1 /* 2 * linux/fs/jbd2/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/mm.h> 27 #include <linux/highmem.h> 28 #include <linux/hrtimer.h> 29 #include <linux/backing-dev.h> 30 #include <linux/bug.h> 31 #include <linux/module.h> 32 33 #include <trace/events/jbd2.h> 34 35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 37 38 static struct kmem_cache *transaction_cache; 39 int __init jbd2_journal_init_transaction_cache(void) 40 { 41 J_ASSERT(!transaction_cache); 42 transaction_cache = kmem_cache_create("jbd2_transaction_s", 43 sizeof(transaction_t), 44 0, 45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 46 NULL); 47 if (transaction_cache) 48 return 0; 49 return -ENOMEM; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 if (transaction_cache) { 55 kmem_cache_destroy(transaction_cache); 56 transaction_cache = NULL; 57 } 58 } 59 60 void jbd2_journal_free_transaction(transaction_t *transaction) 61 { 62 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 63 return; 64 kmem_cache_free(transaction_cache, transaction); 65 } 66 67 /* 68 * jbd2_get_transaction: obtain a new transaction_t object. 69 * 70 * Simply allocate and initialise a new transaction. Create it in 71 * RUNNING state and add it to the current journal (which should not 72 * have an existing running transaction: we only make a new transaction 73 * once we have started to commit the old one). 74 * 75 * Preconditions: 76 * The journal MUST be locked. We don't perform atomic mallocs on the 77 * new transaction and we can't block without protecting against other 78 * processes trying to touch the journal while it is in transition. 79 * 80 */ 81 82 static transaction_t * 83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 84 { 85 transaction->t_journal = journal; 86 transaction->t_state = T_RUNNING; 87 transaction->t_start_time = ktime_get(); 88 transaction->t_tid = journal->j_transaction_sequence++; 89 transaction->t_expires = jiffies + journal->j_commit_interval; 90 spin_lock_init(&transaction->t_handle_lock); 91 atomic_set(&transaction->t_updates, 0); 92 atomic_set(&transaction->t_outstanding_credits, 0); 93 atomic_set(&transaction->t_handle_count, 0); 94 INIT_LIST_HEAD(&transaction->t_inode_list); 95 INIT_LIST_HEAD(&transaction->t_private_list); 96 97 /* Set up the commit timer for the new transaction. */ 98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 99 add_timer(&journal->j_commit_timer); 100 101 J_ASSERT(journal->j_running_transaction == NULL); 102 journal->j_running_transaction = transaction; 103 transaction->t_max_wait = 0; 104 transaction->t_start = jiffies; 105 transaction->t_requested = 0; 106 107 return transaction; 108 } 109 110 /* 111 * Handle management. 112 * 113 * A handle_t is an object which represents a single atomic update to a 114 * filesystem, and which tracks all of the modifications which form part 115 * of that one update. 116 */ 117 118 /* 119 * Update transaction's maximum wait time, if debugging is enabled. 120 * 121 * In order for t_max_wait to be reliable, it must be protected by a 122 * lock. But doing so will mean that start_this_handle() can not be 123 * run in parallel on SMP systems, which limits our scalability. So 124 * unless debugging is enabled, we no longer update t_max_wait, which 125 * means that maximum wait time reported by the jbd2_run_stats 126 * tracepoint will always be zero. 127 */ 128 static inline void update_t_max_wait(transaction_t *transaction, 129 unsigned long ts) 130 { 131 #ifdef CONFIG_JBD2_DEBUG 132 if (jbd2_journal_enable_debug && 133 time_after(transaction->t_start, ts)) { 134 ts = jbd2_time_diff(ts, transaction->t_start); 135 spin_lock(&transaction->t_handle_lock); 136 if (ts > transaction->t_max_wait) 137 transaction->t_max_wait = ts; 138 spin_unlock(&transaction->t_handle_lock); 139 } 140 #endif 141 } 142 143 /* 144 * start_this_handle: Given a handle, deal with any locking or stalling 145 * needed to make sure that there is enough journal space for the handle 146 * to begin. Attach the handle to a transaction and set up the 147 * transaction's buffer credits. 148 */ 149 150 static int start_this_handle(journal_t *journal, handle_t *handle, 151 gfp_t gfp_mask) 152 { 153 transaction_t *transaction, *new_transaction = NULL; 154 tid_t tid; 155 int needed, need_to_start; 156 int nblocks = handle->h_buffer_credits; 157 unsigned long ts = jiffies; 158 159 if (nblocks > journal->j_max_transaction_buffers) { 160 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n", 161 current->comm, nblocks, 162 journal->j_max_transaction_buffers); 163 return -ENOSPC; 164 } 165 166 alloc_transaction: 167 if (!journal->j_running_transaction) { 168 new_transaction = kmem_cache_zalloc(transaction_cache, 169 gfp_mask); 170 if (!new_transaction) { 171 /* 172 * If __GFP_FS is not present, then we may be 173 * being called from inside the fs writeback 174 * layer, so we MUST NOT fail. Since 175 * __GFP_NOFAIL is going away, we will arrange 176 * to retry the allocation ourselves. 177 */ 178 if ((gfp_mask & __GFP_FS) == 0) { 179 congestion_wait(BLK_RW_ASYNC, HZ/50); 180 goto alloc_transaction; 181 } 182 return -ENOMEM; 183 } 184 } 185 186 jbd_debug(3, "New handle %p going live.\n", handle); 187 188 /* 189 * We need to hold j_state_lock until t_updates has been incremented, 190 * for proper journal barrier handling 191 */ 192 repeat: 193 read_lock(&journal->j_state_lock); 194 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 195 if (is_journal_aborted(journal) || 196 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 197 read_unlock(&journal->j_state_lock); 198 jbd2_journal_free_transaction(new_transaction); 199 return -EROFS; 200 } 201 202 /* Wait on the journal's transaction barrier if necessary */ 203 if (journal->j_barrier_count) { 204 read_unlock(&journal->j_state_lock); 205 wait_event(journal->j_wait_transaction_locked, 206 journal->j_barrier_count == 0); 207 goto repeat; 208 } 209 210 if (!journal->j_running_transaction) { 211 read_unlock(&journal->j_state_lock); 212 if (!new_transaction) 213 goto alloc_transaction; 214 write_lock(&journal->j_state_lock); 215 if (!journal->j_running_transaction && 216 !journal->j_barrier_count) { 217 jbd2_get_transaction(journal, new_transaction); 218 new_transaction = NULL; 219 } 220 write_unlock(&journal->j_state_lock); 221 goto repeat; 222 } 223 224 transaction = journal->j_running_transaction; 225 226 /* 227 * If the current transaction is locked down for commit, wait for the 228 * lock to be released. 229 */ 230 if (transaction->t_state == T_LOCKED) { 231 DEFINE_WAIT(wait); 232 233 prepare_to_wait(&journal->j_wait_transaction_locked, 234 &wait, TASK_UNINTERRUPTIBLE); 235 read_unlock(&journal->j_state_lock); 236 schedule(); 237 finish_wait(&journal->j_wait_transaction_locked, &wait); 238 goto repeat; 239 } 240 241 /* 242 * If there is not enough space left in the log to write all potential 243 * buffers requested by this operation, we need to stall pending a log 244 * checkpoint to free some more log space. 245 */ 246 needed = atomic_add_return(nblocks, 247 &transaction->t_outstanding_credits); 248 249 if (needed > journal->j_max_transaction_buffers) { 250 /* 251 * If the current transaction is already too large, then start 252 * to commit it: we can then go back and attach this handle to 253 * a new transaction. 254 */ 255 DEFINE_WAIT(wait); 256 257 jbd_debug(2, "Handle %p starting new commit...\n", handle); 258 atomic_sub(nblocks, &transaction->t_outstanding_credits); 259 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 260 TASK_UNINTERRUPTIBLE); 261 tid = transaction->t_tid; 262 need_to_start = !tid_geq(journal->j_commit_request, tid); 263 read_unlock(&journal->j_state_lock); 264 if (need_to_start) 265 jbd2_log_start_commit(journal, tid); 266 schedule(); 267 finish_wait(&journal->j_wait_transaction_locked, &wait); 268 goto repeat; 269 } 270 271 /* 272 * The commit code assumes that it can get enough log space 273 * without forcing a checkpoint. This is *critical* for 274 * correctness: a checkpoint of a buffer which is also 275 * associated with a committing transaction creates a deadlock, 276 * so commit simply cannot force through checkpoints. 277 * 278 * We must therefore ensure the necessary space in the journal 279 * *before* starting to dirty potentially checkpointed buffers 280 * in the new transaction. 281 * 282 * The worst part is, any transaction currently committing can 283 * reduce the free space arbitrarily. Be careful to account for 284 * those buffers when checkpointing. 285 */ 286 287 /* 288 * @@@ AKPM: This seems rather over-defensive. We're giving commit 289 * a _lot_ of headroom: 1/4 of the journal plus the size of 290 * the committing transaction. Really, we only need to give it 291 * committing_transaction->t_outstanding_credits plus "enough" for 292 * the log control blocks. 293 * Also, this test is inconsistent with the matching one in 294 * jbd2_journal_extend(). 295 */ 296 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 297 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 298 atomic_sub(nblocks, &transaction->t_outstanding_credits); 299 read_unlock(&journal->j_state_lock); 300 write_lock(&journal->j_state_lock); 301 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) 302 __jbd2_log_wait_for_space(journal); 303 write_unlock(&journal->j_state_lock); 304 goto repeat; 305 } 306 307 /* OK, account for the buffers that this operation expects to 308 * use and add the handle to the running transaction. 