }
868 
869 /**
870  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
871  *     non-rewindable consequences
872  * @handle: transaction
873  * @bh: buffer to undo
874  * @credits: store the number of taken credits here (if not NULL)
875  *
876  * Sometimes there is a need to distinguish between metadata which has
877  * been committed to disk and that which has not.  The ext3fs code uses
878  * this for freeing and allocating space, we have to make sure that we
879  * do not reuse freed space until the deallocation has been committed,
880  * since if we overwrote that space we would make the delete
881  * un-rewindable in case of a crash.
882  *
883  * To deal with that, jbd2_journal_get_undo_access requests write access to a
884  * buffer for parts of non-rewindable operations such as delete
885  * operations on the bitmaps.  The journaling code must keep a copy of
886  * the buffer's contents prior to the undo_access call until such time
887  * as we know that the buffer has definitely been committed to disk.
888  *
889  * We never need to know which transaction the committed data is part
890  * of, buffers touched here are guaranteed to be dirtied later and so
891  * will be committed to a new transaction in due course, at which point
892  * we can discard the old committed data pointer.
893  *
894  * Returns error number or 0 on success.
895  */
896 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
897 {
898 	int err;
899 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
900 	char *committed_data = NULL;
901 
902 	JBUFFER_TRACE(jh, "entry");
903 
904 	/*
905 	 * Do this first --- it can drop the journal lock, so we want to
906 	 * make sure that obtaining the committed_data is done
907 	 * atomically wrt. completion of any outstanding commits.
908 	 */
909 	err = do_get_write_access(handle, jh, 1);
910 	if (err)
911 		goto out;
912 
913 repeat:
914 	if (!jh->b_committed_data) {
915 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
916 		if (!committed_data) {
917 			printk(KERN_EMERG "%s: No memory for committed data\n",
918 				__func__);
919 			err = -ENOMEM;
920 			goto out;
921 		}
922 	}
923 
924 	jbd_lock_bh_state(bh);
925 	if (!jh->b_committed_data) {
926 		/* Copy out the current buffer contents into the
927 		 * preserved, committed copy. */
928 		JBUFFER_TRACE(jh, "generate b_committed data");
929 		if (!committed_data) {
930 			jbd_unlock_bh_state(bh);
931 			goto repeat;
932 		}
933 
934 		jh->b_committed_data = committed_data;
935 		committed_data = NULL;
936 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
937 	}
938 	jbd_unlock_bh_state(bh);
939 out:
940 	jbd2_journal_put_journal_head(jh);
941 	if (unlikely(committed_data))
942 		jbd2_free(committed_data, bh->b_size);
943 	return err;
944 }
945 
946 /**
947  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
948  * @bh: buffer to trigger on
949  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
950  *
951  * Set any triggers on this journal_head.  This is always safe, because
952  * triggers for a committing buffer will be saved off, and triggers for
953  * a running transaction will match the buffer in that transaction.
954  *
955  * Call with NULL to clear the triggers.
956  */
957 void jbd2_journal_set_triggers(struct buffer_head *bh,
958 			       struct jbd2_buffer_trigger_type *type)
959 {
960 	struct journal_head *jh = bh2jh(bh);
961 
962 	jh->b_triggers = type;
963 }
964 
965 void jbd2_buffer_commit_trigger(struct journal_head *jh, void *mapped_data,
966 				struct jbd2_buffer_trigger_type *triggers)
967 {
968 	struct buffer_head *bh = jh2bh(jh);
969 
970 	if (!triggers || !triggers->t_commit)
971 		return;
972 
973 	triggers->t_commit(triggers, bh, mapped_data, bh->b_size);
974 }
975 
976 void jbd2_buffer_abort_trigger(struct journal_head *jh,
977 			       struct jbd2_buffer_trigger_type *triggers)
978 {
979 	if (!triggers || !triggers->t_abort)
980 		return;
981 
982 	triggers->t_abort(triggers, jh2bh(jh));
983 }
984 
985 
986 
987 /**
988  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
989  * @handle: transaction to add buffer to.
990  * @bh: buffer to mark
991  *
992  * mark dirty metadata which needs to be journaled as part of the current
993  * transaction.
994  *
995  * The buffer is placed on the transaction's metadata list and is marked
996  * as belonging to the transaction.
997  *
998  * Returns error number or 0 on success.
999  *
1000  * Special care needs to be taken if the buffer already belongs to the
1001  * current committing transaction (in which case we should have frozen
1002  * data present for that commit).  In that case, we don't relink the
1003  * buffer: that only gets done when the old transaction finally
1004  * completes its commit.
1005  */
1006 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1007 {
1008 	transaction_t *transaction = handle->h_transaction;
1009 	journal_t *journal = transaction->t_journal;
1010 	struct journal_head *jh = bh2jh(bh);
1011 
1012 	jbd_debug(5, "journal_head %p\n", jh);
1013 	JBUFFER_TRACE(jh, "entry");
1014 	if (is_handle_aborted(handle))
1015 		goto out;
1016 
1017 	jbd_lock_bh_state(bh);
1018 
1019 	if (jh->b_modified == 0) {
1020 		/*
1021 		 * This buffer's got modified and becoming part
1022 		 * of the transaction. This needs to be done
1023 		 * once a transaction -bzzz
1024 		 */
1025 		jh->b_modified = 1;
1026 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1027 		handle->h_buffer_credits--;
1028 	}
1029 
1030 	/*
1031 	 * fastpath, to avoid expensive locking.  If this buffer is already
1032 	 * on the running transaction's metadata list there is nothing to do.
1033 	 * Nobody can take it off again because there is a handle open.
1034 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1035 	 * result in this test being false, so we go in and take the locks.
