xref: /linux/fs/jbd2/transaction.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19 
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 
33 #include <trace/events/jbd2.h>
34 
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37 
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 	J_ASSERT(!transaction_cache);
42 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 					sizeof(transaction_t),
44 					0,
45 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 					NULL);
47 	if (transaction_cache)
48 		return 0;
49 	return -ENOMEM;
50 }
51 
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	if (transaction_cache) {
55 		kmem_cache_destroy(transaction_cache);
56 		transaction_cache = NULL;
57 	}
58 }
59 
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 		return;
64 	kmem_cache_free(transaction_cache, transaction);
65 }
66 
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *	The journal MUST be locked.  We don't perform atomic mallocs on the
77  *	new transaction	and we can't block without protecting against other
78  *	processes trying to touch the journal while it is in transition.
79  *
80  */
81 
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 	transaction->t_journal = journal;
86 	transaction->t_state = T_RUNNING;
87 	transaction->t_start_time = ktime_get();
88 	transaction->t_tid = journal->j_transaction_sequence++;
89 	transaction->t_expires = jiffies + journal->j_commit_interval;
90 	spin_lock_init(&transaction->t_handle_lock);
91 	atomic_set(&transaction->t_updates, 0);
92 	atomic_set(&transaction->t_outstanding_credits, 0);
93 	atomic_set(&transaction->t_handle_count, 0);
94 	INIT_LIST_HEAD(&transaction->t_inode_list);
95 	INIT_LIST_HEAD(&transaction->t_private_list);
96 
97 	/* Set up the commit timer for the new transaction. */
98 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 	add_timer(&journal->j_commit_timer);
100 
101 	J_ASSERT(journal->j_running_transaction == NULL);
102 	journal->j_running_transaction = transaction;
103 	transaction->t_max_wait = 0;
104 	transaction->t_start = jiffies;
105 	transaction->t_requested = 0;
106 
107 	return transaction;
108 }
109 
110 /*
111  * Handle management.
112  *
113  * A handle_t is an object which represents a single atomic update to a
114  * filesystem, and which tracks all of the modifications which form part
115  * of that one update.
116  */
117 
118 /*
119  * Update transaction's maximum wait time, if debugging is enabled.
120  *
121  * In order for t_max_wait to be reliable, it must be protected by a
122  * lock.  But doing so will mean that start_this_handle() can not be
123  * run in parallel on SMP systems, which limits our scalability.  So
124  * unless debugging is enabled, we no longer update t_max_wait, which
125  * means that maximum wait time reported by the jbd2_run_stats
126  * tracepoint will always be zero.
127  */
128 static inline void update_t_max_wait(transaction_t *transaction,
129 				     unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132 	if (jbd2_journal_enable_debug &&
133 	    time_after(transaction->t_start, ts)) {
134 		ts = jbd2_time_diff(ts, transaction->t_start);
135 		spin_lock(&transaction->t_handle_lock);
136 		if (ts > transaction->t_max_wait)
137 			transaction->t_max_wait = ts;
138 		spin_unlock(&transaction->t_handle_lock);
139 	}
140 #endif
141 }
142 
143 /*
144  * start_this_handle: Given a handle, deal with any locking or stalling
145  * needed to make sure that there is enough journal space for the handle
146  * to begin.  Attach the handle to a transaction and set up the
147  * transaction's buffer credits.
148  */
149 
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151 			     gfp_t gfp_mask)
152 {
153 	transaction_t	*transaction, *new_transaction = NULL;
154 	tid_t		tid;
155 	int		needed, need_to_start;
156 	int		nblocks = handle->h_buffer_credits;
157 	unsigned long ts = jiffies;
158 
159 	if (nblocks > journal->j_max_transaction_buffers) {
160 		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161 		       current->comm, nblocks,
162 		       journal->j_max_transaction_buffers);
163 		return -ENOSPC;
164 	}
165 
166 alloc_transaction:
167 	if (!journal->j_running_transaction) {
168 		new_transaction = kmem_cache_zalloc(transaction_cache,
169 						    gfp_mask);
170 		if (!new_transaction) {
171 			/*
172 			 * If __GFP_FS is not present, then we may be
173 			 * being called from inside the fs writeback
174 			 * layer, so we MUST NOT fail.  Since
175 			 * __GFP_NOFAIL is going away, we will arrange
176 			 * to retry the allocation ourselves.
177 			 */
178 			if ((gfp_mask & __GFP_FS) == 0) {
179 				congestion_wait(BLK_RW_ASYNC, HZ/50);
180 				goto alloc_transaction;
181 			}
182 			return -ENOMEM;
183 		}
184 	}
185 
186 	jbd_debug(3, "New handle %p going live.\n", handle);
187 
188 	/*
189 	 * We need to hold j_state_lock until t_updates has been incremented,
190 	 * for proper journal barrier handling
191 	 */
192 repeat:
193 	read_lock(&journal->j_state_lock);
194 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195 	if (is_journal_aborted(journal) ||
196 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197 		read_unlock(&journal->j_state_lock);
198 		jbd2_journal_free_transaction(new_transaction);
199 		return -EROFS;
200 	}
201 
202 	/* Wait on the journal's transaction barrier if necessary */
203 	if (journal->j_barrier_count) {
204 		read_unlock(&journal->j_state_lock);
205 		wait_event(journal->j_wait_transaction_locked,
206 				journal->j_barrier_count == 0);
207 		goto repeat;
208 	}
209 
210 	if (!journal->j_running_transaction) {
211 		read_unlock(&journal->j_state_lock);
212 		if (!new_transaction)
213 			goto alloc_transaction;
214 		write_lock(&journal->j_state_lock);
215 		if (!journal->j_running_transaction &&
216 		    !journal->j_barrier_count) {
217 			jbd2_get_transaction(journal, new_transaction);
218 			new_transaction = NULL;
219 		}
220 		write_unlock(&journal->j_state_lock);
221 		goto repeat;
222 	}
223 
224 	transaction = journal->j_running_transaction;
225 
226 	/*
227 	 * If the current transaction is locked down for commit, wait for the
228 	 * lock to be released.
229 	 */
230 	if (transaction->t_state == T_LOCKED) {
231 		DEFINE_WAIT(wait);
232 
233 		prepare_to_wait(&journal->j_wait_transaction_locked,
234 					&wait, TASK_UNINTERRUPTIBLE);
235 		read_unlock(&journal->j_state_lock);
236 		schedule();
237 		finish_wait(&journal->j_wait_transaction_locked, &wait);
238 		goto repeat;
239 	}
240 
241 	/*
242 	 * If there is not enough space left in the log to write all potential
243 	 * buffers requested by this operation, we need to stall pending a log
244 	 * checkpoint to free some more log space.
245 	 */
246 	needed = atomic_add_return(nblocks,
247 				   &transaction->t_outstanding_credits);
248 
249 	if (needed > journal->j_max_transaction_buffers) {
250 		/*
251 		 * If the current transaction is already too large, then start
252 		 * to commit it: we can then go back and attach this handle to
253 		 * a new transaction.
254 		 */
255 		DEFINE_WAIT(wait);
256 
257 		jbd_debug(2, "Handle %p starting new commit...\n", handle);
258 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
259 		prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260 				TASK_UNINTERRUPTIBLE);
261 		tid = transaction->t_tid;
262 		need_to_start = !tid_geq(journal->j_commit_request, tid);
263 		read_unlock(&journal->j_state_lock);
264 		if (need_to_start)
265 			jbd2_log_start_commit(journal, tid);
266 		schedule();
267 		finish_wait(&journal->j_wait_transaction_locked, &wait);
268 		goto repeat;
269 	}
270 
271 	/*
272 	 * The commit code assumes that it can get enough log space
273 	 * without forcing a checkpoint.  This is *critical* for
274 	 * correctness: a checkpoint of a buffer which is also
275 	 * associated with a committing transaction creates a deadlock,
276 	 * so commit simply cannot force through checkpoints.
277 	 *
278 	 * We must therefore ensure the necessary space in the journal
279 	 * *before* starting to dirty potentially checkpointed buffers
280 	 * in the new transaction.
281 	 *
282 	 * The worst part is, any transaction currently committing can
283 	 * reduce the free space arbitrarily.  Be careful to account for
284 	 * those buffers when checkpointing.
285 	 */
286 
287 	/*
288 	 * @@@ AKPM: This seems rather over-defensive.  We're giving commit
289 	 * a _lot_ of headroom: 1/4 of the journal plus the size of
290 	 * the committing transaction.  Really, we only need to give it
291 	 * committing_transaction->t_outstanding_credits plus "enough" for
292 	 * the log control blocks.
293 	 * Also, this test is inconsistent with the matching one in
294 	 * jbd2_journal_extend().
295 	 */
296 	if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
297 		jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
298 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
299 		read_unlock(&journal->j_state_lock);
300 		write_lock(&journal->j_state_lock);
301 		if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302 			__jbd2_log_wait_for_space(journal);
303 		write_unlock(&journal->j_state_lock);
304 		goto repeat;
305 	}
306 
307 	/* OK, account for the buffers that this operation expects to
308 	 * use and add the handle to the running transaction.
309 	 */
310 	update_t_max_wait(transaction, ts);
311 	handle->h_transaction = transaction;
312 	handle->h_requested_credits = nblocks;
313 	handle->h_start_jiffies = jiffies;
314 	atomic_inc(&transaction->t_updates);
315 	atomic_inc(&transaction->t_handle_count);
316 	jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
317 		  handle, nblocks,
318 		  atomic_read(&transaction->t_outstanding_credits),
319 		  __jbd2_log_space_left(journal));
320 	read_unlock(&journal->j_state_lock);
321 
322 	lock_map_acquire(&handle->h_lockdep_map);
323 	jbd2_journal_free_transaction(new_transaction);
324 	return 0;
325 }
326 
327 static struct lock_class_key jbd2_handle_key;
328 
329 /* Allocate a new handle.  This should probably be in a slab... */
330 static handle_t *new_handle(int nblocks)
331 {
332 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
333 	if (!handle)
334 		return NULL;
335 	memset(handle, 0, sizeof(*handle));
336 	handle->h_buffer_credits = nblocks;
337 	handle->h_ref = 1;
338 
339 	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
340 						&jbd2_handle_key, 0);
341 
342 	return handle;
343 }
344 
345 /**
346  * handle_t *jbd2_journal_start() - Obtain a new handle.
