1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69 { 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85 } 86 87 /* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102 static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104 { 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129 } 130 131 /* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139 /* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149 static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151 { 152 #ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161 #endif 162 } 163 164 /* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169 static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171 { 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185 } 186 187 /* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192 static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194 { 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) { 199 read_unlock(&journal->j_state_lock); 200 return; 201 } 202 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 203 TASK_UNINTERRUPTIBLE); 204 read_unlock(&journal->j_state_lock); 205 /* 206 * We don't call jbd2_might_wait_for_commit() here as there's no 207 * waiting for outstanding handles happening anymore in T_SWITCH state 208 * and handling of reserved handles actually relies on that for 209 * correctness. 210 */ 211 schedule(); 212 finish_wait(&journal->j_wait_transaction_locked, &wait); 213 } 214 215 static void sub_reserved_credits(journal_t *journal, int blocks) 216 { 217 atomic_sub(blocks, &journal->j_reserved_credits); 218 wake_up(&journal->j_wait_reserved); 219 } 220 221 /* 222 * Wait until we can add credits for handle to the running transaction. Called 223 * with j_state_lock held for reading. Returns 0 if handle joined the running 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 225 * caller must retry. 226 */ 227 static int add_transaction_credits(journal_t *journal, int blocks, 228 int rsv_blocks) 229 { 230 transaction_t *t = journal->j_running_transaction; 231 int needed; 232 int total = blocks + rsv_blocks; 233 234 /* 235 * If the current transaction is locked down for commit, wait 236 * for the lock to be released. 237 */ 238 if (t->t_state != T_RUNNING) { 239 WARN_ON_ONCE(t->t_state >= T_FLUSH); 240 wait_transaction_locked(journal); 241 return 1; 242 } 243 244 /* 245 * If there is not enough space left in the log to write all 246 * potential buffers requested by this operation, we need to 247 * stall pending a log checkpoint to free some more log space. 248 */ 249 needed = atomic_add_return(total, &t->t_outstanding_credits); 250 if (needed > journal->j_max_transaction_buffers) { 251 /* 252 * If the current transaction is already too large, 253 * then start to commit it: we can then go back and 254 * attach this handle to a new transaction. 255 */ 256 atomic_sub(total, &t->t_outstanding_credits); 257 258 /* 259 * Is the number of reserved credits in the current transaction too 260 * big to fit this handle? Wait until reserved credits are freed. 261 */ 262 if (atomic_read(&journal->j_reserved_credits) + total > 263 journal->j_max_transaction_buffers) { 264 read_unlock(&journal->j_state_lock); 265 jbd2_might_wait_for_commit(journal); 266 wait_event(journal->j_wait_reserved, 267 atomic_read(&journal->j_reserved_credits) + total <= 268 journal->j_max_transaction_buffers); 269 return 1; 270 } 271 272 wait_transaction_locked(journal); 273 return 1; 274 } 275 276 /* 277 * The commit code assumes that it can get enough log space 278 * without forcing a checkpoint. This is *critical* for 279 * correctness: a checkpoint of a buffer which is also 280 * associated with a committing transaction creates a deadlock, 281 * so commit simply cannot force through checkpoints. 282 * 283 * We must therefore ensure the necessary space in the journal 284 * *before* starting to dirty potentially checkpointed buffers 285 * in the new transaction. 286 */ 287 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 288 atomic_sub(total, &t->t_outstanding_credits); 289 read_unlock(&journal->j_state_lock); 290 jbd2_might_wait_for_commit(journal); 291 write_lock(&journal->j_state_lock); 292 if (jbd2_log_space_left(journal) < 293 journal->j_max_transaction_buffers) 294 __jbd2_log_wait_for_space(journal); 295 write_unlock(&journal->j_state_lock); 296 return 1; 297 } 298 299 /* No reservation? We are done... */ 300 if (!rsv_blocks) 301 return 0; 302 303 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 304 /* We allow at most half of a transaction to be reserved */ 305 if (needed > journal->j_max_transaction_buffers / 2) { 306 sub_reserved_credits(journal, rsv_blocks); 307 atomic_sub(total, &t->t_outstanding_credits); 308 read_unlock(&journal->j_state_lock); 309 jbd2_might_wait_for_commit(journal); 310 wait_event(journal->j_wait_reserved, 311 atomic_read(&journal->j_reserved_credits) + rsv_blocks 312 <= journal->j_max_transaction_buffers / 2); 313 return 1; 314 } 315 return 0; 316 } 317 318 /* 319 * start_this_handle: Given a handle, deal with any locking or stalling 320 * needed to make sure that there is enough journal space for the handle 321 * to begin. Attach the handle to a transaction and set up the 322 * transaction's buffer credits. 323 */ 324 325 static int start_this_handle(journal_t *journal, handle_t *handle, 326 gfp_t gfp_mask) 327 { 328 transaction_t *transaction, *new_transaction = NULL; 329 int blocks = handle->h_total_credits; 330 int rsv_blocks = 0; 331 unsigned long ts = jiffies; 332 333 if (handle->h_rsv_handle) 334 rsv_blocks = handle->h_rsv_handle->h_total_credits; 335 336 /* 337 * Limit the number of reserved credits to 1/2 of maximum transaction 338 * size and limit the number of total credits to not exceed maximum 339 * transaction size per operation. 340 */ 341 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 342 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 343 printk(KERN_ERR "JBD2: %s wants too many credits " 344 "credits:%d rsv_credits:%d max:%d\n", 345 current->comm, blocks, rsv_blocks, 346 journal->j_max_transaction_buffers); 347 WARN_ON(1); 348 return -ENOSPC; 349 } 350 351 alloc_transaction: 352 /* 353 * This check is racy but it is just an optimization of allocating new 354 * transaction early if there are high chances we'll need it. If we 355 * guess wrong, we'll retry or free unused transaction. 356 */ 357 if (!data_race(journal->j_running_transaction)) { 358 /* 359 * If __GFP_FS is not present, then we may be being called from 360 * inside the fs writeback layer, so we MUST NOT fail. 361 */ 362 if ((gfp_mask & __GFP_FS) == 0) 363 gfp_mask |= __GFP_NOFAIL; 364 new_transaction = kmem_cache_zalloc(transaction_cache, 365 gfp_mask); 366 if (!new_transaction) 367 return -ENOMEM; 368 } 369 370 jbd_debug(3, "New handle %p going live.\n", handle); 371 372 /* 373 * We need to hold j_state_lock until t_updates has been incremented, 374 * for proper journal barrier handling 375 */ 376 repeat: 377 read_lock(&journal->j_state_lock); 378 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 379 if (is_journal_aborted(journal) || 380 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 381 read_unlock(&journal->j_state_lock); 382 jbd2_journal_free_transaction(new_transaction); 383 return -EROFS; 384 } 385 386 /* 387 * Wait on the journal's transaction barrier if necessary. Specifically 388 * we allow reserved handles to proceed because otherwise commit could 389 * deadlock on page writeback not being able to complete. 390 */ 391 if (!handle->h_reserved && journal->j_barrier_count) { 392 read_unlock(&journal->j_state_lock); 393 wait_event(journal->j_wait_transaction_locked, 394 journal->j_barrier_count == 0); 395 goto repeat; 396 } 397 398 if (!journal->j_running_transaction) { 399 read_unlock(&journal->j_state_lock); 400 if (!new_transaction) 401 goto alloc_transaction; 402 write_lock(&journal->j_state_lock); 403 if (!journal->j_running_transaction && 404 (handle->h_reserved || !journal->j_barrier_count)) { 405 jbd2_get_transaction(journal, new_transaction); 406 new_transaction = NULL; 407 } 408 write_unlock(&journal->j_state_lock); 409 goto repeat; 410 } 411 412 transaction = journal->j_running_transaction; 413 414 if (!handle->h_reserved) { 415 /* We may have dropped j_state_lock - restart in that case */ 416 if (add_transaction_credits(journal, blocks, rsv_blocks)) 417 goto repeat; 418 } else { 419 /* 420 * We have handle reserved so we are allowed to join T_LOCKED 421 * transaction and we don't have to check for transaction size 422 * and journal space. But we still have to wait while running 423 * transaction is being switched to a committing one as it 424 * won't wait for any handles anymore. 425 */ 426 if (transaction->t_state == T_SWITCH) { 427 wait_transaction_switching(journal); 428 goto repeat; 429 } 430 sub_reserved_credits(journal, blocks); 431 handle->h_reserved = 0; 432 } 433 434 /* OK, account for the buffers that this operation expects to 435 * use and add the handle to the running transaction. 436 */ 437 update_t_max_wait(transaction, ts); 438 handle->h_transaction = transaction; 439 handle->h_requested_credits = blocks; 440 handle->h_revoke_credits_requested = handle->h_revoke_credits; 441 handle->h_start_jiffies = jiffies; 442 atomic_inc(&transaction->t_updates); 443 atomic_inc(&transaction->t_handle_count); 444 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 445 handle, blocks, 446 atomic_read(&transaction->t_outstanding_credits), 447 jbd2_log_space_left(journal)); 448 read_unlock(&journal->j_state_lock); 449 current->journal_info = handle; 450 451 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 452 jbd2_journal_free_transaction(new_transaction); 453 /* 454 * Ensure that no allocations done while the transaction is open are 455 * going to recurse back to the fs layer. 456 */ 457 handle->saved_alloc_context = memalloc_nofs_save(); 458 return 0; 459 } 460 461 /* Allocate a new handle. This should probably be in a slab... */ 462 static handle_t *new_handle(int nblocks) 463 { 464 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 465 if (!handle) 466 return NULL; 467 handle->h_total_credits = nblocks; 468 handle->h_ref = 1; 469 470 return handle; 471 } 472 473 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 474 int revoke_records, gfp_t gfp_mask, 475 unsigned int type, unsigned int line_no) 476 { 477 handle_t *handle = journal_current_handle(); 478 int err; 479 480 if (!journal) 481 return ERR_PTR(-EROFS); 482 483 if (handle) { 484 J_ASSERT(handle->h_transaction->t_journal == journal); 485 handle->h_ref++; 486 return handle; 487 } 488 489 nblocks += DIV_ROUND_UP(revoke_records, 490 journal->j_revoke_records_per_block); 491 handle = new_handle(nblocks); 492 if (!handle) 493 return ERR_PTR(-ENOMEM); 494 if (rsv_blocks) { 495 handle_t *rsv_handle; 496 497 rsv_handle = new_handle(rsv_blocks); 498 if (!rsv_handle) { 499 jbd2_free_handle(handle); 500 return ERR_PTR(-ENOMEM); 501 } 502 rsv_handle->h_reserved = 1; 503 rsv_handle->h_journal = journal; 504 handle->h_rsv_handle = rsv_handle; 505 } 506 handle->h_revoke_credits = revoke_records; 507 508 err = start_this_handle(journal, handle, gfp_mask); 509 if (err < 0) { 510 if (handle->h_rsv_handle) 511 jbd2_free_handle(handle->h_rsv_handle); 512 jbd2_free_handle(handle); 513 return ERR_PTR(err); 514 } 515 handle->h_type = type; 516 handle->h_line_no = line_no; 517 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 518 handle->h_transaction->t_tid, type, 519 line_no, nblocks); 520 521 return handle; 522 } 523 EXPORT_SYMBOL(jbd2__journal_start); 524 525 526 /** 527 * jbd2_journal_start() - Obtain a new handle. 