xref: /linux/fs/jbd2/transaction.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/module.h>
31 
32 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
33 
34 /*
35  * jbd2_get_transaction: obtain a new transaction_t object.
36  *
37  * Simply allocate and initialise a new transaction.  Create it in
38  * RUNNING state and add it to the current journal (which should not
39  * have an existing running transaction: we only make a new transaction
40  * once we have started to commit the old one).
41  *
42  * Preconditions:
43  *	The journal MUST be locked.  We don't perform atomic mallocs on the
44  *	new transaction	and we can't block without protecting against other
45  *	processes trying to touch the journal while it is in transition.
46  *
47  */
48 
49 static transaction_t *
50 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
51 {
52 	transaction->t_journal = journal;
53 	transaction->t_state = T_RUNNING;
54 	transaction->t_start_time = ktime_get();
55 	transaction->t_tid = journal->j_transaction_sequence++;
56 	transaction->t_expires = jiffies + journal->j_commit_interval;
57 	spin_lock_init(&transaction->t_handle_lock);
58 	atomic_set(&transaction->t_updates, 0);
59 	atomic_set(&transaction->t_outstanding_credits, 0);
60 	atomic_set(&transaction->t_handle_count, 0);
61 	INIT_LIST_HEAD(&transaction->t_inode_list);
62 	INIT_LIST_HEAD(&transaction->t_private_list);
63 
64 	/* Set up the commit timer for the new transaction. */
65 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
66 	add_timer(&journal->j_commit_timer);
67 
68 	J_ASSERT(journal->j_running_transaction == NULL);
69 	journal->j_running_transaction = transaction;
70 	transaction->t_max_wait = 0;
71 	transaction->t_start = jiffies;
72 
73 	return transaction;
74 }
75 
76 /*
77  * Handle management.
78  *
79  * A handle_t is an object which represents a single atomic update to a
80  * filesystem, and which tracks all of the modifications which form part
81  * of that one update.
82  */
83 
84 /*
85  * Update transiaction's maximum wait time, if debugging is enabled.
86  *
87  * In order for t_max_wait to be reliable, it must be protected by a
88  * lock.  But doing so will mean that start_this_handle() can not be
89  * run in parallel on SMP systems, which limits our scalability.  So
90  * unless debugging is enabled, we no longer update t_max_wait, which
91  * means that maximum wait time reported by the jbd2_run_stats
92  * tracepoint will always be zero.
93  */
94 static inline void update_t_max_wait(transaction_t *transaction)
95 {
96 #ifdef CONFIG_JBD2_DEBUG
97 	unsigned long ts = jiffies;
98 
99 	if (jbd2_journal_enable_debug &&
100 	    time_after(transaction->t_start, ts)) {
101 		ts = jbd2_time_diff(ts, transaction->t_start);
102 		spin_lock(&transaction->t_handle_lock);
103 		if (ts > transaction->t_max_wait)
104 			transaction->t_max_wait = ts;
105 		spin_unlock(&transaction->t_handle_lock);
106 	}
107 #endif
108 }
109 
110 /*
111  * start_this_handle: Given a handle, deal with any locking or stalling
112  * needed to make sure that there is enough journal space for the handle
113  * to begin.  Attach the handle to a transaction and set up the
114  * transaction's buffer credits.
115  */
116 
117 static int start_this_handle(journal_t *journal, handle_t *handle,
118 			     int gfp_mask)
119 {
120 	transaction_t *transaction;
121 	int needed;
122 	int nblocks = handle->h_buffer_credits;
123 	transaction_t *new_transaction = NULL;
124 
125 	if (nblocks > journal->j_max_transaction_buffers) {
126 		printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
127 		       current->comm, nblocks,
128 		       journal->j_max_transaction_buffers);
129 		return -ENOSPC;
130 	}
131 
132 alloc_transaction:
133 	if (!journal->j_running_transaction) {
134 		new_transaction = kzalloc(sizeof(*new_transaction), gfp_mask);
135 		if (!new_transaction) {
136 			/*
137 			 * If __GFP_FS is not present, then we may be
138 			 * being called from inside the fs writeback
139 			 * layer, so we MUST NOT fail.  Since
140 			 * __GFP_NOFAIL is going away, we will arrange
141 			 * to retry the allocation ourselves.
142 			 */
143 			if ((gfp_mask & __GFP_FS) == 0) {
144 				congestion_wait(BLK_RW_ASYNC, HZ/50);
145 				goto alloc_transaction;
146 			}
147 			return -ENOMEM;
148 		}
149 	}
150 
151 	jbd_debug(3, "New handle %p going live.\n", handle);
152 
153 	/*
154 	 * We need to hold j_state_lock until t_updates has been incremented,
155 	 * for proper journal barrier handling
156 	 */
157 repeat:
158 	read_lock(&journal->j_state_lock);
159 	if (is_journal_aborted(journal) ||
160 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
161 		read_unlock(&journal->j_state_lock);
162 		kfree(new_transaction);
163 		return -EROFS;
164 	}
165 
166 	/* Wait on the journal's transaction barrier if necessary */
167 	if (journal->j_barrier_count) {
168 		read_unlock(&journal->j_state_lock);
169 		wait_event(journal->j_wait_transaction_locked,
170 				journal->j_barrier_count == 0);
171 		goto repeat;
172 	}
173 
174 	if (!journal->j_running_transaction) {
175 		read_unlock(&journal->j_state_lock);
176 		if (!new_transaction)
177 			goto alloc_transaction;
178 		write_lock(&journal->j_state_lock);
179 		if (!journal->j_running_transaction) {
180 			jbd2_get_transaction(journal, new_transaction);
181 			new_transaction = NULL;
182 		}
183 		write_unlock(&journal->j_state_lock);
184 		goto repeat;
185 	}
186 
187 	transaction = journal->j_running_transaction;
188 
189 	/*
190 	 * If the current transaction is locked down for commit, wait for the
191 	 * lock to be released.
192 	 */
193 	if (transaction->t_state == T_LOCKED) {
194 		DEFINE_WAIT(wait);
195 
196 		prepare_to_wait(&journal->j_wait_transaction_locked,
197 					&wait, TASK_UNINTERRUPTIBLE);
198 		read_unlock(&journal->j_state_lock);
199 		schedule();
200 		finish_wait(&journal->j_wait_transaction_locked, &wait);
201 		goto repeat;
202 	}
203 
204 	/*
205 	 * If there is not enough space left in the log to write all potential
206 	 * buffers requested by this operation, we need to stall pending a log
207 	 * checkpoint to free some more log space.
208 	 */
209 	needed = atomic_add_return(nblocks,
210 				   &transaction->t_outstanding_credits);
211 
212 	if (needed > journal->j_max_transaction_buffers) {
213 		/*
214 		 * If the current transaction is already too large, then start
215 		 * to commit it: we can then go back and attach this handle to
216 		 * a new transaction.
217 		 */
218 		DEFINE_WAIT(wait);
219 
220 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
221 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
222 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
223 				TASK_UNINTERRUPTIBLE);
224 		__jbd2_log_start_commit(journal, transaction->t_tid);
225 		read_unlock(&journal->j_state_lock);
226 		schedule();
227 		finish_wait(&journal->j_wait_transaction_locked, &wait);
228 		goto repeat;
229 	}
230 
231 	/*
232 	 * The commit code assumes that it can get enough log space
233 	 * without forcing a checkpoint.  This is *critical* for
234 	 * correctness: a checkpoint of a buffer which is also
235 	 * associated with a committing transaction creates a deadlock,
236 	 * so commit simply cannot force through checkpoints.
237 	 *
238 	 * We must therefore ensure the necessary space in the journal
239 	 * *before* starting to dirty potentially checkpointed buffers
240 	 * in the new transaction.
241 	 *
242 	 * The worst part is, any transaction currently committing can
243 	 * reduce the free space arbitrarily.  Be careful to account for
244 	 * those buffers when checkpointing.
245 	 */
246 
247 	/*
248 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
249 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
250 	 * the committing transaction.  Really, we only need to give it
251 	 * committing_transaction->t_outstanding_credits plus "enough" for
252 	 * the log control blocks.
253 	 * Also, this test is inconsitent with the matching one in
254 	 * jbd2_journal_extend().
255 	 */
256 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
257 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
258 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
259 		read_unlock(&journal->j_state_lock);
260 		write_lock(&journal->j_state_lock);
261 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
262 			__jbd2_log_wait_for_space(journal);
263 		write_unlock(&journal->j_state_lock);
264 		goto repeat;
265 	}
266 
267 	/* OK, account for the buffers that this operation expects to
268 	 * use and add the handle to the running transaction.
269 	 */
270 	update_t_max_wait(transaction);
271 	handle->h_transaction = transaction;
272 	atomic_inc(&transaction->t_updates);
273 	atomic_inc(&transaction->t_handle_count);
274 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
275 		  handle, nblocks,
276 		  atomic_read(&transaction->t_outstanding_credits),
277 		  __jbd2_log_space_left(journal));
278 	read_unlock(&journal->j_state_lock);
279 
280 	lock_map_acquire(&handle->h_lockdep_map);
281 	kfree(new_transaction);
282 	return 0;
283 }
284 
285 static struct lock_class_key jbd2_handle_key;
286 
287 /* Allocate a new handle.  This should probably be in a slab... */
288 static handle_t *new_handle(int nblocks)
289 {
290 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
291 	if (!handle)
292 		return NULL;
293 	memset(handle, 0, sizeof(*handle));
294 	handle->h_buffer_credits = nblocks;
295 	handle->h_ref = 1;
296 
297 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
298 						&jbd2_handle_key, 0);
299 
300 	return handle;
301 }
302 
303 /**
304  * handle_t *jbd2_journal_start() - Obtain a new handle.