347  * @journal: Journal to start transaction on.
348  * @nblocks: number of block buffer we might modify
349  *
350  * We make sure that the transaction can guarantee at least nblocks of
351  * modified buffers in the log.  We block until the log can guarantee
352  * that much space.
353  *
354  * This function is visible to journal users (like ext3fs), so is not
355  * called with the journal already locked.
356  *
357  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
358  * on failure.
359  */
360 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
361 			      unsigned int type, unsigned int line_no)
362 {
363 	handle_t *handle = journal_current_handle();
364 	int err;
365 
366 	if (!journal)
367 		return ERR_PTR(-EROFS);
368 
369 	if (handle) {
370 		J_ASSERT(handle->h_transaction->t_journal == journal);
371 		handle->h_ref++;
372 		return handle;
373 	}
374 
375 	handle = new_handle(nblocks);
376 	if (!handle)
377 		return ERR_PTR(-ENOMEM);
378 
379 	current->journal_info = handle;
380 
381 	err = start_this_handle(journal, handle, gfp_mask);
382 	if (err < 0) {
383 		jbd2_free_handle(handle);
384 		current->journal_info = NULL;
385 		return ERR_PTR(err);
386 	}
387 	handle->h_type = type;
388 	handle->h_line_no = line_no;
389 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
390 				handle->h_transaction->t_tid, type,
391 				line_no, nblocks);
392 	return handle;
393 }
394 EXPORT_SYMBOL(jbd2__journal_start);
395 
396 
397 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
398 {
399 	return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
400 }
401 EXPORT_SYMBOL(jbd2_journal_start);
402 
403 
404 /**
405  * int jbd2_journal_extend() - extend buffer credits.
406  * @handle:  handle to 'extend'
407  * @nblocks: nr blocks to try to extend by.
408  *
409  * Some transactions, such as large extends and truncates, can be done
410  * atomically all at once or in several stages.  The operation requests
411  * a credit for a number of buffer modications in advance, but can
412  * extend its credit if it needs more.
413  *
414  * jbd2_journal_extend tries to give the running handle more buffer credits.
415  * It does not guarantee that allocation - this is a best-effort only.
416  * The calling process MUST be able to deal cleanly with a failure to
417  * extend here.
418  *
419  * Return 0 on success, non-zero on failure.
420  *
421  * return code < 0 implies an error
422  * return code > 0 implies normal transaction-full status.
423  */
424 int jbd2_journal_extend(handle_t *handle, int nblocks)
425 {
426 	transaction_t *transaction = handle->h_transaction;
427 	journal_t *journal = transaction->t_journal;
428 	int result;
429 	int wanted;
430 
431 	result = -EIO;
432 	if (is_handle_aborted(handle))
433 		goto out;
434 
435 	result = 1;
436 
437 	read_lock(&journal->j_state_lock);
438 
439 	/* Don't extend a locked-down transaction! */
440 	if (handle->h_transaction->t_state != T_RUNNING) {
441 		jbd_debug(3, "denied handle %p %d blocks: "
442 			  "transaction not running\n", handle, nblocks);
443 		goto error_out;
444 	}
445 
446 	spin_lock(&transaction->t_handle_lock);
447 	wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
448 
449 	if (wanted > journal->j_max_transaction_buffers) {
450 		jbd_debug(3, "denied handle %p %d blocks: "
451 			  "transaction too large\n", handle, nblocks);
452 		goto unlock;
453 	}
454 
455 	if (wanted > __jbd2_log_space_left(journal)) {
456 		jbd_debug(3, "denied handle %p %d blocks: "
457 			  "insufficient log space\n", handle, nblocks);
458 		goto unlock;
459 	}
460 
461 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
462 				 handle->h_transaction->t_tid,
463 				 handle->h_type, handle->h_line_no,
464 				 handle->h_buffer_credits,
465 				 nblocks);
466 
467 	handle->h_buffer_credits += nblocks;
468 	handle->h_requested_credits += nblocks;
469 	atomic_add(nblocks, &transaction->t_outstanding_credits);
470 	result = 0;
471 
472 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
473 unlock:
474 	spin_unlock(&transaction->t_handle_lock);
475 error_out:
476 	read_unlock(&journal->j_state_lock);
477 out:
478 	return result;
479 }
480 
481 
482 /**
483  * int jbd2_journal_restart() - restart a handle .
484  * @handle:  handle to restart
485  * @nblocks: nr credits requested
486  *
487  * Restart a handle for a multi-transaction filesystem
488  * operation.
489  *
490  * If the jbd2_journal_extend() call above fails to grant new buffer credits
491  * to a running handle, a call to jbd2_journal_restart will commit the
492  * handle's transaction so far and reattach the handle to a new
493  * transaction capabable of guaranteeing the requested number of
494  * credits.
495  */
496 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
497 {
498 	transaction_t *transaction = handle->h_transaction;
499 	journal_t *journal = transaction->t_journal;
500 	tid_t		tid;
501 	int		need_to_start, ret;
502 
503 	/* If we've had an abort of any type, don't even think about
504 	 * actually doing the restart! */
505 	if (is_handle_aborted(handle))
506 		return 0;
507 
508 	/*
509 	 * First unlink the handle from its current transaction, and start the
510 	 * commit on that.
511 	 */
512 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
513 	J_ASSERT(journal_current_handle() == handle);
514 
515 	read_lock(&journal->j_state_lock);
516 	spin_lock(&transaction->t_handle_lock);
517 	atomic_sub(handle->h_buffer_credits,
518 		   &transaction->t_outstanding_credits);
519 	if (atomic_dec_and_test(&transaction->t_updates))
520 		wake_up(&journal->j_wait_updates);
521 	spin_unlock(&transaction->t_handle_lock);
522 
523 	jbd_debug(2, "restarting handle %p\n", handle);
524 	tid = transaction->t_tid;
525 	need_to_start = !tid_geq(journal->j_commit_request, tid);
526 	read_unlock(&journal->j_state_lock);
527 	if (need_to_start)
528 		jbd2_log_start_commit(journal, tid);
529 
530 	lock_map_release(&handle->h_lockdep_map);
531 	handle->h_buffer_credits = nblocks;
532 	ret = start_this_handle(journal, handle, gfp_mask);
533 	return ret;
534 }
535 EXPORT_SYMBOL(jbd2__journal_restart);
536 
537 
538 int jbd2_journal_restart(handle_t *handle, int nblocks)
539 {
540 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
541 }
542 EXPORT_SYMBOL(jbd2_journal_restart);
543 
544 /**
545  * void jbd2_journal_lock_updates () - establish a transaction barrier.
546  * @journal:  Journal to establish a barrier on.
547  *
548  * This locks out any further updates from being started, and blocks
549  * until all existing updates have completed, returning only once the
550  * journal is in a quiescent state with no updates running.
551  *
552  * The journal lock should not be held on entry.
553  */
554 void jbd2_journal_lock_updates(journal_t *journal)
555 {
556 	DEFINE_WAIT(wait);
557 
558 	write_lock(&journal->j_state_lock);
559 	++journal->j_barrier_count;
560 
561 	/* Wait until there are no running updates */
562 	while (1) {
563 		transaction_t *transaction = journal->j_running_transaction;
564 
565 		if (!transaction)
566 			break;
567 
568 		spin_lock(&transaction->t_handle_lock);
569 		prepare_to_wait(&journal->j_wait_updates, &wait,
570 				TASK_UNINTERRUPTIBLE);
571 		if (!atomic_read(&transaction->t_updates)) {
572 			spin_unlock(&transaction->t_handle_lock);
573 			finish_wait(&journal->j_wait_updates, &wait);
574 			break;
575 		}
576 		spin_unlock(&transaction->t_handle_lock);
577 		write_unlock(&journal->j_state_lock);
578 		schedule();
579 		finish_wait(&journal->j_wait_updates, &wait);
580 		write_lock(&journal->j_state_lock);
581 	}
582 	write_unlock(&journal->j_state_lock);
583 
584 	/*
585 	 * We have now established a barrier against other normal updates, but
586 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
587 	 * to make sure that we serialise special journal-locked operations
588 	 * too.
589 	 */
590 	mutex_lock(&journal->j_barrier);
591 }
592 
593 /**
594  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
595  * @journal:  Journal to release the barrier on.
596  *
597  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
598  *
599  * Should be called without the journal lock held.
600  */
601 void jbd2_journal_unlock_updates (journal_t *journal)
602 {
603 	J_ASSERT(journal->j_barrier_count != 0);
604 
605 	mutex_unlock(&journal->j_barrier);
606 	write_lock(&journal->j_state_lock);
607 	--journal->j_barrier_count;
608 	write_unlock(&journal->j_state_lock);
609 	wake_up(&journal->j_wait_transaction_locked);
610 }
611 
612 static void warn_dirty_buffer(struct buffer_head *bh)
613 {
614 	char b[BDEVNAME_SIZE];
615 
616 	printk(KERN_WARNING
617 	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
618 	       "There's a risk of filesystem corruption in case of system "
619 	       "crash.\n",
620 	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
621 }
622 
623 /*
624  * If the buffer is already part of the current transaction, then there
625  * is nothing we need to do.  If it is already part of a prior
626  * transaction which we are still committing to disk, then we need to
627  * make sure that we do not overwrite the old copy: we do copy-out to
628  * preserve the copy going to disk.  We also account the buffer against
629  * the handle's metadata buffer credits (unless the buffer is already
630  * part of the transaction, that is).
631  *
632  */
633 static int
634 do_get_write_access(handle_t *handle, struct journal_head *jh,
635 			int force_copy)
636 {
637 	struct buffer_head *bh;
638 	transaction_t *transaction;
639 	journal_t *journal;
640 	int error;
641 	char *frozen_buffer = NULL;
642 	int need_copy = 0;
643 
644 	if (is_handle_aborted(handle))
645 		return -EROFS;
646 
647 	transaction = handle->h_transaction;
648 	journal = transaction->t_journal;
649 
650 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
651 
652 	JBUFFER_TRACE(jh, "entry");
653 repeat:
654 	bh = jh2bh(jh);
655 
656 	/* @@@ Need to check for errors here at some point. */
657 
658 	lock_buffer(bh);
659 	jbd_lock_bh_state(bh);
660 
661 	/* We now hold the buffer lock so it is safe to query the buffer
662 	 * state.  Is the buffer dirty?