1036 	 */
1037 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1038 		JBUFFER_TRACE(jh, "fastpath");
1039 		J_ASSERT_JH(jh, jh->b_transaction ==
1040 					journal->j_running_transaction);
1041 		goto out_unlock_bh;
1042 	}
1043 
1044 	set_buffer_jbddirty(bh);
1045 
1046 	/*
1047 	 * Metadata already on the current transaction list doesn't
1048 	 * need to be filed.  Metadata on another transaction's list must
1049 	 * be committing, and will be refiled once the commit completes:
1050 	 * leave it alone for now.
1051 	 */
1052 	if (jh->b_transaction != transaction) {
1053 		JBUFFER_TRACE(jh, "already on other transaction");
1054 		J_ASSERT_JH(jh, jh->b_transaction ==
1055 					journal->j_committing_transaction);
1056 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1057 		/* And this case is illegal: we can't reuse another
1058 		 * transaction's data buffer, ever. */
1059 		goto out_unlock_bh;
1060 	}
1061 
1062 	/* That test should have eliminated the following case: */
1063 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1064 
1065 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1066 	spin_lock(&journal->j_list_lock);
1067 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1068 	spin_unlock(&journal->j_list_lock);
1069 out_unlock_bh:
1070 	jbd_unlock_bh_state(bh);
1071 out:
1072 	JBUFFER_TRACE(jh, "exit");
1073 	return 0;
1074 }
1075 
1076 /*
1077  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1078  * updates, if the update decided in the end that it didn't need access.
1079  *
1080  */
1081 void
1082 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1083 {
1084 	BUFFER_TRACE(bh, "entry");
1085 }
1086 
1087 /**
1088  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1089  * @handle: transaction handle
1090  * @bh:     bh to 'forget'
1091  *
1092  * We can only do the bforget if there are no commits pending against the
1093  * buffer.  If the buffer is dirty in the current running transaction we
1094  * can safely unlink it.
1095  *
1096  * bh may not be a journalled buffer at all - it may be a non-JBD
1097  * buffer which came off the hashtable.  Check for this.
1098  *
1099  * Decrements bh->b_count by one.
1100  *
1101  * Allow this call even if the handle has aborted --- it may be part of
1102  * the caller's cleanup after an abort.
1103  */
1104 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1105 {
1106 	transaction_t *transaction = handle->h_transaction;
1107 	journal_t *journal = transaction->t_journal;
1108 	struct journal_head *jh;
1109 	int drop_reserve = 0;
1110 	int err = 0;
1111 	int was_modified = 0;
1112 
1113 	BUFFER_TRACE(bh, "entry");
1114 
1115 	jbd_lock_bh_state(bh);
1116 	spin_lock(&journal->j_list_lock);
1117 
1118 	if (!buffer_jbd(bh))
1119 		goto not_jbd;
1120 	jh = bh2jh(bh);
1121 
1122 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1123 	 * Don't do any jbd operations, and return an error. */
1124 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1125 			 "inconsistent data on disk")) {
1126 		err = -EIO;
1127 		goto not_jbd;
1128 	}
1129 
1130 	/* keep track of wether or not this transaction modified us */
1131 	was_modified = jh->b_modified;
1132 
1133 	/*
1134 	 * The buffer's going from the transaction, we must drop
1135 	 * all references -bzzz
1136 	 */
1137 	jh->b_modified = 0;
1138 
1139 	if (jh->b_transaction == handle->h_transaction) {
1140 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1141 
1142 		/* If we are forgetting a buffer which is already part
1143 		 * of this transaction, then we can just drop it from
1144 		 * the transaction immediately. */
1145 		clear_buffer_dirty(bh);
1146 		clear_buffer_jbddirty(bh);
1147 
1148 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1149 
1150 		/*
1151 		 * we only want to drop a reference if this transaction
1152 		 * modified the buffer
1153 		 */
1154 		if (was_modified)
1155 			drop_reserve = 1;
1156 
1157 		/*
1158 		 * We are no longer going to journal this buffer.
1159 		 * However, the commit of this transaction is still
1160 		 * important to the buffer: the delete that we are now
1161 		 * processing might obsolete an old log entry, so by
1162 		 * committing, we can satisfy the buffer's checkpoint.
1163 		 *
1164 		 * So, if we have a checkpoint on the buffer, we should
1165 		 * now refile the buffer on our BJ_Forget list so that
1166 		 * we know to remove the checkpoint after we commit.
1167 		 */
1168 
1169 		if (jh->b_cp_transaction) {
1170 			__jbd2_journal_temp_unlink_buffer(jh);
1171 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1172 		} else {
1173 			__jbd2_journal_unfile_buffer(jh);
1174 			jbd2_journal_remove_journal_head(bh);
1175 			__brelse(bh);
1176 			if (!buffer_jbd(bh)) {
1177 				spin_unlock(&journal->j_list_lock);
1178 				jbd_unlock_bh_state(bh);
1179 				__bforget(bh);
1180 				goto drop;
1181 			}
1182 		}
1183 	} else if (jh->b_transaction) {
1184 		J_ASSERT_JH(jh, (jh->b_transaction ==
1185 				 journal->j_committing_transaction));
1186 		/* However, if the buffer is still owned by a prior
1187 		 * (committing) transaction, we can't drop it yet... */
1188 		JBUFFER_TRACE(jh, "belongs to older transaction");
1189 		/* ... but we CAN drop it from the new transaction if we
1190 		 * have also modified it since the original commit. */
1191 
1192 		if (jh->b_next_transaction) {
1193 			J_ASSERT(jh->b_next_transaction == transaction);
1194 			jh->b_next_transaction = NULL;
1195 
1196 			/*
1197 			 * only drop a reference if this transaction modified
1198 			 * the buffer
1199 			 */
1200 			if (was_modified)
1201 				drop_reserve = 1;
1202 		}
1203 	}
1204 
1205 not_jbd:
1206 	spin_unlock(&journal->j_list_lock);
1207 	jbd_unlock_bh_state(bh);
1208 	__brelse(bh);
1209 drop:
1210 	if (drop_reserve) {
1211 		/* no need to reserve log space for this block -bzzz */
1212 		handle->h_buffer_credits++;
1213 	}
1214 	return err;
1215 }
1216 
1217 /**
1218  * int jbd2_journal_stop() - complete a transaction
1219  * @handle: tranaction to complete.