305  * @journal: Journal to start transaction on.
306  * @nblocks: number of block buffer we might modify
307  *
308  * We make sure that the transaction can guarantee at least nblocks of
309  * modified buffers in the log.  We block until the log can guarantee
310  * that much space.
311  *
312  * This function is visible to journal users (like ext3fs), so is not
313  * called with the journal already locked.
314  *
315  * Return a pointer to a newly allocated handle, or NULL on failure
316  */
317 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int gfp_mask)
318 {
319 	handle_t *handle = journal_current_handle();
320 	int err;
321 
322 	if (!journal)
323 		return ERR_PTR(-EROFS);
324 
325 	if (handle) {
326 		J_ASSERT(handle->h_transaction->t_journal == journal);
327 		handle->h_ref++;
328 		return handle;
329 	}
330 
331 	handle = new_handle(nblocks);
332 	if (!handle)
333 		return ERR_PTR(-ENOMEM);
334 
335 	current->journal_info = handle;
336 
337 	err = start_this_handle(journal, handle, gfp_mask);
338 	if (err < 0) {
339 		jbd2_free_handle(handle);
340 		current->journal_info = NULL;
341 		handle = ERR_PTR(err);
342 		goto out;
343 	}
344 out:
345 	return handle;
346 }
347 EXPORT_SYMBOL(jbd2__journal_start);
348 
349 
350 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
351 {
352 	return jbd2__journal_start(journal, nblocks, GFP_NOFS);
353 }
354 EXPORT_SYMBOL(jbd2_journal_start);
355 
356 
357 /**
358  * int jbd2_journal_extend() - extend buffer credits.
359  * @handle:  handle to 'extend'
360  * @nblocks: nr blocks to try to extend by.
361  *
362  * Some transactions, such as large extends and truncates, can be done
363  * atomically all at once or in several stages.  The operation requests
364  * a credit for a number of buffer modications in advance, but can
365  * extend its credit if it needs more.
366  *
367  * jbd2_journal_extend tries to give the running handle more buffer credits.
368  * It does not guarantee that allocation - this is a best-effort only.
369  * The calling process MUST be able to deal cleanly with a failure to
370  * extend here.
371  *
372  * Return 0 on success, non-zero on failure.
373  *
374  * return code < 0 implies an error
375  * return code > 0 implies normal transaction-full status.
376  */
377 int jbd2_journal_extend(handle_t *handle, int nblocks)
378 {
379 	transaction_t *transaction = handle->h_transaction;
380 	journal_t *journal = transaction->t_journal;
381 	int result;
382 	int wanted;
383 
384 	result = -EIO;
385 	if (is_handle_aborted(handle))
386 		goto out;
387 
388 	result = 1;
389 
390 	read_lock(&journal->j_state_lock);
391 
392 	/* Don't extend a locked-down transaction! */
393 	if (handle->h_transaction->t_state != T_RUNNING) {
394 		jbd_debug(3, "denied handle %p %d blocks: "
395 			  "transaction not running\n", handle, nblocks);
396 		goto error_out;
397 	}
398 
399 	spin_lock(&transaction->t_handle_lock);
400 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
401 
402 	if (wanted > journal->j_max_transaction_buffers) {
403 		jbd_debug(3, "denied handle %p %d blocks: "
404 			  "transaction too large\n", handle, nblocks);
405 		goto unlock;
406 	}
407 
408 	if (wanted > __jbd2_log_space_left(journal)) {
409 		jbd_debug(3, "denied handle %p %d blocks: "
410 			  "insufficient log space\n", handle, nblocks);
411 		goto unlock;
412 	}
413 
414 	handle->h_buffer_credits += nblocks;
415 	atomic_add(nblocks, &transaction->t_outstanding_credits);
416 	result = 0;
417 
418 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
419 unlock:
420 	spin_unlock(&transaction->t_handle_lock);
421 error_out:
422 	read_unlock(&journal->j_state_lock);
423 out:
424 	return result;
425 }
426 
427 
428 /**
429  * int jbd2_journal_restart() - restart a handle .
430  * @handle:  handle to restart
431  * @nblocks: nr credits requested
432  *
433  * Restart a handle for a multi-transaction filesystem
434  * operation.
435  *
436  * If the jbd2_journal_extend() call above fails to grant new buffer credits
437  * to a running handle, a call to jbd2_journal_restart will commit the
438  * handle's transaction so far and reattach the handle to a new
439  * transaction capabable of guaranteeing the requested number of
440  * credits.
441  */
442 int jbd2__journal_restart(handle_t *handle, int nblocks, int gfp_mask)
443 {
444 	transaction_t *transaction = handle->h_transaction;
445 	journal_t *journal = transaction->t_journal;
446 	int ret;
447 
448 	/* If we've had an abort of any type, don't even think about
449 	 * actually doing the restart! */
450 	if (is_handle_aborted(handle))
451 		return 0;
452 
453 	/*
454 	 * First unlink the handle from its current transaction, and start the
455 	 * commit on that.
456 	 */
457 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
458 	J_ASSERT(journal_current_handle() == handle);
459 
460 	read_lock(&journal->j_state_lock);
461 	spin_lock(&transaction->t_handle_lock);
462 	atomic_sub(handle->h_buffer_credits,
463 		   &transaction->t_outstanding_credits);
464 	if (atomic_dec_and_test(&transaction->t_updates))
465 		wake_up(&journal->j_wait_updates);
466 	spin_unlock(&transaction->t_handle_lock);
467 
468 	jbd_debug(2, "restarting handle %p\n", handle);
469 	__jbd2_log_start_commit(journal, transaction->t_tid);
470 	read_unlock(&journal->j_state_lock);
471 
472 	lock_map_release(&handle->h_lockdep_map);
473 	handle->h_buffer_credits = nblocks;
474 	ret = start_this_handle(journal, handle, gfp_mask);
475 	return ret;
476 }
477 EXPORT_SYMBOL(jbd2__journal_restart);
478 
479 
480 int jbd2_journal_restart(handle_t *handle, int nblocks)
481 {
482 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
483 }
484 EXPORT_SYMBOL(jbd2_journal_restart);
485 
486 /**
487  * void jbd2_journal_lock_updates () - establish a transaction barrier.
488  * @journal:  Journal to establish a barrier on.
489  *
490  * This locks out any further updates from being started, and blocks
491  * until all existing updates have completed, returning only once the
492  * journal is in a quiescent state with no updates running.
493  *
494  * The journal lock should not be held on entry.
495  */
496 void jbd2_journal_lock_updates(journal_t *journal)
497 {
498 	DEFINE_WAIT(wait);
499 
500 	write_lock(&journal->j_state_lock);
501 	++journal->j_barrier_count;
502 
503 	/* Wait until there are no running updates */
504 	while (1) {
505 		transaction_t *transaction = journal->j_running_transaction;
506 
507 		if (!transaction)
508 			break;
509 
510 		spin_lock(&transaction->t_handle_lock);
511 		if (!atomic_read(&transaction->t_updates)) {
512 			spin_unlock(&transaction->t_handle_lock);
513 			break;
514 		}
515 		prepare_to_wait(&journal->j_wait_updates, &wait,
516 				TASK_UNINTERRUPTIBLE);
517 		spin_unlock(&transaction->t_handle_lock);
518 		write_unlock(&journal->j_state_lock);
519 		schedule();
520 		finish_wait(&journal->j_wait_updates, &wait);
521 		write_lock(&journal->j_state_lock);
522 	}
523 	write_unlock(&journal->j_state_lock);
524 
525 	/*
526 	 * We have now established a barrier against other normal updates, but
527 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
528 	 * to make sure that we serialise special journal-locked operations
529 	 * too.
530 	 */
531 	mutex_lock(&journal->j_barrier);
532 }
533 
534 /**
535  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
536  * @journal:  Journal to release the barrier on.
537  *
538  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
539  *
540  * Should be called without the journal lock held.
541  */
542 void jbd2_journal_unlock_updates (journal_t *journal)
543 {
544 	J_ASSERT(journal->j_barrier_count != 0);
545 
546 	mutex_unlock(&journal->j_barrier);
547 	write_lock(&journal->j_state_lock);
548 	--journal->j_barrier_count;
549 	write_unlock(&journal->j_state_lock);
550 	wake_up(&journal->j_wait_transaction_locked);
551 }
552 
553 static void warn_dirty_buffer(struct buffer_head *bh)
554 {
555 	char b[BDEVNAME_SIZE];
556 
557 	printk(KERN_WARNING
558 	       "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
559 	       "There's a risk of filesystem corruption in case of system "
560 	       "crash.\n",
561 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
562 }
563 
564 /*
565  * If the buffer is already part of the current transaction, then there
566  * is nothing we need to do.  If it is already part of a prior
567  * transaction which we are still committing to disk, then we need to
568  * make sure that we do not overwrite the old copy: we do copy-out to
569  * preserve the copy going to disk.  We also account the buffer against
570  * the handle's metadata buffer credits (unless the buffer is already
571  * part of the transaction, that is).
572  *
573  */
574 static int
575 do_get_write_access(handle_t *handle, struct journal_head *jh,
576 			int force_copy)
577 {
578 	struct buffer_head *bh;
579 	transaction_t *transaction;
580 	journal_t *journal;
581 	int error;
582 	char *frozen_buffer = NULL;
583 	int need_copy = 0;
584 
585 	if (is_handle_aborted(handle))
586 		return -EROFS;
587 
588 	transaction = handle->h_transaction;
589 	journal = transaction->t_journal;
590 
591 	jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
592 
593 	JBUFFER_TRACE(jh, "entry");
594 repeat:
595 	bh = jh2bh(jh);
596 
597 	/* @@@ Need to check for errors here at some point. */
598 
599 	lock_buffer(bh);
600 	jbd_lock_bh_state(bh);
601 
602 	/* We now hold the buffer lock so it is safe to query the buffer
603 	 * state.  Is the buffer dirty?