663 	 *
664 	 * If so, there are two possibilities.  The buffer may be
665 	 * non-journaled, and undergoing a quite legitimate writeback.
666 	 * Otherwise, it is journaled, and we don't expect dirty buffers
667 	 * in that state (the buffers should be marked JBD_Dirty
668 	 * instead.)  So either the IO is being done under our own
669 	 * control and this is a bug, or it's a third party IO such as
670 	 * dump(8) (which may leave the buffer scheduled for read ---
671 	 * ie. locked but not dirty) or tune2fs (which may actually have
672 	 * the buffer dirtied, ugh.)  */
673 
674 	if (buffer_dirty(bh)) {
675 		/*
676 		 * First question: is this buffer already part of the current
677 		 * transaction or the existing committing transaction?
678 		 */
679 		if (jh->b_transaction) {
680 			J_ASSERT_JH(jh,
681 				jh->b_transaction == transaction ||
682 				jh->b_transaction ==
683 					journal->j_committing_transaction);
684 			if (jh->b_next_transaction)
685 				J_ASSERT_JH(jh, jh->b_next_transaction ==
686 							transaction);
687 			warn_dirty_buffer(bh);
688 		}
689 		/*
690 		 * In any case we need to clean the dirty flag and we must
691 		 * do it under the buffer lock to be sure we don't race
692 		 * with running write-out.
693 		 */
694 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
695 		clear_buffer_dirty(bh);
696 		set_buffer_jbddirty(bh);
697 	}
698 
699 	unlock_buffer(bh);
700 
701 	error = -EROFS;
702 	if (is_handle_aborted(handle)) {
703 		jbd_unlock_bh_state(bh);
704 		goto out;
705 	}
706 	error = 0;
707 
708 	/*
709 	 * The buffer is already part of this transaction if b_transaction or
710 	 * b_next_transaction points to it
711 	 */
712 	if (jh->b_transaction == transaction ||
713 	    jh->b_next_transaction == transaction)
714 		goto done;
715 
716 	/*
717 	 * this is the first time this transaction is touching this buffer,
718 	 * reset the modified flag
719 	 */
720        jh->b_modified = 0;
721 
722 	/*
723 	 * If there is already a copy-out version of this buffer, then we don't
724 	 * need to make another one
725 	 */
726 	if (jh->b_frozen_data) {
727 		JBUFFER_TRACE(jh, "has frozen data");
728 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
729 		jh->b_next_transaction = transaction;
730 		goto done;
731 	}
732 
733 	/* Is there data here we need to preserve? */
734 
735 	if (jh->b_transaction && jh->b_transaction != transaction) {
736 		JBUFFER_TRACE(jh, "owned by older transaction");
737 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
738 		J_ASSERT_JH(jh, jh->b_transaction ==
739 					journal->j_committing_transaction);
740 
741 		/* There is one case we have to be very careful about.
742 		 * If the committing transaction is currently writing
743 		 * this buffer out to disk and has NOT made a copy-out,
744 		 * then we cannot modify the buffer contents at all
745 		 * right now.  The essence of copy-out is that it is the
746 		 * extra copy, not the primary copy, which gets
747 		 * journaled.  If the primary copy is already going to
748 		 * disk then we cannot do copy-out here. */
749 
750 		if (jh->b_jlist == BJ_Shadow) {
751 			DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
752 			wait_queue_head_t *wqh;
753 
754 			wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
755 
756 			JBUFFER_TRACE(jh, "on shadow: sleep");
757 			jbd_unlock_bh_state(bh);
758 			/* commit wakes up all shadow buffers after IO */
759 			for ( ; ; ) {
760 				prepare_to_wait(wqh, &wait.wait,
761 						TASK_UNINTERRUPTIBLE);
762 				if (jh->b_jlist != BJ_Shadow)
763 					break;
764 				schedule();
765 			}
766 			finish_wait(wqh, &wait.wait);
767 			goto repeat;
768 		}
769 
770 		/* Only do the copy if the currently-owning transaction
771 		 * still needs it.  If it is on the Forget list, the
772 		 * committing transaction is past that stage.  The
773 		 * buffer had better remain locked during the kmalloc,
774 		 * but that should be true --- we hold the journal lock
775 		 * still and the buffer is already on the BUF_JOURNAL
776 		 * list so won't be flushed.
777 		 *
778 		 * Subtle point, though: if this is a get_undo_access,
779 		 * then we will be relying on the frozen_data to contain
780 		 * the new value of the committed_data record after the
781 		 * transaction, so we HAVE to force the frozen_data copy
782 		 * in that case. */
783 
784 		if (jh->b_jlist != BJ_Forget || force_copy) {
785 			JBUFFER_TRACE(jh, "generate frozen data");
786 			if (!frozen_buffer) {
787 				JBUFFER_TRACE(jh, "allocate memory for buffer");
788 				jbd_unlock_bh_state(bh);
789 				frozen_buffer =
790 					jbd2_alloc(jh2bh(jh)->b_size,
791 							 GFP_NOFS);
792 				if (!frozen_buffer) {
793 					printk(KERN_EMERG
794 					       "%s: OOM for frozen_buffer\n",
795 					       __func__);
796 					JBUFFER_TRACE(jh, "oom!");
797 					error = -ENOMEM;
798 					jbd_lock_bh_state(bh);
799 					goto done;
800 				}
801 				goto repeat;
802 			}
803 			jh->b_frozen_data = frozen_buffer;
804 			frozen_buffer = NULL;
805 			need_copy = 1;
806 		}
807 		jh->b_next_transaction = transaction;
808 	}
809 
810 
811 	/*
812 	 * Finally, if the buffer is not journaled right now, we need to make
813 	 * sure it doesn't get written to disk before the caller actually
814 	 * commits the new data
815 	 */
816 	if (!jh->b_transaction) {
817 		JBUFFER_TRACE(jh, "no transaction");
818 		J_ASSERT_JH(jh, !jh->b_next_transaction);
819 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
820 		spin_lock(&journal->j_list_lock);
821 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
822 		spin_unlock(&journal->j_list_lock);
823 	}
824 
825 done:
826 	if (need_copy) {
827 		struct page *page;
828 		int offset;
829 		char *source;
830 
831 		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
832 			    "Possible IO failure.\n");
833 		page = jh2bh(jh)->b_page;
834 		offset = offset_in_page(jh2bh(jh)->b_data);
835 		source = kmap_atomic(page);
836 		/* Fire data frozen trigger just before we copy the data */
837 		jbd2_buffer_frozen_trigger(jh, source + offset,
838 					   jh->b_triggers);
839 		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
840 		kunmap_atomic(source);
841 
842 		/*
843 		 * Now that the frozen data is saved off, we need to store
844 		 * any matching triggers.
845 		 */
846 		jh->b_frozen_triggers = jh->b_triggers;
847 	}
848 	jbd_unlock_bh_state(bh);
849 
850 	/*
851 	 * If we are about to journal a buffer, then any revoke pending on it is
852 	 * no longer valid
853 	 */
854 	jbd2_journal_cancel_revoke(handle, jh);
855 
856 out:
857 	if (unlikely(frozen_buffer))	/* It's usually NULL */
858 		jbd2_free(frozen_buffer, bh->b_size);
859 
860 	JBUFFER_TRACE(jh, "exit");
861 	return error;
862 }
863 
864 /**
865  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
866  * @handle: transaction to add buffer modifications to
867  * @bh:     bh to be used for metadata writes
868  *
869  * Returns an error code or 0 on success.
870  *
871  * In full data journalling mode the buffer may be of type BJ_AsyncData,
872  * because we're write()ing a buffer which is also part of a shared mapping.
873  */
874 
875 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
876 {
877 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
878 	int rc;
879 
880 	/* We do not want to get caught playing with fields which the
881 	 * log thread also manipulates.  Make sure that the buffer
882 	 * completes any outstanding IO before proceeding. */
883 	rc = do_get_write_access(handle, jh, 0);
884 	jbd2_journal_put_journal_head(jh);
885 	return rc;
886 }
887 
888 
889 /*
890  * When the user wants to journal a newly created buffer_head
891  * (ie. getblk() returned a new buffer and we are going to populate it
892  * manually rather than reading off disk), then we need to keep the
893  * buffer_head locked until it has been completely filled with new
894  * data.  In this case, we should be able to make the assertion that
895  * the bh is not already part of an existing transaction.
896  *
897  * The buffer should already be locked by the caller by this point.
898  * There is no lock ranking violation: it was a newly created,
899  * unlocked buffer beforehand. */
900 
901 /**
902  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
903  * @handle: transaction to new buffer to
904  * @bh: new buffer.
905  *
906  * Call this if you create a new bh.
907  */
908 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
909 {
910 	transaction_t *transaction = handle->h_transaction;
911 	journal_t *journal = transaction->t_journal;
912 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
913 	int err;
914 
915 	jbd_debug(5, "journal_head %p\n", jh);
916 	err = -EROFS;
917 	if (is_handle_aborted(handle))
918 		goto out;
919 	err = 0;
920 
921 	JBUFFER_TRACE(jh, "entry");
922 	/*
923 	 * The buffer may already belong to this transaction due to pre-zeroing
924 	 * in the filesystem's new_block code.  It may also be on the previous,
925 	 * committing transaction's lists, but it HAS to be in Forget state in
926 	 * that case: the transaction must have deleted the buffer for it to be
927 	 * reused here.
928 	 */
929 	jbd_lock_bh_state(bh);
930 	spin_lock(&journal->j_list_lock);
931 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
932 		jh->b_transaction == NULL ||
933 		(jh->b_transaction == journal->j_committing_transaction &&
934 			  jh->b_jlist == BJ_Forget)));
935 
936 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
938 
939 	if (jh->b_transaction == NULL) {
940 		/*
941 		 * Previous jbd2_journal_forget() could have left the buffer
942 		 * with jbddirty bit set because it was being committed. When
943 		 * the commit finished, we've filed the buffer for
944 		 * checkpointing and marked it dirty. Now we are reallocating
945 		 * the buffer so the transaction freeing it must have
946 		 * committed and so it's safe to clear the dirty bit.