1220  *
1221  * All done for a particular handle.
1222  *
1223  * There is not much action needed here.  We just return any remaining
1224  * buffer credits to the transaction and remove the handle.  The only
1225  * complication is that we need to start a commit operation if the
1226  * filesystem is marked for synchronous update.
1227  *
1228  * jbd2_journal_stop itself will not usually return an error, but it may
1229  * do so in unusual circumstances.  In particular, expect it to
1230  * return -EIO if a jbd2_journal_abort has been executed since the
1231  * transaction began.
1232  */
1233 int jbd2_journal_stop(handle_t *handle)
1234 {
1235 	transaction_t *transaction = handle->h_transaction;
1236 	journal_t *journal = transaction->t_journal;
1237 	int err;
1238 	pid_t pid;
1239 
1240 	J_ASSERT(journal_current_handle() == handle);
1241 
1242 	if (is_handle_aborted(handle))
1243 		err = -EIO;
1244 	else {
1245 		J_ASSERT(transaction->t_updates > 0);
1246 		err = 0;
1247 	}
1248 
1249 	if (--handle->h_ref > 0) {
1250 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1251 			  handle->h_ref);
1252 		return err;
1253 	}
1254 
1255 	jbd_debug(4, "Handle %p going down\n", handle);
1256 
1257 	/*
1258 	 * Implement synchronous transaction batching.  If the handle
1259 	 * was synchronous, don't force a commit immediately.  Let's
1260 	 * yield and let another thread piggyback onto this
1261 	 * transaction.  Keep doing that while new threads continue to
1262 	 * arrive.  It doesn't cost much - we're about to run a commit
1263 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1264 	 * operations by 30x or more...
1265 	 *
1266 	 * We try and optimize the sleep time against what the
1267 	 * underlying disk can do, instead of having a static sleep
1268 	 * time.  This is useful for the case where our storage is so
1269 	 * fast that it is more optimal to go ahead and force a flush
1270 	 * and wait for the transaction to be committed than it is to
1271 	 * wait for an arbitrary amount of time for new writers to
1272 	 * join the transaction.  We achieve this by measuring how
1273 	 * long it takes to commit a transaction, and compare it with
1274 	 * how long this transaction has been running, and if run time
1275 	 * < commit time then we sleep for the delta and commit.  This
1276 	 * greatly helps super fast disks that would see slowdowns as
1277 	 * more threads started doing fsyncs.
1278 	 *
1279 	 * But don't do this if this process was the most recent one
1280 	 * to perform a synchronous write.  We do this to detect the
1281 	 * case where a single process is doing a stream of sync
1282 	 * writes.  No point in waiting for joiners in that case.
1283 	 */
1284 	pid = current->pid;
1285 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1286 		u64 commit_time, trans_time;
1287 
1288 		journal->j_last_sync_writer = pid;
1289 
1290 		spin_lock(&journal->j_state_lock);
1291 		commit_time = journal->j_average_commit_time;
1292 		spin_unlock(&journal->j_state_lock);
1293 
1294 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1295 						   transaction->t_start_time));
1296 
1297 		commit_time = max_t(u64, commit_time,
1298 				    1000*journal->j_min_batch_time);
1299 		commit_time = min_t(u64, commit_time,
1300 				    1000*journal->j_max_batch_time);
1301 
1302 		if (trans_time < commit_time) {
1303 			ktime_t expires = ktime_add_ns(ktime_get(),
1304 						       commit_time);
1305 			set_current_state(TASK_UNINTERRUPTIBLE);
1306 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1307 		}
1308 	}
1309 
1310 	if (handle->h_sync)
1311 		transaction->t_synchronous_commit = 1;
1312 	current->journal_info = NULL;
1313 	spin_lock(&journal->j_state_lock);
1314 	spin_lock(&transaction->t_handle_lock);
1315 	transaction->t_outstanding_credits -= handle->h_buffer_credits;
1316 	transaction->t_updates--;
1317 	if (!transaction->t_updates) {
1318 		wake_up(&journal->j_wait_updates);
1319 		if (journal->j_barrier_count)
1320 			wake_up(&journal->j_wait_transaction_locked);
1321 	}
1322 
1323 	/*
1324 	 * If the handle is marked SYNC, we need to set another commit
1325 	 * going!  We also want to force a commit if the current
1326 	 * transaction is occupying too much of the log, or if the
1327 	 * transaction is too old now.
1328 	 */
1329 	if (handle->h_sync ||
1330 			transaction->t_outstanding_credits >
1331 				journal->j_max_transaction_buffers ||
1332 			time_after_eq(jiffies, transaction->t_expires)) {
1333 		/* Do this even for aborted journals: an abort still
1334 		 * completes the commit thread, it just doesn't write
1335 		 * anything to disk. */
1336 		tid_t tid = transaction->t_tid;
1337 
1338 		spin_unlock(&transaction->t_handle_lock);
1339 		jbd_debug(2, "transaction too old, requesting commit for "
1340 					"handle %p\n", handle);
1341 		/* This is non-blocking */
1342 		__jbd2_log_start_commit(journal, transaction->t_tid);
1343 		spin_unlock(&journal->j_state_lock);
1344 
1345 		/*
1346 		 * Special case: JBD2_SYNC synchronous updates require us
1347 		 * to wait for the commit to complete.