604 	 *
605 	 * If so, there are two possibilities.  The buffer may be
606 	 * non-journaled, and undergoing a quite legitimate writeback.
607 	 * Otherwise, it is journaled, and we don't expect dirty buffers
608 	 * in that state (the buffers should be marked JBD_Dirty
609 	 * instead.)  So either the IO is being done under our own
610 	 * control and this is a bug, or it's a third party IO such as
611 	 * dump(8) (which may leave the buffer scheduled for read ---
612 	 * ie. locked but not dirty) or tune2fs (which may actually have
613 	 * the buffer dirtied, ugh.)  */
614 
615 	if (buffer_dirty(bh)) {
616 		/*
617 		 * First question: is this buffer already part of the current
618 		 * transaction or the existing committing transaction?
619 		 */
620 		if (jh->b_transaction) {
621 			J_ASSERT_JH(jh,
622 				jh->b_transaction == transaction ||
623 				jh->b_transaction ==
624 					journal->j_committing_transaction);
625 			if (jh->b_next_transaction)
626 				J_ASSERT_JH(jh, jh->b_next_transaction ==
627 							transaction);
628 			warn_dirty_buffer(bh);
629 		}
630 		/*
631 		 * In any case we need to clean the dirty flag and we must
632 		 * do it under the buffer lock to be sure we don't race
633 		 * with running write-out.
634 		 */
635 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
636 		clear_buffer_dirty(bh);
637 		set_buffer_jbddirty(bh);
638 	}
639 
640 	unlock_buffer(bh);
641 
642 	error = -EROFS;
643 	if (is_handle_aborted(handle)) {
644 		jbd_unlock_bh_state(bh);
645 		goto out;
646 	}
647 	error = 0;
648 
649 	/*
650 	 * The buffer is already part of this transaction if b_transaction or
651 	 * b_next_transaction points to it
652 	 */
653 	if (jh->b_transaction == transaction ||
654 	    jh->b_next_transaction == transaction)
655 		goto done;
656 
657 	/*
658 	 * this is the first time this transaction is touching this buffer,
659 	 * reset the modified flag
660 	 */
661        jh->b_modified = 0;
662 
663 	/*
664 	 * If there is already a copy-out version of this buffer, then we don't
665 	 * need to make another one
666 	 */
667 	if (jh->b_frozen_data) {
668 		JBUFFER_TRACE(jh, "has frozen data");
669 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
670 		jh->b_next_transaction = transaction;
671 		goto done;
672 	}
673 
674 	/* Is there data here we need to preserve? */
675 
676 	if (jh->b_transaction && jh->b_transaction != transaction) {
677 		JBUFFER_TRACE(jh, "owned by older transaction");
678 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
679 		J_ASSERT_JH(jh, jh->b_transaction ==
680 					journal->j_committing_transaction);
681 
682 		/* There is one case we have to be very careful about.
683 		 * If the committing transaction is currently writing
684 		 * this buffer out to disk and has NOT made a copy-out,
685 		 * then we cannot modify the buffer contents at all
686 		 * right now.  The essence of copy-out is that it is the
687 		 * extra copy, not the primary copy, which gets
688 		 * journaled.  If the primary copy is already going to
689 		 * disk then we cannot do copy-out here. */
690 
691 		if (jh->b_jlist == BJ_Shadow) {
692 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
693 			wait_queue_head_t *wqh;
694 
695 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
696 
697 			JBUFFER_TRACE(jh, "on shadow: sleep");
698 			jbd_unlock_bh_state(bh);
699 			/* commit wakes up all shadow buffers after IO */
700 			for ( ; ; ) {
701 				prepare_to_wait(wqh, &wait.wait,
702 						TASK_UNINTERRUPTIBLE);
703 				if (jh->b_jlist != BJ_Shadow)
704 					break;
705 				schedule();
706 			}
707 			finish_wait(wqh, &wait.wait);
708 			goto repeat;
709 		}
710 
711 		/* Only do the copy if the currently-owning transaction
712 		 * still needs it.  If it is on the Forget list, the
713 		 * committing transaction is past that stage.  The
714 		 * buffer had better remain locked during the kmalloc,
715 		 * but that should be true --- we hold the journal lock
716 		 * still and the buffer is already on the BUF_JOURNAL
717 		 * list so won't be flushed.
718 		 *
719 		 * Subtle point, though: if this is a get_undo_access,
720 		 * then we will be relying on the frozen_data to contain
721 		 * the new value of the committed_data record after the
722 		 * transaction, so we HAVE to force the frozen_data copy
723 		 * in that case. */
724 
725 		if (jh->b_jlist != BJ_Forget || force_copy) {
726 			JBUFFER_TRACE(jh, "generate frozen data");
727 			if (!frozen_buffer) {
728 				JBUFFER_TRACE(jh, "allocate memory for buffer");
729 				jbd_unlock_bh_state(bh);
730 				frozen_buffer =
731 					jbd2_alloc(jh2bh(jh)->b_size,
732 							 GFP_NOFS);
733 				if (!frozen_buffer) {
734 					printk(KERN_EMERG
735 					       "%s: OOM for frozen_buffer\n",
736 					       __func__);
737 					JBUFFER_TRACE(jh, "oom!");
738 					error = -ENOMEM;
739 					jbd_lock_bh_state(bh);
740 					goto done;
741 				}
742 				goto repeat;
743 			}
744 			jh->b_frozen_data = frozen_buffer;
745 			frozen_buffer = NULL;
746 			need_copy = 1;
747 		}
748 		jh->b_next_transaction = transaction;
749 	}
750 
751 
752 	/*
753 	 * Finally, if the buffer is not journaled right now, we need to make
754 	 * sure it doesn't get written to disk before the caller actually
755 	 * commits the new data
756 	 */
757 	if (!jh->b_transaction) {
758 		JBUFFER_TRACE(jh, "no transaction");
759 		J_ASSERT_JH(jh, !jh->b_next_transaction);
760 		jh->b_transaction = transaction;
761 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
762 		spin_lock(&journal->j_list_lock);
763 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
764 		spin_unlock(&journal->j_list_lock);
765 	}
766 
767 done:
768 	if (need_copy) {
769 		struct page *page;
770 		int offset;
771 		char *source;
772 
773 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
774 			    "Possible IO failure.\n");
775 		page = jh2bh(jh)->b_page;
776 		offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
777 		source = kmap_atomic(page, KM_USER0);
778 		/* Fire data frozen trigger just before we copy the data */
779 		jbd2_buffer_frozen_trigger(jh, source + offset,
780 					   jh->b_triggers);
781 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
782 		kunmap_atomic(source, KM_USER0);
783 
784 		/*
785 		 * Now that the frozen data is saved off, we need to store
786 		 * any matching triggers.
787 		 */
788 		jh->b_frozen_triggers = jh->b_triggers;
789 	}
790 	jbd_unlock_bh_state(bh);
791 
792 	/*
793 	 * If we are about to journal a buffer, then any revoke pending on it is
794 	 * no longer valid
795 	 */
796 	jbd2_journal_cancel_revoke(handle, jh);
797 
798 out:
799 	if (unlikely(frozen_buffer))	/* It's usually NULL */
800 		jbd2_free(frozen_buffer, bh->b_size);
801 
802 	JBUFFER_TRACE(jh, "exit");
803 	return error;
804 }
805 
806 /**
807  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
808  * @handle: transaction to add buffer modifications to
809  * @bh:     bh to be used for metadata writes
810  * @credits: variable that will receive credits for the buffer
811  *
812  * Returns an error code or 0 on success.
813  *
814  * In full data journalling mode the buffer may be of type BJ_AsyncData,
815  * because we're write()ing a buffer which is also part of a shared mapping.
816  */
817 
818 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
819 {
820 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
821 	int rc;
822 
823 	/* We do not want to get caught playing with fields which the
824 	 * log thread also manipulates.  Make sure that the buffer
825 	 * completes any outstanding IO before proceeding. */
826 	rc = do_get_write_access(handle, jh, 0);
827 	jbd2_journal_put_journal_head(jh);
828 	return rc;
829 }
830 
831 
832 /*
833  * When the user wants to journal a newly created buffer_head
834  * (ie. getblk() returned a new buffer and we are going to populate it
835  * manually rather than reading off disk), then we need to keep the
836  * buffer_head locked until it has been completely filled with new
837  * data.  In this case, we should be able to make the assertion that
838  * the bh is not already part of an existing transaction.
839  *
840  * The buffer should already be locked by the caller by this point.
841  * There is no lock ranking violation: it was a newly created,
842  * unlocked buffer beforehand. */
843 
844 /**
845  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
846  * @handle: transaction to new buffer to
847  * @bh: new buffer.
848  *
849  * Call this if you create a new bh.
850  */
851 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
852 {
853 	transaction_t *transaction = handle->h_transaction;
854 	journal_t *journal = transaction->t_journal;
855 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
856 	int err;
857 
858 	jbd_debug(5, "journal_head %p\n", jh);
859 	err = -EROFS;
860 	if (is_handle_aborted(handle))
861 		goto out;
862 	err = 0;
863 
864 	JBUFFER_TRACE(jh, "entry");
865 	/*
866 	 * The buffer may already belong to this transaction due to pre-zeroing
867 	 * in the filesystem's new_block code.  It may also be on the previous,
868 	 * committing transaction's lists, but it HAS to be in Forget state in
869 	 * that case: the transaction must have deleted the buffer for it to be
870 	 * reused here.