947 		 */
948 		clear_buffer_dirty(jh2bh(jh));
949 		/* first access by this transaction */
950 		jh->b_modified = 0;
951 
952 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
953 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
954 	} else if (jh->b_transaction == journal->j_committing_transaction) {
955 		/* first access by this transaction */
956 		jh->b_modified = 0;
957 
958 		JBUFFER_TRACE(jh, "set next transaction");
959 		jh->b_next_transaction = transaction;
960 	}
961 	spin_unlock(&journal->j_list_lock);
962 	jbd_unlock_bh_state(bh);
963 
964 	/*
965 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
966 	 * blocks which contain freed but then revoked metadata.  We need
967 	 * to cancel the revoke in case we end up freeing it yet again
968 	 * and the reallocating as data - this would cause a second revoke,
969 	 * which hits an assertion error.
970 	 */
971 	JBUFFER_TRACE(jh, "cancelling revoke");
972 	jbd2_journal_cancel_revoke(handle, jh);
973 out:
974 	jbd2_journal_put_journal_head(jh);
975 	return err;
976 }
977 
978 /**
979  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
980  *     non-rewindable consequences
981  * @handle: transaction
982  * @bh: buffer to undo
983  *
984  * Sometimes there is a need to distinguish between metadata which has
985  * been committed to disk and that which has not.  The ext3fs code uses
986  * this for freeing and allocating space, we have to make sure that we
987  * do not reuse freed space until the deallocation has been committed,
988  * since if we overwrote that space we would make the delete
989  * un-rewindable in case of a crash.
990  *
991  * To deal with that, jbd2_journal_get_undo_access requests write access to a
992  * buffer for parts of non-rewindable operations such as delete
993  * operations on the bitmaps.  The journaling code must keep a copy of
994  * the buffer's contents prior to the undo_access call until such time
995  * as we know that the buffer has definitely been committed to disk.
996  *
997  * We never need to know which transaction the committed data is part
998  * of, buffers touched here are guaranteed to be dirtied later and so
999  * will be committed to a new transaction in due course, at which point
1000  * we can discard the old committed data pointer.
1001  *
1002  * Returns error number or 0 on success.
1003  */
1004 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1005 {
1006 	int err;
1007 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1008 	char *committed_data = NULL;
1009 
1010 	JBUFFER_TRACE(jh, "entry");
1011 
1012 	/*
1013 	 * Do this first --- it can drop the journal lock, so we want to
1014 	 * make sure that obtaining the committed_data is done
1015 	 * atomically wrt. completion of any outstanding commits.
1016 	 */
1017 	err = do_get_write_access(handle, jh, 1);
1018 	if (err)
1019 		goto out;
1020 
1021 repeat:
1022 	if (!jh->b_committed_data) {
1023 		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1024 		if (!committed_data) {
1025 			printk(KERN_EMERG "%s: No memory for committed data\n",
1026 				__func__);
1027 			err = -ENOMEM;
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	jbd_lock_bh_state(bh);
1033 	if (!jh->b_committed_data) {
1034 		/* Copy out the current buffer contents into the
1035 		 * preserved, committed copy. */
1036 		JBUFFER_TRACE(jh, "generate b_committed data");
1037 		if (!committed_data) {
1038 			jbd_unlock_bh_state(bh);
1039 			goto repeat;
1040 		}
1041 
1042 		jh->b_committed_data = committed_data;
1043 		committed_data = NULL;
1044 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1045 	}
1046 	jbd_unlock_bh_state(bh);
1047 out:
1048 	jbd2_journal_put_journal_head(jh);
1049 	if (unlikely(committed_data))
1050 		jbd2_free(committed_data, bh->b_size);
1051 	return err;
1052 }
1053 
1054 /**
1055  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1056  * @bh: buffer to trigger on
1057  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1058  *
1059  * Set any triggers on this journal_head.  This is always safe, because
1060  * triggers for a committing buffer will be saved off, and triggers for
1061  * a running transaction will match the buffer in that transaction.
1062  *
1063  * Call with NULL to clear the triggers.
1064  */
1065 void jbd2_journal_set_triggers(struct buffer_head *bh,
1066 			       struct jbd2_buffer_trigger_type *type)
1067 {
1068 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1069 
1070 	if (WARN_ON(!jh))
1071 		return;
1072 	jh->b_triggers = type;
1073 	jbd2_journal_put_journal_head(jh);
1074 }
1075 
1076 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1077 				struct jbd2_buffer_trigger_type *triggers)
1078 {
1079 	struct buffer_head *bh = jh2bh(jh);
1080 
1081 	if (!triggers || !triggers->t_frozen)
1082 		return;
1083 
1084 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1085 }
1086 
1087 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1088 			       struct jbd2_buffer_trigger_type *triggers)
1089 {
1090 	if (!triggers || !triggers->t_abort)
1091 		return;
1092 
1093 	triggers->t_abort(triggers, jh2bh(jh));
1094 }
1095 
1096 
1097 
1098 /**
1099  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1100  * @handle: transaction to add buffer to.
1101  * @bh: buffer to mark
1102  *
1103  * mark dirty metadata which needs to be journaled as part of the current
1104  * transaction.
1105  *
1106  * The buffer must have previously had jbd2_journal_get_write_access()
1107  * called so that it has a valid journal_head attached to the buffer
1108  * head.
1109  *
1110  * The buffer is placed on the transaction's metadata list and is marked
1111  * as belonging to the transaction.
1112  *
1113  * Returns error number or 0 on success.
1114  *
1115  * Special care needs to be taken if the buffer already belongs to the
1116  * current committing transaction (in which case we should have frozen
1117  * data present for that commit).  In that case, we don't relink the
1118  * buffer: that only gets done when the old transaction finally
1119  * completes its commit.
1120  */
1121 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1122 {
1123 	transaction_t *transaction = handle->h_transaction;
1124 	journal_t *journal = transaction->t_journal;
1125 	struct journal_head *jh;
1126 	int ret = 0;
1127 
1128 	if (is_handle_aborted(handle))
1129 		goto out;
1130 	jh = jbd2_journal_grab_journal_head(bh);
1131 	if (!jh) {
1132 		ret = -EUCLEAN;
1133 		goto out;
1134 	}
1135 	jbd_debug(5, "journal_head %p\n", jh);
1136 	JBUFFER_TRACE(jh, "entry");
1137 
1138 	jbd_lock_bh_state(bh);
1139 
1140 	if (jh->b_modified == 0) {
1141 		/*
1142 		 * This buffer's got modified and becoming part
1143 		 * of the transaction. This needs to be done
1144 		 * once a transaction -bzzz
1145 		 */
1146 		jh->b_modified = 1;
1147 		J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1148 		handle->h_buffer_credits--;
1149 	}
1150 
1151 	/*
1152 	 * fastpath, to avoid expensive locking.  If this buffer is already
1153 	 * on the running transaction's metadata list there is nothing to do.
1154 	 * Nobody can take it off again because there is a handle open.
1155 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1156 	 * result in this test being false, so we go in and take the locks.
1157 	 */
1158 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1159 		JBUFFER_TRACE(jh, "fastpath");
1160 		if (unlikely(jh->b_transaction !=
1161 			     journal->j_running_transaction)) {
1162 			printk(KERN_EMERG "JBD: %s: "
1163 			       "jh->b_transaction (%llu, %p, %u) != "
1164 			       "journal->j_running_transaction (%p, %u)",
1165 			       journal->j_devname,
1166 			       (unsigned long long) bh->b_blocknr,
1167 			       jh->b_transaction,
1168 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1169 			       journal->j_running_transaction,
1170 			       journal->j_running_transaction ?
1171 			       journal->j_running_transaction->t_tid : 0);
1172 			ret = -EINVAL;
1173 		}
1174 		goto out_unlock_bh;
1175 	}
1176 
1177 	set_buffer_jbddirty(bh);
1178 
1179 	/*
1180 	 * Metadata already on the current transaction list doesn't
1181 	 * need to be filed.  Metadata on another transaction's list must
1182 	 * be committing, and will be refiled once the commit completes:
1183 	 * leave it alone for now.
1184 	 */
1185 	if (jh->b_transaction != transaction) {
1186 		JBUFFER_TRACE(jh, "already on other transaction");
1187 		if (unlikely(jh->b_transaction !=
1188 			     journal->j_committing_transaction)) {
1189 			printk(KERN_EMERG "JBD: %s: "
1190 			       "jh->b_transaction (%llu, %p, %u) != "
1191 			       "journal->j_committing_transaction (%p, %u)",
1192 			       journal->j_devname,
1193 			       (unsigned long long) bh->b_blocknr,
1194 			       jh->b_transaction,
1195 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1196 			       journal->j_committing_transaction,
1197 			       journal->j_committing_transaction ?
1198 			       journal->j_committing_transaction->t_tid : 0);
1199 			ret = -EINVAL;
1200 		}
1201 		if (unlikely(jh->b_next_transaction != transaction)) {
1202 			printk(KERN_EMERG "JBD: %s: "
1203 			       "jh->b_next_transaction (%llu, %p, %u) != "
1204 			       "transaction (%p, %u)",
1205 			       journal->j_devname,
1206 			       (unsigned long long) bh->b_blocknr,
1207 			       jh->b_next_transaction,
1208 			       jh->b_next_transaction ?
1209 			       jh->b_next_transaction->t_tid : 0,
1210 			       transaction, transaction->t_tid);
1211 			ret = -EINVAL;
1212 		}
1213 		/* And this case is illegal: we can't reuse another
1214 		 * transaction's data buffer, ever. */
1215 		goto out_unlock_bh;
1216 	}
1217 
1218 	/* That test should have eliminated the following case: */
1219 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1220 
1221 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1222 	spin_lock(&journal->j_list_lock);
1223 	__jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1224 	spin_unlock(&journal->j_list_lock);
1225 out_unlock_bh:
1226 	jbd_unlock_bh_state(bh);
1227 	jbd2_journal_put_journal_head(jh);
1228 out:
1229 	JBUFFER_TRACE(jh, "exit");
1230 	WARN_ON(ret);	/* All errors are bugs, so dump the stack */
1231 	return ret;
1232 }
1233 
1234 /**
1235  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1236  * @handle: transaction handle
1237  * @bh:     bh to 'forget'
1238  *
1239  * We can only do the bforget if there are no commits pending against the
1240  * buffer.  If the buffer is dirty in the current running transaction we
1241  * can safely unlink it.