1348 		 */
1349 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1350 			err = jbd2_log_wait_commit(journal, tid);
1351 	} else {
1352 		spin_unlock(&transaction->t_handle_lock);
1353 		spin_unlock(&journal->j_state_lock);
1354 	}
1355 
1356 	lock_map_release(&handle->h_lockdep_map);
1357 
1358 	jbd2_free_handle(handle);
1359 	return err;
1360 }
1361 
1362 /**
1363  * int jbd2_journal_force_commit() - force any uncommitted transactions
1364  * @journal: journal to force
1365  *
1366  * For synchronous operations: force any uncommitted transactions
1367  * to disk.  May seem kludgy, but it reuses all the handle batching
1368  * code in a very simple manner.
1369  */
1370 int jbd2_journal_force_commit(journal_t *journal)
1371 {
1372 	handle_t *handle;
1373 	int ret;
1374 
1375 	handle = jbd2_journal_start(journal, 1);
1376 	if (IS_ERR(handle)) {
1377 		ret = PTR_ERR(handle);
1378 	} else {
1379 		handle->h_sync = 1;
1380 		ret = jbd2_journal_stop(handle);
1381 	}
1382 	return ret;
1383 }
1384 
1385 /*
1386  *
1387  * List management code snippets: various functions for manipulating the
1388  * transaction buffer lists.
1389  *
1390  */
1391 
1392 /*
1393  * Append a buffer to a transaction list, given the transaction's list head
1394  * pointer.
1395  *
1396  * j_list_lock is held.
1397  *
1398  * jbd_lock_bh_state(jh2bh(jh)) is held.
1399  */
1400 
1401 static inline void
1402 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1403 {
1404 	if (!*list) {
1405 		jh->b_tnext = jh->b_tprev = jh;
1406 		*list = jh;
1407 	} else {
1408 		/* Insert at the tail of the list to preserve order */
1409 		struct journal_head *first = *list, *last = first->b_tprev;
1410 		jh->b_tprev = last;
1411 		jh->b_tnext = first;
1412 		last->b_tnext = first->b_tprev = jh;
1413 	}
1414 }
1415 
1416 /*
1417  * Remove a buffer from a transaction list, given the transaction's list
1418  * head pointer.
1419  *
1420  * Called with j_list_lock held, and the journal may not be locked.
1421  *
1422  * jbd_lock_bh_state(jh2bh(jh)) is held.
1423  */
1424 
1425 static inline void
1426 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1427 {
1428 	if (*list == jh) {
1429 		*list = jh->b_tnext;
1430 		if (*list == jh)
1431 			*list = NULL;
1432 	}
1433 	jh->b_tprev->b_tnext = jh->b_tnext;
1434 	jh->b_tnext->b_tprev = jh->b_tprev;
1435 }
1436 
1437 /*
1438  * Remove a buffer from the appropriate transaction list.
1439  *
1440  * Note that this function can *change* the value of
1441  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1442  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1443  * of these pointers, it could go bad.  Generally the caller needs to re-read
1444  * the pointer from the transaction_t.
1445  *
1446  * Called under j_list_lock.  The journal may not be locked.
1447  */
1448 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1449 {
1450 	struct journal_head **list = NULL;
1451 	transaction_t *transaction;
1452 	struct buffer_head *bh = jh2bh(jh);
1453 
1454 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1455 	transaction = jh->b_transaction;
1456 	if (transaction)
1457 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1458 
1459 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1460 	if (jh->b_jlist != BJ_None)
1461 		J_ASSERT_JH(jh, transaction != NULL);
1462 
1463 	switch (jh->b_jlist) {
1464 	case BJ_None:
1465 		return;
1466 	case BJ_Metadata:
1467 		transaction->t_nr_buffers--;
1468 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1469 		list = &transaction->t_buffers;
1470 		break;
1471 	case BJ_Forget:
1472 		list = &transaction->t_forget;
1473 		break;
1474 	case BJ_IO:
1475 		list = &transaction->t_iobuf_list;
1476 		break;
1477 	case BJ_Shadow:
1478 		list = &transaction->t_shadow_list;
1479 		break;
1480 	case BJ_LogCtl:
1481 		list = &transaction->t_log_list;
1482 		break;
1483 	case BJ_Reserved:
1484 		list = &transaction->t_reserved_list;
1485 		break;
1486 	}
1487 
1488 	__blist_del_buffer(list, jh);
1489 	jh->b_jlist = BJ_None;
1490 	if (test_clear_buffer_jbddirty(bh))
1491 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1492 }
1493 
1494 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1495 {
1496 	__jbd2_journal_temp_unlink_buffer(jh);
1497 	jh->b_transaction = NULL;
1498 }
1499 
1500 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1501 {
1502 	jbd_lock_bh_state(jh2bh(jh));
1503 	spin_lock(&journal->j_list_lock);
1504 	__jbd2_journal_unfile_buffer(jh);
1505 	spin_unlock(&journal->j_list_lock);
1506 	jbd_unlock_bh_state(jh2bh(jh));
1507 }
1508 
1509 /*
1510  * Called from jbd2_journal_try_to_free_buffers().