871 	 */
872 	jbd_lock_bh_state(bh);
873 	spin_lock(&journal->j_list_lock);
874 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
875 		jh->b_transaction == NULL ||
876 		(jh->b_transaction == journal->j_committing_transaction &&
877 			  jh->b_jlist == BJ_Forget)));
878 
879 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
880 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
881 
882 	if (jh->b_transaction == NULL) {
883 		/*
884 		 * Previous jbd2_journal_forget() could have left the buffer
885 		 * with jbddirty bit set because it was being committed. When
886 		 * the commit finished, we've filed the buffer for
887 		 * checkpointing and marked it dirty. Now we are reallocating
888 		 * the buffer so the transaction freeing it must have
889 		 * committed and so it's safe to clear the dirty bit.
890 		 */
891 		clear_buffer_dirty(jh2bh(jh));
892 		jh->b_transaction = transaction;
893 
894 		/* first access by this transaction */
895 		jh->b_modified = 0;
896 
897 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
898 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
899 	} else if (jh->b_transaction == journal->j_committing_transaction) {
900 		/* first access by this transaction */
901 		jh->b_modified = 0;
902 
903 		JBUFFER_TRACE(jh, "set next transaction");
904 		jh->b_next_transaction = transaction;
905 	}
906 	spin_unlock(&journal->j_list_lock);
907 	jbd_unlock_bh_state(bh);
908 
909 	/*
910 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
911 	 * blocks which contain freed but then revoked metadata.  We need
912 	 * to cancel the revoke in case we end up freeing it yet again
913 	 * and the reallocating as data - this would cause a second revoke,
914 	 * which hits an assertion error.
915 	 */
916 	JBUFFER_TRACE(jh, "cancelling revoke");
917 	jbd2_journal_cancel_revoke(handle, jh);
918 	jbd2_journal_put_journal_head(jh);
919 out:
920 	return err;
921 }
922 
923 /**
924  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
925  *     non-rewindable consequences
926  * @handle: transaction
927  * @bh: buffer to undo
928  * @credits: store the number of taken credits here (if not NULL)
929  *
930  * Sometimes there is a need to distinguish between metadata which has
931  * been committed to disk and that which has not.  The ext3fs code uses
932  * this for freeing and allocating space, we have to make sure that we
933  * do not reuse freed space until the deallocation has been committed,
934  * since if we overwrote that space we would make the delete
935  * un-rewindable in case of a crash.
936  *
937  * To deal with that, jbd2_journal_get_undo_access requests write access to a
938  * buffer for parts of non-rewindable operations such as delete
939  * operations on the bitmaps.  The journaling code must keep a copy of
940  * the buffer's contents prior to the undo_access call until such time
941  * as we know that the buffer has definitely been committed to disk.
942  *
943  * We never need to know which transaction the committed data is part
944  * of, buffers touched here are guaranteed to be dirtied later and so
945  * will be committed to a new transaction in due course, at which point
946  * we can discard the old committed data pointer.
947  *
948  * Returns error number or 0 on success.
949  */
950 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
951 {
952 	int err;
953 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
954 	char *committed_data = NULL;
955 
956 	JBUFFER_TRACE(jh, "entry");
957 
958 	/*
959 	 * Do this first --- it can drop the journal lock, so we want to
960 	 * make sure that obtaining the committed_data is done
961 	 * atomically wrt. completion of any outstanding commits.
962 	 */
963 	err = do_get_write_access(handle, jh, 1);
964 	if (err)
965 		goto out;
966 
967 repeat:
968 	if (!jh->b_committed_data) {
969 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
970 		if (!committed_data) {
971 			printk(KERN_EMERG "%s: No memory for committed data\n",
972 				__func__);
973 			err = -ENOMEM;
974 			goto out;
975 		}
976 	}
977 
978 	jbd_lock_bh_state(bh);
979 	if (!jh->b_committed_data) {
980 		/* Copy out the current buffer contents into the
981 		 * preserved, committed copy. */
982 		JBUFFER_TRACE(jh, "generate b_committed data");
983 		if (!committed_data) {
984 			jbd_unlock_bh_state(bh);
985 			goto repeat;
986 		}
987 
988 		jh->b_committed_data = committed_data;
989 		committed_data = NULL;
990 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
991 	}
992 	jbd_unlock_bh_state(bh);
993 out:
994 	jbd2_journal_put_journal_head(jh);
995 	if (unlikely(committed_data))
996 		jbd2_free(committed_data, bh->b_size);
997 	return err;
998 }
999 
1000 /**
1001  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1002  * @bh: buffer to trigger on
1003  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1004  *
1005  * Set any triggers on this journal_head.  This is always safe, because
1006  * triggers for a committing buffer will be saved off, and triggers for
1007  * a running transaction will match the buffer in that transaction.
1008  *
1009  * Call with NULL to clear the triggers.
1010  */
1011 void jbd2_journal_set_triggers(struct buffer_head *bh,
1012 			       struct jbd2_buffer_trigger_type *type)
1013 {
1014 	struct journal_head *jh = bh2jh(bh);
1015 
1016 	jh->b_triggers = type;
1017 }
1018 
1019 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1020 				struct jbd2_buffer_trigger_type *triggers)
1021 {
1022 	struct buffer_head *bh = jh2bh(jh);
1023 
1024 	if (!triggers || !triggers->t_frozen)
1025 		return;
1026 
1027 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1028 }
1029 
1030 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1031 			       struct jbd2_buffer_trigger_type *triggers)
1032 {
1033 	if (!triggers || !triggers->t_abort)
1034 		return;
1035 
1036 	triggers->t_abort(triggers, jh2bh(jh));
1037 }
1038 
1039 
1040 
1041 /**
1042  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1043  * @handle: transaction to add buffer to.
1044  * @bh: buffer to mark
1045  *
1046  * mark dirty metadata which needs to be journaled as part of the current
1047  * transaction.
1048  *
1049  * The buffer is placed on the transaction's metadata list and is marked
1050  * as belonging to the transaction.
1051  *
1052  * Returns error number or 0 on success.
1053  *
1054  * Special care needs to be taken if the buffer already belongs to the
1055  * current committing transaction (in which case we should have frozen
1056  * data present for that commit).  In that case, we don't relink the
1057  * buffer: that only gets done when the old transaction finally
1058  * completes its commit.
1059  */
1060 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1061 {
1062 	transaction_t *transaction = handle->h_transaction;
1063 	journal_t *journal = transaction->t_journal;
1064 	struct journal_head *jh = bh2jh(bh);
1065 
1066 	jbd_debug(5, "journal_head %p\n", jh);
1067 	JBUFFER_TRACE(jh, "entry");
1068 	if (is_handle_aborted(handle))
1069 		goto out;
1070 
1071 	jbd_lock_bh_state(bh);
1072 
1073 	if (jh->b_modified == 0) {
1074 		/*
1075 		 * This buffer's got modified and becoming part
1076 		 * of the transaction. This needs to be done
1077 		 * once a transaction -bzzz
1078 		 */
1079 		jh->b_modified = 1;
1080 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1081 		handle->h_buffer_credits--;
1082 	}
1083 
1084 	/*
1085 	 * fastpath, to avoid expensive locking.  If this buffer is already
1086 	 * on the running transaction's metadata list there is nothing to do.
1087 	 * Nobody can take it off again because there is a handle open.
1088 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1089 	 * result in this test being false, so we go in and take the locks.
1090 	 */
1091 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1092 		JBUFFER_TRACE(jh, "fastpath");
1093 		J_ASSERT_JH(jh, jh->b_transaction ==
1094 					journal->j_running_transaction);
1095 		goto out_unlock_bh;
1096 	}
1097 
1098 	set_buffer_jbddirty(bh);
1099 
1100 	/*
1101 	 * Metadata already on the current transaction list doesn't
1102 	 * need to be filed.  Metadata on another transaction's list must
1103 	 * be committing, and will be refiled once the commit completes:
1104 	 * leave it alone for now.
1105 	 */
1106 	if (jh->b_transaction != transaction) {
1107 		JBUFFER_TRACE(jh, "already on other transaction");
1108 		J_ASSERT_JH(jh, jh->b_transaction ==
1109 					journal->j_committing_transaction);
1110 		J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1111 		/* And this case is illegal: we can't reuse another
1112 		 * transaction's data buffer, ever. */
1113 		goto out_unlock_bh;
1114 	}
1115 
1116 	/* That test should have eliminated the following case: */
1117 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1118 
1119 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1120 	spin_lock(&journal->j_list_lock);
1121 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1122 	spin_unlock(&journal->j_list_lock);
1123 out_unlock_bh:
1124 	jbd_unlock_bh_state(bh);
1125 out:
1126 	JBUFFER_TRACE(jh, "exit");
1127 	return 0;
1128 }
1129 
1130 /*
1131  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1132  * updates, if the update decided in the end that it didn't need access.
1133  *
1134  */
1135 void
1136 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1137 {
1138 	BUFFER_TRACE(bh, "entry");
1139 }
1140 
1141 /**
1142  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1143  * @handle: transaction handle
1144  * @bh:     bh to 'forget'
1145  *
1146  * We can only do the bforget if there are no commits pending against the
1147  * buffer.  If the buffer is dirty in the current running transaction we
1148  * can safely unlink it.
1149  *
1150  * bh may not be a journalled buffer at all - it may be a non-JBD
1151  * buffer which came off the hashtable.  Check for this.