1242  *
1243  * bh may not be a journalled buffer at all - it may be a non-JBD
1244  * buffer which came off the hashtable.  Check for this.
1245  *
1246  * Decrements bh->b_count by one.
1247  *
1248  * Allow this call even if the handle has aborted --- it may be part of
1249  * the caller's cleanup after an abort.
1250  */
1251 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1252 {
1253 	transaction_t *transaction = handle->h_transaction;
1254 	journal_t *journal = transaction->t_journal;
1255 	struct journal_head *jh;
1256 	int drop_reserve = 0;
1257 	int err = 0;
1258 	int was_modified = 0;
1259 
1260 	BUFFER_TRACE(bh, "entry");
1261 
1262 	jbd_lock_bh_state(bh);
1263 	spin_lock(&journal->j_list_lock);
1264 
1265 	if (!buffer_jbd(bh))
1266 		goto not_jbd;
1267 	jh = bh2jh(bh);
1268 
1269 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1270 	 * Don't do any jbd operations, and return an error. */
1271 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1272 			 "inconsistent data on disk")) {
1273 		err = -EIO;
1274 		goto not_jbd;
1275 	}
1276 
1277 	/* keep track of whether or not this transaction modified us */
1278 	was_modified = jh->b_modified;
1279 
1280 	/*
1281 	 * The buffer's going from the transaction, we must drop
1282 	 * all references -bzzz
1283 	 */
1284 	jh->b_modified = 0;
1285 
1286 	if (jh->b_transaction == handle->h_transaction) {
1287 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1288 
1289 		/* If we are forgetting a buffer which is already part
1290 		 * of this transaction, then we can just drop it from
1291 		 * the transaction immediately. */
1292 		clear_buffer_dirty(bh);
1293 		clear_buffer_jbddirty(bh);
1294 
1295 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1296 
1297 		/*
1298 		 * we only want to drop a reference if this transaction
1299 		 * modified the buffer
1300 		 */
1301 		if (was_modified)
1302 			drop_reserve = 1;
1303 
1304 		/*
1305 		 * We are no longer going to journal this buffer.
1306 		 * However, the commit of this transaction is still
1307 		 * important to the buffer: the delete that we are now
1308 		 * processing might obsolete an old log entry, so by
1309 		 * committing, we can satisfy the buffer's checkpoint.
1310 		 *
1311 		 * So, if we have a checkpoint on the buffer, we should
1312 		 * now refile the buffer on our BJ_Forget list so that
1313 		 * we know to remove the checkpoint after we commit.
1314 		 */
1315 
1316 		if (jh->b_cp_transaction) {
1317 			__jbd2_journal_temp_unlink_buffer(jh);
1318 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1319 		} else {
1320 			__jbd2_journal_unfile_buffer(jh);
1321 			if (!buffer_jbd(bh)) {
1322 				spin_unlock(&journal->j_list_lock);
1323 				jbd_unlock_bh_state(bh);
1324 				__bforget(bh);
1325 				goto drop;
1326 			}
1327 		}
1328 	} else if (jh->b_transaction) {
1329 		J_ASSERT_JH(jh, (jh->b_transaction ==
1330 				 journal->j_committing_transaction));
1331 		/* However, if the buffer is still owned by a prior
1332 		 * (committing) transaction, we can't drop it yet... */
1333 		JBUFFER_TRACE(jh, "belongs to older transaction");
1334 		/* ... but we CAN drop it from the new transaction if we
1335 		 * have also modified it since the original commit. */
1336 
1337 		if (jh->b_next_transaction) {
1338 			J_ASSERT(jh->b_next_transaction == transaction);
1339 			jh->b_next_transaction = NULL;
1340 
1341 			/*
1342 			 * only drop a reference if this transaction modified
1343 			 * the buffer
1344 			 */
1345 			if (was_modified)
1346 				drop_reserve = 1;
1347 		}
1348 	}
1349 
1350 not_jbd:
1351 	spin_unlock(&journal->j_list_lock);
1352 	jbd_unlock_bh_state(bh);
1353 	__brelse(bh);
1354 drop:
1355 	if (drop_reserve) {
1356 		/* no need to reserve log space for this block -bzzz */
1357 		handle->h_buffer_credits++;
1358 	}
1359 	return err;
1360 }
1361 
1362 /**
1363  * int jbd2_journal_stop() - complete a transaction
1364  * @handle: tranaction to complete.
1365  *
1366  * All done for a particular handle.
1367  *
1368  * There is not much action needed here.  We just return any remaining
1369  * buffer credits to the transaction and remove the handle.  The only
1370  * complication is that we need to start a commit operation if the
1371  * filesystem is marked for synchronous update.
1372  *
1373  * jbd2_journal_stop itself will not usually return an error, but it may
1374  * do so in unusual circumstances.  In particular, expect it to
1375  * return -EIO if a jbd2_journal_abort has been executed since the
1376  * transaction began.
1377  */
1378 int jbd2_journal_stop(handle_t *handle)
1379 {
1380 	transaction_t *transaction = handle->h_transaction;
1381 	journal_t *journal = transaction->t_journal;
1382 	int err, wait_for_commit = 0;
1383 	tid_t tid;
1384 	pid_t pid;
1385 
1386 	J_ASSERT(journal_current_handle() == handle);
1387 
1388 	if (is_handle_aborted(handle))
1389 		err = -EIO;
1390 	else {
1391 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1392 		err = 0;
1393 	}
1394 
1395 	if (--handle->h_ref > 0) {
1396 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1397 			  handle->h_ref);
1398 		return err;
1399 	}
1400 
1401 	jbd_debug(4, "Handle %p going down\n", handle);
1402 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1403 				handle->h_transaction->t_tid,
1404 				handle->h_type, handle->h_line_no,
1405 				jiffies - handle->h_start_jiffies,
1406 				handle->h_sync, handle->h_requested_credits,
1407 				(handle->h_requested_credits -
1408 				 handle->h_buffer_credits));
1409 
1410 	/*
1411 	 * Implement synchronous transaction batching.  If the handle
1412 	 * was synchronous, don't force a commit immediately.  Let's
1413 	 * yield and let another thread piggyback onto this
1414 	 * transaction.  Keep doing that while new threads continue to
1415 	 * arrive.  It doesn't cost much - we're about to run a commit
1416 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1417 	 * operations by 30x or more...
1418 	 *
1419 	 * We try and optimize the sleep time against what the
1420 	 * underlying disk can do, instead of having a static sleep
1421 	 * time.  This is useful for the case where our storage is so
1422 	 * fast that it is more optimal to go ahead and force a flush
1423 	 * and wait for the transaction to be committed than it is to
1424 	 * wait for an arbitrary amount of time for new writers to
1425 	 * join the transaction.  We achieve this by measuring how
1426 	 * long it takes to commit a transaction, and compare it with
1427 	 * how long this transaction has been running, and if run time
1428 	 * < commit time then we sleep for the delta and commit.  This
1429 	 * greatly helps super fast disks that would see slowdowns as
1430 	 * more threads started doing fsyncs.
1431 	 *
1432 	 * But don't do this if this process was the most recent one
1433 	 * to perform a synchronous write.  We do this to detect the
1434 	 * case where a single process is doing a stream of sync
1435 	 * writes.  No point in waiting for joiners in that case.
1436 	 */
1437 	pid = current->pid;
1438 	if (handle->h_sync && journal->j_last_sync_writer != pid) {
1439 		u64 commit_time, trans_time;
1440 
1441 		journal->j_last_sync_writer = pid;
1442 
1443 		read_lock(&journal->j_state_lock);
1444 		commit_time = journal->j_average_commit_time;
1445 		read_unlock(&journal->j_state_lock);
1446 
1447 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1448 						   transaction->t_start_time));
1449 
1450 		commit_time = max_t(u64, commit_time,
1451 				    1000*journal->j_min_batch_time);
1452 		commit_time = min_t(u64, commit_time,
1453 				    1000*journal->j_max_batch_time);
1454 
1455 		if (trans_time < commit_time) {
1456 			ktime_t expires = ktime_add_ns(ktime_get(),
1457 						       commit_time);
1458 			set_current_state(TASK_UNINTERRUPTIBLE);
1459 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1460 		}
1461 	}
1462 
1463 	if (handle->h_sync)
1464 		transaction->t_synchronous_commit = 1;
1465 	current->journal_info = NULL;
1466 	atomic_sub(handle->h_buffer_credits,
1467 		   &transaction->t_outstanding_credits);
1468 
1469 	/*
1470 	 * If the handle is marked SYNC, we need to set another commit
1471 	 * going!  We also want to force a commit if the current
1472 	 * transaction is occupying too much of the log, or if the
1473 	 * transaction is too old now.
1474 	 */
1475 	if (handle->h_sync ||
1476 	    (atomic_read(&transaction->t_outstanding_credits) >
1477 	     journal->j_max_transaction_buffers) ||
1478 	    time_after_eq(jiffies, transaction->t_expires)) {
1479 		/* Do this even for aborted journals: an abort still
1480 		 * completes the commit thread, it just doesn't write
1481 		 * anything to disk. */
1482 
1483 		jbd_debug(2, "transaction too old, requesting commit for "
1484 					"handle %p\n", handle);
1485 		/* This is non-blocking */
1486 		jbd2_log_start_commit(journal, transaction->t_tid);
1487 
1488 		/*
1489 		 * Special case: JBD2_SYNC synchronous updates require us
1490 		 * to wait for the commit to complete.
1491 		 */
1492 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1493 			wait_for_commit = 1;
1494 	}
1495 
1496 	/*
1497 	 * Once we drop t_updates, if it goes to zero the transaction
1498 	 * could start committing on us and eventually disappear.  So
1499 	 * once we do this, we must not dereference transaction
1500 	 * pointer again.