528 * @journal: Journal to start transaction on. 529 * @nblocks: number of block buffer we might modify 530 * 531 * We make sure that the transaction can guarantee at least nblocks of 532 * modified buffers in the log. We block until the log can guarantee 533 * that much space. Additionally, if rsv_blocks > 0, we also create another 534 * handle with rsv_blocks reserved blocks in the journal. This handle is 535 * stored in h_rsv_handle. It is not attached to any particular transaction 536 * and thus doesn't block transaction commit. If the caller uses this reserved 537 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 538 * on the parent handle will dispose the reserved one. Reserved handle has to 539 * be converted to a normal handle using jbd2_journal_start_reserved() before 540 * it can be used. 541 * 542 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 543 * on failure. 544 */ 545 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 546 { 547 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 548 } 549 EXPORT_SYMBOL(jbd2_journal_start); 550 551 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 552 { 553 journal_t *journal = handle->h_journal; 554 555 WARN_ON(!handle->h_reserved); 556 sub_reserved_credits(journal, handle->h_total_credits); 557 if (t) 558 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 559 } 560 561 void jbd2_journal_free_reserved(handle_t *handle) 562 { 563 journal_t *journal = handle->h_journal; 564 565 /* Get j_state_lock to pin running transaction if it exists */ 566 read_lock(&journal->j_state_lock); 567 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 568 read_unlock(&journal->j_state_lock); 569 jbd2_free_handle(handle); 570 } 571 EXPORT_SYMBOL(jbd2_journal_free_reserved); 572 573 /** 574 * jbd2_journal_start_reserved() - start reserved handle 575 * @handle: handle to start 576 * @type: for handle statistics 577 * @line_no: for handle statistics 578 * 579 * Start handle that has been previously reserved with jbd2_journal_reserve(). 580 * This attaches @handle to the running transaction (or creates one if there's 581 * not transaction running). Unlike jbd2_journal_start() this function cannot 582 * block on journal commit, checkpointing, or similar stuff. It can block on 583 * memory allocation or frozen journal though. 584 * 585 * Return 0 on success, non-zero on error - handle is freed in that case. 586 */ 587 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 588 unsigned int line_no) 589 { 590 journal_t *journal = handle->h_journal; 591 int ret = -EIO; 592 593 if (WARN_ON(!handle->h_reserved)) { 594 /* Someone passed in normal handle? Just stop it. */ 595 jbd2_journal_stop(handle); 596 return ret; 597 } 598 /* 599 * Usefulness of mixing of reserved and unreserved handles is 600 * questionable. So far nobody seems to need it so just error out. 601 */ 602 if (WARN_ON(current->journal_info)) { 603 jbd2_journal_free_reserved(handle); 604 return ret; 605 } 606 607 handle->h_journal = NULL; 608 /* 609 * GFP_NOFS is here because callers are likely from writeback or 610 * similarly constrained call sites 611 */ 612 ret = start_this_handle(journal, handle, GFP_NOFS); 613 if (ret < 0) { 614 handle->h_journal = journal; 615 jbd2_journal_free_reserved(handle); 616 return ret; 617 } 618 handle->h_type = type; 619 handle->h_line_no = line_no; 620 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 621 handle->h_transaction->t_tid, type, 622 line_no, handle->h_total_credits); 623 return 0; 624 } 625 EXPORT_SYMBOL(jbd2_journal_start_reserved); 626 627 /** 628 * jbd2_journal_extend() - extend buffer credits. 629 * @handle: handle to 'extend' 630 * @nblocks: nr blocks to try to extend by. 631 * @revoke_records: number of revoke records to try to extend by. 632 * 633 * Some transactions, such as large extends and truncates, can be done 634 * atomically all at once or in several stages. The operation requests 635 * a credit for a number of buffer modifications in advance, but can 636 * extend its credit if it needs more. 637 * 638 * jbd2_journal_extend tries to give the running handle more buffer credits. 639 * It does not guarantee that allocation - this is a best-effort only. 640 * The calling process MUST be able to deal cleanly with a failure to 641 * extend here. 642 * 643 * Return 0 on success, non-zero on failure. 644 * 645 * return code < 0 implies an error 646 * return code > 0 implies normal transaction-full status. 647 */ 648 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 649 { 650 transaction_t *transaction = handle->h_transaction; 651 journal_t *journal; 652 int result; 653 int wanted; 654 655 if (is_handle_aborted(handle)) 656 return -EROFS; 657 journal = transaction->t_journal; 658 659 result = 1; 660 661 read_lock(&journal->j_state_lock); 662 663 /* Don't extend a locked-down transaction! */ 664 if (transaction->t_state != T_RUNNING) { 665 jbd_debug(3, "denied handle %p %d blocks: " 666 "transaction not running\n", handle, nblocks); 667 goto error_out; 668 } 669 670 nblocks += DIV_ROUND_UP( 671 handle->h_revoke_credits_requested + revoke_records, 672 journal->j_revoke_records_per_block) - 673 DIV_ROUND_UP( 674 handle->h_revoke_credits_requested, 675 journal->j_revoke_records_per_block); 676 spin_lock(&transaction->t_handle_lock); 677 wanted = atomic_add_return(nblocks, 678 &transaction->t_outstanding_credits); 679 680 if (wanted > journal->j_max_transaction_buffers) { 681 jbd_debug(3, "denied handle %p %d blocks: " 682 "transaction too large\n", handle, nblocks); 683 atomic_sub(nblocks, &transaction->t_outstanding_credits); 684 goto unlock; 685 } 686 687 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 688 transaction->t_tid, 689 handle->h_type, handle->h_line_no, 690 handle->h_total_credits, 691 nblocks); 692 693 handle->h_total_credits += nblocks; 694 handle->h_requested_credits += nblocks; 695 handle->h_revoke_credits += revoke_records; 696 handle->h_revoke_credits_requested += revoke_records; 697 result = 0; 698 699 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 700 unlock: 701 spin_unlock(&transaction->t_handle_lock); 702 error_out: 703 read_unlock(&journal->j_state_lock); 704 return result; 705 } 706 707 static void stop_this_handle(handle_t *handle) 708 { 709 transaction_t *transaction = handle->h_transaction; 710 journal_t *journal = transaction->t_journal; 711 int revokes; 712 713 J_ASSERT(journal_current_handle() == handle); 714 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 715 current->journal_info = NULL; 716 /* 717 * Subtract necessary revoke descriptor blocks from handle credits. We 718 * take care to account only for revoke descriptor blocks the 719 * transaction will really need as large sequences of transactions with 720 * small numbers of revokes are relatively common. 721 */ 722 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 723 if (revokes) { 724 int t_revokes, revoke_descriptors; 725 int rr_per_blk = journal->j_revoke_records_per_block; 726 727 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 728 > handle->h_total_credits); 729 t_revokes = atomic_add_return(revokes, 730 &transaction->t_outstanding_revokes); 731 revoke_descriptors = 732 DIV_ROUND_UP(t_revokes, rr_per_blk) - 733 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 734 handle->h_total_credits -= revoke_descriptors; 735 } 736 atomic_sub(handle->h_total_credits, 737 &transaction->t_outstanding_credits); 738 if (handle->h_rsv_handle) 739 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 740 transaction); 741 if (atomic_dec_and_test(&transaction->t_updates)) 742 wake_up(&journal->j_wait_updates); 743 744 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 745 /* 746 * Scope of the GFP_NOFS context is over here and so we can restore the 747 * original alloc context. 748 */ 749 memalloc_nofs_restore(handle->saved_alloc_context); 750 } 751 752 /** 753 * jbd2__journal_restart() - restart a handle . 754 * @handle: handle to restart 755 * @nblocks: nr credits requested 756 * @revoke_records: number of revoke record credits requested 757 * @gfp_mask: memory allocation flags (for start_this_handle) 758 * 759 * Restart a handle for a multi-transaction filesystem 760 * operation. 761 * 762 * If the jbd2_journal_extend() call above fails to grant new buffer credits 763 * to a running handle, a call to jbd2_journal_restart will commit the 764 * handle's transaction so far and reattach the handle to a new 765 * transaction capable of guaranteeing the requested number of 766 * credits. We preserve reserved handle if there's any attached to the 767 * passed in handle. 768 */ 769 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 770 gfp_t gfp_mask) 771 { 772 transaction_t *transaction = handle->h_transaction; 773 journal_t *journal; 774 tid_t tid; 775 int need_to_start; 776 int ret; 777 778 /* If we've had an abort of any type, don't even think about 779 * actually doing the restart! */ 780 if (is_handle_aborted(handle)) 781 return 0; 782 journal = transaction->t_journal; 783 tid = transaction->t_tid; 784 785 /* 786 * First unlink the handle from its current transaction, and start the 787 * commit on that. 788 */ 789 jbd_debug(2, "restarting handle %p\n", handle); 790 stop_this_handle(handle); 791 handle->h_transaction = NULL; 792 793 /* 794 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 795 * get rid of pointless j_state_lock traffic like this. 796 */ 797 read_lock(&journal->j_state_lock); 798 need_to_start = !tid_geq(journal->j_commit_request, tid); 799 read_unlock(&journal->j_state_lock); 800 if (need_to_start) 801 jbd2_log_start_commit(journal, tid); 802 handle->h_total_credits = nblocks + 803 DIV_ROUND_UP(revoke_records, 804 journal->j_revoke_records_per_block); 805 handle->h_revoke_credits = revoke_records; 806 ret = start_this_handle(journal, handle, gfp_mask); 807 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 808 ret ? 0 : handle->h_transaction->t_tid, 809 handle->h_type, handle->h_line_no, 810 handle->h_total_credits); 811 return ret; 812 } 813 EXPORT_SYMBOL(jbd2__journal_restart); 814 815 816 int jbd2_journal_restart(handle_t *handle, int nblocks) 817 { 818 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 819 } 820 EXPORT_SYMBOL(jbd2_journal_restart); 821 822 /** 823 * jbd2_journal_lock_updates () - establish a transaction barrier. 