309 */ 310 update_t_max_wait(transaction, ts); 311 handle->h_transaction = transaction; 312 handle->h_requested_credits = nblocks; 313 handle->h_start_jiffies = jiffies; 314 atomic_inc(&transaction->t_updates); 315 atomic_inc(&transaction->t_handle_count); 316 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 317 handle, nblocks, 318 atomic_read(&transaction->t_outstanding_credits), 319 __jbd2_log_space_left(journal)); 320 read_unlock(&journal->j_state_lock); 321 322 lock_map_acquire(&handle->h_lockdep_map); 323 jbd2_journal_free_transaction(new_transaction); 324 return 0; 325 } 326 327 static struct lock_class_key jbd2_handle_key; 328 329 /* Allocate a new handle. This should probably be in a slab... */ 330 static handle_t *new_handle(int nblocks) 331 { 332 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 333 if (!handle) 334 return NULL; 335 memset(handle, 0, sizeof(*handle)); 336 handle->h_buffer_credits = nblocks; 337 handle->h_ref = 1; 338 339 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle", 340 &jbd2_handle_key, 0); 341 342 return handle; 343 } 344 345 /** 346 * handle_t *jbd2_journal_start() - Obtain a new handle. 347 * @journal: Journal to start transaction on. 348 * @nblocks: number of block buffer we might modify 349 * 350 * We make sure that the transaction can guarantee at least nblocks of 351 * modified buffers in the log. We block until the log can guarantee 352 * that much space. 353 * 354 * This function is visible to journal users (like ext3fs), so is not 355 * called with the journal already locked. 356 * 357 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 358 * on failure. 359 */ 360 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask, 361 unsigned int type, unsigned int line_no) 362 { 363 handle_t *handle = journal_current_handle(); 364 int err; 365 366 if (!journal) 367 return ERR_PTR(-EROFS); 368 369 if (handle) { 370 J_ASSERT(handle->h_transaction->t_journal == journal); 371 handle->h_ref++; 372 return handle; 373 } 374 375 handle = new_handle(nblocks); 376 if (!handle) 377 return ERR_PTR(-ENOMEM); 378 379 current->journal_info = handle; 380 381 err = start_this_handle(journal, handle, gfp_mask); 382 if (err < 0) { 383 jbd2_free_handle(handle); 384 current->journal_info = NULL; 385 return ERR_PTR(err); 386 } 387 handle->h_type = type; 388 handle->h_line_no = line_no; 389 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 390 handle->h_transaction->t_tid, type, 391 line_no, nblocks); 392 return handle; 393 } 394 EXPORT_SYMBOL(jbd2__journal_start); 395 396 397 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 398 { 399 return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0); 400 } 401 EXPORT_SYMBOL(jbd2_journal_start); 402 403 404 /** 405 * int jbd2_journal_extend() - extend buffer credits. 406 * @handle: handle to 'extend' 407 * @nblocks: nr blocks to try to extend by. 408 * 409 * Some transactions, such as large extends and truncates, can be done 410 * atomically all at once or in several stages. The operation requests 411 * a credit for a number of buffer modications in advance, but can 412 * extend its credit if it needs more. 413 * 414 * jbd2_journal_extend tries to give the running handle more buffer credits. 415 * It does not guarantee that allocation - this is a best-effort only. 416 * The calling process MUST be able to deal cleanly with a failure to 417 * extend here. 418 * 419 * Return 0 on success, non-zero on failure. 420 * 421 * return code < 0 implies an error 422 * return code > 0 implies normal transaction-full status. 423 */ 424 int jbd2_journal_extend(handle_t *handle, int nblocks) 425 { 426 transaction_t *transaction = handle->h_transaction; 427 journal_t *journal = transaction->t_journal; 428 int result; 429 int wanted; 430 431 result = -EIO; 432 if (is_handle_aborted(handle)) 433 goto out; 434 435 result = 1; 436 437 read_lock(&journal->j_state_lock); 438 439 /* Don't extend a locked-down transaction! */ 440 if (handle->h_transaction->t_state != T_RUNNING) { 441 jbd_debug(3, "denied handle %p %d blocks: " 442 "transaction not running\n", handle, nblocks); 443 goto error_out; 444 } 445 446 spin_lock(&transaction->t_handle_lock); 447 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks; 448 449 if (wanted > journal->j_max_transaction_buffers) { 450 jbd_debug(3, "denied handle %p %d blocks: " 451 "transaction too large\n", handle, nblocks); 452 goto unlock; 453 } 454 455 if (wanted > __jbd2_log_space_left(journal)) { 456 jbd_debug(3, "denied handle %p %d blocks: " 457 "insufficient log space\n", handle, nblocks); 458 goto unlock; 459 } 460 461 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 462 handle->h_transaction->t_tid, 463 handle->h_type, handle->h_line_no, 464 handle->h_buffer_credits, 465 nblocks); 466 467 handle->h_buffer_credits += nblocks; 468 handle->h_requested_credits += nblocks; 469 atomic_add(nblocks, &transaction->t_outstanding_credits); 470 result = 0; 471 472 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 473 unlock: 474 spin_unlock(&transaction->t_handle_lock); 475 error_out: 476 read_unlock(&journal->j_state_lock); 477 out: 478 return result; 479 } 480 481 482 /** 483 * int jbd2_journal_restart() - restart a handle . 484 * @handle: handle to restart 485 * @nblocks: nr credits requested 486 * 487 * Restart a handle for a multi-transaction filesystem 488 * operation. 489 * 490 * If the jbd2_journal_extend() call above fails to grant new buffer credits 491 * to a running handle, a call to jbd2_journal_restart will commit the 492 * handle's transaction so far and reattach the handle to a new 493 * transaction capabable of guaranteeing the requested number of 494 * credits. 495 */ 496 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask) 497 { 498 transaction_t *transaction = handle->h_transaction; 499 journal_t *journal = transaction->t_journal; 500 tid_t tid; 501 int need_to_start, ret; 502 503 /* If we've had an abort of any type, don't even think about 504 * actually doing the restart! */ 505 if (is_handle_aborted(handle)) 506 return 0; 507 508 /* 509 * First unlink the handle from its current transaction, and start the 510 * commit on that. 511 */ 512 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 513 J_ASSERT(journal_current_handle() == handle); 514 515 read_lock(&journal->j_state_lock); 516 spin_lock(&transaction->t_handle_lock); 517 atomic_sub(handle->h_buffer_credits, 518 &transaction->t_outstanding_credits); 519 if (atomic_dec_and_test(&transaction->t_updates)) 520 wake_up(&journal->j_wait_updates); 521 spin_unlock(&transaction->t_handle_lock); 522 523 jbd_debug(2, "restarting handle %p\n", handle); 524 tid = transaction->t_tid; 525 need_to_start = !tid_geq(journal->j_commit_request, tid); 526 read_unlock(&journal->j_state_lock); 527 if (need_to_start) 528 jbd2_log_start_commit(journal, tid); 529 530 lock_map_release(&handle->h_lockdep_map); 531 handle->h_buffer_credits = nblocks; 532 ret = start_this_handle(journal, handle, gfp_mask); 533 return ret; 534 } 535 EXPORT_SYMBOL(jbd2__journal_restart); 536 537 538 int jbd2_journal_restart(handle_t *handle, int nblocks) 539 { 540 return jbd2__journal_restart(handle, nblocks, GFP_NOFS); 541 } 542 EXPORT_SYMBOL(jbd2_journal_restart); 543 544 /** 545 * void jbd2_journal_lock_updates () - establish a transaction barrier. 546 * @journal: Journal to establish a barrier on. 547 * 548 * This locks out any further updates from being started, and blocks 549 * until all existing updates have completed, returning only once the 550 * journal is in a quiescent state with no updates running. 551 * 552 * The journal lock should not be held on entry. 553 */ 554 void jbd2_journal_lock_updates(journal_t *journal) 555 { 556 DEFINE_WAIT(wait); 557 558 write_lock(&journal->j_state_lock); 559 ++journal->j_barrier_count; 560 561 /* Wait until there are no running updates */ 562 while (1) { 563 transaction_t *transaction = journal->j_running_transaction; 564 565 if (!transaction) 566 break; 567 568 spin_lock(&transaction->t_handle_lock); 569 prepare_to_wait(&journal->j_wait_updates, &wait, 570 TASK_UNINTERRUPTIBLE); 571 if (!atomic_read(&transaction->t_updates)) { 572 spin_unlock(&transaction->t_handle_lock); 573 finish_wait(&journal->j_wait_updates, &wait); 574 break; 575 } 576 spin_unlock(&transaction->t_handle_lock); 577 write_unlock(&journal->j_state_lock); 578 schedule(); 579 finish_wait(&journal->j_wait_updates, &wait); 580 write_lock(&journal->j_state_lock); 581 } 582 write_unlock(&journal->j_state_lock); 583 584 /* 585 * We have now established a barrier against other normal updates, but 586 * we also need to barrier against other jbd2_journal_lock_updates() calls 587 * to make sure that we serialise special journal-locked operations 588 * too. 589 */ 590 mutex_lock(&journal->j_barrier); 591 } 592 593 /** 594 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 595 * @journal: Journal to release the barrier on. 596 * 597 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 598 * 599 * Should be called without the journal lock held. 600 */ 601 void jbd2_journal_unlock_updates (journal_t *journal) 602 { 603 J_ASSERT(journal->j_barrier_count != 0); 604 605 mutex_unlock(&journal->j_barrier); 606 write_lock(&journal->j_state_lock); 607 --journal->j_barrier_count; 608 write_unlock(&journal->j_state_lock); 609 wake_up(&journal->j_wait_transaction_locked); 610 } 611 612 static void warn_dirty_buffer(struct buffer_head *bh) 613 { 614 char b[BDEVNAME_SIZE]; 615 616 printk(KERN_WARNING 617 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). " 618 "There's a risk of filesystem corruption in case of system " 619 "crash.