1501 	 */
1502 	tid = transaction->t_tid;
1503 	if (atomic_dec_and_test(&transaction->t_updates)) {
1504 		wake_up(&journal->j_wait_updates);
1505 		if (journal->j_barrier_count)
1506 			wake_up(&journal->j_wait_transaction_locked);
1507 	}
1508 
1509 	if (wait_for_commit)
1510 		err = jbd2_log_wait_commit(journal, tid);
1511 
1512 	lock_map_release(&handle->h_lockdep_map);
1513 
1514 	jbd2_free_handle(handle);
1515 	return err;
1516 }
1517 
1518 /**
1519  * int jbd2_journal_force_commit() - force any uncommitted transactions
1520  * @journal: journal to force
1521  *
1522  * For synchronous operations: force any uncommitted transactions
1523  * to disk.  May seem kludgy, but it reuses all the handle batching
1524  * code in a very simple manner.
1525  */
1526 int jbd2_journal_force_commit(journal_t *journal)
1527 {
1528 	handle_t *handle;
1529 	int ret;
1530 
1531 	handle = jbd2_journal_start(journal, 1);
1532 	if (IS_ERR(handle)) {
1533 		ret = PTR_ERR(handle);
1534 	} else {
1535 		handle->h_sync = 1;
1536 		ret = jbd2_journal_stop(handle);
1537 	}
1538 	return ret;
1539 }
1540 
1541 /*
1542  *
1543  * List management code snippets: various functions for manipulating the
1544  * transaction buffer lists.
1545  *
1546  */
1547 
1548 /*
1549  * Append a buffer to a transaction list, given the transaction's list head
1550  * pointer.
1551  *
1552  * j_list_lock is held.
1553  *
1554  * jbd_lock_bh_state(jh2bh(jh)) is held.
1555  */
1556 
1557 static inline void
1558 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1559 {
1560 	if (!*list) {
1561 		jh->b_tnext = jh->b_tprev = jh;
1562 		*list = jh;
1563 	} else {
1564 		/* Insert at the tail of the list to preserve order */
1565 		struct journal_head *first = *list, *last = first->b_tprev;
1566 		jh->b_tprev = last;
1567 		jh->b_tnext = first;
1568 		last->b_tnext = first->b_tprev = jh;
1569 	}
1570 }
1571 
1572 /*
1573  * Remove a buffer from a transaction list, given the transaction's list
1574  * head pointer.
1575  *
1576  * Called with j_list_lock held, and the journal may not be locked.
1577  *
1578  * jbd_lock_bh_state(jh2bh(jh)) is held.
1579  */
1580 
1581 static inline void
1582 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1583 {
1584 	if (*list == jh) {
1585 		*list = jh->b_tnext;
1586 		if (*list == jh)
1587 			*list = NULL;
1588 	}
1589 	jh->b_tprev->b_tnext = jh->b_tnext;
1590 	jh->b_tnext->b_tprev = jh->b_tprev;
1591 }
1592 
1593 /*
1594  * Remove a buffer from the appropriate transaction list.
1595  *
1596  * Note that this function can *change* the value of
1597  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1598  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1599  * of these pointers, it could go bad.  Generally the caller needs to re-read
1600  * the pointer from the transaction_t.
1601  *
1602  * Called under j_list_lock.
1603  */
1604 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1605 {
1606 	struct journal_head **list = NULL;
1607 	transaction_t *transaction;
1608 	struct buffer_head *bh = jh2bh(jh);
1609 
1610 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1611 	transaction = jh->b_transaction;
1612 	if (transaction)
1613 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1614 
1615 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1616 	if (jh->b_jlist != BJ_None)
1617 		J_ASSERT_JH(jh, transaction != NULL);
1618 
1619 	switch (jh->b_jlist) {
1620 	case BJ_None:
1621 		return;
1622 	case BJ_Metadata:
1623 		transaction->t_nr_buffers--;
1624 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1625 		list = &transaction->t_buffers;
1626 		break;
1627 	case BJ_Forget:
1628 		list = &transaction->t_forget;
1629 		break;
1630 	case BJ_IO:
1631 		list = &transaction->t_iobuf_list;
1632 		break;
1633 	case BJ_Shadow:
1634 		list = &transaction->t_shadow_list;
1635 		break;
1636 	case BJ_LogCtl:
1637 		list = &transaction->t_log_list;
1638 		break;
1639 	case BJ_Reserved:
1640 		list = &transaction->t_reserved_list;
1641 		break;
1642 	}
1643 
1644 	__blist_del_buffer(list, jh);
1645 	jh->b_jlist = BJ_None;
1646 	if (test_clear_buffer_jbddirty(bh))
1647 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1648 }
1649 
1650 /*
1651  * Remove buffer from all transactions.
1652  *
1653  * Called with bh_state lock and j_list_lock
1654  *
1655  * jh and bh may be already freed when this function returns.
1656  */
1657 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1658 {
1659 	__jbd2_journal_temp_unlink_buffer(jh);
1660 	jh->b_transaction = NULL;
1661 	jbd2_journal_put_journal_head(jh);
1662 }
1663 
1664 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1665 {
1666 	struct buffer_head *bh = jh2bh(jh);
1667 
1668 	/* Get reference so that buffer cannot be freed before we unlock it */
1669 	get_bh(bh);
1670 	jbd_lock_bh_state(bh);
1671 	spin_lock(&journal->j_list_lock);
1672 	__jbd2_journal_unfile_buffer(jh);
1673 	spin_unlock(&journal->j_list_lock);
1674 	jbd_unlock_bh_state(bh);
1675 	__brelse(bh);
1676 }
1677 
1678 /*
1679  * Called from jbd2_journal_try_to_free_buffers().
1680  *
1681  * Called under jbd_lock_bh_state(bh)
1682  */
1683 static void
1684 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1685 {
1686 	struct journal_head *jh;
1687 
1688 	jh = bh2jh(bh);
1689 
1690 	if (buffer_locked(bh) || buffer_dirty(bh))
1691 		goto out;
1692 
1693 	if (jh->b_next_transaction != NULL)
1694 		goto out;
1695 
1696 	spin_lock(&journal->j_list_lock);
1697 	if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1698 		/* written-back checkpointed metadata buffer */
1699 		JBUFFER_TRACE(jh, "remove from checkpoint list");
1700 		__jbd2_journal_remove_checkpoint(jh);
1701 	}
1702 	spin_unlock(&journal->j_list_lock);
1703 out:
1704 	return;
1705 }
1706 
1707 /**
1708  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1709  * @journal: journal for operation
1710  * @page: to try and free
1711  * @gfp_mask: we use the mask to detect how hard should we try to release
1712  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1713  * release the buffers.
1714  *
1715  *
1716  * For all the buffers on this page,
1717  * if they are fully written out ordered data, move them onto BUF_CLEAN
1718  * so try_to_free_buffers() can reap them.
1719  *
1720  * This function returns non-zero if we wish try_to_free_buffers()
1721  * to be called. We do this if the page is releasable by try_to_free_buffers().
1722  * We also do it if the page has locked or dirty buffers and the caller wants
1723  * us to perform sync or async writeout.
1724  *
1725  * This complicates JBD locking somewhat.  We aren't protected by the
1726  * BKL here.  We wish to remove the buffer from its committing or
1727  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1728  *
1729  * This may *change* the value of transaction_t->t_datalist, so anyone
1730  * who looks at t_datalist needs to lock against this function.
1731  *
1732  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1733  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1734  * will come out of the lock with the buffer dirty, which makes it
1735  * ineligible for release here.
1736  *
1737  * Who else is affected by this?  hmm...  Really the only contender
1738  * is do_get_write_access() - it could be looking at the buffer while
1739  * journal_try_to_free_buffer() is changing its state.  But that
1740  * cannot happen because we never reallocate freed data as metadata
1741  * while the data is part of a transaction.  Yes?
1742  *
1743  * Return 0 on failure, 1 on success
1744  */
1745 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1746 				struct page *page, gfp_t gfp_mask)
1747 {
1748 	struct buffer_head *head;
1749 	struct buffer_head *bh;
1750 	int ret = 0;
1751 
1752 	J_ASSERT(PageLocked(page));
1753 
1754 	head = page_buffers(page);
1755 	bh = head;
1756 	do {
1757 		struct journal_head *jh;
1758 
1759 		/*
1760 		 * We take our own ref against the journal_head here to avoid
1761 		 * having to add tons of locking around each instance of
1762 		 * jbd2_journal_put_journal_head().
1763 		 */
1764 		jh = jbd2_journal_grab_journal_head(bh);
1765 		if (!jh)
1766 			continue;
1767 
1768 		jbd_lock_bh_state(bh);
1769 		__journal_try_to_free_buffer(journal, bh);
1770 		jbd2_journal_put_journal_head(jh);
1771 		jbd_unlock_bh_state(bh);
1772 		if (buffer_jbd(bh))
1773 			goto busy;
1774 	} while ((bh = bh->b_this_page) != head);
1775 
1776 	ret = try_to_free_buffers(page);
1777 
1778 busy:
1779 	return ret;
1780 }
1781 
1782 /*
1783  * This buffer is no longer needed.  If it is on an older transaction's
1784  * checkpoint list we need to record it on this transaction's forget list
1785  * to pin this buffer (and hence its checkpointing transaction) down until
1786  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1787  * release it.
1788  * Returns non-zero if JBD no longer has an interest in the buffer.
1789  *
1790  * Called under j_list_lock.
1791  *
1792  * Called under jbd_lock_bh_state(bh).
1793  */
1794 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1795 {
1796 	int may_free = 1;
1797 	struct buffer_head *bh = jh2bh(jh);
1798 
1799 	if (jh->b_cp_transaction) {
1800 		JBUFFER_TRACE(jh, "on running+cp transaction");
1801 		__jbd2_journal_temp_unlink_buffer(jh);
1802 		/*
1803 		 * We don't want to write the buffer anymore, clear the
1804 		 * bit so that we don't confuse checks in
1805 		 * __journal_file_buffer
1806 		 */
1807 		clear_buffer_dirty(bh);
1808 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1809 		may_free = 0;
1810 	} else {
1811 		JBUFFER_TRACE(jh, "on running transaction");
1812 		__jbd2_journal_unfile_buffer(jh);
1813 	}
1814 	return may_free;
1815 }
1816 
1817 /*
1818  * jbd2_journal_invalidatepage
1819  *
1820  * This code is tricky.  It has a number of cases to deal with.