1511  *
1512  * Called under jbd_lock_bh_state(bh)
1513  */
1514 static void
1515 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1516 {
1517 	struct journal_head *jh;
1518 
1519 	jh = bh2jh(bh);
1520 
1521 	if (buffer_locked(bh) || buffer_dirty(bh))
1522 		goto out;
1523 
1524 	if (jh->b_next_transaction != NULL)
1525 		goto out;
1526 
1527 	spin_lock(&journal->j_list_lock);
1528 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1529 		/* written-back checkpointed metadata buffer */
1530 		if (jh->b_jlist == BJ_None) {
1531 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1532 			__jbd2_journal_remove_checkpoint(jh);
1533 			jbd2_journal_remove_journal_head(bh);
1534 			__brelse(bh);
1535 		}
1536 	}
1537 	spin_unlock(&journal->j_list_lock);
1538 out:
1539 	return;
1540 }
1541 
1542 /**
1543  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1544  * @journal: journal for operation
1545  * @page: to try and free
1546  * @gfp_mask: we use the mask to detect how hard should we try to release
1547  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1548  * release the buffers.
1549  *
1550  *
1551  * For all the buffers on this page,
1552  * if they are fully written out ordered data, move them onto BUF_CLEAN
1553  * so try_to_free_buffers() can reap them.
1554  *
1555  * This function returns non-zero if we wish try_to_free_buffers()
1556  * to be called. We do this if the page is releasable by try_to_free_buffers().
1557  * We also do it if the page has locked or dirty buffers and the caller wants
1558  * us to perform sync or async writeout.
1559  *
1560  * This complicates JBD locking somewhat.  We aren't protected by the
1561  * BKL here.  We wish to remove the buffer from its committing or
1562  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1563  *
1564  * This may *change* the value of transaction_t->t_datalist, so anyone
1565  * who looks at t_datalist needs to lock against this function.
1566  *
1567  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1568  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1569  * will come out of the lock with the buffer dirty, which makes it
1570  * ineligible for release here.
1571  *
1572  * Who else is affected by this?  hmm...  Really the only contender
1573  * is do_get_write_access() - it could be looking at the buffer while
1574  * journal_try_to_free_buffer() is changing its state.  But that
1575  * cannot happen because we never reallocate freed data as metadata
1576  * while the data is part of a transaction.  Yes?
1577  *
1578  * Return 0 on failure, 1 on success
1579  */
1580 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1581 				struct page *page, gfp_t gfp_mask)
1582 {
1583 	struct buffer_head *head;
1584 	struct buffer_head *bh;
1585 	int ret = 0;
1586 
1587 	J_ASSERT(PageLocked(page));
1588 
1589 	head = page_buffers(page);
1590 	bh = head;
1591 	do {
1592 		struct journal_head *jh;
1593 
1594 		/*
1595 		 * We take our own ref against the journal_head here to avoid
1596 		 * having to add tons of locking around each instance of
1597 		 * jbd2_journal_remove_journal_head() and
1598 		 * jbd2_journal_put_journal_head().
1599 		 */
1600 		jh = jbd2_journal_grab_journal_head(bh);
1601 		if (!jh)
1602 			continue;
1603 
1604 		jbd_lock_bh_state(bh);
1605 		__journal_try_to_free_buffer(journal, bh);
1606 		jbd2_journal_put_journal_head(jh);
1607 		jbd_unlock_bh_state(bh);
1608 		if (buffer_jbd(bh))
1609 			goto busy;
1610 	} while ((bh = bh->b_this_page) != head);
1611 
1612 	ret = try_to_free_buffers(page);
1613 
1614 busy:
1615 	return ret;
1616 }
1617 
1618 /*
1619  * This buffer is no longer needed.  If it is on an older transaction's
1620  * checkpoint list we need to record it on this transaction's forget list
1621  * to pin this buffer (and hence its checkpointing transaction) down until
1622  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1623  * release it.
1624  * Returns non-zero if JBD no longer has an interest in the buffer.
1625  *
1626  * Called under j_list_lock.
1627  *
1628  * Called under jbd_lock_bh_state(bh).
1629  */
1630 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1631 {
1632 	int may_free = 1;
1633 	struct buffer_head *bh = jh2bh(jh);
1634 
1635 	__jbd2_journal_unfile_buffer(jh);
1636 
1637 	if (jh->b_cp_transaction) {
1638 		JBUFFER_TRACE(jh, "on running+cp transaction");
1639 		/*
1640 		 * We don't want to write the buffer anymore, clear the
1641 		 * bit so that we don't confuse checks in
1642 		 * __journal_file_buffer
1643 		 */
1644 		clear_buffer_dirty(bh);
1645 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1646 		may_free = 0;
1647 	} else {
1648 		JBUFFER_TRACE(jh, "on running transaction");
1649 		jbd2_journal_remove_journal_head(bh);
1650 		__brelse(bh);
1651 	}
1652 	return may_free;
1653 }
1654 
1655 /*
1656  * jbd2_journal_invalidatepage
1657  *
1658  * This code is tricky.  It has a number of cases to deal with.
1659  *
1660  * There are two invariants which this code relies on:
1661  *
1662  * i_size must be updated on disk before we start calling invalidatepage on the
1663  * data.
1664  *
1665  *  This is done in ext3 by defining an ext3_setattr method which
1666  *  updates i_size before truncate gets going.  By maintaining this
1667  *  invariant, we can be sure that it is safe to throw away any buffers
1668  *  attached to the current transaction: once the transaction commits,
1669  *  we know that the data will not be needed.
1670  *
1671  *  Note however that we can *not* throw away data belonging to the
1672  *  previous, committing transaction!
1673  *
1674  * Any disk blocks which *are* part of the previous, committing
1675  * transaction (and which therefore cannot be discarded immediately) are
1676  * not going to be reused in the new running transaction
1677  *
1678  *  The bitmap committed_data images guarantee this: any block which is
1679  *  allocated in one transaction and removed in the next will be marked
1680  *  as in-use in the committed_data bitmap, so cannot be reused until
1681  *  the next transaction to delete the block commits.  This means that
1682  *  leaving committing buffers dirty is quite safe: the disk blocks
1683  *  cannot be reallocated to a different file and so buffer aliasing is
1684  *  not possible.