\n", 620 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); 621 } 622 623 /* 624 * If the buffer is already part of the current transaction, then there 625 * is nothing we need to do. If it is already part of a prior 626 * transaction which we are still committing to disk, then we need to 627 * make sure that we do not overwrite the old copy: we do copy-out to 628 * preserve the copy going to disk. We also account the buffer against 629 * the handle's metadata buffer credits (unless the buffer is already 630 * part of the transaction, that is). 631 * 632 */ 633 static int 634 do_get_write_access(handle_t *handle, struct journal_head *jh, 635 int force_copy) 636 { 637 struct buffer_head *bh; 638 transaction_t *transaction; 639 journal_t *journal; 640 int error; 641 char *frozen_buffer = NULL; 642 int need_copy = 0; 643 644 if (is_handle_aborted(handle)) 645 return -EROFS; 646 647 transaction = handle->h_transaction; 648 journal = transaction->t_journal; 649 650 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 651 652 JBUFFER_TRACE(jh, "entry"); 653 repeat: 654 bh = jh2bh(jh); 655 656 /* @@@ Need to check for errors here at some point. */ 657 658 lock_buffer(bh); 659 jbd_lock_bh_state(bh); 660 661 /* We now hold the buffer lock so it is safe to query the buffer 662 * state. Is the buffer dirty? 663 * 664 * If so, there are two possibilities. The buffer may be 665 * non-journaled, and undergoing a quite legitimate writeback. 666 * Otherwise, it is journaled, and we don't expect dirty buffers 667 * in that state (the buffers should be marked JBD_Dirty 668 * instead.) So either the IO is being done under our own 669 * control and this is a bug, or it's a third party IO such as 670 * dump(8) (which may leave the buffer scheduled for read --- 671 * ie. locked but not dirty) or tune2fs (which may actually have 672 * the buffer dirtied, ugh.) */ 673 674 if (buffer_dirty(bh)) { 675 /* 676 * First question: is this buffer already part of the current 677 * transaction or the existing committing transaction? 678 */ 679 if (jh->b_transaction) { 680 J_ASSERT_JH(jh, 681 jh->b_transaction == transaction || 682 jh->b_transaction == 683 journal->j_committing_transaction); 684 if (jh->b_next_transaction) 685 J_ASSERT_JH(jh, jh->b_next_transaction == 686 transaction); 687 warn_dirty_buffer(bh); 688 } 689 /* 690 * In any case we need to clean the dirty flag and we must 691 * do it under the buffer lock to be sure we don't race 692 * with running write-out. 693 */ 694 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 695 clear_buffer_dirty(bh); 696 set_buffer_jbddirty(bh); 697 } 698 699 unlock_buffer(bh); 700 701 error = -EROFS; 702 if (is_handle_aborted(handle)) { 703 jbd_unlock_bh_state(bh); 704 goto out; 705 } 706 error = 0; 707 708 /* 709 * The buffer is already part of this transaction if b_transaction or 710 * b_next_transaction points to it 711 */ 712 if (jh->b_transaction == transaction || 713 jh->b_next_transaction == transaction) 714 goto done; 715 716 /* 717 * this is the first time this transaction is touching this buffer, 718 * reset the modified flag 719 */ 720 jh->b_modified = 0; 721 722 /* 723 * If there is already a copy-out version of this buffer, then we don't 724 * need to make another one 725 */ 726 if (jh->b_frozen_data) { 727 JBUFFER_TRACE(jh, "has frozen data"); 728 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 729 jh->b_next_transaction = transaction; 730 goto done; 731 } 732 733 /* Is there data here we need to preserve? */ 734 735 if (jh->b_transaction && jh->b_transaction != transaction) { 736 JBUFFER_TRACE(jh, "owned by older transaction"); 737 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 738 J_ASSERT_JH(jh, jh->b_transaction == 739 journal->j_committing_transaction); 740 741 /* There is one case we have to be very careful about. 742 * If the committing transaction is currently writing 743 * this buffer out to disk and has NOT made a copy-out, 744 * then we cannot modify the buffer contents at all 745 * right now. The essence of copy-out is that it is the 746 * extra copy, not the primary copy, which gets 747 * journaled. If the primary copy is already going to 748 * disk then we cannot do copy-out here. */ 749 750 if (jh->b_jlist == BJ_Shadow) { 751 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 752 wait_queue_head_t *wqh; 753 754 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 755 756 JBUFFER_TRACE(jh, "on shadow: sleep"); 757 jbd_unlock_bh_state(bh); 758 /* commit wakes up all shadow buffers after IO */ 759 for ( ; ; ) { 760 prepare_to_wait(wqh, &wait.wait, 761 TASK_UNINTERRUPTIBLE); 762 if (jh->b_jlist != BJ_Shadow) 763 break; 764 schedule(); 765 } 766 finish_wait(wqh, &wait.wait); 767 goto repeat; 768 } 769 770 /* Only do the copy if the currently-owning transaction 771 * still needs it. If it is on the Forget list, the 772 * committing transaction is past that stage. The 773 * buffer had better remain locked during the kmalloc, 774 * but that should be true --- we hold the journal lock 775 * still and the buffer is already on the BUF_JOURNAL 776 * list so won't be flushed. 777 * 778 * Subtle point, though: if this is a get_undo_access, 779 * then we will be relying on the frozen_data to contain 780 * the new value of the committed_data record after the 781 * transaction, so we HAVE to force the frozen_data copy 782 * in that case. */ 783 784 if (jh->b_jlist != BJ_Forget || force_copy) { 785 JBUFFER_TRACE(jh, "generate frozen data"); 786 if (!frozen_buffer) { 787 JBUFFER_TRACE(jh, "allocate memory for buffer"); 788 jbd_unlock_bh_state(bh); 789 frozen_buffer = 790 jbd2_alloc(jh2bh(jh)->b_size, 791 GFP_NOFS); 792 if (!frozen_buffer) { 793 printk(KERN_EMERG 794 "%s: OOM for frozen_buffer\n", 795 __func__); 796 JBUFFER_TRACE(jh, "oom!"); 797 error = -ENOMEM; 798 jbd_lock_bh_state(bh); 799 goto done; 800 } 801 goto repeat; 802 } 803 jh->b_frozen_data = frozen_buffer; 804 frozen_buffer = NULL; 805 need_copy = 1; 806 } 807 jh->b_next_transaction = transaction; 808 } 809 810 811 /* 812 * Finally, if the buffer is not journaled right now, we need to make 813 * sure it doesn't get written to disk before the caller actually 814 * commits the new data 815 */ 816 if (!jh->b_transaction) { 817 JBUFFER_TRACE(jh, "no transaction"); 818 J_ASSERT_JH(jh, !jh->b_next_transaction); 819 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 820 spin_lock(&journal->j_list_lock); 821 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 822 spin_unlock(&journal->j_list_lock); 823 } 824 825 done: 826 if (need_copy) { 827 struct page *page; 828 int offset; 829 char *source; 830 831 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 832 "Possible IO failure.\n"); 833 page = jh2bh(jh)->b_page; 834 offset = offset_in_page(jh2bh(jh)->b_data); 835 source = kmap_atomic(page); 836 /* Fire data frozen trigger just before we copy the data */ 837 jbd2_buffer_frozen_trigger(jh, source + offset, 838 jh->b_triggers); 839 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 840 kunmap_atomic(source); 841 842 /* 843 * Now that the frozen data is saved off, we need to store 844 * any matching triggers. 845 */ 846 jh->b_frozen_triggers = jh->b_triggers; 847 } 848 jbd_unlock_bh_state(bh); 849 850 /* 851 * If we are about to journal a buffer, then any revoke pending on it is 852 * no longer valid 853 */ 854 jbd2_journal_cancel_revoke(handle, jh); 855 856 out: 857 if (unlikely(frozen_buffer)) /* It's usually NULL */ 858 jbd2_free(frozen_buffer, bh->b_size); 859 860 JBUFFER_TRACE(jh, "exit"); 861 return error; 862 } 863 864 /** 865 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 866 * @handle: transaction to add buffer modifications to 867 * @bh: bh to be used for metadata writes 868 * 869 * Returns an error code or 0 on success. 870 * 871 * In full data journalling mode the buffer may be of type BJ_AsyncData, 872 * because we're write()ing a buffer which is also part of a shared mapping. 873 */ 874 875 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 876 { 877 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 878 int rc; 879 880 /* We do not want to get caught playing with fields which the 881 * log thread also manipulates. Make sure that the buffer 882 * completes any outstanding IO before proceeding. */ 883 rc = do_get_write_access(handle, jh, 0); 884 jbd2_journal_put_journal_head(jh); 885 return rc; 886 } 887 888 889 /* 890 * When the user wants to journal a newly created buffer_head 891 * (ie. getblk() returned a new buffer and we are going to populate it 892 * manually rather than reading off disk), then we need to keep the 893 * buffer_head locked until it has been completely filled with new 894 * data. In this case, we should be able to make the assertion that 895 * the bh is not already part of an existing transaction. 896 * 897 * The buffer should already be locked by the caller by this point. 898 * There is no lock ranking violation: it was a newly created, 899 * unlocked buffer beforehand. */ 900 901 /** 902 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 903 * @handle: transaction to new buffer to 904 * @bh: new buffer. 