1821  *
1822  * There are two invariants which this code relies on:
1823  *
1824  * i_size must be updated on disk before we start calling invalidatepage on the
1825  * data.
1826  *
1827  *  This is done in ext3 by defining an ext3_setattr method which
1828  *  updates i_size before truncate gets going.  By maintaining this
1829  *  invariant, we can be sure that it is safe to throw away any buffers
1830  *  attached to the current transaction: once the transaction commits,
1831  *  we know that the data will not be needed.
1832  *
1833  *  Note however that we can *not* throw away data belonging to the
1834  *  previous, committing transaction!
1835  *
1836  * Any disk blocks which *are* part of the previous, committing
1837  * transaction (and which therefore cannot be discarded immediately) are
1838  * not going to be reused in the new running transaction
1839  *
1840  *  The bitmap committed_data images guarantee this: any block which is
1841  *  allocated in one transaction and removed in the next will be marked
1842  *  as in-use in the committed_data bitmap, so cannot be reused until
1843  *  the next transaction to delete the block commits.  This means that
1844  *  leaving committing buffers dirty is quite safe: the disk blocks
1845  *  cannot be reallocated to a different file and so buffer aliasing is
1846  *  not possible.
1847  *
1848  *
1849  * The above applies mainly to ordered data mode.  In writeback mode we
1850  * don't make guarantees about the order in which data hits disk --- in
1851  * particular we don't guarantee that new dirty data is flushed before
1852  * transaction commit --- so it is always safe just to discard data
1853  * immediately in that mode.  --sct
1854  */
1855 
1856 /*
1857  * The journal_unmap_buffer helper function returns zero if the buffer
1858  * concerned remains pinned as an anonymous buffer belonging to an older
1859  * transaction.
1860  *
1861  * We're outside-transaction here.  Either or both of j_running_transaction
1862  * and j_committing_transaction may be NULL.
1863  */
1864 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1865 				int partial_page)
1866 {
1867 	transaction_t *transaction;
1868 	struct journal_head *jh;
1869 	int may_free = 1;
1870 
1871 	BUFFER_TRACE(bh, "entry");
1872 
1873 	/*
1874 	 * It is safe to proceed here without the j_list_lock because the
1875 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
1876 	 * holding the page lock. --sct
1877 	 */
1878 
1879 	if (!buffer_jbd(bh))
1880 		goto zap_buffer_unlocked;
1881 
1882 	/* OK, we have data buffer in journaled mode */
1883 	write_lock(&journal->j_state_lock);
1884 	jbd_lock_bh_state(bh);
1885 	spin_lock(&journal->j_list_lock);
1886 
1887 	jh = jbd2_journal_grab_journal_head(bh);
1888 	if (!jh)
1889 		goto zap_buffer_no_jh;
1890 
1891 	/*
1892 	 * We cannot remove the buffer from checkpoint lists until the
1893 	 * transaction adding inode to orphan list (let's call it T)
1894 	 * is committed.  Otherwise if the transaction changing the
1895 	 * buffer would be cleaned from the journal before T is
1896 	 * committed, a crash will cause that the correct contents of
1897 	 * the buffer will be lost.  On the other hand we have to
1898 	 * clear the buffer dirty bit at latest at the moment when the
1899 	 * transaction marking the buffer as freed in the filesystem
1900 	 * structures is committed because from that moment on the
1901 	 * block can be reallocated and used by a different page.
1902 	 * Since the block hasn't been freed yet but the inode has
1903 	 * already been added to orphan list, it is safe for us to add
1904 	 * the buffer to BJ_Forget list of the newest transaction.
1905 	 *
1906 	 * Also we have to clear buffer_mapped flag of a truncated buffer
1907 	 * because the buffer_head may be attached to the page straddling
1908 	 * i_size (can happen only when blocksize < pagesize) and thus the
1909 	 * buffer_head can be reused when the file is extended again. So we end
1910 	 * up keeping around invalidated buffers attached to transactions'
1911 	 * BJ_Forget list just to stop checkpointing code from cleaning up
1912 	 * the transaction this buffer was modified in.
1913 	 */
1914 	transaction = jh->b_transaction;
1915 	if (transaction == NULL) {
1916 		/* First case: not on any transaction.  If it
1917 		 * has no checkpoint link, then we can zap it:
1918 		 * it's a writeback-mode buffer so we don't care
1919 		 * if it hits disk safely. */
1920 		if (!jh->b_cp_transaction) {
1921 			JBUFFER_TRACE(jh, "not on any transaction: zap");
1922 			goto zap_buffer;
1923 		}
1924 
1925 		if (!buffer_dirty(bh)) {
1926 			/* bdflush has written it.  We can drop it now */
1927 			goto zap_buffer;
1928 		}
1929 
1930 		/* OK, it must be in the journal but still not
1931 		 * written fully to disk: it's metadata or
1932 		 * journaled data... */
1933 
1934 		if (journal->j_running_transaction) {
1935 			/* ... and once the current transaction has
1936 			 * committed, the buffer won't be needed any
1937 			 * longer. */
1938 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1939 			may_free = __dispose_buffer(jh,
1940 					journal->j_running_transaction);
1941 			goto zap_buffer;
1942 		} else {
1943 			/* There is no currently-running transaction. So the
1944 			 * orphan record which we wrote for this file must have
1945 			 * passed into commit.  We must attach this buffer to
1946 			 * the committing transaction, if it exists. */
1947 			if (journal->j_committing_transaction) {
1948 				JBUFFER_TRACE(jh, "give to committing trans");
1949 				may_free = __dispose_buffer(jh,
1950 					journal->j_committing_transaction);
1951 				goto zap_buffer;
1952 			} else {
1953 				/* The orphan record's transaction has
1954 				 * committed.  We can cleanse this buffer */
1955 				clear_buffer_jbddirty(bh);
1956 				goto zap_buffer;
1957 			}
1958 		}
1959 	} else if (transaction == journal->j_committing_transaction) {
1960 		JBUFFER_TRACE(jh, "on committing transaction");
1961 		/*
1962 		 * The buffer is committing, we simply cannot touch
1963 		 * it. If the page is straddling i_size we have to wait
1964 		 * for commit and try again.
1965 		 */
1966 		if (partial_page) {
1967 			jbd2_journal_put_journal_head(jh);
1968 			spin_unlock(&journal->j_list_lock);
1969 			jbd_unlock_bh_state(bh);
1970 			write_unlock(&journal->j_state_lock);
1971 			return -EBUSY;
1972 		}
1973 		/*
1974 		 * OK, buffer won't be reachable after truncate. We just set
1975 		 * j_next_transaction to the running transaction (if there is
1976 		 * one) and mark buffer as freed so that commit code knows it
1977 		 * should clear dirty bits when it is done with the buffer.
1978 		 */
1979 		set_buffer_freed(bh);
1980 		if (journal->j_running_transaction && buffer_jbddirty(bh))
1981 			jh->b_next_transaction = journal->j_running_transaction;
1982 		jbd2_journal_put_journal_head(jh);
1983 		spin_unlock(&journal->j_list_lock);
1984 		jbd_unlock_bh_state(bh);
1985 		write_unlock(&journal->j_state_lock);
1986 		return 0;
1987 	} else {
1988 		/* Good, the buffer belongs to the running transaction.
1989 		 * We are writing our own transaction's data, not any
1990 		 * previous one's, so it is safe to throw it away
1991 		 * (remember that we expect the filesystem to have set
1992 		 * i_size already for this truncate so recovery will not
1993 		 * expose the disk blocks we are discarding here.) */
1994 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1995 		JBUFFER_TRACE(jh, "on running transaction");
1996 		may_free = __dispose_buffer(jh, transaction);
1997 	}
1998 
1999 zap_buffer:
2000 	/*
2001 	 * This is tricky. Although the buffer is truncated, it may be reused
2002 	 * if blocksize < pagesize and it is attached to the page straddling
2003 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2004 	 * running transaction, journal_get_write_access() won't clear
2005 	 * b_modified and credit accounting gets confused. So clear b_modified
2006 	 * here.
2007 	 */
2008 	jh->b_modified = 0;
2009 	jbd2_journal_put_journal_head(jh);
2010 zap_buffer_no_jh:
2011 	spin_unlock(&journal->j_list_lock);
2012 	jbd_unlock_bh_state(bh);
2013 	write_unlock(&journal->j_state_lock);
2014 zap_buffer_unlocked:
2015 	clear_buffer_dirty(bh);
2016 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2017 	clear_buffer_mapped(bh);
2018 	clear_buffer_req(bh);
2019 	clear_buffer_new(bh);
2020 	clear_buffer_delay(bh);
2021 	clear_buffer_unwritten(bh);
2022 	bh->b_bdev = NULL;
2023 	return may_free;
2024 }
2025 
2026 /**
2027  * void jbd2_journal_invalidatepage()
2028  * @journal: journal to use for flush...
2029  * @page:    page to flush
2030  * @offset:  length of page to invalidate.
2031  *
2032  * Reap page buffers containing data after offset in page. Can return -EBUSY
2033  * if buffers are part of the committing transaction and the page is straddling
2034  * i_size. Caller then has to wait for current commit and try again.
2035  */
2036 int jbd2_journal_invalidatepage(journal_t *journal,
2037 				struct page *page,
2038 				unsigned long offset)
2039 {
2040 	struct buffer_head *head, *bh, *next;
2041 	unsigned int curr_off = 0;
2042 	int may_free = 1;
2043 	int ret = 0;
2044 
2045 	if (!PageLocked(page))
2046 		BUG();
2047 	if (!page_has_buffers(page))
2048 		return 0;
2049 
2050 	/* We will potentially be playing with lists other than just the
2051 	 * data lists (especially for journaled data mode), so be
2052 	 * cautious in our locking. */
2053 
2054 	head = bh = page_buffers(page);
2055 	do {
2056 		unsigned int next_off = curr_off + bh->b_size;
2057 		next = bh->b_this_page;
2058 
2059 		if (offset <= curr_off) {
2060 			/* This block is wholly outside the truncation point */
2061 			lock_buffer(bh);
2062 			ret = journal_unmap_buffer(journal, bh, offset > 0);
2063 			unlock_buffer(bh);
2064 			if (ret < 0)
2065 				return ret;
2066 			may_free &= ret;
2067 		}
2068 		curr_off = next_off;
2069 		bh = next;
2070 
2071 	} while (bh != head);
2072 
2073 	if (!offset) {
2074 		if (may_free && try_to_free_buffers(page))
2075 			J_ASSERT(!page_has_buffers(page));
2076 	}
2077 	return 0;
2078 }
2079 
2080 /*
2081  * File a buffer on the given transaction list.