824 * @journal: Journal to establish a barrier on. 825 * 826 * This locks out any further updates from being started, and blocks 827 * until all existing updates have completed, returning only once the 828 * journal is in a quiescent state with no updates running. 829 * 830 * The journal lock should not be held on entry. 831 */ 832 void jbd2_journal_lock_updates(journal_t *journal) 833 { 834 DEFINE_WAIT(wait); 835 836 jbd2_might_wait_for_commit(journal); 837 838 write_lock(&journal->j_state_lock); 839 ++journal->j_barrier_count; 840 841 /* Wait until there are no reserved handles */ 842 if (atomic_read(&journal->j_reserved_credits)) { 843 write_unlock(&journal->j_state_lock); 844 wait_event(journal->j_wait_reserved, 845 atomic_read(&journal->j_reserved_credits) == 0); 846 write_lock(&journal->j_state_lock); 847 } 848 849 /* Wait until there are no running updates */ 850 while (1) { 851 transaction_t *transaction = journal->j_running_transaction; 852 853 if (!transaction) 854 break; 855 856 spin_lock(&transaction->t_handle_lock); 857 prepare_to_wait(&journal->j_wait_updates, &wait, 858 TASK_UNINTERRUPTIBLE); 859 if (!atomic_read(&transaction->t_updates)) { 860 spin_unlock(&transaction->t_handle_lock); 861 finish_wait(&journal->j_wait_updates, &wait); 862 break; 863 } 864 spin_unlock(&transaction->t_handle_lock); 865 write_unlock(&journal->j_state_lock); 866 schedule(); 867 finish_wait(&journal->j_wait_updates, &wait); 868 write_lock(&journal->j_state_lock); 869 } 870 write_unlock(&journal->j_state_lock); 871 872 /* 873 * We have now established a barrier against other normal updates, but 874 * we also need to barrier against other jbd2_journal_lock_updates() calls 875 * to make sure that we serialise special journal-locked operations 876 * too. 877 */ 878 mutex_lock(&journal->j_barrier); 879 } 880 881 /** 882 * jbd2_journal_unlock_updates () - release barrier 883 * @journal: Journal to release the barrier on. 884 * 885 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 886 * 887 * Should be called without the journal lock held. 888 */ 889 void jbd2_journal_unlock_updates (journal_t *journal) 890 { 891 J_ASSERT(journal->j_barrier_count != 0); 892 893 mutex_unlock(&journal->j_barrier); 894 write_lock(&journal->j_state_lock); 895 --journal->j_barrier_count; 896 write_unlock(&journal->j_state_lock); 897 wake_up(&journal->j_wait_transaction_locked); 898 } 899 900 static void warn_dirty_buffer(struct buffer_head *bh) 901 { 902 printk(KERN_WARNING 903 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 904 "There's a risk of filesystem corruption in case of system " 905 "crash.\n", 906 bh->b_bdev, (unsigned long long)bh->b_blocknr); 907 } 908 909 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 910 static void jbd2_freeze_jh_data(struct journal_head *jh) 911 { 912 struct page *page; 913 int offset; 914 char *source; 915 struct buffer_head *bh = jh2bh(jh); 916 917 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 918 page = bh->b_page; 919 offset = offset_in_page(bh->b_data); 920 source = kmap_atomic(page); 921 /* Fire data frozen trigger just before we copy the data */ 922 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 923 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 924 kunmap_atomic(source); 925 926 /* 927 * Now that the frozen data is saved off, we need to store any matching 928 * triggers. 929 */ 930 jh->b_frozen_triggers = jh->b_triggers; 931 } 932 933 /* 934 * If the buffer is already part of the current transaction, then there 935 * is nothing we need to do. If it is already part of a prior 936 * transaction which we are still committing to disk, then we need to 937 * make sure that we do not overwrite the old copy: we do copy-out to 938 * preserve the copy going to disk. We also account the buffer against 939 * the handle's metadata buffer credits (unless the buffer is already 940 * part of the transaction, that is). 941 * 942 */ 943 static int 944 do_get_write_access(handle_t *handle, struct journal_head *jh, 945 int force_copy) 946 { 947 struct buffer_head *bh; 948 transaction_t *transaction = handle->h_transaction; 949 journal_t *journal; 950 int error; 951 char *frozen_buffer = NULL; 952 unsigned long start_lock, time_lock; 953 954 journal = transaction->t_journal; 955 956 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 957 958 JBUFFER_TRACE(jh, "entry"); 959 repeat: 960 bh = jh2bh(jh); 961 962 /* @@@ Need to check for errors here at some point. */ 963 964 start_lock = jiffies; 965 lock_buffer(bh); 966 spin_lock(&jh->b_state_lock); 967 968 /* If it takes too long to lock the buffer, trace it */ 969 time_lock = jbd2_time_diff(start_lock, jiffies); 970 if (time_lock > HZ/10) 971 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 972 jiffies_to_msecs(time_lock)); 973 974 /* We now hold the buffer lock so it is safe to query the buffer 975 * state. Is the buffer dirty? 976 * 977 * If so, there are two possibilities. The buffer may be 978 * non-journaled, and undergoing a quite legitimate writeback. 979 * Otherwise, it is journaled, and we don't expect dirty buffers 980 * in that state (the buffers should be marked JBD_Dirty 981 * instead.) So either the IO is being done under our own 982 * control and this is a bug, or it's a third party IO such as 983 * dump(8) (which may leave the buffer scheduled for read --- 984 * ie. locked but not dirty) or tune2fs (which may actually have 985 * the buffer dirtied, ugh.) */ 986 987 if (buffer_dirty(bh)) { 988 /* 989 * First question: is this buffer already part of the current 990 * transaction or the existing committing transaction? 991 */ 992 if (jh->b_transaction) { 993 J_ASSERT_JH(jh, 994 jh->b_transaction == transaction || 995 jh->b_transaction == 996 journal->j_committing_transaction); 997 if (jh->b_next_transaction) 998 J_ASSERT_JH(jh, jh->b_next_transaction == 999 transaction); 1000 warn_dirty_buffer(bh); 1001 } 1002 /* 1003 * In any case we need to clean the dirty flag and we must 1004 * do it under the buffer lock to be sure we don't race 1005 * with running write-out. 1006 */ 1007 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1008 clear_buffer_dirty(bh); 1009 set_buffer_jbddirty(bh); 1010 } 1011 1012 unlock_buffer(bh); 1013 1014 error = -EROFS; 1015 if (is_handle_aborted(handle)) { 1016 spin_unlock(&jh->b_state_lock); 1017 goto out; 1018 } 1019 error = 0; 1020 1021 /* 1022 * The buffer is already part of this transaction if b_transaction or 1023 * b_next_transaction points to it 1024 */ 1025 if (jh->b_transaction == transaction || 1026 jh->b_next_transaction == transaction) 1027 goto done; 1028 1029 /* 1030 * this is the first time this transaction is touching this buffer, 1031 * reset the modified flag 1032 */ 1033 jh->b_modified = 0; 1034 1035 /* 1036 * If the buffer is not journaled right now, we need to make sure it 1037 * doesn't get written to disk before the caller actually commits the 1038 * new data 1039 */ 1040 if (!jh->b_transaction) { 1041 JBUFFER_TRACE(jh, "no transaction"); 1042 J_ASSERT_JH(jh, !jh->b_next_transaction); 1043 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1044 /* 1045 * Make sure all stores to jh (b_modified, b_frozen_data) are 1046 * visible before attaching it to the running transaction. 1047 * Paired with barrier in jbd2_write_access_granted() 1048 */ 1049 smp_wmb(); 1050 spin_lock(&journal->j_list_lock); 1051 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1052 spin_unlock(&journal->j_list_lock); 1053 goto done; 1054 } 1055 /* 1056 * If there is already a copy-out version of this buffer, then we don't 1057 * need to make another one 1058 */ 1059 if (jh->b_frozen_data) { 1060 JBUFFER_TRACE(jh, "has frozen data"); 1061 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1062 goto attach_next; 1063 } 1064 1065 JBUFFER_TRACE(jh, "owned by older transaction"); 1066 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1067 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1068 1069 /* 1070 * There is one case we have to be very careful about. If the 1071 * committing transaction is currently writing this buffer out to disk 1072 * and has NOT made a copy-out, then we cannot modify the buffer 1073 * contents at all right now. The essence of copy-out is that it is 1074 * the extra copy, not the primary copy, which gets journaled. If the 1075 * primary copy is already going to disk then we cannot do copy-out 1076 * here. 1077 */ 1078 if (buffer_shadow(bh)) { 1079 JBUFFER_TRACE(jh, "on shadow: sleep"); 1080 spin_unlock(&jh->b_state_lock); 1081 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1082 goto repeat; 1083 } 1084 1085 /* 1086 * Only do the copy if the currently-owning transaction still needs it. 1087 * If buffer isn't on BJ_Metadata list, the committing transaction is 1088 * past that stage (here we use the fact that BH_Shadow is set under 1089 * bh_state lock together with refiling to BJ_Shadow list and at this 1090 * point we know the buffer doesn't have BH_Shadow set). 1091 * 1092 * Subtle point, though: if this is a get_undo_access, then we will be 1093 * relying on the frozen_data to contain the new value of the 1094 * committed_data record after the transaction, so we HAVE to force the 1095 * frozen_data copy in that case. 1096 */ 1097 if (jh->b_jlist == BJ_Metadata || force_copy) { 1098 JBUFFER_TRACE(jh, "generate frozen data"); 1099 if (!frozen_buffer) { 1100 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1101 spin_unlock(&jh->b_state_lock); 1102 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1103 GFP_NOFS | __GFP_NOFAIL); 1104 goto repeat; 1105 } 1106 jh->b_frozen_data = frozen_buffer; 1107 frozen_buffer = NULL; 1108 jbd2_freeze_jh_data(jh); 1109 } 1110 attach_next: 1111 /* 1112 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1113 * before attaching it to the running transaction. Paired with barrier 1114 * in jbd2_write_access_granted() 1115 */ 1116 smp_wmb(); 1117 jh->b_next_transaction = transaction; 1118 1119 done: 1120 spin_unlock(&jh->b_state_lock); 1121 1122 /* 1123 * If we are about to journal a buffer, then any revoke pending on it is 1124 * no longer valid 1125 */ 1126 jbd2_journal_cancel_revoke(handle, jh); 1127 1128 out: 1129 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1130 jbd2_free(frozen_buffer, bh->b_size); 1131 1132 JBUFFER_TRACE(jh, "exit"); 1133 return error; 1134 } 1135 1136 /* Fast check whether buffer is already attached to the required transaction */ 1137 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1138 bool undo) 1139 { 1140 struct journal_head *jh; 1141 bool ret = false; 1142 1143 /* Dirty buffers require special handling... */ 1144 if (buffer_dirty(bh)) 1145 return false; 1146 1147 /* 1148 * RCU protects us from dereferencing freed pages. So the checks we do 1149 * are guaranteed not to oops. However the jh slab object can get freed 1150 * & reallocated while we work with it. So we have to be careful. When 1151 * we see jh attached to the running transaction, we know it must stay 1152 * so until the transaction is committed. Thus jh won't be freed and 1153 * will be attached to the same bh while we run. However it can 1154 * happen jh gets freed, reallocated, and attached to the transaction 1155 * just after we get pointer to it from bh. So we have to be careful 1156 * and recheck jh still belongs to our bh before we return success. 