905 * 906 * Call this if you create a new bh. 907 */ 908 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 909 { 910 transaction_t *transaction = handle->h_transaction; 911 journal_t *journal = transaction->t_journal; 912 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 913 int err; 914 915 jbd_debug(5, "journal_head %p\n", jh); 916 err = -EROFS; 917 if (is_handle_aborted(handle)) 918 goto out; 919 err = 0; 920 921 JBUFFER_TRACE(jh, "entry"); 922 /* 923 * The buffer may already belong to this transaction due to pre-zeroing 924 * in the filesystem's new_block code. It may also be on the previous, 925 * committing transaction's lists, but it HAS to be in Forget state in 926 * that case: the transaction must have deleted the buffer for it to be 927 * reused here. 928 */ 929 jbd_lock_bh_state(bh); 930 spin_lock(&journal->j_list_lock); 931 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 932 jh->b_transaction == NULL || 933 (jh->b_transaction == journal->j_committing_transaction && 934 jh->b_jlist == BJ_Forget))); 935 936 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 937 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 938 939 if (jh->b_transaction == NULL) { 940 /* 941 * Previous jbd2_journal_forget() could have left the buffer 942 * with jbddirty bit set because it was being committed. When 943 * the commit finished, we've filed the buffer for 944 * checkpointing and marked it dirty. Now we are reallocating 945 * the buffer so the transaction freeing it must have 946 * committed and so it's safe to clear the dirty bit. 947 */ 948 clear_buffer_dirty(jh2bh(jh)); 949 /* first access by this transaction */ 950 jh->b_modified = 0; 951 952 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 953 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 954 } else if (jh->b_transaction == journal->j_committing_transaction) { 955 /* first access by this transaction */ 956 jh->b_modified = 0; 957 958 JBUFFER_TRACE(jh, "set next transaction"); 959 jh->b_next_transaction = transaction; 960 } 961 spin_unlock(&journal->j_list_lock); 962 jbd_unlock_bh_state(bh); 963 964 /* 965 * akpm: I added this. ext3_alloc_branch can pick up new indirect 966 * blocks which contain freed but then revoked metadata. We need 967 * to cancel the revoke in case we end up freeing it yet again 968 * and the reallocating as data - this would cause a second revoke, 969 * which hits an assertion error. 970 */ 971 JBUFFER_TRACE(jh, "cancelling revoke"); 972 jbd2_journal_cancel_revoke(handle, jh); 973 out: 974 jbd2_journal_put_journal_head(jh); 975 return err; 976 } 977 978 /** 979 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 980 * non-rewindable consequences 981 * @handle: transaction 982 * @bh: buffer to undo 983 * 984 * Sometimes there is a need to distinguish between metadata which has 985 * been committed to disk and that which has not. The ext3fs code uses 986 * this for freeing and allocating space, we have to make sure that we 987 * do not reuse freed space until the deallocation has been committed, 988 * since if we overwrote that space we would make the delete 989 * un-rewindable in case of a crash. 990 * 991 * To deal with that, jbd2_journal_get_undo_access requests write access to a 992 * buffer for parts of non-rewindable operations such as delete 993 * operations on the bitmaps. The journaling code must keep a copy of 994 * the buffer's contents prior to the undo_access call until such time 995 * as we know that the buffer has definitely been committed to disk. 996 * 997 * We never need to know which transaction the committed data is part 998 * of, buffers touched here are guaranteed to be dirtied later and so 999 * will be committed to a new transaction in due course, at which point 1000 * we can discard the old committed data pointer. 1001 * 1002 * Returns error number or 0 on success. 1003 */ 1004 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1005 { 1006 int err; 1007 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1008 char *committed_data = NULL; 1009 1010 JBUFFER_TRACE(jh, "entry"); 1011 1012 /* 1013 * Do this first --- it can drop the journal lock, so we want to 1014 * make sure that obtaining the committed_data is done 1015 * atomically wrt. completion of any outstanding commits. 1016 */ 1017 err = do_get_write_access(handle, jh, 1); 1018 if (err) 1019 goto out; 1020 1021 repeat: 1022 if (!jh->b_committed_data) { 1023 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS); 1024 if (!committed_data) { 1025 printk(KERN_EMERG "%s: No memory for committed data\n", 1026 __func__); 1027 err = -ENOMEM; 1028 goto out; 1029 } 1030 } 1031 1032 jbd_lock_bh_state(bh); 1033 if (!jh->b_committed_data) { 1034 /* Copy out the current buffer contents into the 1035 * preserved, committed copy. */ 1036 JBUFFER_TRACE(jh, "generate b_committed data"); 1037 if (!committed_data) { 1038 jbd_unlock_bh_state(bh); 1039 goto repeat; 1040 } 1041 1042 jh->b_committed_data = committed_data; 1043 committed_data = NULL; 1044 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1045 } 1046 jbd_unlock_bh_state(bh); 1047 out: 1048 jbd2_journal_put_journal_head(jh); 1049 if (unlikely(committed_data)) 1050 jbd2_free(committed_data, bh->b_size); 1051 return err; 1052 } 1053 1054 /** 1055 * void jbd2_journal_set_triggers() - Add triggers for commit writeout 1056 * @bh: buffer to trigger on 1057 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1058 * 1059 * Set any triggers on this journal_head. This is always safe, because 1060 * triggers for a committing buffer will be saved off, and triggers for 1061 * a running transaction will match the buffer in that transaction. 1062 * 1063 * Call with NULL to clear the triggers. 1064 */ 1065 void jbd2_journal_set_triggers(struct buffer_head *bh, 1066 struct jbd2_buffer_trigger_type *type) 1067 { 1068 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1069 1070 if (WARN_ON(!jh)) 1071 return; 1072 jh->b_triggers = type; 1073 jbd2_journal_put_journal_head(jh); 1074 } 1075 1076 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1077 struct jbd2_buffer_trigger_type *triggers) 1078 { 1079 struct buffer_head *bh = jh2bh(jh); 1080 1081 if (!triggers || !triggers->t_frozen) 1082 return; 1083 1084 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1085 } 1086 1087 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1088 struct jbd2_buffer_trigger_type *triggers) 1089 { 1090 if (!triggers || !triggers->t_abort) 1091 return; 1092 1093 triggers->t_abort(triggers, jh2bh(jh)); 1094 } 1095 1096 1097 1098 /** 1099 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1100 * @handle: transaction to add buffer to. 1101 * @bh: buffer to mark 1102 * 1103 * mark dirty metadata which needs to be journaled as part of the current 1104 * transaction. 1105 * 1106 * The buffer must have previously had jbd2_journal_get_write_access() 1107 * called so that it has a valid journal_head attached to the buffer 1108 * head. 1109 * 1110 * The buffer is placed on the transaction's metadata list and is marked 1111 * as belonging to the transaction. 1112 * 1113 * Returns error number or 0 on success. 1114 * 1115 * Special care needs to be taken if the buffer already belongs to the 1116 * current committing transaction (in which case we should have frozen 1117 * data present for that commit). In that case, we don't relink the 1118 * buffer: that only gets done when the old transaction finally 1119 * completes its commit. 1120 */ 1121 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1122 { 1123 transaction_t *transaction = handle->h_transaction; 1124 journal_t *journal = transaction->t_journal; 1125 struct journal_head *jh; 1126 int ret = 0; 1127 1128 if (is_handle_aborted(handle)) 1129 goto out; 1130 jh = jbd2_journal_grab_journal_head(bh); 1131 if (!jh) { 1132 ret = -EUCLEAN; 1133 goto out; 1134 } 1135 jbd_debug(5, "journal_head %p\n", jh); 1136 JBUFFER_TRACE(jh, "entry"); 1137 1138 jbd_lock_bh_state(bh); 1139 1140 if (jh->b_modified == 0) { 1141 /* 1142 * This buffer's got modified and becoming part 1143 * of the transaction. This needs to be done 1144 * once a transaction -bzzz 1145 */ 1146 jh->b_modified = 1; 1147 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1148 handle->h_buffer_credits--; 1149 } 1150 1151 /* 1152 * fastpath, to avoid expensive locking. If this buffer is already 1153 * on the running transaction's metadata list there is nothing to do. 1154 * Nobody can take it off again because there is a handle open. 1155 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1156 * result in this test being false, so we go in and take the locks. 1157 */ 1158 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1159 JBUFFER_TRACE(jh, "fastpath"); 1160 if (unlikely(jh->b_transaction != 1161 journal->j_running_transaction)) { 1162 printk(KERN_EMERG "JBD: %s: " 1163 "jh->b_transaction (%llu, %p, %u) != " 1164 "journal->j_running_transaction (%p, %u)", 1165 journal->j_devname, 1166 (unsigned long long) bh->b_blocknr, 1167 jh->b_transaction, 1168 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1169 journal->j_running_transaction, 1170 journal->j_running_transaction ? 1171 journal->j_running_transaction->t_tid : 0); 1172 ret = -EINVAL; 1173 } 1174 goto out_unlock_bh; 1175 } 1176 1177 set_buffer_jbddirty(bh); 1178 1179 /* 1180 * Metadata already on the current transaction list doesn't 1181 * need to be filed. Metadata on another transaction's list must 1182 * be committing, and will be refiled once the commit completes: 1183 * leave it alone for now. 1184 */ 1185 if (jh->b_transaction != transaction) { 1186 JBUFFER_TRACE(jh, "already on other transaction"); 1187 if (unlikely(jh->b_transaction != 1188 journal->j_committing_transaction)) { 1189 printk(KERN_EMERG "JBD: %s: " 1190 "jh->b_transaction (%llu, %p, %u) != " 1191 "journal->j_committing_transaction (%p, %u)", 1192 journal->j_devname, 1193 (unsigned long long) bh->b_blocknr, 1194 jh->b_transaction, 1195 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1196 journal->j_committing_transaction, 1197 journal->j_committing_transaction ? 1198 journal->j_committing_transaction->t_tid : 0); 1199 ret = -EINVAL; 1200 } 1201 if (unlikely(jh->b_next_transaction != transaction)) { 1202 printk(KERN_EMERG "JBD: %s: " 1203 "jh->b_next_transaction (%llu, %p, %u) != " 1204 "transaction (%p, %u)", 1205 journal->j_devname, 1206 (unsigned long long) bh->b_blocknr, 1207 jh->b_next_transaction, 1208 jh->b_next_transaction ? 