1685  *
1686  *
1687  * The above applies mainly to ordered data mode.  In writeback mode we
1688  * don't make guarantees about the order in which data hits disk --- in
1689  * particular we don't guarantee that new dirty data is flushed before
1690  * transaction commit --- so it is always safe just to discard data
1691  * immediately in that mode.  --sct
1692  */
1693 
1694 /*
1695  * The journal_unmap_buffer helper function returns zero if the buffer
1696  * concerned remains pinned as an anonymous buffer belonging to an older
1697  * transaction.
1698  *
1699  * We're outside-transaction here.  Either or both of j_running_transaction
1700  * and j_committing_transaction may be NULL.
1701  */
1702 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1703 {
1704 	transaction_t *transaction;
1705 	struct journal_head *jh;
1706 	int may_free = 1;
1707 	int ret;
1708 
1709 	BUFFER_TRACE(bh, "entry");
1710 
1711 	/*
1712 	 * It is safe to proceed here without the j_list_lock because the
1713 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1714 	 * holding the page lock. --sct
1715 	 */
1716 
1717 	if (!buffer_jbd(bh))
1718 		goto zap_buffer_unlocked;
1719 
1720 	/* OK, we have data buffer in journaled mode */
1721 	spin_lock(&journal->j_state_lock);
1722 	jbd_lock_bh_state(bh);
1723 	spin_lock(&journal->j_list_lock);
1724 
1725 	jh = jbd2_journal_grab_journal_head(bh);
1726 	if (!jh)
1727 		goto zap_buffer_no_jh;
1728 
1729 	transaction = jh->b_transaction;
1730 	if (transaction == NULL) {
1731 		/* First case: not on any transaction.  If it
1732 		 * has no checkpoint link, then we can zap it:
1733 		 * it's a writeback-mode buffer so we don't care
1734 		 * if it hits disk safely. */
1735 		if (!jh->b_cp_transaction) {
1736 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1737 			goto zap_buffer;
1738 		}
1739 
1740 		if (!buffer_dirty(bh)) {
1741 			/* bdflush has written it.  We can drop it now */
1742 			goto zap_buffer;
1743 		}
1744 
1745 		/* OK, it must be in the journal but still not
1746 		 * written fully to disk: it's metadata or
1747 		 * journaled data... */
1748 
1749 		if (journal->j_running_transaction) {
1750 			/* ... and once the current transaction has
1751 			 * committed, the buffer won't be needed any
1752 			 * longer. */
1753 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1754 			ret = __dispose_buffer(jh,
1755 					journal->j_running_transaction);
1756 			jbd2_journal_put_journal_head(jh);
1757 			spin_unlock(&journal->j_list_lock);
1758 			jbd_unlock_bh_state(bh);
1759 			spin_unlock(&journal->j_state_lock);
1760 			return ret;
1761 		} else {
1762 			/* There is no currently-running transaction. So the
1763 			 * orphan record which we wrote for this file must have
1764 			 * passed into commit.  We must attach this buffer to
1765 			 * the committing transaction, if it exists. */
1766 			if (journal->j_committing_transaction) {
1767 				JBUFFER_TRACE(jh, "give to committing trans");
1768 				ret = __dispose_buffer(jh,
1769 					journal->j_committing_transaction);
1770 				jbd2_journal_put_journal_head(jh);
1771 				spin_unlock(&journal->j_list_lock);
1772 				jbd_unlock_bh_state(bh);
1773 				spin_unlock(&journal->j_state_lock);
1774 				return ret;
1775 			} else {
1776 				/* The orphan record's transaction has
1777 				 * committed.  We can cleanse this buffer */
1778 				clear_buffer_jbddirty(bh);
1779 				goto zap_buffer;
1780 			}
1781 		}
1782 	} else if (transaction == journal->j_committing_transaction) {
1783 		JBUFFER_TRACE(jh, "on committing transaction");
1784 		/*
1785 		 * If it is committing, we simply cannot touch it.  We
1786 		 * can remove it's next_transaction pointer from the
1787 		 * running transaction if that is set, but nothing
1788 		 * else. */
1789 		set_buffer_freed(bh);
1790 		if (jh->b_next_transaction) {
1791 			J_ASSERT(jh->b_next_transaction ==
1792 					journal->j_running_transaction);
1793 			jh->b_next_transaction = NULL;
1794 		}
1795 		jbd2_journal_put_journal_head(jh);
1796 		spin_unlock(&journal->j_list_lock);
1797 		jbd_unlock_bh_state(bh);
1798 		spin_unlock(&journal->j_state_lock);
1799 		return 0;
1800 	} else {
1801 		/* Good, the buffer belongs to the running transaction.
1802 		 * We are writing our own transaction's data, not any
1803 		 * previous one's, so it is safe to throw it away
1804 		 * (remember that we expect the filesystem to have set
1805 		 * i_size already for this truncate so recovery will not
1806 		 * expose the disk blocks we are discarding here.) */
1807 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1808 		JBUFFER_TRACE(jh, "on running transaction");
1809 		may_free = __dispose_buffer(jh, transaction);
1810 	}
1811 
1812 zap_buffer:
1813 	jbd2_journal_put_journal_head(jh);
1814 zap_buffer_no_jh:
1815 	spin_unlock(&journal->j_list_lock);
1816 	jbd_unlock_bh_state(bh);
1817 	spin_unlock(&journal->j_state_lock);
1818 zap_buffer_unlocked:
1819 	clear_buffer_dirty(bh);
1820 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1821 	clear_buffer_mapped(bh);
1822 	clear_buffer_req(bh);
1823 	clear_buffer_new(bh);
1824 	bh->b_bdev = NULL;
1825 	return may_free;
1826 }
1827 
1828 /**
1829  * void jbd2_journal_invalidatepage()
1830  * @journal: journal to use for flush...