1157 */ 1158 rcu_read_lock(); 1159 if (!buffer_jbd(bh)) 1160 goto out; 1161 /* This should be bh2jh() but that doesn't work with inline functions */ 1162 jh = READ_ONCE(bh->b_private); 1163 if (!jh) 1164 goto out; 1165 /* For undo access buffer must have data copied */ 1166 if (undo && !jh->b_committed_data) 1167 goto out; 1168 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1169 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1170 goto out; 1171 /* 1172 * There are two reasons for the barrier here: 1173 * 1) Make sure to fetch b_bh after we did previous checks so that we 1174 * detect when jh went through free, realloc, attach to transaction 1175 * while we were checking. Paired with implicit barrier in that path. 1176 * 2) So that access to bh done after jbd2_write_access_granted() 1177 * doesn't get reordered and see inconsistent state of concurrent 1178 * do_get_write_access(). 1179 */ 1180 smp_mb(); 1181 if (unlikely(jh->b_bh != bh)) 1182 goto out; 1183 ret = true; 1184 out: 1185 rcu_read_unlock(); 1186 return ret; 1187 } 1188 1189 /** 1190 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1191 * for metadata (not data) update. 1192 * @handle: transaction to add buffer modifications to 1193 * @bh: bh to be used for metadata writes 1194 * 1195 * Returns: error code or 0 on success. 1196 * 1197 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1198 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1199 */ 1200 1201 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1202 { 1203 struct journal_head *jh; 1204 int rc; 1205 1206 if (is_handle_aborted(handle)) 1207 return -EROFS; 1208 1209 if (jbd2_write_access_granted(handle, bh, false)) 1210 return 0; 1211 1212 jh = jbd2_journal_add_journal_head(bh); 1213 /* We do not want to get caught playing with fields which the 1214 * log thread also manipulates. Make sure that the buffer 1215 * completes any outstanding IO before proceeding. */ 1216 rc = do_get_write_access(handle, jh, 0); 1217 jbd2_journal_put_journal_head(jh); 1218 return rc; 1219 } 1220 1221 1222 /* 1223 * When the user wants to journal a newly created buffer_head 1224 * (ie. getblk() returned a new buffer and we are going to populate it 1225 * manually rather than reading off disk), then we need to keep the 1226 * buffer_head locked until it has been completely filled with new 1227 * data. In this case, we should be able to make the assertion that 1228 * the bh is not already part of an existing transaction. 1229 * 1230 * The buffer should already be locked by the caller by this point. 1231 * There is no lock ranking violation: it was a newly created, 1232 * unlocked buffer beforehand. */ 1233 1234 /** 1235 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1236 * @handle: transaction to new buffer to 1237 * @bh: new buffer. 1238 * 1239 * Call this if you create a new bh. 1240 */ 1241 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1242 { 1243 transaction_t *transaction = handle->h_transaction; 1244 journal_t *journal; 1245 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1246 int err; 1247 1248 jbd_debug(5, "journal_head %p\n", jh); 1249 err = -EROFS; 1250 if (is_handle_aborted(handle)) 1251 goto out; 1252 journal = transaction->t_journal; 1253 err = 0; 1254 1255 JBUFFER_TRACE(jh, "entry"); 1256 /* 1257 * The buffer may already belong to this transaction due to pre-zeroing 1258 * in the filesystem's new_block code. It may also be on the previous, 1259 * committing transaction's lists, but it HAS to be in Forget state in 1260 * that case: the transaction must have deleted the buffer for it to be 1261 * reused here. 1262 */ 1263 spin_lock(&jh->b_state_lock); 1264 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1265 jh->b_transaction == NULL || 1266 (jh->b_transaction == journal->j_committing_transaction && 1267 jh->b_jlist == BJ_Forget))); 1268 1269 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1270 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1271 1272 if (jh->b_transaction == NULL) { 1273 /* 1274 * Previous jbd2_journal_forget() could have left the buffer 1275 * with jbddirty bit set because it was being committed. When 1276 * the commit finished, we've filed the buffer for 1277 * checkpointing and marked it dirty. Now we are reallocating 1278 * the buffer so the transaction freeing it must have 1279 * committed and so it's safe to clear the dirty bit. 1280 */ 1281 clear_buffer_dirty(jh2bh(jh)); 1282 /* first access by this transaction */ 1283 jh->b_modified = 0; 1284 1285 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1286 spin_lock(&journal->j_list_lock); 1287 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1288 spin_unlock(&journal->j_list_lock); 1289 } else if (jh->b_transaction == journal->j_committing_transaction) { 1290 /* first access by this transaction */ 1291 jh->b_modified = 0; 1292 1293 JBUFFER_TRACE(jh, "set next transaction"); 1294 spin_lock(&journal->j_list_lock); 1295 jh->b_next_transaction = transaction; 1296 spin_unlock(&journal->j_list_lock); 1297 } 1298 spin_unlock(&jh->b_state_lock); 1299 1300 /* 1301 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1302 * blocks which contain freed but then revoked metadata. We need 1303 * to cancel the revoke in case we end up freeing it yet again 1304 * and the reallocating as data - this would cause a second revoke, 1305 * which hits an assertion error. 1306 */ 1307 JBUFFER_TRACE(jh, "cancelling revoke"); 1308 jbd2_journal_cancel_revoke(handle, jh); 1309 out: 1310 jbd2_journal_put_journal_head(jh); 1311 return err; 1312 } 1313 1314 /** 1315 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1316 * non-rewindable consequences 1317 * @handle: transaction 1318 * @bh: buffer to undo 1319 * 1320 * Sometimes there is a need to distinguish between metadata which has 1321 * been committed to disk and that which has not. The ext3fs code uses 1322 * this for freeing and allocating space, we have to make sure that we 1323 * do not reuse freed space until the deallocation has been committed, 1324 * since if we overwrote that space we would make the delete 1325 * un-rewindable in case of a crash. 1326 * 1327 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1328 * buffer for parts of non-rewindable operations such as delete 1329 * operations on the bitmaps. The journaling code must keep a copy of 1330 * the buffer's contents prior to the undo_access call until such time 1331 * as we know that the buffer has definitely been committed to disk. 1332 * 1333 * We never need to know which transaction the committed data is part 1334 * of, buffers touched here are guaranteed to be dirtied later and so 1335 * will be committed to a new transaction in due course, at which point 1336 * we can discard the old committed data pointer. 1337 * 1338 * Returns error number or 0 on success. 1339 */ 1340 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1341 { 1342 int err; 1343 struct journal_head *jh; 1344 char *committed_data = NULL; 1345 1346 if (is_handle_aborted(handle)) 1347 return -EROFS; 1348 1349 if (jbd2_write_access_granted(handle, bh, true)) 1350 return 0; 1351 1352 jh = jbd2_journal_add_journal_head(bh); 1353 JBUFFER_TRACE(jh, "entry"); 1354 1355 /* 1356 * Do this first --- it can drop the journal lock, so we want to 1357 * make sure that obtaining the committed_data is done 1358 * atomically wrt. completion of any outstanding commits. 1359 */ 1360 err = do_get_write_access(handle, jh, 1); 1361 if (err) 1362 goto out; 1363 1364 repeat: 1365 if (!jh->b_committed_data) 1366 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1367 GFP_NOFS|__GFP_NOFAIL); 1368 1369 spin_lock(&jh->b_state_lock); 1370 if (!jh->b_committed_data) { 1371 /* Copy out the current buffer contents into the 1372 * preserved, committed copy. */ 1373 JBUFFER_TRACE(jh, "generate b_committed data"); 1374 if (!committed_data) { 1375 spin_unlock(&jh->b_state_lock); 1376 goto repeat; 1377 } 1378 1379 jh->b_committed_data = committed_data; 1380 committed_data = NULL; 1381 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1382 } 1383 spin_unlock(&jh->b_state_lock); 1384 out: 1385 jbd2_journal_put_journal_head(jh); 1386 if (unlikely(committed_data)) 1387 jbd2_free(committed_data, bh->b_size); 1388 return err; 1389 } 1390 1391 /** 1392 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1393 * @bh: buffer to trigger on 1394 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1395 * 1396 * Set any triggers on this journal_head. This is always safe, because 1397 * triggers for a committing buffer will be saved off, and triggers for 1398 * a running transaction will match the buffer in that transaction. 1399 * 1400 * Call with NULL to clear the triggers. 1401 */ 1402 void jbd2_journal_set_triggers(struct buffer_head *bh, 1403 struct jbd2_buffer_trigger_type *type) 1404 { 1405 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1406 1407 if (WARN_ON(!jh)) 1408 return; 1409 jh->b_triggers = type; 1410 jbd2_journal_put_journal_head(jh); 1411 } 1412 1413 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1414 struct jbd2_buffer_trigger_type *triggers) 1415 { 1416 struct buffer_head *bh = jh2bh(jh); 1417 1418 if (!triggers || !triggers->t_frozen) 1419 return; 1420 1421 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1422 } 1423 1424 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1425 struct jbd2_buffer_trigger_type *triggers) 1426 { 1427 if (!triggers || !triggers->t_abort) 1428 return; 1429 1430 triggers->t_abort(triggers, jh2bh(jh)); 1431 } 1432 1433 /** 1434 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1435 * @handle: transaction to add buffer to. 1436 * @bh: buffer to mark 1437 * 1438 * mark dirty metadata which needs to be journaled as part of the current 1439 * transaction. 1440 * 1441 * The buffer must have previously had jbd2_journal_get_write_access() 1442 * called so that it has a valid journal_head attached to the buffer 1443 * head. 1444 * 1445 * The buffer is placed on the transaction's metadata list and is marked 1446 * as belonging to the transaction. 1447 * 1448 * Returns error number or 0 on success. 1449 * 1450 * Special care needs to be taken if the buffer already belongs to the 1451 * current committing transaction (in which case we should have frozen 1452 * data present for that commit). In that case, we don't relink the 1453 * buffer: that only gets done when the old transaction finally 1454 * completes its commit. 