1209 jh->b_next_transaction->t_tid : 0, 1210 transaction, transaction->t_tid); 1211 ret = -EINVAL; 1212 } 1213 /* And this case is illegal: we can't reuse another 1214 * transaction's data buffer, ever. */ 1215 goto out_unlock_bh; 1216 } 1217 1218 /* That test should have eliminated the following case: */ 1219 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1220 1221 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1222 spin_lock(&journal->j_list_lock); 1223 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1224 spin_unlock(&journal->j_list_lock); 1225 out_unlock_bh: 1226 jbd_unlock_bh_state(bh); 1227 jbd2_journal_put_journal_head(jh); 1228 out: 1229 JBUFFER_TRACE(jh, "exit"); 1230 WARN_ON(ret); /* All errors are bugs, so dump the stack */ 1231 return ret; 1232 } 1233 1234 /** 1235 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1236 * @handle: transaction handle 1237 * @bh: bh to 'forget' 1238 * 1239 * We can only do the bforget if there are no commits pending against the 1240 * buffer. If the buffer is dirty in the current running transaction we 1241 * can safely unlink it. 1242 * 1243 * bh may not be a journalled buffer at all - it may be a non-JBD 1244 * buffer which came off the hashtable. Check for this. 1245 * 1246 * Decrements bh->b_count by one. 1247 * 1248 * Allow this call even if the handle has aborted --- it may be part of 1249 * the caller's cleanup after an abort. 1250 */ 1251 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1252 { 1253 transaction_t *transaction = handle->h_transaction; 1254 journal_t *journal = transaction->t_journal; 1255 struct journal_head *jh; 1256 int drop_reserve = 0; 1257 int err = 0; 1258 int was_modified = 0; 1259 1260 BUFFER_TRACE(bh, "entry"); 1261 1262 jbd_lock_bh_state(bh); 1263 spin_lock(&journal->j_list_lock); 1264 1265 if (!buffer_jbd(bh)) 1266 goto not_jbd; 1267 jh = bh2jh(bh); 1268 1269 /* Critical error: attempting to delete a bitmap buffer, maybe? 1270 * Don't do any jbd operations, and return an error. */ 1271 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1272 "inconsistent data on disk")) { 1273 err = -EIO; 1274 goto not_jbd; 1275 } 1276 1277 /* keep track of whether or not this transaction modified us */ 1278 was_modified = jh->b_modified; 1279 1280 /* 1281 * The buffer's going from the transaction, we must drop 1282 * all references -bzzz 1283 */ 1284 jh->b_modified = 0; 1285 1286 if (jh->b_transaction == handle->h_transaction) { 1287 J_ASSERT_JH(jh, !jh->b_frozen_data); 1288 1289 /* If we are forgetting a buffer which is already part 1290 * of this transaction, then we can just drop it from 1291 * the transaction immediately. */ 1292 clear_buffer_dirty(bh); 1293 clear_buffer_jbddirty(bh); 1294 1295 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1296 1297 /* 1298 * we only want to drop a reference if this transaction 1299 * modified the buffer 1300 */ 1301 if (was_modified) 1302 drop_reserve = 1; 1303 1304 /* 1305 * We are no longer going to journal this buffer. 1306 * However, the commit of this transaction is still 1307 * important to the buffer: the delete that we are now 1308 * processing might obsolete an old log entry, so by 1309 * committing, we can satisfy the buffer's checkpoint. 1310 * 1311 * So, if we have a checkpoint on the buffer, we should 1312 * now refile the buffer on our BJ_Forget list so that 1313 * we know to remove the checkpoint after we commit. 1314 */ 1315 1316 if (jh->b_cp_transaction) { 1317 __jbd2_journal_temp_unlink_buffer(jh); 1318 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1319 } else { 1320 __jbd2_journal_unfile_buffer(jh); 1321 if (!buffer_jbd(bh)) { 1322 spin_unlock(&journal->j_list_lock); 1323 jbd_unlock_bh_state(bh); 1324 __bforget(bh); 1325 goto drop; 1326 } 1327 } 1328 } else if (jh->b_transaction) { 1329 J_ASSERT_JH(jh, (jh->b_transaction == 1330 journal->j_committing_transaction)); 1331 /* However, if the buffer is still owned by a prior 1332 * (committing) transaction, we can't drop it yet... */ 1333 JBUFFER_TRACE(jh, "belongs to older transaction"); 1334 /* ... but we CAN drop it from the new transaction if we 1335 * have also modified it since the original commit. */ 1336 1337 if (jh->b_next_transaction) { 1338 J_ASSERT(jh->b_next_transaction == transaction); 1339 jh->b_next_transaction = NULL; 1340 1341 /* 1342 * only drop a reference if this transaction modified 1343 * the buffer 1344 */ 1345 if (was_modified) 1346 drop_reserve = 1; 1347 } 1348 } 1349 1350 not_jbd: 1351 spin_unlock(&journal->j_list_lock); 1352 jbd_unlock_bh_state(bh); 1353 __brelse(bh); 1354 drop: 1355 if (drop_reserve) { 1356 /* no need to reserve log space for this block -bzzz */ 1357 handle->h_buffer_credits++; 1358 } 1359 return err; 1360 } 1361 1362 /** 1363 * int jbd2_journal_stop() - complete a transaction 1364 * @handle: tranaction to complete. 1365 * 1366 * All done for a particular handle. 1367 * 1368 * There is not much action needed here. We just return any remaining 1369 * buffer credits to the transaction and remove the handle. The only 1370 * complication is that we need to start a commit operation if the 1371 * filesystem is marked for synchronous update. 1372 * 1373 * jbd2_journal_stop itself will not usually return an error, but it may 1374 * do so in unusual circumstances. In particular, expect it to 1375 * return -EIO if a jbd2_journal_abort has been executed since the 1376 * transaction began. 1377 */ 1378 int jbd2_journal_stop(handle_t *handle) 1379 { 1380 transaction_t *transaction = handle->h_transaction; 1381 journal_t *journal = transaction->t_journal; 1382 int err, wait_for_commit = 0; 1383 tid_t tid; 1384 pid_t pid; 1385 1386 J_ASSERT(journal_current_handle() == handle); 1387 1388 if (is_handle_aborted(handle)) 1389 err = -EIO; 1390 else { 1391 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 1392 err = 0; 1393 } 1394 1395 if (--handle->h_ref > 0) { 1396 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1397 handle->h_ref); 1398 return err; 1399 } 1400 1401 jbd_debug(4, "Handle %p going down\n", handle); 1402 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1403 handle->h_transaction->t_tid, 1404 handle->h_type, handle->h_line_no, 1405 jiffies - handle->h_start_jiffies, 1406 handle->h_sync, handle->h_requested_credits, 1407 (handle->h_requested_credits - 1408 handle->h_buffer_credits)); 1409 1410 /* 1411 * Implement synchronous transaction batching. If the handle 1412 * was synchronous, don't force a commit immediately. Let's 1413 * yield and let another thread piggyback onto this 1414 * transaction. Keep doing that while new threads continue to 1415 * arrive. It doesn't cost much - we're about to run a commit 1416 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1417 * operations by 30x or more... 1418 * 1419 * We try and optimize the sleep time against what the 1420 * underlying disk can do, instead of having a static sleep 1421 * time. This is useful for the case where our storage is so 1422 * fast that it is more optimal to go ahead and force a flush 1423 * and wait for the transaction to be committed than it is to 1424 * wait for an arbitrary amount of time for new writers to 1425 * join the transaction. We achieve this by measuring how 1426 * long it takes to commit a transaction, and compare it with 1427 * how long this transaction has been running, and if run time 1428 * < commit time then we sleep for the delta and commit. This 1429 * greatly helps super fast disks that would see slowdowns as 1430 * more threads started doing fsyncs. 1431 * 1432 * But don't do this if this process was the most recent one 1433 * to perform a synchronous write. We do this to detect the 1434 * case where a single process is doing a stream of sync 1435 * writes. No point in waiting for joiners in that case. 1436 */ 1437 pid = current->pid; 1438 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1439 u64 commit_time, trans_time; 1440 1441 journal->j_last_sync_writer = pid; 1442 1443 read_lock(&journal->j_state_lock); 1444 commit_time = journal->j_average_commit_time; 1445 read_unlock(&journal->j_state_lock); 1446 1447 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1448 transaction->t_start_time)); 1449 1450 commit_time = max_t(u64, commit_time, 1451 1000*journal->j_min_batch_time); 1452 commit_time = min_t(u64, commit_time, 1453 1000*journal->j_max_batch_time); 1454 1455 if (trans_time < commit_time) { 1456 ktime_t expires = ktime_add_ns(ktime_get(), 1457 commit_time); 1458 set_current_state(TASK_UNINTERRUPTIBLE); 1459 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1460 } 1461 } 1462 1463 if (handle->h_sync) 1464 transaction->t_synchronous_commit = 1; 1465 current->journal_info = NULL; 1466 atomic_sub(handle->h_buffer_credits, 1467 &transaction->t_outstanding_credits); 1468 1469 /* 1470 * If the handle is marked SYNC, we need to set another commit 1471 * going! We also want to force a commit if the current 1472 * transaction is occupying too much of the log, or if the 1473 * transaction is too old now. 1474 */ 1475 if (handle->h_sync || 1476 (atomic_read(&transaction->t_outstanding_credits) > 1477 journal->j_max_transaction_buffers) || 1478 time_after_eq(jiffies, transaction->t_expires)) { 1479 /* Do this even for aborted journals: an abort still 1480 * completes the commit thread, it just doesn't write 1481 * anything to disk. */ 1482 1483 jbd_debug(2, "transaction too old, requesting commit for " 1484 "handle %p\n", handle); 1485 /* This is non-blocking */ 1486 jbd2_log_start_commit(journal, transaction->t_tid); 1487 1488 /* 1489 * Special case: JBD2_SYNC synchronous updates require us 1490 * to wait for the commit to complete. 