1152  *
1153  * Decrements bh->b_count by one.
1154  *
1155  * Allow this call even if the handle has aborted --- it may be part of
1156  * the caller's cleanup after an abort.
1157  */
1158 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1159 {
1160 	transaction_t *transaction = handle->h_transaction;
1161 	journal_t *journal = transaction->t_journal;
1162 	struct journal_head *jh;
1163 	int drop_reserve = 0;
1164 	int err = 0;
1165 	int was_modified = 0;
1166 
1167 	BUFFER_TRACE(bh, "entry");
1168 
1169 	jbd_lock_bh_state(bh);
1170 	spin_lock(&journal->j_list_lock);
1171 
1172 	if (!buffer_jbd(bh))
1173 		goto not_jbd;
1174 	jh = bh2jh(bh);
1175 
1176 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1177 	 * Don't do any jbd operations, and return an error. */
1178 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1179 			 "inconsistent data on disk")) {
1180 		err = -EIO;
1181 		goto not_jbd;
1182 	}
1183 
1184 	/* keep track of wether or not this transaction modified us */
1185 	was_modified = jh->b_modified;
1186 
1187 	/*
1188 	 * The buffer's going from the transaction, we must drop
1189 	 * all references -bzzz
1190 	 */
1191 	jh->b_modified = 0;
1192 
1193 	if (jh->b_transaction == handle->h_transaction) {
1194 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1195 
1196 		/* If we are forgetting a buffer which is already part
1197 		 * of this transaction, then we can just drop it from
1198 		 * the transaction immediately. */
1199 		clear_buffer_dirty(bh);
1200 		clear_buffer_jbddirty(bh);
1201 
1202 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1203 
1204 		/*
1205 		 * we only want to drop a reference if this transaction
1206 		 * modified the buffer
1207 		 */
1208 		if (was_modified)
1209 			drop_reserve = 1;
1210 
1211 		/*
1212 		 * We are no longer going to journal this buffer.
1213 		 * However, the commit of this transaction is still
1214 		 * important to the buffer: the delete that we are now
1215 		 * processing might obsolete an old log entry, so by
1216 		 * committing, we can satisfy the buffer's checkpoint.
1217 		 *
1218 		 * So, if we have a checkpoint on the buffer, we should
1219 		 * now refile the buffer on our BJ_Forget list so that
1220 		 * we know to remove the checkpoint after we commit.
1221 		 */
1222 
1223 		if (jh->b_cp_transaction) {
1224 			__jbd2_journal_temp_unlink_buffer(jh);
1225 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1226 		} else {
1227 			__jbd2_journal_unfile_buffer(jh);
1228 			jbd2_journal_remove_journal_head(bh);
1229 			__brelse(bh);
1230 			if (!buffer_jbd(bh)) {
1231 				spin_unlock(&journal->j_list_lock);
1232 				jbd_unlock_bh_state(bh);
1233 				__bforget(bh);
1234 				goto drop;
1235 			}
1236 		}
1237 	} else if (jh->b_transaction) {
1238 		J_ASSERT_JH(jh, (jh->b_transaction ==
1239 				 journal->j_committing_transaction));
1240 		/* However, if the buffer is still owned by a prior
1241 		 * (committing) transaction, we can't drop it yet... */
1242 		JBUFFER_TRACE(jh, "belongs to older transaction");
1243 		/* ... but we CAN drop it from the new transaction if we
1244 		 * have also modified it since the original commit. */
1245 
1246 		if (jh->b_next_transaction) {
1247 			J_ASSERT(jh->b_next_transaction == transaction);
1248 			jh->b_next_transaction = NULL;
1249 
1250 			/*
1251 			 * only drop a reference if this transaction modified
1252 			 * the buffer
1253 			 */
1254 			if (was_modified)
1255 				drop_reserve = 1;
1256 		}
1257 	}
1258 
1259 not_jbd:
1260 	spin_unlock(&journal->j_list_lock);
1261 	jbd_unlock_bh_state(bh);
1262 	__brelse(bh);
1263 drop:
1264 	if (drop_reserve) {
1265 		/* no need to reserve log space for this block -bzzz */
1266 		handle->h_buffer_credits++;
1267 	}
1268 	return err;
1269 }
1270 
1271 /**
1272  * int jbd2_journal_stop() - complete a transaction
1273  * @handle: tranaction to complete.
1274  *
1275  * All done for a particular handle.
1276  *
1277  * There is not much action needed here.  We just return any remaining
1278  * buffer credits to the transaction and remove the handle.  The only
1279  * complication is that we need to start a commit operation if the
1280  * filesystem is marked for synchronous update.
1281  *
1282  * jbd2_journal_stop itself will not usually return an error, but it may
1283  * do so in unusual circumstances.  In particular, expect it to
1284  * return -EIO if a jbd2_journal_abort has been executed since the
1285  * transaction began.
1286  */
1287 int jbd2_journal_stop(handle_t *handle)
1288 {
1289 	transaction_t *transaction = handle->h_transaction;
1290 	journal_t *journal = transaction->t_journal;
1291 	int err, wait_for_commit = 0;
1292 	tid_t tid;
1293 	pid_t pid;
1294 
1295 	J_ASSERT(journal_current_handle() == handle);
1296 
1297 	if (is_handle_aborted(handle))
1298 		err = -EIO;
1299 	else {
1300 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1301 		err = 0;
1302 	}
1303 
1304 	if (--handle->h_ref > 0) {
1305 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1306 			  handle->h_ref);
1307 		return err;
1308 	}
1309 
1310 	jbd_debug(4, "Handle %p going down\n", handle);
1311 
1312 	/*
1313 	 * Implement synchronous transaction batching.  If the handle
1314 	 * was synchronous, don't force a commit immediately.  Let's
1315 	 * yield and let another thread piggyback onto this
1316 	 * transaction.  Keep doing that while new threads continue to
1317 	 * arrive.  It doesn't cost much - we're about to run a commit
1318 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1319 	 * operations by 30x or more...
1320 	 *
1321 	 * We try and optimize the sleep time against what the
1322 	 * underlying disk can do, instead of having a static sleep
1323 	 * time.  This is useful for the case where our storage is so
1324 	 * fast that it is more optimal to go ahead and force a flush
1325 	 * and wait for the transaction to be committed than it is to
1326 	 * wait for an arbitrary amount of time for new writers to
1327 	 * join the transaction.  We achieve this by measuring how
1328 	 * long it takes to commit a transaction, and compare it with
1329 	 * how long this transaction has been running, and if run time
1330 	 * < commit time then we sleep for the delta and commit.  This
1331 	 * greatly helps super fast disks that would see slowdowns as
1332 	 * more threads started doing fsyncs.
1333 	 *
1334 	 * But don't do this if this process was the most recent one
1335 	 * to perform a synchronous write.  We do this to detect the
1336 	 * case where a single process is doing a stream of sync
1337 	 * writes.  No point in waiting for joiners in that case.
1338 	 */
1339 	pid = current->pid;
1340 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1341 		u64 commit_time, trans_time;
1342 
1343 		journal->j_last_sync_writer = pid;
1344 
1345 		read_lock(&journal->j_state_lock);
1346 		commit_time = journal->j_average_commit_time;
1347 		read_unlock(&journal->j_state_lock);
1348 
1349 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1350 						   transaction->t_start_time));
1351 
1352 		commit_time = max_t(u64, commit_time,
1353 				    1000*journal->j_min_batch_time);
1354 		commit_time = min_t(u64, commit_time,
1355 				    1000*journal->j_max_batch_time);
1356 
1357 		if (trans_time < commit_time) {
1358 			ktime_t expires = ktime_add_ns(ktime_get(),
1359 						       commit_time);
1360 			set_current_state(TASK_UNINTERRUPTIBLE);
1361 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1362 		}
1363 	}
1364 
1365 	if (handle->h_sync)
1366 		transaction->t_synchronous_commit = 1;
1367 	current->journal_info = NULL;
1368 	atomic_sub(handle->h_buffer_credits,
1369 		   &transaction->t_outstanding_credits);
1370 
1371 	/*
1372 	 * If the handle is marked SYNC, we need to set another commit
1373 	 * going!  We also want to force a commit if the current
1374 	 * transaction is occupying too much of the log, or if the
1375 	 * transaction is too old now.
1376 	 */
1377 	if (handle->h_sync ||
1378 	    (atomic_read(&transaction->t_outstanding_credits) >
1379 	     journal->j_max_transaction_buffers) ||
1380 	    time_after_eq(jiffies, transaction->t_expires)) {
1381 		/* Do this even for aborted journals: an abort still
1382 		 * completes the commit thread, it just doesn't write
1383 		 * anything to disk. */
1384 
1385 		jbd_debug(2, "transaction too old, requesting commit for "
1386 					"handle %p\n", handle);
1387 		/* This is non-blocking */
1388 		jbd2_log_start_commit(journal, transaction->t_tid);
1389 
1390 		/*
1391 		 * Special case: JBD2_SYNC synchronous updates require us
1392 		 * to wait for the commit to complete.
1393 		 */
1394 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1395 			wait_for_commit = 1;
1396 	}
1397 
1398 	/*
1399 	 * Once we drop t_updates, if it goes to zero the transaction
1400 	 * could start commiting on us and eventually disappear.  So
1401 	 * once we do this, we must not dereference transaction
1402 	 * pointer again.