1831  * @page:    page to flush
1832  * @offset:  length of page to invalidate.
1833  *
1834  * Reap page buffers containing data after offset in page.
1835  *
1836  */
1837 void jbd2_journal_invalidatepage(journal_t *journal,
1838 		      struct page *page,
1839 		      unsigned long offset)
1840 {
1841 	struct buffer_head *head, *bh, *next;
1842 	unsigned int curr_off = 0;
1843 	int may_free = 1;
1844 
1845 	if (!PageLocked(page))
1846 		BUG();
1847 	if (!page_has_buffers(page))
1848 		return;
1849 
1850 	/* We will potentially be playing with lists other than just the
1851 	 * data lists (especially for journaled data mode), so be
1852 	 * cautious in our locking. */
1853 
1854 	head = bh = page_buffers(page);
1855 	do {
1856 		unsigned int next_off = curr_off + bh->b_size;
1857 		next = bh->b_this_page;
1858 
1859 		if (offset <= curr_off) {
1860 			/* This block is wholly outside the truncation point */
1861 			lock_buffer(bh);
1862 			may_free &= journal_unmap_buffer(journal, bh);
1863 			unlock_buffer(bh);
1864 		}
1865 		curr_off = next_off;
1866 		bh = next;
1867 
1868 	} while (bh != head);
1869 
1870 	if (!offset) {
1871 		if (may_free && try_to_free_buffers(page))
1872 			J_ASSERT(!page_has_buffers(page));
1873 	}
1874 }
1875 
1876 /*
1877  * File a buffer on the given transaction list.
1878  */
1879 void __jbd2_journal_file_buffer(struct journal_head *jh,
1880 			transaction_t *transaction, int jlist)
1881 {
1882 	struct journal_head **list = NULL;
1883 	int was_dirty = 0;
1884 	struct buffer_head *bh = jh2bh(jh);
1885 
1886 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1887 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1888 
1889 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1890 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1891 				jh->b_transaction == NULL);
1892 
1893 	if (jh->b_transaction && jh->b_jlist == jlist)
1894 		return;
1895 
1896 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1897 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1898 		/*
1899 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1900 		 * instead of buffer_dirty. We should not see a dirty bit set
1901 		 * here because we clear it in do_get_write_access but e.g.
1902 		 * tune2fs can modify the sb and set the dirty bit at any time
1903 		 * so we try to gracefully handle that.
1904 		 */
1905 		if (buffer_dirty(bh))
1906 			warn_dirty_buffer(bh);
1907 		if (test_clear_buffer_dirty(bh) ||
1908 		    test_clear_buffer_jbddirty(bh))
1909 			was_dirty = 1;
1910 	}
1911 
1912 	if (jh->b_transaction)
1913 		__jbd2_journal_temp_unlink_buffer(jh);
1914 	jh->b_transaction = transaction;
1915 
1916 	switch (jlist) {
1917 	case BJ_None:
1918 		J_ASSERT_JH(jh, !jh->b_committed_data);
1919 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1920 		return;
1921 	case BJ_Metadata:
1922 		transaction->t_nr_buffers++;
1923 		list = &transaction->t_buffers;
1924 		break;
1925 	case BJ_Forget:
1926 		list = &transaction->t_forget;
1927 		break;
1928 	case BJ_IO:
1929 		list = &transaction->t_iobuf_list;
1930 		break;
1931 	case BJ_Shadow:
1932 		list = &transaction->t_shadow_list;
1933 		break;
1934 	case BJ_LogCtl:
1935 		list = &transaction->t_log_list;
1936 		break;
1937 	case BJ_Reserved:
1938 		list = &transaction->t_reserved_list;
1939 		break;
1940 	}
1941 
1942 	__blist_add_buffer(list, jh);
1943 	jh->b_jlist = jlist;
1944 
1945 	if (was_dirty)
1946 		set_buffer_jbddirty(bh);
1947 }
1948 
1949 void jbd2_journal_file_buffer(struct journal_head *jh,
1950 				transaction_t *transaction, int jlist)
1951 {
1952 	jbd_lock_bh_state(jh2bh(jh));
1953 	spin_lock(&transaction->t_journal->j_list_lock);
1954 	__jbd2_journal_file_buffer(jh, transaction, jlist);
1955 	spin_unlock(&transaction->t_journal->j_list_lock);
1956 	jbd_unlock_bh_state(jh2bh(jh));
1957 }
1958 
1959 /*
1960  * Remove a buffer from its current buffer list in preparation for
1961  * dropping it from its current transaction entirely.  If the buffer has
1962  * already started to be used by a subsequent transaction, refile the
1963  * buffer on that transaction's metadata list.
1964  *
1965  * Called under journal->j_list_lock
1966  *
1967  * Called under jbd_lock_bh_state(jh2bh(jh))
1968  */
1969 void __jbd2_journal_refile_buffer(struct journal_head *jh)
1970 {
1971 	int was_dirty;
1972 	struct buffer_head *bh = jh2bh(jh);
1973 
1974 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1975 	if (jh->b_transaction)
1976 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
1977 
1978 	/* If the buffer is now unused, just drop it. */
1979 	if (jh->b_next_transaction == NULL) {
1980 		__jbd2_journal_unfile_buffer(jh);
1981 		return;
1982 	}
1983 
1984 	/*
1985 	 * It has been modified by a later transaction: add it to the new
1986 	 * transaction's metadata list.