1491 */ 1492 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1493 wait_for_commit = 1; 1494 } 1495 1496 /* 1497 * Once we drop t_updates, if it goes to zero the transaction 1498 * could start committing on us and eventually disappear. So 1499 * once we do this, we must not dereference transaction 1500 * pointer again. 1501 */ 1502 tid = transaction->t_tid; 1503 if (atomic_dec_and_test(&transaction->t_updates)) { 1504 wake_up(&journal->j_wait_updates); 1505 if (journal->j_barrier_count) 1506 wake_up(&journal->j_wait_transaction_locked); 1507 } 1508 1509 if (wait_for_commit) 1510 err = jbd2_log_wait_commit(journal, tid); 1511 1512 lock_map_release(&handle->h_lockdep_map); 1513 1514 jbd2_free_handle(handle); 1515 return err; 1516 } 1517 1518 /** 1519 * int jbd2_journal_force_commit() - force any uncommitted transactions 1520 * @journal: journal to force 1521 * 1522 * For synchronous operations: force any uncommitted transactions 1523 * to disk. May seem kludgy, but it reuses all the handle batching 1524 * code in a very simple manner. 1525 */ 1526 int jbd2_journal_force_commit(journal_t *journal) 1527 { 1528 handle_t *handle; 1529 int ret; 1530 1531 handle = jbd2_journal_start(journal, 1); 1532 if (IS_ERR(handle)) { 1533 ret = PTR_ERR(handle); 1534 } else { 1535 handle->h_sync = 1; 1536 ret = jbd2_journal_stop(handle); 1537 } 1538 return ret; 1539 } 1540 1541 /* 1542 * 1543 * List management code snippets: various functions for manipulating the 1544 * transaction buffer lists. 1545 * 1546 */ 1547 1548 /* 1549 * Append a buffer to a transaction list, given the transaction's list head 1550 * pointer. 1551 * 1552 * j_list_lock is held. 1553 * 1554 * jbd_lock_bh_state(jh2bh(jh)) is held. 1555 */ 1556 1557 static inline void 1558 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1559 { 1560 if (!*list) { 1561 jh->b_tnext = jh->b_tprev = jh; 1562 *list = jh; 1563 } else { 1564 /* Insert at the tail of the list to preserve order */ 1565 struct journal_head *first = *list, *last = first->b_tprev; 1566 jh->b_tprev = last; 1567 jh->b_tnext = first; 1568 last->b_tnext = first->b_tprev = jh; 1569 } 1570 } 1571 1572 /* 1573 * Remove a buffer from a transaction list, given the transaction's list 1574 * head pointer. 1575 * 1576 * Called with j_list_lock held, and the journal may not be locked. 1577 * 1578 * jbd_lock_bh_state(jh2bh(jh)) is held. 1579 */ 1580 1581 static inline void 1582 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1583 { 1584 if (*list == jh) { 1585 *list = jh->b_tnext; 1586 if (*list == jh) 1587 *list = NULL; 1588 } 1589 jh->b_tprev->b_tnext = jh->b_tnext; 1590 jh->b_tnext->b_tprev = jh->b_tprev; 1591 } 1592 1593 /* 1594 * Remove a buffer from the appropriate transaction list. 1595 * 1596 * Note that this function can *change* the value of 1597 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list, 1598 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one 1599 * of these pointers, it could go bad. Generally the caller needs to re-read 1600 * the pointer from the transaction_t. 1601 * 1602 * Called under j_list_lock. 1603 */ 1604 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1605 { 1606 struct journal_head **list = NULL; 1607 transaction_t *transaction; 1608 struct buffer_head *bh = jh2bh(jh); 1609 1610 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1611 transaction = jh->b_transaction; 1612 if (transaction) 1613 assert_spin_locked(&transaction->t_journal->j_list_lock); 1614 1615 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1616 if (jh->b_jlist != BJ_None) 1617 J_ASSERT_JH(jh, transaction != NULL); 1618 1619 switch (jh->b_jlist) { 1620 case BJ_None: 1621 return; 1622 case BJ_Metadata: 1623 transaction->t_nr_buffers--; 1624 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1625 list = &transaction->t_buffers; 1626 break; 1627 case BJ_Forget: 1628 list = &transaction->t_forget; 1629 break; 1630 case BJ_IO: 1631 list = &transaction->t_iobuf_list; 1632 break; 1633 case BJ_Shadow: 1634 list = &transaction->t_shadow_list; 1635 break; 1636 case BJ_LogCtl: 1637 list = &transaction->t_log_list; 1638 break; 1639 case BJ_Reserved: 1640 list = &transaction->t_reserved_list; 1641 break; 1642 } 1643 1644 __blist_del_buffer(list, jh); 1645 jh->b_jlist = BJ_None; 1646 if (test_clear_buffer_jbddirty(bh)) 1647 mark_buffer_dirty(bh); /* Expose it to the VM */ 1648 } 1649 1650 /* 1651 * Remove buffer from all transactions. 1652 * 1653 * Called with bh_state lock and j_list_lock 1654 * 1655 * jh and bh may be already freed when this function returns. 1656 */ 1657 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1658 { 1659 __jbd2_journal_temp_unlink_buffer(jh); 1660 jh->b_transaction = NULL; 1661 jbd2_journal_put_journal_head(jh); 1662 } 1663 1664 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1665 { 1666 struct buffer_head *bh = jh2bh(jh); 1667 1668 /* Get reference so that buffer cannot be freed before we unlock it */ 1669 get_bh(bh); 1670 jbd_lock_bh_state(bh); 1671 spin_lock(&journal->j_list_lock); 1672 __jbd2_journal_unfile_buffer(jh); 1673 spin_unlock(&journal->j_list_lock); 1674 jbd_unlock_bh_state(bh); 1675 __brelse(bh); 1676 } 1677 1678 /* 1679 * Called from jbd2_journal_try_to_free_buffers(). 1680 * 1681 * Called under jbd_lock_bh_state(bh) 1682 */ 1683 static void 1684 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1685 { 1686 struct journal_head *jh; 1687 1688 jh = bh2jh(bh); 1689 1690 if (buffer_locked(bh) || buffer_dirty(bh)) 1691 goto out; 1692 1693 if (jh->b_next_transaction != NULL) 1694 goto out; 1695 1696 spin_lock(&journal->j_list_lock); 1697 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) { 1698 /* written-back checkpointed metadata buffer */ 1699 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1700 __jbd2_journal_remove_checkpoint(jh); 1701 } 1702 spin_unlock(&journal->j_list_lock); 1703 out: 1704 return; 1705 } 1706 1707 /** 1708 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1709 * @journal: journal for operation 1710 * @page: to try and free 1711 * @gfp_mask: we use the mask to detect how hard should we try to release 1712 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to 1713 * release the buffers. 1714 * 1715 * 1716 * For all the buffers on this page, 1717 * if they are fully written out ordered data, move them onto BUF_CLEAN 1718 * so try_to_free_buffers() can reap them. 1719 * 1720 * This function returns non-zero if we wish try_to_free_buffers() 1721 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1722 * We also do it if the page has locked or dirty buffers and the caller wants 1723 * us to perform sync or async writeout. 1724 * 1725 * This complicates JBD locking somewhat. We aren't protected by the 1726 * BKL here. We wish to remove the buffer from its committing or 1727 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1728 * 1729 * This may *change* the value of transaction_t->t_datalist, so anyone 1730 * who looks at t_datalist needs to lock against this function. 1731 * 1732 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1733 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1734 * will come out of the lock with the buffer dirty, which makes it 1735 * ineligible for release here. 1736 * 1737 * Who else is affected by this? hmm... Really the only contender 1738 * is do_get_write_access() - it could be looking at the buffer while 1739 * journal_try_to_free_buffer() is changing its state. But that 1740 * cannot happen because we never reallocate freed data as metadata 1741 * while the data is part of a transaction. Yes? 1742 * 1743 * Return 0 on failure, 1 on success 1744 */ 1745 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1746 struct page *page, gfp_t gfp_mask) 1747 { 1748 struct buffer_head *head; 1749 struct buffer_head *bh; 1750 int ret = 0; 1751 1752 J_ASSERT(PageLocked(page)); 1753 1754 head = page_buffers(page); 1755 bh = head; 1756 do { 1757 struct journal_head *jh; 1758 1759 /* 1760 * We take our own ref against the journal_head here to avoid 1761 * having to add tons of locking around each instance of 1762 * jbd2_journal_put_journal_head(). 1763 */ 1764 jh = jbd2_journal_grab_journal_head(bh); 1765 if (!jh) 1766 continue; 1767 1768 jbd_lock_bh_state(bh); 1769 __journal_try_to_free_buffer(journal, bh); 1770 jbd2_journal_put_journal_head(jh); 1771 jbd_unlock_bh_state(bh); 1772 if (buffer_jbd(bh)) 1773 goto busy; 1774 } while ((bh = bh->b_this_page) != head); 1775 1776 ret = try_to_free_buffers(page); 1777 1778 busy: 1779 return ret; 1780 } 1781 1782 /* 1783 * This buffer is no longer needed. If it is on an older transaction's 1784 * checkpoint list we need to record it on this transaction's forget list 1785 * to pin this buffer (and hence its checkpointing transaction) down until 1786 * this transaction commits. If the buffer isn't on a checkpoint list, we 1787 * release it. 1788 * Returns non-zero if JBD no longer has an interest in the buffer. 1789 * 1790 * Called under j_list_lock. 1791 * 1792 * Called under jbd_lock_bh_state(bh). 