1403 	 */
1404 	tid = transaction->t_tid;
1405 	if (atomic_dec_and_test(&transaction->t_updates)) {
1406 		wake_up(&journal->j_wait_updates);
1407 		if (journal->j_barrier_count)
1408 			wake_up(&journal->j_wait_transaction_locked);
1409 	}
1410 
1411 	if (wait_for_commit)
1412 		err = jbd2_log_wait_commit(journal, tid);
1413 
1414 	lock_map_release(&handle->h_lockdep_map);
1415 
1416 	jbd2_free_handle(handle);
1417 	return err;
1418 }
1419 
1420 /**
1421  * int jbd2_journal_force_commit() - force any uncommitted transactions
1422  * @journal: journal to force
1423  *
1424  * For synchronous operations: force any uncommitted transactions
1425  * to disk.  May seem kludgy, but it reuses all the handle batching
1426  * code in a very simple manner.
1427  */
1428 int jbd2_journal_force_commit(journal_t *journal)
1429 {
1430 	handle_t *handle;
1431 	int ret;
1432 
1433 	handle = jbd2_journal_start(journal, 1);
1434 	if (IS_ERR(handle)) {
1435 		ret = PTR_ERR(handle);
1436 	} else {
1437 		handle->h_sync = 1;
1438 		ret = jbd2_journal_stop(handle);
1439 	}
1440 	return ret;
1441 }
1442 
1443 /*
1444  *
1445  * List management code snippets: various functions for manipulating the
1446  * transaction buffer lists.
1447  *
1448  */
1449 
1450 /*
1451  * Append a buffer to a transaction list, given the transaction's list head
1452  * pointer.
1453  *
1454  * j_list_lock is held.
1455  *
1456  * jbd_lock_bh_state(jh2bh(jh)) is held.
1457  */
1458 
1459 static inline void
1460 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1461 {
1462 	if (!*list) {
1463 		jh->b_tnext = jh->b_tprev = jh;
1464 		*list = jh;
1465 	} else {
1466 		/* Insert at the tail of the list to preserve order */
1467 		struct journal_head *first = *list, *last = first->b_tprev;
1468 		jh->b_tprev = last;
1469 		jh->b_tnext = first;
1470 		last->b_tnext = first->b_tprev = jh;
1471 	}
1472 }
1473 
1474 /*
1475  * Remove a buffer from a transaction list, given the transaction's list
1476  * head pointer.
1477  *
1478  * Called with j_list_lock held, and the journal may not be locked.
1479  *
1480  * jbd_lock_bh_state(jh2bh(jh)) is held.
1481  */
1482 
1483 static inline void
1484 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1485 {
1486 	if (*list == jh) {
1487 		*list = jh->b_tnext;
1488 		if (*list == jh)
1489 			*list = NULL;
1490 	}
1491 	jh->b_tprev->b_tnext = jh->b_tnext;
1492 	jh->b_tnext->b_tprev = jh->b_tprev;
1493 }
1494 
1495 /*
1496  * Remove a buffer from the appropriate transaction list.
1497  *
1498  * Note that this function can *change* the value of
1499  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1500  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1501  * of these pointers, it could go bad.  Generally the caller needs to re-read
1502  * the pointer from the transaction_t.
1503  *
1504  * Called under j_list_lock.  The journal may not be locked.
1505  */
1506 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1507 {
1508 	struct journal_head **list = NULL;
1509 	transaction_t *transaction;
1510 	struct buffer_head *bh = jh2bh(jh);
1511 
1512 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1513 	transaction = jh->b_transaction;
1514 	if (transaction)
1515 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1516 
1517 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1518 	if (jh->b_jlist != BJ_None)
1519 		J_ASSERT_JH(jh, transaction != NULL);
1520 
1521 	switch (jh->b_jlist) {
1522 	case BJ_None:
1523 		return;
1524 	case BJ_Metadata:
1525 		transaction->t_nr_buffers--;
1526 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1527 		list = &transaction->t_buffers;
1528 		break;
1529 	case BJ_Forget:
1530 		list = &transaction->t_forget;
1531 		break;
1532 	case BJ_IO:
1533 		list = &transaction->t_iobuf_list;
1534 		break;
1535 	case BJ_Shadow:
1536 		list = &transaction->t_shadow_list;
1537 		break;
1538 	case BJ_LogCtl:
1539 		list = &transaction->t_log_list;
1540 		break;
1541 	case BJ_Reserved:
1542 		list = &transaction->t_reserved_list;
1543 		break;
1544 	}
1545 
1546 	__blist_del_buffer(list, jh);
1547 	jh->b_jlist = BJ_None;
1548 	if (test_clear_buffer_jbddirty(bh))
1549 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1550 }
1551 
1552 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1553 {
1554 	__jbd2_journal_temp_unlink_buffer(jh);
1555 	jh->b_transaction = NULL;
1556 }
1557 
1558 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1559 {
1560 	jbd_lock_bh_state(jh2bh(jh));
1561 	spin_lock(&journal->j_list_lock);
1562 	__jbd2_journal_unfile_buffer(jh);
1563 	spin_unlock(&journal->j_list_lock);
1564 	jbd_unlock_bh_state(jh2bh(jh));
1565 }
1566 
1567 /*
1568  * Called from jbd2_journal_try_to_free_buffers().
1569  *
1570  * Called under jbd_lock_bh_state(bh)
1571  */
1572 static void
1573 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1574 {
1575 	struct journal_head *jh;
1576 
1577 	jh = bh2jh(bh);
1578 
1579 	if (buffer_locked(bh) || buffer_dirty(bh))
1580 		goto out;
1581 
1582 	if (jh->b_next_transaction != NULL)
1583 		goto out;
1584 
1585 	spin_lock(&journal->j_list_lock);
1586 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1587 		/* written-back checkpointed metadata buffer */
1588 		if (jh->b_jlist == BJ_None) {
1589 			JBUFFER_TRACE(jh, "remove from checkpoint list");
1590 			__jbd2_journal_remove_checkpoint(jh);
1591 			jbd2_journal_remove_journal_head(bh);
1592 			__brelse(bh);
1593 		}
1594 	}
1595 	spin_unlock(&journal->j_list_lock);
1596 out:
1597 	return;
1598 }
1599 
1600 /**
1601  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1602  * @journal: journal for operation
1603  * @page: to try and free
1604  * @gfp_mask: we use the mask to detect how hard should we try to release
1605  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1606  * release the buffers.
1607  *
1608  *
1609  * For all the buffers on this page,
1610  * if they are fully written out ordered data, move them onto BUF_CLEAN
1611  * so try_to_free_buffers() can reap them.
1612  *
1613  * This function returns non-zero if we wish try_to_free_buffers()
1614  * to be called. We do this if the page is releasable by try_to_free_buffers().
1615  * We also do it if the page has locked or dirty buffers and the caller wants
1616  * us to perform sync or async writeout.
1617  *
1618  * This complicates JBD locking somewhat.  We aren't protected by the
1619  * BKL here.  We wish to remove the buffer from its committing or
1620  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1621  *
1622  * This may *change* the value of transaction_t->t_datalist, so anyone
1623  * who looks at t_datalist needs to lock against this function.
1624  *
1625  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1626  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1627  * will come out of the lock with the buffer dirty, which makes it
1628  * ineligible for release here.
1629  *
1630  * Who else is affected by this?  hmm...  Really the only contender
1631  * is do_get_write_access() - it could be looking at the buffer while
1632  * journal_try_to_free_buffer() is changing its state.  But that
1633  * cannot happen because we never reallocate freed data as metadata
1634  * while the data is part of a transaction.  Yes?
1635  *
1636  * Return 0 on failure, 1 on success
1637  */
1638 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1639 				struct page *page, gfp_t gfp_mask)
1640 {
1641 	struct buffer_head *head;
1642 	struct buffer_head *bh;
1643 	int ret = 0;
1644 
1645 	J_ASSERT(PageLocked(page));
1646 
1647 	head = page_buffers(page);
1648 	bh = head;
1649 	do {
1650 		struct journal_head *jh;
1651 
1652 		/*
1653 		 * We take our own ref against the journal_head here to avoid
1654 		 * having to add tons of locking around each instance of
1655 		 * jbd2_journal_remove_journal_head() and
1656 		 * jbd2_journal_put_journal_head().
1657 		 */
1658 		jh = jbd2_journal_grab_journal_head(bh);
1659 		if (!jh)
1660 			continue;
1661 
1662 		jbd_lock_bh_state(bh);
1663 		__journal_try_to_free_buffer(journal, bh);
1664 		jbd2_journal_put_journal_head(jh);
1665 		jbd_unlock_bh_state(bh);
1666 		if (buffer_jbd(bh))
1667 			goto busy;
1668 	} while ((bh = bh->b_this_page) != head);
1669 
1670 	ret = try_to_free_buffers(page);
1671 
1672 busy:
1673 	return ret;
1674 }
1675 
1676 /*
1677  * This buffer is no longer needed.  If it is on an older transaction's
1678  * checkpoint list we need to record it on this transaction's forget list
1679  * to pin this buffer (and hence its checkpointing transaction) down until
1680  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1681  * release it.
1682  * Returns non-zero if JBD no longer has an interest in the buffer.
1683  *
1684  * Called under j_list_lock.
1685  *
1686  * Called under jbd_lock_bh_state(bh).
1687  */
1688 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1689 {
1690 	int may_free = 1;
1691 	struct buffer_head *bh = jh2bh(jh);
1692 
1693 	__jbd2_journal_unfile_buffer(jh);
1694 
1695 	if (jh->b_cp_transaction) {
1696 		JBUFFER_TRACE(jh, "on running+cp transaction");
1697 		/*
1698 		 * We don't want to write the buffer anymore, clear the
1699 		 * bit so that we don't confuse checks in
1700 		 * __journal_file_buffer
1701 		 */
1702 		clear_buffer_dirty(bh);
1703 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1704 		may_free = 0;
1705 	} else {
1706 		JBUFFER_TRACE(jh, "on running transaction");
1707 		jbd2_journal_remove_journal_head(bh);
1708 		__brelse(bh);
1709 	}
1710 	return may_free;
1711 }
1712 
1713 /*
1714  * jbd2_journal_invalidatepage
1715  *
1716  * This code is tricky.  It has a number of cases to deal with.