2082  */
2083 void __jbd2_journal_file_buffer(struct journal_head *jh,
2084 			transaction_t *transaction, int jlist)
2085 {
2086 	struct journal_head **list = NULL;
2087 	int was_dirty = 0;
2088 	struct buffer_head *bh = jh2bh(jh);
2089 
2090 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2091 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2092 
2093 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2094 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2095 				jh->b_transaction == NULL);
2096 
2097 	if (jh->b_transaction && jh->b_jlist == jlist)
2098 		return;
2099 
2100 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2101 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2102 		/*
2103 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2104 		 * instead of buffer_dirty. We should not see a dirty bit set
2105 		 * here because we clear it in do_get_write_access but e.g.
2106 		 * tune2fs can modify the sb and set the dirty bit at any time
2107 		 * so we try to gracefully handle that.
2108 		 */
2109 		if (buffer_dirty(bh))
2110 			warn_dirty_buffer(bh);
2111 		if (test_clear_buffer_dirty(bh) ||
2112 		    test_clear_buffer_jbddirty(bh))
2113 			was_dirty = 1;
2114 	}
2115 
2116 	if (jh->b_transaction)
2117 		__jbd2_journal_temp_unlink_buffer(jh);
2118 	else
2119 		jbd2_journal_grab_journal_head(bh);
2120 	jh->b_transaction = transaction;
2121 
2122 	switch (jlist) {
2123 	case BJ_None:
2124 		J_ASSERT_JH(jh, !jh->b_committed_data);
2125 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2126 		return;
2127 	case BJ_Metadata:
2128 		transaction->t_nr_buffers++;
2129 		list = &transaction->t_buffers;
2130 		break;
2131 	case BJ_Forget:
2132 		list = &transaction->t_forget;
2133 		break;
2134 	case BJ_IO:
2135 		list = &transaction->t_iobuf_list;
2136 		break;
2137 	case BJ_Shadow:
2138 		list = &transaction->t_shadow_list;
2139 		break;
2140 	case BJ_LogCtl:
2141 		list = &transaction->t_log_list;
2142 		break;
2143 	case BJ_Reserved:
2144 		list = &transaction->t_reserved_list;
2145 		break;
2146 	}
2147 
2148 	__blist_add_buffer(list, jh);
2149 	jh->b_jlist = jlist;
2150 
2151 	if (was_dirty)
2152 		set_buffer_jbddirty(bh);
2153 }
2154 
2155 void jbd2_journal_file_buffer(struct journal_head *jh,
2156 				transaction_t *transaction, int jlist)
2157 {
2158 	jbd_lock_bh_state(jh2bh(jh));
2159 	spin_lock(&transaction->t_journal->j_list_lock);
2160 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2161 	spin_unlock(&transaction->t_journal->j_list_lock);
2162 	jbd_unlock_bh_state(jh2bh(jh));
2163 }
2164 
2165 /*
2166  * Remove a buffer from its current buffer list in preparation for
2167  * dropping it from its current transaction entirely.  If the buffer has
2168  * already started to be used by a subsequent transaction, refile the
2169  * buffer on that transaction's metadata list.
2170  *
2171  * Called under j_list_lock
2172  * Called under jbd_lock_bh_state(jh2bh(jh))
2173  *
2174  * jh and bh may be already free when this function returns
2175  */
2176 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2177 {
2178 	int was_dirty, jlist;
2179 	struct buffer_head *bh = jh2bh(jh);
2180 
2181 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2182 	if (jh->b_transaction)
2183 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2184 
2185 	/* If the buffer is now unused, just drop it. */
2186 	if (jh->b_next_transaction == NULL) {
2187 		__jbd2_journal_unfile_buffer(jh);
2188 		return;
2189 	}
2190 
2191 	/*
2192 	 * It has been modified by a later transaction: add it to the new
2193 	 * transaction's metadata list.
2194 	 */
2195 
2196 	was_dirty = test_clear_buffer_jbddirty(bh);
2197 	__jbd2_journal_temp_unlink_buffer(jh);
2198 	/*
2199 	 * We set b_transaction here because b_next_transaction will inherit
2200 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2201 	 * take a new one.
2202 	 */
2203 	jh->b_transaction = jh->b_next_transaction;
2204 	jh->b_next_transaction = NULL;
2205 	if (buffer_freed(bh))
2206 		jlist = BJ_Forget;
2207 	else if (jh->b_modified)
2208 		jlist = BJ_Metadata;
2209 	else
2210 		jlist = BJ_Reserved;
2211 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2212 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2213 
2214 	if (was_dirty)
2215 		set_buffer_jbddirty(bh);
2216 }
2217 
2218 /*
2219  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2220  * bh reference so that we can safely unlock bh.
2221  *
2222  * The jh and bh may be freed by this call.
2223  */
2224 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2225 {
2226 	struct buffer_head *bh = jh2bh(jh);
2227 
2228 	/* Get reference so that buffer cannot be freed before we unlock it */
2229 	get_bh(bh);
2230 	jbd_lock_bh_state(bh);
2231 	spin_lock(&journal->j_list_lock);
2232 	__jbd2_journal_refile_buffer(jh);
2233 	jbd_unlock_bh_state(bh);
2234 	spin_unlock(&journal->j_list_lock);
2235 	__brelse(bh);
2236 }
2237 
2238 /*
2239  * File inode in the inode list of the handle's transaction
2240  */
2241 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2242 {
2243 	transaction_t *transaction = handle->h_transaction;
2244 	journal_t *journal = transaction->t_journal;
2245 
2246 	if (is_handle_aborted(handle))
2247 		return -EIO;
2248 
2249 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2250 			transaction->t_tid);
2251 
2252 	/*
2253 	 * First check whether inode isn't already on the transaction's
2254 	 * lists without taking the lock. Note that this check is safe
2255 	 * without the lock as we cannot race with somebody removing inode
2256 	 * from the transaction. The reason is that we remove inode from the
2257 	 * transaction only in journal_release_jbd_inode() and when we commit
2258 	 * the transaction. We are guarded from the first case by holding
2259 	 * a reference to the inode. We are safe against the second case
2260 	 * because if jinode->i_transaction == transaction, commit code
2261 	 * cannot touch the transaction because we hold reference to it,
2262 	 * and if jinode->i_next_transaction == transaction, commit code
2263 	 * will only file the inode where we want it.
2264 	 */
2265 	if (jinode->i_transaction == transaction ||
2266 	    jinode->i_next_transaction == transaction)
2267 		return 0;
2268 
2269 	spin_lock(&journal->j_list_lock);
2270 
2271 	if (jinode->i_transaction == transaction ||
2272 	    jinode->i_next_transaction == transaction)
2273 		goto done;
2274 
2275 	/*
2276 	 * We only ever set this variable to 1 so the test is safe. Since
2277 	 * t_need_data_flush is likely to be set, we do the test to save some
2278 	 * cacheline bouncing
2279 	 */
2280 	if (!transaction->t_need_data_flush)
2281 		transaction->t_need_data_flush = 1;
2282 	/* On some different transaction's list - should be
2283 	 * the committing one */
2284 	if (jinode->i_transaction) {
2285 		J_ASSERT(jinode->i_next_transaction == NULL);
2286 		J_ASSERT(jinode->i_transaction ==
2287 					journal->j_committing_transaction);
2288 		jinode->i_next_transaction = transaction;
2289 		goto done;
2290 	}
2291 	/* Not on any transaction list... */
2292 	J_ASSERT(!jinode->i_next_transaction);
2293 	jinode->i_transaction = transaction;
2294 	list_add(&jinode->i_list, &transaction->t_inode_list);
2295 done:
2296 	spin_unlock(&journal->j_list_lock);
2297 
2298 	return 0;
2299 }
2300 
2301 /*
2302  * File truncate and transaction commit interact with each other in a
2303  * non-trivial way.  If a transaction writing data block A is
2304  * committing, we cannot discard the data by truncate until we have
2305  * written them.  Otherwise if we crashed after the transaction with
2306  * write has committed but before the transaction with truncate has
2307  * committed, we could see stale data in block A.  This function is a
2308  * helper to solve this problem.  It starts writeout of the truncated
2309  * part in case it is in the committing transaction.
2310  *
2311  * Filesystem code must call this function when inode is journaled in
2312  * ordered mode before truncation happens and after the inode has been
2313  * placed on orphan list with the new inode size. The second condition
2314  * avoids the race that someone writes new data and we start
2315  * committing the transaction after this function has been called but
2316  * before a transaction for truncate is started (and furthermore it
2317  * allows us to optimize the case where the addition to orphan list
2318  * happens in the same transaction as write --- we don't have to write
2319  * any data in such case).
2320  */
2321 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2322 					struct jbd2_inode *jinode,
2323 					loff_t new_size)
2324 {
2325 	transaction_t *inode_trans, *commit_trans;
2326 	int ret = 0;
2327 
2328 	/* This is a quick check to avoid locking if not necessary */
2329 	if (!jinode->i_transaction)
2330 		goto out;
2331 	/* Locks are here just to force reading of recent values, it is
2332 	 * enough that the transaction was not committing before we started
2333 	 * a transaction adding the inode to orphan list */
2334 	read_lock(&journal->j_state_lock);
2335 	commit_trans = journal->j_committing_transaction;
2336 	read_unlock(&journal->j_state_lock);
2337 	spin_lock(&journal->j_list_lock);
2338 	inode_trans = jinode->i_transaction;
2339 	spin_unlock(&journal->j_list_lock);
2340 	if (inode_trans == commit_trans) {
2341 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2342 			new_size, LLONG_MAX);
2343 		if (ret)
2344 			jbd2_journal_abort(journal, ret);
2345 	}
2346 out:
2347 	return ret;
2348 }
2349