1793 */ 1794 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1795 { 1796 int may_free = 1; 1797 struct buffer_head *bh = jh2bh(jh); 1798 1799 if (jh->b_cp_transaction) { 1800 JBUFFER_TRACE(jh, "on running+cp transaction"); 1801 __jbd2_journal_temp_unlink_buffer(jh); 1802 /* 1803 * We don't want to write the buffer anymore, clear the 1804 * bit so that we don't confuse checks in 1805 * __journal_file_buffer 1806 */ 1807 clear_buffer_dirty(bh); 1808 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1809 may_free = 0; 1810 } else { 1811 JBUFFER_TRACE(jh, "on running transaction"); 1812 __jbd2_journal_unfile_buffer(jh); 1813 } 1814 return may_free; 1815 } 1816 1817 /* 1818 * jbd2_journal_invalidatepage 1819 * 1820 * This code is tricky. It has a number of cases to deal with. 1821 * 1822 * There are two invariants which this code relies on: 1823 * 1824 * i_size must be updated on disk before we start calling invalidatepage on the 1825 * data. 1826 * 1827 * This is done in ext3 by defining an ext3_setattr method which 1828 * updates i_size before truncate gets going. By maintaining this 1829 * invariant, we can be sure that it is safe to throw away any buffers 1830 * attached to the current transaction: once the transaction commits, 1831 * we know that the data will not be needed. 1832 * 1833 * Note however that we can *not* throw away data belonging to the 1834 * previous, committing transaction! 1835 * 1836 * Any disk blocks which *are* part of the previous, committing 1837 * transaction (and which therefore cannot be discarded immediately) are 1838 * not going to be reused in the new running transaction 1839 * 1840 * The bitmap committed_data images guarantee this: any block which is 1841 * allocated in one transaction and removed in the next will be marked 1842 * as in-use in the committed_data bitmap, so cannot be reused until 1843 * the next transaction to delete the block commits. This means that 1844 * leaving committing buffers dirty is quite safe: the disk blocks 1845 * cannot be reallocated to a different file and so buffer aliasing is 1846 * not possible. 1847 * 1848 * 1849 * The above applies mainly to ordered data mode. In writeback mode we 1850 * don't make guarantees about the order in which data hits disk --- in 1851 * particular we don't guarantee that new dirty data is flushed before 1852 * transaction commit --- so it is always safe just to discard data 1853 * immediately in that mode. --sct 1854 */ 1855 1856 /* 1857 * The journal_unmap_buffer helper function returns zero if the buffer 1858 * concerned remains pinned as an anonymous buffer belonging to an older 1859 * transaction. 1860 * 1861 * We're outside-transaction here. Either or both of j_running_transaction 1862 * and j_committing_transaction may be NULL. 1863 */ 1864 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 1865 int partial_page) 1866 { 1867 transaction_t *transaction; 1868 struct journal_head *jh; 1869 int may_free = 1; 1870 1871 BUFFER_TRACE(bh, "entry"); 1872 1873 /* 1874 * It is safe to proceed here without the j_list_lock because the 1875 * buffers cannot be stolen by try_to_free_buffers as long as we are 1876 * holding the page lock. --sct 1877 */ 1878 1879 if (!buffer_jbd(bh)) 1880 goto zap_buffer_unlocked; 1881 1882 /* OK, we have data buffer in journaled mode */ 1883 write_lock(&journal->j_state_lock); 1884 jbd_lock_bh_state(bh); 1885 spin_lock(&journal->j_list_lock); 1886 1887 jh = jbd2_journal_grab_journal_head(bh); 1888 if (!jh) 1889 goto zap_buffer_no_jh; 1890 1891 /* 1892 * We cannot remove the buffer from checkpoint lists until the 1893 * transaction adding inode to orphan list (let's call it T) 1894 * is committed. Otherwise if the transaction changing the 1895 * buffer would be cleaned from the journal before T is 1896 * committed, a crash will cause that the correct contents of 1897 * the buffer will be lost. On the other hand we have to 1898 * clear the buffer dirty bit at latest at the moment when the 1899 * transaction marking the buffer as freed in the filesystem 1900 * structures is committed because from that moment on the 1901 * block can be reallocated and used by a different page. 1902 * Since the block hasn't been freed yet but the inode has 1903 * already been added to orphan list, it is safe for us to add 1904 * the buffer to BJ_Forget list of the newest transaction. 1905 * 1906 * Also we have to clear buffer_mapped flag of a truncated buffer 1907 * because the buffer_head may be attached to the page straddling 1908 * i_size (can happen only when blocksize < pagesize) and thus the 1909 * buffer_head can be reused when the file is extended again. So we end 1910 * up keeping around invalidated buffers attached to transactions' 1911 * BJ_Forget list just to stop checkpointing code from cleaning up 1912 * the transaction this buffer was modified in. 1913 */ 1914 transaction = jh->b_transaction; 1915 if (transaction == NULL) { 1916 /* First case: not on any transaction. If it 1917 * has no checkpoint link, then we can zap it: 1918 * it's a writeback-mode buffer so we don't care 1919 * if it hits disk safely. */ 1920 if (!jh->b_cp_transaction) { 1921 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1922 goto zap_buffer; 1923 } 1924 1925 if (!buffer_dirty(bh)) { 1926 /* bdflush has written it. We can drop it now */ 1927 goto zap_buffer; 1928 } 1929 1930 /* OK, it must be in the journal but still not 1931 * written fully to disk: it's metadata or 1932 * journaled data... */ 1933 1934 if (journal->j_running_transaction) { 1935 /* ... and once the current transaction has 1936 * committed, the buffer won't be needed any 1937 * longer. */ 1938 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1939 may_free = __dispose_buffer(jh, 1940 journal->j_running_transaction); 1941 goto zap_buffer; 1942 } else { 1943 /* There is no currently-running transaction. So the 1944 * orphan record which we wrote for this file must have 1945 * passed into commit. We must attach this buffer to 1946 * the committing transaction, if it exists. */ 1947 if (journal->j_committing_transaction) { 1948 JBUFFER_TRACE(jh, "give to committing trans"); 1949 may_free = __dispose_buffer(jh, 1950 journal->j_committing_transaction); 1951 goto zap_buffer; 1952 } else { 1953 /* The orphan record's transaction has 1954 * committed. We can cleanse this buffer */ 1955 clear_buffer_jbddirty(bh); 1956 goto zap_buffer; 1957 } 1958 } 1959 } else if (transaction == journal->j_committing_transaction) { 1960 JBUFFER_TRACE(jh, "on committing transaction"); 1961 /* 1962 * The buffer is committing, we simply cannot touch 1963 * it. If the page is straddling i_size we have to wait 1964 * for commit and try again. 1965 */ 1966 if (partial_page) { 1967 jbd2_journal_put_journal_head(jh); 1968 spin_unlock(&journal->j_list_lock); 1969 jbd_unlock_bh_state(bh); 1970 write_unlock(&journal->j_state_lock); 1971 return -EBUSY; 1972 } 1973 /* 1974 * OK, buffer won't be reachable after truncate. We just set 1975 * j_next_transaction to the running transaction (if there is 1976 * one) and mark buffer as freed so that commit code knows it 1977 * should clear dirty bits when it is done with the buffer. 1978 */ 1979 set_buffer_freed(bh); 1980 if (journal->j_running_transaction && buffer_jbddirty(bh)) 1981 jh->b_next_transaction = journal->j_running_transaction; 1982 jbd2_journal_put_journal_head(jh); 1983 spin_unlock(&journal->j_list_lock); 1984 jbd_unlock_bh_state(bh); 1985 write_unlock(&journal->j_state_lock); 1986 return 0; 1987 } else { 1988 /* Good, the buffer belongs to the running transaction. 1989 * We are writing our own transaction's data, not any 1990 * previous one's, so it is safe to throw it away 1991 * (remember that we expect the filesystem to have set 1992 * i_size already for this truncate so recovery will not 1993 * expose the disk blocks we are discarding here.) */ 1994 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1995 JBUFFER_TRACE(jh, "on running transaction"); 1996 may_free = __dispose_buffer(jh, transaction); 1997 } 1998 1999 zap_buffer: 2000 /* 2001 * This is tricky. Although the buffer is truncated, it may be reused 2002 * if blocksize < pagesize and it is attached to the page straddling 2003 * EOF. Since the buffer might have been added to BJ_Forget list of the 2004 * running transaction, journal_get_write_access() won't clear 2005 * b_modified and credit accounting gets confused. So clear b_modified 2006 * here. 2007 */ 2008 jh->b_modified = 0; 2009 jbd2_journal_put_journal_head(jh); 2010 zap_buffer_no_jh: 2011 spin_unlock(&journal->j_list_lock); 2012 jbd_unlock_bh_state(bh); 2013 write_unlock(&journal->j_state_lock); 2014 zap_buffer_unlocked: 2015 clear_buffer_dirty(bh); 2016 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2017 clear_buffer_mapped(bh); 2018 clear_buffer_req(bh); 2019 clear_buffer_new(bh); 2020 clear_buffer_delay(bh); 2021 clear_buffer_unwritten(bh); 2022 bh->b_bdev = NULL; 2023 return may_free; 2024 } 2025 2026 /** 2027 * void jbd2_journal_invalidatepage() 2028 * @journal: journal to use for flush... 2029 * @page: page to flush 2030 * @offset: length of page to invalidate. 2031 * 2032 * Reap page buffers containing data after offset in page. Can return -EBUSY 2033 * if buffers are part of the committing transaction and the page is straddling 2034 * i_size. Caller then has to wait for current commit and try again. 