1717  *
1718  * There are two invariants which this code relies on:
1719  *
1720  * i_size must be updated on disk before we start calling invalidatepage on the
1721  * data.
1722  *
1723  *  This is done in ext3 by defining an ext3_setattr method which
1724  *  updates i_size before truncate gets going.  By maintaining this
1725  *  invariant, we can be sure that it is safe to throw away any buffers
1726  *  attached to the current transaction: once the transaction commits,
1727  *  we know that the data will not be needed.
1728  *
1729  *  Note however that we can *not* throw away data belonging to the
1730  *  previous, committing transaction!
1731  *
1732  * Any disk blocks which *are* part of the previous, committing
1733  * transaction (and which therefore cannot be discarded immediately) are
1734  * not going to be reused in the new running transaction
1735  *
1736  *  The bitmap committed_data images guarantee this: any block which is
1737  *  allocated in one transaction and removed in the next will be marked
1738  *  as in-use in the committed_data bitmap, so cannot be reused until
1739  *  the next transaction to delete the block commits.  This means that
1740  *  leaving committing buffers dirty is quite safe: the disk blocks
1741  *  cannot be reallocated to a different file and so buffer aliasing is
1742  *  not possible.
1743  *
1744  *
1745  * The above applies mainly to ordered data mode.  In writeback mode we
1746  * don't make guarantees about the order in which data hits disk --- in
1747  * particular we don't guarantee that new dirty data is flushed before
1748  * transaction commit --- so it is always safe just to discard data
1749  * immediately in that mode.  --sct
1750  */
1751 
1752 /*
1753  * The journal_unmap_buffer helper function returns zero if the buffer
1754  * concerned remains pinned as an anonymous buffer belonging to an older
1755  * transaction.
1756  *
1757  * We're outside-transaction here.  Either or both of j_running_transaction
1758  * and j_committing_transaction may be NULL.
1759  */
1760 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1761 {
1762 	transaction_t *transaction;
1763 	struct journal_head *jh;
1764 	int may_free = 1;
1765 	int ret;
1766 
1767 	BUFFER_TRACE(bh, "entry");
1768 
1769 	/*
1770 	 * It is safe to proceed here without the j_list_lock because the
1771 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1772 	 * holding the page lock. --sct
1773 	 */
1774 
1775 	if (!buffer_jbd(bh))
1776 		goto zap_buffer_unlocked;
1777 
1778 	/* OK, we have data buffer in journaled mode */
1779 	write_lock(&journal->j_state_lock);
1780 	jbd_lock_bh_state(bh);
1781 	spin_lock(&journal->j_list_lock);
1782 
1783 	jh = jbd2_journal_grab_journal_head(bh);
1784 	if (!jh)
1785 		goto zap_buffer_no_jh;
1786 
1787 	/*
1788 	 * We cannot remove the buffer from checkpoint lists until the
1789 	 * transaction adding inode to orphan list (let's call it T)
1790 	 * is committed.  Otherwise if the transaction changing the
1791 	 * buffer would be cleaned from the journal before T is
1792 	 * committed, a crash will cause that the correct contents of
1793 	 * the buffer will be lost.  On the other hand we have to
1794 	 * clear the buffer dirty bit at latest at the moment when the
1795 	 * transaction marking the buffer as freed in the filesystem
1796 	 * structures is committed because from that moment on the
1797 	 * buffer can be reallocated and used by a different page.
1798 	 * Since the block hasn't been freed yet but the inode has
1799 	 * already been added to orphan list, it is safe for us to add
1800 	 * the buffer to BJ_Forget list of the newest transaction.
1801 	 */
1802 	transaction = jh->b_transaction;
1803 	if (transaction == NULL) {
1804 		/* First case: not on any transaction.  If it
1805 		 * has no checkpoint link, then we can zap it:
1806 		 * it's a writeback-mode buffer so we don't care
1807 		 * if it hits disk safely. */
1808 		if (!jh->b_cp_transaction) {
1809 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1810 			goto zap_buffer;
1811 		}
1812 
1813 		if (!buffer_dirty(bh)) {
1814 			/* bdflush has written it.  We can drop it now */
1815 			goto zap_buffer;
1816 		}
1817 
1818 		/* OK, it must be in the journal but still not
1819 		 * written fully to disk: it's metadata or
1820 		 * journaled data... */
1821 
1822 		if (journal->j_running_transaction) {
1823 			/* ... and once the current transaction has
1824 			 * committed, the buffer won't be needed any
1825 			 * longer. */
1826 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1827 			ret = __dispose_buffer(jh,
1828 					journal->j_running_transaction);
1829 			jbd2_journal_put_journal_head(jh);
1830 			spin_unlock(&journal->j_list_lock);
1831 			jbd_unlock_bh_state(bh);
1832 			write_unlock(&journal->j_state_lock);
1833 			return ret;
1834 		} else {
1835 			/* There is no currently-running transaction. So the
1836 			 * orphan record which we wrote for this file must have
1837 			 * passed into commit.  We must attach this buffer to
1838 			 * the committing transaction, if it exists. */
1839 			if (journal->j_committing_transaction) {
1840 				JBUFFER_TRACE(jh, "give to committing trans");
1841 				ret = __dispose_buffer(jh,
1842 					journal->j_committing_transaction);
1843 				jbd2_journal_put_journal_head(jh);
1844 				spin_unlock(&journal->j_list_lock);
1845 				jbd_unlock_bh_state(bh);
1846 				write_unlock(&journal->j_state_lock);
1847 				return ret;
1848 			} else {
1849 				/* The orphan record's transaction has
1850 				 * committed.  We can cleanse this buffer */
1851 				clear_buffer_jbddirty(bh);
1852 				goto zap_buffer;
1853 			}
1854 		}
1855 	} else if (transaction == journal->j_committing_transaction) {
1856 		JBUFFER_TRACE(jh, "on committing transaction");
1857 		/*
1858 		 * The buffer is committing, we simply cannot touch
1859 		 * it. So we just set j_next_transaction to the
1860 		 * running transaction (if there is one) and mark
1861 		 * buffer as freed so that commit code knows it should
1862 		 * clear dirty bits when it is done with the buffer.
1863 		 */
1864 		set_buffer_freed(bh);
1865 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1866 			jh->b_next_transaction = journal->j_running_transaction;
1867 		jbd2_journal_put_journal_head(jh);
1868 		spin_unlock(&journal->j_list_lock);
1869 		jbd_unlock_bh_state(bh);
1870 		write_unlock(&journal->j_state_lock);
1871 		return 0;
1872 	} else {
1873 		/* Good, the buffer belongs to the running transaction.
1874 		 * We are writing our own transaction's data, not any
1875 		 * previous one's, so it is safe to throw it away
1876 		 * (remember that we expect the filesystem to have set
1877 		 * i_size already for this truncate so recovery will not
1878 		 * expose the disk blocks we are discarding here.) */
1879 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1880 		JBUFFER_TRACE(jh, "on running transaction");
1881 		may_free = __dispose_buffer(jh, transaction);
1882 	}
1883 
1884 zap_buffer:
1885 	jbd2_journal_put_journal_head(jh);
1886 zap_buffer_no_jh:
1887 	spin_unlock(&journal->j_list_lock);
1888 	jbd_unlock_bh_state(bh);
1889 	write_unlock(&journal->j_state_lock);
1890 zap_buffer_unlocked:
1891 	clear_buffer_dirty(bh);
1892 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1893 	clear_buffer_mapped(bh);
1894 	clear_buffer_req(bh);
1895 	clear_buffer_new(bh);
1896 	bh->b_bdev = NULL;
1897 	return may_free;
1898 }
1899 
1900 /**
1901  * void jbd2_journal_invalidatepage()
1902  * @journal: journal to use for flush...
1903  * @page:    page to flush
1904  * @offset:  length of page to invalidate.
1905  *
1906  * Reap page buffers containing data after offset in page.
1907  *
1908  */
1909 void jbd2_journal_invalidatepage(journal_t *journal,
1910 		      struct page *page,
1911 		      unsigned long offset)
1912 {
1913 	struct buffer_head *head, *bh, *next;
1914 	unsigned int curr_off = 0;
1915 	int may_free = 1;
1916 
1917 	if (!PageLocked(page))
1918 		BUG();
1919 	if (!page_has_buffers(page))
1920 		return;
1921 
1922 	/* We will potentially be playing with lists other than just the
1923 	 * data lists (especially for journaled data mode), so be
1924 	 * cautious in our locking. */
1925 
1926 	head = bh = page_buffers(page);
1927 	do {
1928 		unsigned int next_off = curr_off + bh->b_size;
1929 		next = bh->b_this_page;
1930 
1931 		if (offset <= curr_off) {
1932 			/* This block is wholly outside the truncation point */
1933 			lock_buffer(bh);
1934 			may_free &= journal_unmap_buffer(journal, bh);
1935 			unlock_buffer(bh);
1936 		}
1937 		curr_off = next_off;
1938 		bh = next;
1939 
1940 	} while (bh != head);
1941 
1942 	if (!offset) {
1943 		if (may_free && try_to_free_buffers(page))
1944 			J_ASSERT(!page_has_buffers(page));
1945 	}
1946 }
1947 
1948 /*
1949  * File a buffer on the given transaction list.