1987 	 */
1988 
1989 	was_dirty = test_clear_buffer_jbddirty(bh);
1990 	__jbd2_journal_temp_unlink_buffer(jh);
1991 	jh->b_transaction = jh->b_next_transaction;
1992 	jh->b_next_transaction = NULL;
1993 	__jbd2_journal_file_buffer(jh, jh->b_transaction,
1994 				jh->b_modified ? BJ_Metadata : BJ_Reserved);
1995 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
1996 
1997 	if (was_dirty)
1998 		set_buffer_jbddirty(bh);
1999 }
2000 
2001 /*
2002  * For the unlocked version of this call, also make sure that any
2003  * hanging journal_head is cleaned up if necessary.
2004  *
2005  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2006  * operation on a buffer_head, in which the caller is probably going to
2007  * be hooking the journal_head onto other lists.  In that case it is up
2008  * to the caller to remove the journal_head if necessary.  For the
2009  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2010  * doing anything else to the buffer so we need to do the cleanup
2011  * ourselves to avoid a jh leak.
2012  *
2013  * *** The journal_head may be freed by this call! ***
2014  */
2015 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2016 {
2017 	struct buffer_head *bh = jh2bh(jh);
2018 
2019 	jbd_lock_bh_state(bh);
2020 	spin_lock(&journal->j_list_lock);
2021 
2022 	__jbd2_journal_refile_buffer(jh);
2023 	jbd_unlock_bh_state(bh);
2024 	jbd2_journal_remove_journal_head(bh);
2025 
2026 	spin_unlock(&journal->j_list_lock);
2027 	__brelse(bh);
2028 }
2029 
2030 /*
2031  * File inode in the inode list of the handle's transaction
2032  */
2033 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2034 {
2035 	transaction_t *transaction = handle->h_transaction;
2036 	journal_t *journal = transaction->t_journal;
2037 
2038 	if (is_handle_aborted(handle))
2039 		return -EIO;
2040 
2041 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2042 			transaction->t_tid);
2043 
2044 	/*
2045 	 * First check whether inode isn't already on the transaction's
2046 	 * lists without taking the lock. Note that this check is safe
2047 	 * without the lock as we cannot race with somebody removing inode
2048 	 * from the transaction. The reason is that we remove inode from the
2049 	 * transaction only in journal_release_jbd_inode() and when we commit
2050 	 * the transaction. We are guarded from the first case by holding
2051 	 * a reference to the inode. We are safe against the second case
2052 	 * because if jinode->i_transaction == transaction, commit code
2053 	 * cannot touch the transaction because we hold reference to it,
2054 	 * and if jinode->i_next_transaction == transaction, commit code
2055 	 * will only file the inode where we want it.
2056 	 */
2057 	if (jinode->i_transaction == transaction ||
2058 	    jinode->i_next_transaction == transaction)
2059 		return 0;
2060 
2061 	spin_lock(&journal->j_list_lock);
2062 
2063 	if (jinode->i_transaction == transaction ||
2064 	    jinode->i_next_transaction == transaction)
2065 		goto done;
2066 
2067 	/* On some different transaction's list - should be
2068 	 * the committing one */
2069 	if (jinode->i_transaction) {
2070 		J_ASSERT(jinode->i_next_transaction == NULL);
2071 		J_ASSERT(jinode->i_transaction ==
2072 					journal->j_committing_transaction);
2073 		jinode->i_next_transaction = transaction;
2074 		goto done;
2075 	}
2076 	/* Not on any transaction list... */
2077 	J_ASSERT(!jinode->i_next_transaction);
2078 	jinode->i_transaction = transaction;
2079 	list_add(&jinode->i_list, &transaction->t_inode_list);
2080 done:
2081 	spin_unlock(&journal->j_list_lock);
2082 
2083 	return 0;
2084 }
2085 
2086 /*
2087  * File truncate and transaction commit interact with each other in a
2088  * non-trivial way.  If a transaction writing data block A is
2089  * committing, we cannot discard the data by truncate until we have
2090  * written them.  Otherwise if we crashed after the transaction with
2091  * write has committed but before the transaction with truncate has
2092  * committed, we could see stale data in block A.  This function is a
2093  * helper to solve this problem.  It starts writeout of the truncated
2094  * part in case it is in the committing transaction.
2095  *
2096  * Filesystem code must call this function when inode is journaled in
2097  * ordered mode before truncation happens and after the inode has been
2098  * placed on orphan list with the new inode size. The second condition
2099  * avoids the race that someone writes new data and we start
2100  * committing the transaction after this function has been called but
2101  * before a transaction for truncate is started (and furthermore it
2102  * allows us to optimize the case where the addition to orphan list
2103  * happens in the same transaction as write --- we don't have to write
2104  * any data in such case).
2105  */
2106 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2107 					struct jbd2_inode *jinode,
2108 					loff_t new_size)
2109 {
2110 	transaction_t *inode_trans, *commit_trans;
2111 	int ret = 0;
2112 
2113 	/* This is a quick check to avoid locking if not necessary */
2114 	if (!jinode->i_transaction)
2115 		goto out;
2116 	/* Locks are here just to force reading of recent values, it is
2117 	 * enough that the transaction was not committing before we started
2118 	 * a transaction adding the inode to orphan list */
2119 	spin_lock(&journal->j_state_lock);
2120 	commit_trans = journal->j_committing_transaction;
2121 	spin_unlock(&journal->j_state_lock);
2122 	spin_lock(&journal->j_list_lock);
2123 	inode_trans = jinode->i_transaction;
2124 	spin_unlock(&journal->j_list_lock);
2125 	if (inode_trans == commit_trans) {
2126 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2127 			new_size, LLONG_MAX);
2128 		if (ret)
2129 			jbd2_journal_abort(journal, ret);
2130 	}
2131 out:
2132 	return ret;
2133 }
2134