1455 */ 1456 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1457 { 1458 transaction_t *transaction = handle->h_transaction; 1459 journal_t *journal; 1460 struct journal_head *jh; 1461 int ret = 0; 1462 1463 if (is_handle_aborted(handle)) 1464 return -EROFS; 1465 if (!buffer_jbd(bh)) 1466 return -EUCLEAN; 1467 1468 /* 1469 * We don't grab jh reference here since the buffer must be part 1470 * of the running transaction. 1471 */ 1472 jh = bh2jh(bh); 1473 jbd_debug(5, "journal_head %p\n", jh); 1474 JBUFFER_TRACE(jh, "entry"); 1475 1476 /* 1477 * This and the following assertions are unreliable since we may see jh 1478 * in inconsistent state unless we grab bh_state lock. But this is 1479 * crucial to catch bugs so let's do a reliable check until the 1480 * lockless handling is fully proven. 1481 */ 1482 if (data_race(jh->b_transaction != transaction && 1483 jh->b_next_transaction != transaction)) { 1484 spin_lock(&jh->b_state_lock); 1485 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1486 jh->b_next_transaction == transaction); 1487 spin_unlock(&jh->b_state_lock); 1488 } 1489 if (jh->b_modified == 1) { 1490 /* If it's in our transaction it must be in BJ_Metadata list. */ 1491 if (data_race(jh->b_transaction == transaction && 1492 jh->b_jlist != BJ_Metadata)) { 1493 spin_lock(&jh->b_state_lock); 1494 if (jh->b_transaction == transaction && 1495 jh->b_jlist != BJ_Metadata) 1496 pr_err("JBD2: assertion failure: h_type=%u " 1497 "h_line_no=%u block_no=%llu jlist=%u\n", 1498 handle->h_type, handle->h_line_no, 1499 (unsigned long long) bh->b_blocknr, 1500 jh->b_jlist); 1501 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1502 jh->b_jlist == BJ_Metadata); 1503 spin_unlock(&jh->b_state_lock); 1504 } 1505 goto out; 1506 } 1507 1508 journal = transaction->t_journal; 1509 spin_lock(&jh->b_state_lock); 1510 1511 if (jh->b_modified == 0) { 1512 /* 1513 * This buffer's got modified and becoming part 1514 * of the transaction. This needs to be done 1515 * once a transaction -bzzz 1516 */ 1517 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1518 ret = -ENOSPC; 1519 goto out_unlock_bh; 1520 } 1521 jh->b_modified = 1; 1522 handle->h_total_credits--; 1523 } 1524 1525 /* 1526 * fastpath, to avoid expensive locking. If this buffer is already 1527 * on the running transaction's metadata list there is nothing to do. 1528 * Nobody can take it off again because there is a handle open. 1529 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1530 * result in this test being false, so we go in and take the locks. 1531 */ 1532 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1533 JBUFFER_TRACE(jh, "fastpath"); 1534 if (unlikely(jh->b_transaction != 1535 journal->j_running_transaction)) { 1536 printk(KERN_ERR "JBD2: %s: " 1537 "jh->b_transaction (%llu, %p, %u) != " 1538 "journal->j_running_transaction (%p, %u)\n", 1539 journal->j_devname, 1540 (unsigned long long) bh->b_blocknr, 1541 jh->b_transaction, 1542 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1543 journal->j_running_transaction, 1544 journal->j_running_transaction ? 1545 journal->j_running_transaction->t_tid : 0); 1546 ret = -EINVAL; 1547 } 1548 goto out_unlock_bh; 1549 } 1550 1551 set_buffer_jbddirty(bh); 1552 1553 /* 1554 * Metadata already on the current transaction list doesn't 1555 * need to be filed. Metadata on another transaction's list must 1556 * be committing, and will be refiled once the commit completes: 1557 * leave it alone for now. 1558 */ 1559 if (jh->b_transaction != transaction) { 1560 JBUFFER_TRACE(jh, "already on other transaction"); 1561 if (unlikely(((jh->b_transaction != 1562 journal->j_committing_transaction)) || 1563 (jh->b_next_transaction != transaction))) { 1564 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1565 "bad jh for block %llu: " 1566 "transaction (%p, %u), " 1567 "jh->b_transaction (%p, %u), " 1568 "jh->b_next_transaction (%p, %u), jlist %u\n", 1569 journal->j_devname, 1570 (unsigned long long) bh->b_blocknr, 1571 transaction, transaction->t_tid, 1572 jh->b_transaction, 1573 jh->b_transaction ? 1574 jh->b_transaction->t_tid : 0, 1575 jh->b_next_transaction, 1576 jh->b_next_transaction ? 1577 jh->b_next_transaction->t_tid : 0, 1578 jh->b_jlist); 1579 WARN_ON(1); 1580 ret = -EINVAL; 1581 } 1582 /* And this case is illegal: we can't reuse another 1583 * transaction's data buffer, ever. */ 1584 goto out_unlock_bh; 1585 } 1586 1587 /* That test should have eliminated the following case: */ 1588 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1589 1590 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1591 spin_lock(&journal->j_list_lock); 1592 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1593 spin_unlock(&journal->j_list_lock); 1594 out_unlock_bh: 1595 spin_unlock(&jh->b_state_lock); 1596 out: 1597 JBUFFER_TRACE(jh, "exit"); 1598 return ret; 1599 } 1600 1601 /** 1602 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1603 * @handle: transaction handle 1604 * @bh: bh to 'forget' 1605 * 1606 * We can only do the bforget if there are no commits pending against the 1607 * buffer. If the buffer is dirty in the current running transaction we 1608 * can safely unlink it. 1609 * 1610 * bh may not be a journalled buffer at all - it may be a non-JBD 1611 * buffer which came off the hashtable. Check for this. 1612 * 1613 * Decrements bh->b_count by one. 1614 * 1615 * Allow this call even if the handle has aborted --- it may be part of 1616 * the caller's cleanup after an abort. 1617 */ 1618 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1619 { 1620 transaction_t *transaction = handle->h_transaction; 1621 journal_t *journal; 1622 struct journal_head *jh; 1623 int drop_reserve = 0; 1624 int err = 0; 1625 int was_modified = 0; 1626 1627 if (is_handle_aborted(handle)) 1628 return -EROFS; 1629 journal = transaction->t_journal; 1630 1631 BUFFER_TRACE(bh, "entry"); 1632 1633 jh = jbd2_journal_grab_journal_head(bh); 1634 if (!jh) { 1635 __bforget(bh); 1636 return 0; 1637 } 1638 1639 spin_lock(&jh->b_state_lock); 1640 1641 /* Critical error: attempting to delete a bitmap buffer, maybe? 1642 * Don't do any jbd operations, and return an error. */ 1643 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1644 "inconsistent data on disk")) { 1645 err = -EIO; 1646 goto drop; 1647 } 1648 1649 /* keep track of whether or not this transaction modified us */ 1650 was_modified = jh->b_modified; 1651 1652 /* 1653 * The buffer's going from the transaction, we must drop 1654 * all references -bzzz 1655 */ 1656 jh->b_modified = 0; 1657 1658 if (jh->b_transaction == transaction) { 1659 J_ASSERT_JH(jh, !jh->b_frozen_data); 1660 1661 /* If we are forgetting a buffer which is already part 1662 * of this transaction, then we can just drop it from 1663 * the transaction immediately. */ 1664 clear_buffer_dirty(bh); 1665 clear_buffer_jbddirty(bh); 1666 1667 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1668 1669 /* 1670 * we only want to drop a reference if this transaction 1671 * modified the buffer 1672 */ 1673 if (was_modified) 1674 drop_reserve = 1; 1675 1676 /* 1677 * We are no longer going to journal this buffer. 1678 * However, the commit of this transaction is still 1679 * important to the buffer: the delete that we are now 1680 * processing might obsolete an old log entry, so by 1681 * committing, we can satisfy the buffer's checkpoint. 1682 * 1683 * So, if we have a checkpoint on the buffer, we should 1684 * now refile the buffer on our BJ_Forget list so that 1685 * we know to remove the checkpoint after we commit. 1686 */ 1687 1688 spin_lock(&journal->j_list_lock); 1689 if (jh->b_cp_transaction) { 1690 __jbd2_journal_temp_unlink_buffer(jh); 1691 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1692 } else { 1693 __jbd2_journal_unfile_buffer(jh); 1694 jbd2_journal_put_journal_head(jh); 1695 } 1696 spin_unlock(&journal->j_list_lock); 1697 } else if (jh->b_transaction) { 1698 J_ASSERT_JH(jh, (jh->b_transaction == 1699 journal->j_committing_transaction)); 1700 /* However, if the buffer is still owned by a prior 1701 * (committing) transaction, we can't drop it yet... */ 1702 JBUFFER_TRACE(jh, "belongs to older transaction"); 1703 /* ... but we CAN drop it from the new transaction through 1704 * marking the buffer as freed and set j_next_transaction to 1705 * the new transaction, so that not only the commit code 1706 * knows it should clear dirty bits when it is done with the 1707 * buffer, but also the buffer can be checkpointed only 1708 * after the new transaction commits. */ 1709 1710 set_buffer_freed(bh); 1711 1712 if (!jh->b_next_transaction) { 1713 spin_lock(&journal->j_list_lock); 1714 jh->b_next_transaction = transaction; 1715 spin_unlock(&journal->j_list_lock); 1716 } else { 1717 J_ASSERT(jh->b_next_transaction == transaction); 1718 1719 /* 1720 * only drop a reference if this transaction modified 1721 * the buffer 1722 */ 1723 if (was_modified) 1724 drop_reserve = 1; 1725 } 1726 } else { 1727 /* 1728 * Finally, if the buffer is not belongs to any 1729 * transaction, we can just drop it now if it has no 1730 * checkpoint. 1731 */ 1732 spin_lock(&journal->j_list_lock); 1733 if (!jh->b_cp_transaction) { 1734 JBUFFER_TRACE(jh, "belongs to none transaction"); 1735 spin_unlock(&journal->j_list_lock); 1736 goto drop; 1737 } 1738 1739 /* 1740 * Otherwise, if the buffer has been written to disk, 1741 * it is safe to remove the checkpoint and drop it. 1742 */ 1743 if (!buffer_dirty(bh)) { 1744 __jbd2_journal_remove_checkpoint(jh); 1745 spin_unlock(&journal->j_list_lock); 1746 goto drop; 1747 } 1748 1749 /* 1750 * The buffer is still not written to disk, we should 1751 * attach this buffer to current transaction so that the 1752 * buffer can be checkpointed only after the current 1753 * transaction commits. 1754 */ 1755 clear_buffer_dirty(bh); 1756 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1757 spin_unlock(&journal->j_list_lock); 1758 } 1759 drop: 1760 __brelse(bh); 1761 spin_unlock(&jh->b_state_lock); 1762 jbd2_journal_put_journal_head(jh); 1763 if (drop_reserve) { 1764 /* no need to reserve log space for this block -bzzz */ 1765 handle->h_total_credits++; 1766 } 1767 return err; 1768 } 1769 1770 /** 1771 * jbd2_journal_stop() - complete a transaction 1772 * @handle: transaction to complete. 1773 * 1774 * All done for a particular handle. 1775 * 1776 * There is not much action needed here. We just return any remaining 1777 * buffer credits to the transaction and remove the handle. The only 1778 * complication is that we need to start a commit operation if the 1779 * filesystem is marked for synchronous update. 1780 * 1781 * jbd2_journal_stop itself will not usually return an error, but it may 1782 * do so in unusual circumstances. In particular, expect it to 1783 * return -EIO if a jbd2_journal_abort has been executed since the 1784 * transaction began. 1785 */ 1786 int jbd2_journal_stop(handle_t *handle) 1787 { 1788 transaction_t *transaction = handle->h_transaction; 1789 journal_t *journal; 1790 int err = 0, wait_for_commit = 0; 1791 tid_t tid; 1792 pid_t pid; 1793 1794 if (--handle->h_ref > 0) { 1795 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1796 handle->h_ref); 1797 if (is_handle_aborted(handle)) 1798 return -EIO; 1799 return 0; 1800 } 1801 if (!transaction) { 1802 /* 1803 * Handle is already detached from the transaction so there is 1804 * nothing to do other than free the handle. 