1950  */
1951 void __jbd2_journal_file_buffer(struct journal_head *jh,
1952 			transaction_t *transaction, int jlist)
1953 {
1954 	struct journal_head **list = NULL;
1955 	int was_dirty = 0;
1956 	struct buffer_head *bh = jh2bh(jh);
1957 
1958 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1959 	assert_spin_locked(&transaction->t_journal->j_list_lock);
1960 
1961 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1962 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1963 				jh->b_transaction == NULL);
1964 
1965 	if (jh->b_transaction && jh->b_jlist == jlist)
1966 		return;
1967 
1968 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1969 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
1970 		/*
1971 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
1972 		 * instead of buffer_dirty. We should not see a dirty bit set
1973 		 * here because we clear it in do_get_write_access but e.g.
1974 		 * tune2fs can modify the sb and set the dirty bit at any time
1975 		 * so we try to gracefully handle that.
1976 		 */
1977 		if (buffer_dirty(bh))
1978 			warn_dirty_buffer(bh);
1979 		if (test_clear_buffer_dirty(bh) ||
1980 		    test_clear_buffer_jbddirty(bh))
1981 			was_dirty = 1;
1982 	}
1983 
1984 	if (jh->b_transaction)
1985 		__jbd2_journal_temp_unlink_buffer(jh);
1986 	jh->b_transaction = transaction;
1987 
1988 	switch (jlist) {
1989 	case BJ_None:
1990 		J_ASSERT_JH(jh, !jh->b_committed_data);
1991 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1992 		return;
1993 	case BJ_Metadata:
1994 		transaction->t_nr_buffers++;
1995 		list = &transaction->t_buffers;
1996 		break;
1997 	case BJ_Forget:
1998 		list = &transaction->t_forget;
1999 		break;
2000 	case BJ_IO:
2001 		list = &transaction->t_iobuf_list;
2002 		break;
2003 	case BJ_Shadow:
2004 		list = &transaction->t_shadow_list;
2005 		break;
2006 	case BJ_LogCtl:
2007 		list = &transaction->t_log_list;
2008 		break;
2009 	case BJ_Reserved:
2010 		list = &transaction->t_reserved_list;
2011 		break;
2012 	}
2013 
2014 	__blist_add_buffer(list, jh);
2015 	jh->b_jlist = jlist;
2016 
2017 	if (was_dirty)
2018 		set_buffer_jbddirty(bh);
2019 }
2020 
2021 void jbd2_journal_file_buffer(struct journal_head *jh,
2022 				transaction_t *transaction, int jlist)
2023 {
2024 	jbd_lock_bh_state(jh2bh(jh));
2025 	spin_lock(&transaction->t_journal->j_list_lock);
2026 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2027 	spin_unlock(&transaction->t_journal->j_list_lock);
2028 	jbd_unlock_bh_state(jh2bh(jh));
2029 }
2030 
2031 /*
2032  * Remove a buffer from its current buffer list in preparation for
2033  * dropping it from its current transaction entirely.  If the buffer has
2034  * already started to be used by a subsequent transaction, refile the
2035  * buffer on that transaction's metadata list.
2036  *
2037  * Called under journal->j_list_lock
2038  *
2039  * Called under jbd_lock_bh_state(jh2bh(jh))
2040  */
2041 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2042 {
2043 	int was_dirty, jlist;
2044 	struct buffer_head *bh = jh2bh(jh);
2045 
2046 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2047 	if (jh->b_transaction)
2048 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2049 
2050 	/* If the buffer is now unused, just drop it. */
2051 	if (jh->b_next_transaction == NULL) {
2052 		__jbd2_journal_unfile_buffer(jh);
2053 		return;
2054 	}
2055 
2056 	/*
2057 	 * It has been modified by a later transaction: add it to the new
2058 	 * transaction's metadata list.
2059 	 */
2060 
2061 	was_dirty = test_clear_buffer_jbddirty(bh);
2062 	__jbd2_journal_temp_unlink_buffer(jh);
2063 	jh->b_transaction = jh->b_next_transaction;
2064 	jh->b_next_transaction = NULL;
2065 	if (buffer_freed(bh))
2066 		jlist = BJ_Forget;
2067 	else if (jh->b_modified)
2068 		jlist = BJ_Metadata;
2069 	else
2070 		jlist = BJ_Reserved;
2071 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2072 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2073 
2074 	if (was_dirty)
2075 		set_buffer_jbddirty(bh);
2076 }
2077 
2078 /*
2079  * For the unlocked version of this call, also make sure that any
2080  * hanging journal_head is cleaned up if necessary.
2081  *
2082  * __jbd2_journal_refile_buffer is usually called as part of a single locked
2083  * operation on a buffer_head, in which the caller is probably going to
2084  * be hooking the journal_head onto other lists.  In that case it is up
2085  * to the caller to remove the journal_head if necessary.  For the
2086  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
2087  * doing anything else to the buffer so we need to do the cleanup
2088  * ourselves to avoid a jh leak.
2089  *
2090  * *** The journal_head may be freed by this call! ***
2091  */
2092 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2093 {
2094 	struct buffer_head *bh = jh2bh(jh);
2095 
2096 	jbd_lock_bh_state(bh);
2097 	spin_lock(&journal->j_list_lock);
2098 
2099 	__jbd2_journal_refile_buffer(jh);
2100 	jbd_unlock_bh_state(bh);
2101 	jbd2_journal_remove_journal_head(bh);
2102 
2103 	spin_unlock(&journal->j_list_lock);
2104 	__brelse(bh);
2105 }
2106 
2107 /*
2108  * File inode in the inode list of the handle's transaction
2109  */
2110 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2111 {
2112 	transaction_t *transaction = handle->h_transaction;
2113 	journal_t *journal = transaction->t_journal;
2114 
2115 	if (is_handle_aborted(handle))
2116 		return -EIO;
2117 
2118 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2119 			transaction->t_tid);
2120 
2121 	/*
2122 	 * First check whether inode isn't already on the transaction's
2123 	 * lists without taking the lock. Note that this check is safe
2124 	 * without the lock as we cannot race with somebody removing inode
2125 	 * from the transaction. The reason is that we remove inode from the
2126 	 * transaction only in journal_release_jbd_inode() and when we commit
2127 	 * the transaction. We are guarded from the first case by holding
2128 	 * a reference to the inode. We are safe against the second case
2129 	 * because if jinode->i_transaction == transaction, commit code
2130 	 * cannot touch the transaction because we hold reference to it,
2131 	 * and if jinode->i_next_transaction == transaction, commit code
2132 	 * will only file the inode where we want it.
2133 	 */
2134 	if (jinode->i_transaction == transaction ||
2135 	    jinode->i_next_transaction == transaction)
2136 		return 0;
2137 
2138 	spin_lock(&journal->j_list_lock);
2139 
2140 	if (jinode->i_transaction == transaction ||
2141 	    jinode->i_next_transaction == transaction)
2142 		goto done;
2143 
2144 	/* On some different transaction's list - should be
2145 	 * the committing one */
2146 	if (jinode->i_transaction) {
2147 		J_ASSERT(jinode->i_next_transaction == NULL);
2148 		J_ASSERT(jinode->i_transaction ==
2149 					journal->j_committing_transaction);
2150 		jinode->i_next_transaction = transaction;
2151 		goto done;
2152 	}
2153 	/* Not on any transaction list... */
2154 	J_ASSERT(!jinode->i_next_transaction);
2155 	jinode->i_transaction = transaction;
2156 	list_add(&jinode->i_list, &transaction->t_inode_list);
2157 done:
2158 	spin_unlock(&journal->j_list_lock);
2159 
2160 	return 0;
2161 }
2162 
2163 /*
2164  * File truncate and transaction commit interact with each other in a
2165  * non-trivial way.  If a transaction writing data block A is
2166  * committing, we cannot discard the data by truncate until we have
2167  * written them.  Otherwise if we crashed after the transaction with
2168  * write has committed but before the transaction with truncate has
2169  * committed, we could see stale data in block A.  This function is a
2170  * helper to solve this problem.  It starts writeout of the truncated
2171  * part in case it is in the committing transaction.
2172  *
2173  * Filesystem code must call this function when inode is journaled in
2174  * ordered mode before truncation happens and after the inode has been
2175  * placed on orphan list with the new inode size. The second condition
2176  * avoids the race that someone writes new data and we start
2177  * committing the transaction after this function has been called but
2178  * before a transaction for truncate is started (and furthermore it
2179  * allows us to optimize the case where the addition to orphan list
2180  * happens in the same transaction as write --- we don't have to write
2181  * any data in such case).
2182  */
2183 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2184 					struct jbd2_inode *jinode,
2185 					loff_t new_size)
2186 {
2187 	transaction_t *inode_trans, *commit_trans;
2188 	int ret = 0;
2189 
2190 	/* This is a quick check to avoid locking if not necessary */
2191 	if (!jinode->i_transaction)
2192 		goto out;
2193 	/* Locks are here just to force reading of recent values, it is
2194 	 * enough that the transaction was not committing before we started
2195 	 * a transaction adding the inode to orphan list */
2196 	read_lock(&journal->j_state_lock);
2197 	commit_trans = journal->j_committing_transaction;
2198 	read_unlock(&journal->j_state_lock);
2199 	spin_lock(&journal->j_list_lock);
2200 	inode_trans = jinode->i_transaction;
2201 	spin_unlock(&journal->j_list_lock);
2202 	if (inode_trans == commit_trans) {
2203 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2204 			new_size, LLONG_MAX);
2205 		if (ret)
2206 			jbd2_journal_abort(journal, ret);
2207 	}
2208 out:
2209 	return ret;
2210 }
2211