2035 */ 2036 int jbd2_journal_invalidatepage(journal_t *journal, 2037 struct page *page, 2038 unsigned long offset) 2039 { 2040 struct buffer_head *head, *bh, *next; 2041 unsigned int curr_off = 0; 2042 int may_free = 1; 2043 int ret = 0; 2044 2045 if (!PageLocked(page)) 2046 BUG(); 2047 if (!page_has_buffers(page)) 2048 return 0; 2049 2050 /* We will potentially be playing with lists other than just the 2051 * data lists (especially for journaled data mode), so be 2052 * cautious in our locking. */ 2053 2054 head = bh = page_buffers(page); 2055 do { 2056 unsigned int next_off = curr_off + bh->b_size; 2057 next = bh->b_this_page; 2058 2059 if (offset <= curr_off) { 2060 /* This block is wholly outside the truncation point */ 2061 lock_buffer(bh); 2062 ret = journal_unmap_buffer(journal, bh, offset > 0); 2063 unlock_buffer(bh); 2064 if (ret < 0) 2065 return ret; 2066 may_free &= ret; 2067 } 2068 curr_off = next_off; 2069 bh = next; 2070 2071 } while (bh != head); 2072 2073 if (!offset) { 2074 if (may_free && try_to_free_buffers(page)) 2075 J_ASSERT(!page_has_buffers(page)); 2076 } 2077 return 0; 2078 } 2079 2080 /* 2081 * File a buffer on the given transaction list. 2082 */ 2083 void __jbd2_journal_file_buffer(struct journal_head *jh, 2084 transaction_t *transaction, int jlist) 2085 { 2086 struct journal_head **list = NULL; 2087 int was_dirty = 0; 2088 struct buffer_head *bh = jh2bh(jh); 2089 2090 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2091 assert_spin_locked(&transaction->t_journal->j_list_lock); 2092 2093 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2094 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2095 jh->b_transaction == NULL); 2096 2097 if (jh->b_transaction && jh->b_jlist == jlist) 2098 return; 2099 2100 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2101 jlist == BJ_Shadow || jlist == BJ_Forget) { 2102 /* 2103 * For metadata buffers, we track dirty bit in buffer_jbddirty 2104 * instead of buffer_dirty. We should not see a dirty bit set 2105 * here because we clear it in do_get_write_access but e.g. 2106 * tune2fs can modify the sb and set the dirty bit at any time 2107 * so we try to gracefully handle that. 2108 */ 2109 if (buffer_dirty(bh)) 2110 warn_dirty_buffer(bh); 2111 if (test_clear_buffer_dirty(bh) || 2112 test_clear_buffer_jbddirty(bh)) 2113 was_dirty = 1; 2114 } 2115 2116 if (jh->b_transaction) 2117 __jbd2_journal_temp_unlink_buffer(jh); 2118 else 2119 jbd2_journal_grab_journal_head(bh); 2120 jh->b_transaction = transaction; 2121 2122 switch (jlist) { 2123 case BJ_None: 2124 J_ASSERT_JH(jh, !jh->b_committed_data); 2125 J_ASSERT_JH(jh, !jh->b_frozen_data); 2126 return; 2127 case BJ_Metadata: 2128 transaction->t_nr_buffers++; 2129 list = &transaction->t_buffers; 2130 break; 2131 case BJ_Forget: 2132 list = &transaction->t_forget; 2133 break; 2134 case BJ_IO: 2135 list = &transaction->t_iobuf_list; 2136 break; 2137 case BJ_Shadow: 2138 list = &transaction->t_shadow_list; 2139 break; 2140 case BJ_LogCtl: 2141 list = &transaction->t_log_list; 2142 break; 2143 case BJ_Reserved: 2144 list = &transaction->t_reserved_list; 2145 break; 2146 } 2147 2148 __blist_add_buffer(list, jh); 2149 jh->b_jlist = jlist; 2150 2151 if (was_dirty) 2152 set_buffer_jbddirty(bh); 2153 } 2154 2155 void jbd2_journal_file_buffer(struct journal_head *jh, 2156 transaction_t *transaction, int jlist) 2157 { 2158 jbd_lock_bh_state(jh2bh(jh)); 2159 spin_lock(&transaction->t_journal->j_list_lock); 2160 __jbd2_journal_file_buffer(jh, transaction, jlist); 2161 spin_unlock(&transaction->t_journal->j_list_lock); 2162 jbd_unlock_bh_state(jh2bh(jh)); 2163 } 2164 2165 /* 2166 * Remove a buffer from its current buffer list in preparation for 2167 * dropping it from its current transaction entirely. If the buffer has 2168 * already started to be used by a subsequent transaction, refile the 2169 * buffer on that transaction's metadata list. 2170 * 2171 * Called under j_list_lock 2172 * Called under jbd_lock_bh_state(jh2bh(jh)) 2173 * 2174 * jh and bh may be already free when this function returns 2175 */ 2176 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2177 { 2178 int was_dirty, jlist; 2179 struct buffer_head *bh = jh2bh(jh); 2180 2181 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2182 if (jh->b_transaction) 2183 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2184 2185 /* If the buffer is now unused, just drop it. */ 2186 if (jh->b_next_transaction == NULL) { 2187 __jbd2_journal_unfile_buffer(jh); 2188 return; 2189 } 2190 2191 /* 2192 * It has been modified by a later transaction: add it to the new 2193 * transaction's metadata list. 2194 */ 2195 2196 was_dirty = test_clear_buffer_jbddirty(bh); 2197 __jbd2_journal_temp_unlink_buffer(jh); 2198 /* 2199 * We set b_transaction here because b_next_transaction will inherit 2200 * our jh reference and thus __jbd2_journal_file_buffer() must not 2201 * take a new one. 2202 */ 2203 jh->b_transaction = jh->b_next_transaction; 2204 jh->b_next_transaction = NULL; 2205 if (buffer_freed(bh)) 2206 jlist = BJ_Forget; 2207 else if (jh->b_modified) 2208 jlist = BJ_Metadata; 2209 else 2210 jlist = BJ_Reserved; 2211 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2212 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2213 2214 if (was_dirty) 2215 set_buffer_jbddirty(bh); 2216 } 2217 2218 /* 2219 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2220 * bh reference so that we can safely unlock bh. 2221 * 2222 * The jh and bh may be freed by this call. 2223 */ 2224 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2225 { 2226 struct buffer_head *bh = jh2bh(jh); 2227 2228 /* Get reference so that buffer cannot be freed before we unlock it */ 2229 get_bh(bh); 2230 jbd_lock_bh_state(bh); 2231 spin_lock(&journal->j_list_lock); 2232 __jbd2_journal_refile_buffer(jh); 2233 jbd_unlock_bh_state(bh); 2234 spin_unlock(&journal->j_list_lock); 2235 __brelse(bh); 2236 } 2237 2238 /* 2239 * File inode in the inode list of the handle's transaction 2240 */ 2241 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode) 2242 { 2243 transaction_t *transaction = handle->h_transaction; 2244 journal_t *journal = transaction->t_journal; 2245 2246 if (is_handle_aborted(handle)) 2247 return -EIO; 2248 2249 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2250 transaction->t_tid); 2251 2252 /* 2253 * First check whether inode isn't already on the transaction's 2254 * lists without taking the lock. Note that this check is safe 2255 * without the lock as we cannot race with somebody removing inode 2256 * from the transaction. The reason is that we remove inode from the 2257 * transaction only in journal_release_jbd_inode() and when we commit 2258 * the transaction. We are guarded from the first case by holding 2259 * a reference to the inode. We are safe against the second case 2260 * because if jinode->i_transaction == transaction, commit code 2261 * cannot touch the transaction because we hold reference to it, 2262 * and if jinode->i_next_transaction == transaction, commit code 2263 * will only file the inode where we want it. 2264 */ 2265 if (jinode->i_transaction == transaction || 2266 jinode->i_next_transaction == transaction) 2267 return 0; 2268 2269 spin_lock(&journal->j_list_lock); 2270 2271 if (jinode->i_transaction == transaction || 2272 jinode->i_next_transaction == transaction) 2273 goto done; 2274 2275 /* 2276 * We only ever set this variable to 1 so the test is safe. Since 2277 * t_need_data_flush is likely to be set, we do the test to save some 2278 * cacheline bouncing 2279 */ 2280 if (!transaction->t_need_data_flush) 2281 transaction->t_need_data_flush = 1; 2282 /* On some different transaction's list - should be 2283 * the committing one */ 2284 if (jinode->i_transaction) { 2285 J_ASSERT(jinode->i_next_transaction == NULL); 2286 J_ASSERT(jinode->i_transaction == 2287 journal->j_committing_transaction); 2288 jinode->i_next_transaction = transaction; 2289 goto done; 2290 } 2291 /* Not on any transaction list... */ 2292 J_ASSERT(!jinode->i_next_transaction); 2293 jinode->i_transaction = transaction; 2294 list_add(&jinode->i_list, &transaction->t_inode_list); 2295 done: 2296 spin_unlock(&journal->j_list_lock); 2297 2298 return 0; 2299 } 2300 2301 /* 2302 * File truncate and transaction commit interact with each other in a 2303 * non-trivial way. If a transaction writing data block A is 2304 * committing, we cannot discard the data by truncate until we have 2305 * written them. Otherwise if we crashed after the transaction with 2306 * write has committed but before the transaction with truncate has 2307 * committed, we could see stale data in block A. This function is a 2308 * helper to solve this problem. It starts writeout of the truncated 2309 * part in case it is in the committing transaction. 2310 * 2311 * Filesystem code must call this function when inode is journaled in 2312 * ordered mode before truncation happens and after the inode has been 2313 * placed on orphan list with the new inode size. The second condition 2314 * avoids the race that someone writes new data and we start 2315 * committing the transaction after this function has been called but 2316 * before a transaction for truncate is started (and furthermore it 2317 * allows us to optimize the case where the addition to orphan list 2318 * happens in the same transaction as write --- we don't have to write 2319 * any data in such case). 2320 */ 2321 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2322 struct jbd2_inode *jinode, 2323 loff_t new_size) 2324 { 2325 transaction_t *inode_trans, *commit_trans; 2326 int ret = 0; 2327 2328 /* This is a quick check to avoid locking if not necessary */ 2329 if (!jinode->i_transaction) 2330 goto out; 2331 /* Locks are here just to force reading of recent values, it is 2332 * enough that the transaction was not committing before we started 2333 * a transaction adding the inode to orphan list */ 2334 read_lock(&journal->j_state_lock); 2335 commit_trans = journal->j_committing_transaction; 2336 read_unlock(&journal->j_state_lock); 2337 spin_lock(&journal->j_list_lock); 2338 inode_trans = jinode->i_transaction; 2339 spin_unlock(&journal->j_list_lock); 2340 if (inode_trans == commit_trans) { 2341 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2342 new_size, LLONG_MAX); 2343 if (ret) 2344 jbd2_journal_abort(journal, ret); 2345 } 2346 out: 2347 return ret; 2348 } 2349