1805 */ 1806 memalloc_nofs_restore(handle->saved_alloc_context); 1807 goto free_and_exit; 1808 } 1809 journal = transaction->t_journal; 1810 tid = transaction->t_tid; 1811 1812 if (is_handle_aborted(handle)) 1813 err = -EIO; 1814 1815 jbd_debug(4, "Handle %p going down\n", handle); 1816 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1817 tid, handle->h_type, handle->h_line_no, 1818 jiffies - handle->h_start_jiffies, 1819 handle->h_sync, handle->h_requested_credits, 1820 (handle->h_requested_credits - 1821 handle->h_total_credits)); 1822 1823 /* 1824 * Implement synchronous transaction batching. If the handle 1825 * was synchronous, don't force a commit immediately. Let's 1826 * yield and let another thread piggyback onto this 1827 * transaction. Keep doing that while new threads continue to 1828 * arrive. It doesn't cost much - we're about to run a commit 1829 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1830 * operations by 30x or more... 1831 * 1832 * We try and optimize the sleep time against what the 1833 * underlying disk can do, instead of having a static sleep 1834 * time. This is useful for the case where our storage is so 1835 * fast that it is more optimal to go ahead and force a flush 1836 * and wait for the transaction to be committed than it is to 1837 * wait for an arbitrary amount of time for new writers to 1838 * join the transaction. We achieve this by measuring how 1839 * long it takes to commit a transaction, and compare it with 1840 * how long this transaction has been running, and if run time 1841 * < commit time then we sleep for the delta and commit. This 1842 * greatly helps super fast disks that would see slowdowns as 1843 * more threads started doing fsyncs. 1844 * 1845 * But don't do this if this process was the most recent one 1846 * to perform a synchronous write. We do this to detect the 1847 * case where a single process is doing a stream of sync 1848 * writes. No point in waiting for joiners in that case. 1849 * 1850 * Setting max_batch_time to 0 disables this completely. 1851 */ 1852 pid = current->pid; 1853 if (handle->h_sync && journal->j_last_sync_writer != pid && 1854 journal->j_max_batch_time) { 1855 u64 commit_time, trans_time; 1856 1857 journal->j_last_sync_writer = pid; 1858 1859 read_lock(&journal->j_state_lock); 1860 commit_time = journal->j_average_commit_time; 1861 read_unlock(&journal->j_state_lock); 1862 1863 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1864 transaction->t_start_time)); 1865 1866 commit_time = max_t(u64, commit_time, 1867 1000*journal->j_min_batch_time); 1868 commit_time = min_t(u64, commit_time, 1869 1000*journal->j_max_batch_time); 1870 1871 if (trans_time < commit_time) { 1872 ktime_t expires = ktime_add_ns(ktime_get(), 1873 commit_time); 1874 set_current_state(TASK_UNINTERRUPTIBLE); 1875 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1876 } 1877 } 1878 1879 if (handle->h_sync) 1880 transaction->t_synchronous_commit = 1; 1881 1882 /* 1883 * If the handle is marked SYNC, we need to set another commit 1884 * going! We also want to force a commit if the transaction is too 1885 * old now. 1886 */ 1887 if (handle->h_sync || 1888 time_after_eq(jiffies, transaction->t_expires)) { 1889 /* Do this even for aborted journals: an abort still 1890 * completes the commit thread, it just doesn't write 1891 * anything to disk. */ 1892 1893 jbd_debug(2, "transaction too old, requesting commit for " 1894 "handle %p\n", handle); 1895 /* This is non-blocking */ 1896 jbd2_log_start_commit(journal, tid); 1897 1898 /* 1899 * Special case: JBD2_SYNC synchronous updates require us 1900 * to wait for the commit to complete. 1901 */ 1902 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1903 wait_for_commit = 1; 1904 } 1905 1906 /* 1907 * Once stop_this_handle() drops t_updates, the transaction could start 1908 * committing on us and eventually disappear. So we must not 1909 * dereference transaction pointer again after calling 1910 * stop_this_handle(). 1911 */ 1912 stop_this_handle(handle); 1913 1914 if (wait_for_commit) 1915 err = jbd2_log_wait_commit(journal, tid); 1916 1917 free_and_exit: 1918 if (handle->h_rsv_handle) 1919 jbd2_free_handle(handle->h_rsv_handle); 1920 jbd2_free_handle(handle); 1921 return err; 1922 } 1923 1924 /* 1925 * 1926 * List management code snippets: various functions for manipulating the 1927 * transaction buffer lists. 1928 * 1929 */ 1930 1931 /* 1932 * Append a buffer to a transaction list, given the transaction's list head 1933 * pointer. 1934 * 1935 * j_list_lock is held. 1936 * 1937 * jh->b_state_lock is held. 1938 */ 1939 1940 static inline void 1941 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1942 { 1943 if (!*list) { 1944 jh->b_tnext = jh->b_tprev = jh; 1945 *list = jh; 1946 } else { 1947 /* Insert at the tail of the list to preserve order */ 1948 struct journal_head *first = *list, *last = first->b_tprev; 1949 jh->b_tprev = last; 1950 jh->b_tnext = first; 1951 last->b_tnext = first->b_tprev = jh; 1952 } 1953 } 1954 1955 /* 1956 * Remove a buffer from a transaction list, given the transaction's list 1957 * head pointer. 1958 * 1959 * Called with j_list_lock held, and the journal may not be locked. 1960 * 1961 * jh->b_state_lock is held. 1962 */ 1963 1964 static inline void 1965 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1966 { 1967 if (*list == jh) { 1968 *list = jh->b_tnext; 1969 if (*list == jh) 1970 *list = NULL; 1971 } 1972 jh->b_tprev->b_tnext = jh->b_tnext; 1973 jh->b_tnext->b_tprev = jh->b_tprev; 1974 } 1975 1976 /* 1977 * Remove a buffer from the appropriate transaction list. 1978 * 1979 * Note that this function can *change* the value of 1980 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1981 * t_reserved_list. If the caller is holding onto a copy of one of these 1982 * pointers, it could go bad. Generally the caller needs to re-read the 1983 * pointer from the transaction_t. 1984 * 1985 * Called under j_list_lock. 1986 */ 1987 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1988 { 1989 struct journal_head **list = NULL; 1990 transaction_t *transaction; 1991 struct buffer_head *bh = jh2bh(jh); 1992 1993 lockdep_assert_held(&jh->b_state_lock); 1994 transaction = jh->b_transaction; 1995 if (transaction) 1996 assert_spin_locked(&transaction->t_journal->j_list_lock); 1997 1998 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1999 if (jh->b_jlist != BJ_None) 2000 J_ASSERT_JH(jh, transaction != NULL); 2001 2002 switch (jh->b_jlist) { 2003 case BJ_None: 2004 return; 2005 case BJ_Metadata: 2006 transaction->t_nr_buffers--; 2007 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2008 list = &transaction->t_buffers; 2009 break; 2010 case BJ_Forget: 2011 list = &transaction->t_forget; 2012 break; 2013 case BJ_Shadow: 2014 list = &transaction->t_shadow_list; 2015 break; 2016 case BJ_Reserved: 2017 list = &transaction->t_reserved_list; 2018 break; 2019 } 2020 2021 __blist_del_buffer(list, jh); 2022 jh->b_jlist = BJ_None; 2023 if (transaction && is_journal_aborted(transaction->t_journal)) 2024 clear_buffer_jbddirty(bh); 2025 else if (test_clear_buffer_jbddirty(bh)) 2026 mark_buffer_dirty(bh); /* Expose it to the VM */ 2027 } 2028 2029 /* 2030 * Remove buffer from all transactions. The caller is responsible for dropping 2031 * the jh reference that belonged to the transaction. 2032 * 2033 * Called with bh_state lock and j_list_lock 2034 */ 2035 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2036 { 2037 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2038 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2039 2040 __jbd2_journal_temp_unlink_buffer(jh); 2041 jh->b_transaction = NULL; 2042 } 2043 2044 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2045 { 2046 struct buffer_head *bh = jh2bh(jh); 2047 2048 /* Get reference so that buffer cannot be freed before we unlock it */ 2049 get_bh(bh); 2050 spin_lock(&jh->b_state_lock); 2051 spin_lock(&journal->j_list_lock); 2052 __jbd2_journal_unfile_buffer(jh); 2053 spin_unlock(&journal->j_list_lock); 2054 spin_unlock(&jh->b_state_lock); 2055 jbd2_journal_put_journal_head(jh); 2056 __brelse(bh); 2057 } 2058 2059 /* 2060 * Called from jbd2_journal_try_to_free_buffers(). 2061 * 2062 * Called under jh->b_state_lock 2063 */ 2064 static void 2065 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2066 { 2067 struct journal_head *jh; 2068 2069 jh = bh2jh(bh); 2070 2071 if (buffer_locked(bh) || buffer_dirty(bh)) 2072 goto out; 2073 2074 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2075 goto out; 2076 2077 spin_lock(&journal->j_list_lock); 2078 if (jh->b_cp_transaction != NULL) { 2079 /* written-back checkpointed metadata buffer */ 2080 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2081 __jbd2_journal_remove_checkpoint(jh); 2082 } 2083 spin_unlock(&journal->j_list_lock); 2084 out: 2085 return; 2086 } 2087 2088 /** 2089 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2090 * @journal: journal for operation 2091 * @page: to try and free 2092 * 2093 * For all the buffers on this page, 2094 * if they are fully written out ordered data, move them onto BUF_CLEAN 2095 * so try_to_free_buffers() can reap them. 2096 * 2097 * This function returns non-zero if we wish try_to_free_buffers() 2098 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2099 * We also do it if the page has locked or dirty buffers and the caller wants 2100 * us to perform sync or async writeout. 2101 * 2102 * This complicates JBD locking somewhat. We aren't protected by the 2103 * BKL here. We wish to remove the buffer from its committing or 2104 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2105 * 2106 * This may *change* the value of transaction_t->t_datalist, so anyone 2107 * who looks at t_datalist needs to lock against this function. 2108 * 2109 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2110 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2111 * will come out of the lock with the buffer dirty, which makes it 2112 * ineligible for release here. 2113 * 2114 * Who else is affected by this? hmm... Really the only contender 2115 * is do_get_write_access() - it could be looking at the buffer while 2116 * journal_try_to_free_buffer() is changing its state. But that 2117 * cannot happen because we never reallocate freed data as metadata 2118 * while the data is part of a transaction. Yes? 2119 * 2120 * Return 0 on failure, 1 on success 2121 */ 2122 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page) 2123 { 2124 struct buffer_head *head; 2125 struct buffer_head *bh; 2126 bool has_write_io_error = false; 2127 int ret = 0; 2128 2129 J_ASSERT(PageLocked(page)); 2130 2131 head = page_buffers(page); 2132 bh = head; 2133 do { 2134 struct journal_head *jh; 2135 2136 /* 2137 * We take our own ref against the journal_head here to avoid 2138 * having to add tons of locking around each instance of 2139 * jbd2_journal_put_journal_head(). 2140 */ 2141 jh = jbd2_journal_grab_journal_head(bh); 2142 if (!jh) 2143 continue; 2144 2145 spin_lock(&jh->b_state_lock); 2146 __journal_try_to_free_buffer(journal, bh); 2147 spin_unlock(&jh->b_state_lock); 2148 jbd2_journal_put_journal_head(jh); 2149 if (buffer_jbd(bh)) 2150 goto busy; 2151 2152 /* 2153 * If we free a metadata buffer which has been failed to 2154 * write out, the jbd2 checkpoint procedure will not detect 2155 * this failure and may lead to filesystem inconsistency 2156 * after cleanup journal tail. 2157 */ 2158 if (buffer_write_io_error(bh)) { 2159 pr_err("JBD2: Error while async write back metadata bh %llu.", 2160 (unsigned long long)bh->b_blocknr); 2161 has_write_io_error = true; 2162 } 2163 } while ((bh = bh->b_this_page) != head); 2164 2165 ret = try_to_free_buffers(page); 2166 2167 busy: 2168 if (has_write_io_error) 2169 jbd2_journal_abort(journal, -EIO); 2170 2171 return ret; 2172 } 2173 2174 /* 2175 * This buffer is no longer needed. If it is on an older transaction's 2176 * checkpoint list we need to record it on this transaction's forget list 2177 * to pin this buffer (and hence its checkpointing transaction) down until 2178 * this transaction commits. If the buffer isn't on a checkpoint list, we 2179 * release it. 2180 * Returns non-zero if JBD no longer has an interest in the buffer. 2181 * 2182 * Called under j_list_lock. 2183 * 2184 * Called under jh->b_state_lock. 2185 */ 2186 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2187 { 2188 int may_free = 1; 2189 struct buffer_head *bh = jh2bh(jh); 2190 2191 if (jh->b_cp_transaction) { 2192 JBUFFER_TRACE(jh, "on running+cp transaction"); 2193 __jbd2_journal_temp_unlink_buffer(jh); 2194 /* 2195 * We don't want to write the buffer anymore, clear the 2196 * bit so that we don't confuse checks in 2197 * __journal_file_buffer 2198 */ 2199 clear_buffer_dirty(bh); 2200 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2201 may_free = 0; 2202 } else { 2203 JBUFFER_TRACE(jh, "on running transaction"); 2204 __jbd2_journal_unfile_buffer(jh); 2205 jbd2_journal_put_journal_head(jh); 2206 } 2207 return may_free; 2208 } 2209 2210 /* 2211 * jbd2_journal_invalidatepage 2212 * 2213 * This code is tricky. It has a number of cases to deal with. 2214 * 2215 * There are two invariants which this code relies on: 2216 * 2217 * i_size must be updated on disk before we start calling invalidatepage on the 2218 * data. 2219 * 2220 * This is done in ext3 by defining an ext3_setattr method which 2221 * updates i_size before truncate gets going. By maintaining this 2222 * invariant, we can be sure that it is safe to throw away any buffers 2223 * attached to the current transaction: once the transaction commits, 2224 * we know that the data will not be needed. 2225 * 2226 * Note however that we can *not* throw away data belonging to the 2227 * previous, committing transaction! 2228 * 2229 * Any disk blocks which *are* part of the previous, committing 2230 * transaction (and which therefore cannot be discarded immediately) are 2231 * not going to be reused in the new running transaction 2232 * 2233 * The bitmap committed_data images guarantee this: any block which is 2234 * allocated in one transaction and removed in the next will be marked 2235 * as in-use in the committed_data bitmap, so cannot be reused until 2236 * the next transaction to delete the block commits. This means that 2237 * leaving committing buffers dirty is quite safe: the disk blocks 2238 * cannot be reallocated to a different file and so buffer aliasing is 2239 * not possible. 2240 * 2241 * 2242 * The above applies mainly to ordered data mode. In writeback mode we 2243 * don't make guarantees about the order in which data hits disk --- in 2244 * particular we don't guarantee that new dirty data is flushed before 2245 * transaction commit --- so it is always safe just to discard data 2246 * immediately in that mode. --sct 2247 */ 2248 2249 /* 2250 * The journal_unmap_buffer helper function returns zero if the buffer 2251 * concerned remains pinned as an anonymous buffer belonging to an older 2252 * transaction. 2253 * 2254 * We're outside-transaction here. Either or both of j_running_transaction 2255 * and j_committing_transaction may be NULL. 2256 */ 2257 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2258 int partial_page) 2259 { 2260 transaction_t *transaction; 2261 struct journal_head *jh; 2262 int may_free = 1; 2263 2264 BUFFER_TRACE(bh, "entry"); 2265 2266 /* 2267 * It is safe to proceed here without the j_list_lock because the 2268 * buffers cannot be stolen by try_to_free_buffers as long as we are 2269 * holding the page lock. --sct 2270 */ 2271 2272 jh = jbd2_journal_grab_journal_head(bh); 2273 if (!jh) 2274 goto zap_buffer_unlocked; 2275 2276 /* OK, we have data buffer in journaled mode */ 2277 write_lock(&journal->j_state_lock); 2278 spin_lock(&jh->b_state_lock); 2279 spin_lock(&journal->j_list_lock); 2280 2281 /* 2282 * We cannot remove the buffer from checkpoint lists until the 2283 * transaction adding inode to orphan list (let's call it T) 2284 * is committed. Otherwise if the transaction changing the 2285 * buffer would be cleaned from the journal before T is 2286 * committed, a crash will cause that the correct contents of 2287 * the buffer will be lost. On the other hand we have to 2288 * clear the buffer dirty bit at latest at the moment when the 2289 * transaction marking the buffer as freed in the filesystem 2290 * structures is committed because from that moment on the 2291 * block can be reallocated and used by a different page. 2292 * Since the block hasn't been freed yet but the inode has 2293 * already been added to orphan list, it is safe for us to add 2294 * the buffer to BJ_Forget list of the newest transaction. 2295 * 2296 * Also we have to clear buffer_mapped flag of a truncated buffer 2297 * because the buffer_head may be attached to the page straddling 2298 * i_size (can happen only when blocksize < pagesize) and thus the 2299 * buffer_head can be reused when the file is extended again. So we end 2300 * up keeping around invalidated buffers attached to transactions' 2301 * BJ_Forget list just to stop checkpointing code from cleaning up 2302 * the transaction this buffer was modified in. 2303 */ 2304 transaction = jh->b_transaction; 2305 if (transaction == NULL) { 2306 /* First case: not on any transaction. If it 2307 * has no checkpoint link, then we can zap it: 2308 * it's a writeback-mode buffer so we don't care 2309 * if it hits disk safely. */ 2310 if (!jh->b_cp_transaction) { 2311 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2312 goto zap_buffer; 2313 } 2314 2315 if (!buffer_dirty(bh)) { 2316 /* bdflush has written it. We can drop it now */ 2317 __jbd2_journal_remove_checkpoint(jh); 2318 goto zap_buffer; 2319 } 2320 2321 /* OK, it must be in the journal but still not 2322 * written fully to disk: it's metadata or 2323 * journaled data... */ 2324 2325 if (journal->j_running_transaction) { 2326 /* ... and once the current transaction has 2327 * committed, the buffer won't be needed any 2328 * longer. */ 2329 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2330 may_free = __dispose_buffer(jh, 2331 journal->j_running_transaction); 2332 goto zap_buffer; 2333 } else { 2334 /* There is no currently-running transaction. So the 2335 * orphan record which we wrote for this file must have 2336 * passed into commit. We must attach this buffer to 2337 * the committing transaction, if it exists. */ 2338 if (journal->j_committing_transaction) { 2339 JBUFFER_TRACE(jh, "give to committing trans"); 2340 may_free = __dispose_buffer(jh, 2341 journal->j_committing_transaction); 2342 goto zap_buffer; 2343 } else { 2344 /* The orphan record's transaction has 2345 * committed. We can cleanse this buffer */ 2346 clear_buffer_jbddirty(bh); 2347 __jbd2_journal_remove_checkpoint(jh); 2348 goto zap_buffer; 2349 } 2350 } 2351 } else if (transaction == journal->j_committing_transaction) { 2352 JBUFFER_TRACE(jh, "on committing transaction"); 2353 /* 2354 * The buffer is committing, we simply cannot touch 2355 * it. If the page is straddling i_size we have to wait 2356 * for commit and try again. 2357 */ 2358 if (partial_page) { 2359 spin_unlock(&journal->j_list_lock); 2360 spin_unlock(&jh->b_state_lock); 2361 write_unlock(&journal->j_state_lock); 2362 jbd2_journal_put_journal_head(jh); 2363 return -EBUSY; 2364 } 2365 /* 2366 * OK, buffer won't be reachable after truncate. We just clear 2367 * b_modified to not confuse transaction credit accounting, and 2368 * set j_next_transaction to the running transaction (if there 2369 * is one) and mark buffer as freed so that commit code knows 2370 * it should clear dirty bits when it is done with the buffer. 2371 */ 2372 set_buffer_freed(bh); 2373 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2374 jh->b_next_transaction = journal->j_running_transaction; 2375 jh->b_modified = 0; 2376 spin_unlock(&journal->j_list_lock); 2377 spin_unlock(&jh->b_state_lock); 2378 write_unlock(&journal->j_state_lock); 2379 jbd2_journal_put_journal_head(jh); 2380 return 0; 2381 } else { 2382 /* Good, the buffer belongs to the running transaction. 2383 * We are writing our own transaction's data, not any 2384 * previous one's, so it is safe to throw it away 2385 * (remember that we expect the filesystem to have set 2386 * i_size already for this truncate so recovery will not 2387 * expose the disk blocks we are discarding here.) */ 2388 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2389 JBUFFER_TRACE(jh, "on running transaction"); 2390 may_free = __dispose_buffer(jh, transaction); 2391 } 2392 2393 zap_buffer: 2394 /* 2395 * This is tricky. Although the buffer is truncated, it may be reused 2396 * if blocksize < pagesize and it is attached to the page straddling 2397 * EOF. Since the buffer might have been added to BJ_Forget list of the 2398 * running transaction, journal_get_write_access() won't clear 2399 * b_modified and credit accounting gets confused. So clear b_modified 2400 * here. 2401 */ 2402 jh->b_modified = 0; 2403 spin_unlock(&journal->j_list_lock); 2404 spin_unlock(&jh->b_state_lock); 2405 write_unlock(&journal->j_state_lock); 2406 jbd2_journal_put_journal_head(jh); 2407 zap_buffer_unlocked: 2408 clear_buffer_dirty(bh); 2409 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2410 clear_buffer_mapped(bh); 2411 clear_buffer_req(bh); 2412 clear_buffer_new(bh); 2413 clear_buffer_delay(bh); 2414 clear_buffer_unwritten(bh); 2415 bh->b_bdev = NULL; 2416 return may_free; 2417 } 2418 2419 /** 2420 * jbd2_journal_invalidatepage() 2421 * @journal: journal to use for flush... 2422 * @page: page to flush 2423 * @offset: start of the range to invalidate 2424 * @length: length of the range to invalidate 2425 * 2426 * Reap page buffers containing data after in the specified range in page. 2427 * Can return -EBUSY if buffers are part of the committing transaction and 2428 * the page is straddling i_size. Caller then has to wait for current commit 2429 * and try again. 2430 */ 2431 int jbd2_journal_invalidatepage(journal_t *journal, 2432 struct page *page, 2433 unsigned int offset, 2434 unsigned int length) 2435 { 2436 struct buffer_head *head, *bh, *next; 2437 unsigned int stop = offset + length; 2438 unsigned int curr_off = 0; 2439 int partial_page = (offset || length < PAGE_SIZE); 2440 int may_free = 1; 2441 int ret = 0; 2442 2443 if (!PageLocked(page)) 2444 BUG(); 2445 if (!page_has_buffers(page)) 2446 return 0; 2447 2448 BUG_ON(stop > PAGE_SIZE || stop < length); 2449 2450 /* We will potentially be playing with lists other than just the 2451 * data lists (especially for journaled data mode), so be 2452 * cautious in our locking. */ 2453 2454 head = bh = page_buffers(page); 2455 do { 2456 unsigned int next_off = curr_off + bh->b_size; 2457 next = bh->b_this_page; 2458 2459 if (next_off > stop) 2460 return 0; 2461 2462 if (offset <= curr_off) { 2463 /* This block is wholly outside the truncation point */ 2464 lock_buffer(bh); 2465 ret = journal_unmap_buffer(journal, bh, partial_page); 2466 unlock_buffer(bh); 2467 if (ret < 0) 2468 return ret; 2469 may_free &= ret; 2470 } 2471 curr_off = next_off; 2472 bh = next; 2473 2474 } while (bh != head); 2475 2476 if (!partial_page) { 2477 if (may_free && try_to_free_buffers(page)) 2478 J_ASSERT(!page_has_buffers(page)); 2479 } 2480 return 0; 2481 } 2482 2483 /* 2484 * File a buffer on the given transaction list. 2485 */ 2486 void __jbd2_journal_file_buffer(struct journal_head *jh, 2487 transaction_t *transaction, int jlist) 2488 { 2489 struct journal_head **list = NULL; 2490 int was_dirty = 0; 2491 struct buffer_head *bh = jh2bh(jh); 2492 2493 lockdep_assert_held(&jh->b_state_lock); 2494 assert_spin_locked(&transaction->t_journal->j_list_lock); 2495 2496 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2497 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2498 jh->b_transaction == NULL); 2499 2500 if (jh->b_transaction && jh->b_jlist == jlist) 2501 return; 2502 2503 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2504 jlist == BJ_Shadow || jlist == BJ_Forget) { 2505 /* 2506 * For metadata buffers, we track dirty bit in buffer_jbddirty 2507 * instead of buffer_dirty. We should not see a dirty bit set 2508 * here because we clear it in do_get_write_access but e.g. 2509 * tune2fs can modify the sb and set the dirty bit at any time 2510 * so we try to gracefully handle that. 2511 */ 2512 if (buffer_dirty(bh)) 2513 warn_dirty_buffer(bh); 2514 if (test_clear_buffer_dirty(bh) || 2515 test_clear_buffer_jbddirty(bh)) 2516 was_dirty = 1; 2517 } 2518 2519 if (jh->b_transaction) 2520 __jbd2_journal_temp_unlink_buffer(jh); 2521 else 2522 jbd2_journal_grab_journal_head(bh); 2523 jh->b_transaction = transaction; 2524 2525 switch (jlist) { 2526 case BJ_None: 2527 J_ASSERT_JH(jh, !jh->b_committed_data); 2528 J_ASSERT_JH(jh, !jh->b_frozen_data); 2529 return; 2530 case BJ_Metadata: 2531 transaction->t_nr_buffers++; 2532 list = &transaction->t_buffers; 2533 break; 2534 case BJ_Forget: 2535 list = &transaction->t_forget; 2536 break; 2537 case BJ_Shadow: 2538 list = &transaction->t_shadow_list; 2539 break; 2540 case BJ_Reserved: 2541 list = &transaction->t_reserved_list; 2542 break; 2543 } 2544 2545 __blist_add_buffer(list, jh); 2546 jh->b_jlist = jlist; 2547 2548 if (was_dirty) 2549 set_buffer_jbddirty(bh); 2550 } 2551 2552 void jbd2_journal_file_buffer(struct journal_head *jh, 2553 transaction_t *transaction, int jlist) 2554 { 2555 spin_lock(&jh->b_state_lock); 2556 spin_lock(&transaction->t_journal->j_list_lock); 2557 __jbd2_journal_file_buffer(jh, transaction, jlist); 2558 spin_unlock(&transaction->t_journal->j_list_lock); 2559 spin_unlock(&jh->b_state_lock); 2560 } 2561 2562 /* 2563 * Remove a buffer from its current buffer list in preparation for 2564 * dropping it from its current transaction entirely. If the buffer has 2565 * already started to be used by a subsequent transaction, refile the 2566 * buffer on that transaction's metadata list. 2567 * 2568 * Called under j_list_lock 2569 * Called under jh->b_state_lock 2570 * 2571 * When this function returns true, there's no next transaction to refile to 2572 * and the caller has to drop jh reference through 2573 * jbd2_journal_put_journal_head(). 2574 */ 2575 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2576 { 2577 int was_dirty, jlist; 2578 struct buffer_head *bh = jh2bh(jh); 2579 2580 lockdep_assert_held(&jh->b_state_lock); 2581 if (jh->b_transaction) 2582 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2583 2584 /* If the buffer is now unused, just drop it. */ 2585 if (jh->b_next_transaction == NULL) { 2586 __jbd2_journal_unfile_buffer(jh); 2587 return true; 2588 } 2589 2590 /* 2591 * It has been modified by a later transaction: add it to the new 2592 * transaction's metadata list. 2593 */ 2594 2595 was_dirty = test_clear_buffer_jbddirty(bh); 2596 __jbd2_journal_temp_unlink_buffer(jh); 2597 2598 /* 2599 * b_transaction must be set, otherwise the new b_transaction won't 2600 * be holding jh reference 2601 */ 2602 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2603 2604 /* 2605 * We set b_transaction here because b_next_transaction will inherit 2606 * our jh reference and thus __jbd2_journal_file_buffer() must not 2607 * take a new one. 2608 */ 2609 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2610 WRITE_ONCE(jh->b_next_transaction, NULL); 2611 if (buffer_freed(bh)) 2612 jlist = BJ_Forget; 2613 else if (jh->b_modified) 2614 jlist = BJ_Metadata; 2615 else 2616 jlist = BJ_Reserved; 2617 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2618 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2619 2620 if (was_dirty) 2621 set_buffer_jbddirty(bh); 2622 return false; 2623 } 2624 2625 /* 2626 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2627 * bh reference so that we can safely unlock bh. 2628 * 2629 * The jh and bh may be freed by this call. 2630 */ 2631 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2632 { 2633 bool drop; 2634 2635 spin_lock(&jh->b_state_lock); 2636 spin_lock(&journal->j_list_lock); 2637 drop = __jbd2_journal_refile_buffer(jh); 2638 spin_unlock(&jh->b_state_lock); 2639 spin_unlock(&journal->j_list_lock); 2640 if (drop) 2641 jbd2_journal_put_journal_head(jh); 2642 } 2643 2644 /* 2645 * File inode in the inode list of the handle's transaction 2646 */ 2647 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2648 unsigned long flags, loff_t start_byte, loff_t end_byte) 2649 { 2650 transaction_t *transaction = handle->h_transaction; 2651 journal_t *journal; 2652 2653 if (is_handle_aborted(handle)) 2654 return -EROFS; 2655 journal = transaction->t_journal; 2656 2657 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2658 transaction->t_tid); 2659 2660 spin_lock(&journal->j_list_lock); 2661 jinode->i_flags |= flags; 2662 2663 if (jinode->i_dirty_end) { 2664 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2665 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2666 } else { 2667 jinode->i_dirty_start = start_byte; 2668 jinode->i_dirty_end = end_byte; 2669 } 2670 2671 /* Is inode already attached where we need it? */ 2672 if (jinode->i_transaction == transaction || 2673 jinode->i_next_transaction == transaction) 2674 goto done; 2675 2676 /* 2677 * We only ever set this variable to 1 so the test is safe. Since 2678 * t_need_data_flush is likely to be set, we do the test to save some 2679 * cacheline bouncing 2680 */ 2681 if (!transaction->t_need_data_flush) 2682 transaction->t_need_data_flush = 1; 2683 /* On some different transaction's list - should be 2684 * the committing one */ 2685 if (jinode->i_transaction) { 2686 J_ASSERT(jinode->i_next_transaction == NULL); 2687 J_ASSERT(jinode->i_transaction == 2688 journal->j_committing_transaction); 2689 jinode->i_next_transaction = transaction; 2690 goto done; 2691 } 2692 /* Not on any transaction list... */ 2693 J_ASSERT(!jinode->i_next_transaction); 2694 jinode->i_transaction = transaction; 2695 list_add(&jinode->i_list, &transaction->t_inode_list); 2696 done: 2697 spin_unlock(&journal->j_list_lock); 2698 2699 return 0; 2700 } 2701 2702 int jbd2_journal_inode_ranged_write(handle_t *handle, 2703 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2704 { 2705 return jbd2_journal_file_inode(handle, jinode, 2706 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2707 start_byte + length - 1); 2708 } 2709 2710 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2711 loff_t start_byte, loff_t length) 2712 { 2713 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2714 start_byte, start_byte + length - 1); 2715 } 2716 2717 /* 2718 * File truncate and transaction commit interact with each other in a 2719 * non-trivial way. If a transaction writing data block A is 2720 * committing, we cannot discard the data by truncate until we have 2721 * written them. Otherwise if we crashed after the transaction with 2722 * write has committed but before the transaction with truncate has 2723 * committed, we could see stale data in block A. This function is a 2724 * helper to solve this problem. It starts writeout of the truncated 2725 * part in case it is in the committing transaction. 2726 * 2727 * Filesystem code must call this function when inode is journaled in 2728 * ordered mode before truncation happens and after the inode has been 2729 * placed on orphan list with the new inode size. The second condition 2730 * avoids the race that someone writes new data and we start 2731 * committing the transaction after this function has been called but 2732 * before a transaction for truncate is started (and furthermore it 2733 * allows us to optimize the case where the addition to orphan list 2734 * happens in the same transaction as write --- we don't have to write 2735 * any data in such case). 2736 */ 2737 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2738 struct jbd2_inode *jinode, 2739 loff_t new_size) 2740 { 2741 transaction_t *inode_trans, *commit_trans; 2742 int ret = 0; 2743 2744 /* This is a quick check to avoid locking if not necessary */ 2745 if (!jinode->i_transaction) 2746 goto out; 2747 /* Locks are here just to force reading of recent values, it is 2748 * enough that the transaction was not committing before we started 2749 * a transaction adding the inode to orphan list */ 2750 read_lock(&journal->j_state_lock); 2751 commit_trans = journal->j_committing_transaction; 2752 read_unlock(&journal->j_state_lock); 2753 spin_lock(&journal->j_list_lock); 2754 inode_trans = jinode->i_transaction; 2755 spin_unlock(&journal->j_list_lock); 2756 if (inode_trans == commit_trans) { 2757 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2758 new_size, LLONG_MAX); 2759 if (ret) 2760 jbd2_journal_abort(journal, ret); 2761 } 2762 out: 2763 return ret; 2764 } 2765