1 /* 2 * linux/fs/transaction.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem transaction handling code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages transactions (compound commits managed by the 16 * journaling code) and handles (individual atomic operations by the 17 * filesystem). 18 */ 19 20 #include <linux/time.h> 21 #include <linux/fs.h> 22 #include <linux/jbd2.h> 23 #include <linux/errno.h> 24 #include <linux/slab.h> 25 #include <linux/timer.h> 26 #include <linux/smp_lock.h> 27 #include <linux/mm.h> 28 #include <linux/highmem.h> 29 30 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 31 32 /* 33 * jbd2_get_transaction: obtain a new transaction_t object. 34 * 35 * Simply allocate and initialise a new transaction. Create it in 36 * RUNNING state and add it to the current journal (which should not 37 * have an existing running transaction: we only make a new transaction 38 * once we have started to commit the old one). 39 * 40 * Preconditions: 41 * The journal MUST be locked. We don't perform atomic mallocs on the 42 * new transaction and we can't block without protecting against other 43 * processes trying to touch the journal while it is in transition. 44 * 45 * Called under j_state_lock 46 */ 47 48 static transaction_t * 49 jbd2_get_transaction(journal_t *journal, transaction_t *transaction) 50 { 51 transaction->t_journal = journal; 52 transaction->t_state = T_RUNNING; 53 transaction->t_tid = journal->j_transaction_sequence++; 54 transaction->t_expires = jiffies + journal->j_commit_interval; 55 spin_lock_init(&transaction->t_handle_lock); 56 57 /* Set up the commit timer for the new transaction. */ 58 journal->j_commit_timer.expires = transaction->t_expires; 59 add_timer(&journal->j_commit_timer); 60 61 J_ASSERT(journal->j_running_transaction == NULL); 62 journal->j_running_transaction = transaction; 63 64 return transaction; 65 } 66 67 /* 68 * Handle management. 69 * 70 * A handle_t is an object which represents a single atomic update to a 71 * filesystem, and which tracks all of the modifications which form part 72 * of that one update. 73 */ 74 75 /* 76 * start_this_handle: Given a handle, deal with any locking or stalling 77 * needed to make sure that there is enough journal space for the handle 78 * to begin. Attach the handle to a transaction and set up the 79 * transaction's buffer credits. 80 */ 81 82 static int start_this_handle(journal_t *journal, handle_t *handle) 83 { 84 transaction_t *transaction; 85 int needed; 86 int nblocks = handle->h_buffer_credits; 87 transaction_t *new_transaction = NULL; 88 int ret = 0; 89 90 if (nblocks > journal->j_max_transaction_buffers) { 91 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n", 92 current->comm, nblocks, 93 journal->j_max_transaction_buffers); 94 ret = -ENOSPC; 95 goto out; 96 } 97 98 alloc_transaction: 99 if (!journal->j_running_transaction) { 100 new_transaction = jbd_kmalloc(sizeof(*new_transaction), 101 GFP_NOFS); 102 if (!new_transaction) { 103 ret = -ENOMEM; 104 goto out; 105 } 106 memset(new_transaction, 0, sizeof(*new_transaction)); 107 } 108 109 jbd_debug(3, "New handle %p going live.\n", handle); 110 111 repeat: 112 113 /* 114 * We need to hold j_state_lock until t_updates has been incremented, 115 * for proper journal barrier handling 116 */ 117 spin_lock(&journal->j_state_lock); 118 repeat_locked: 119 if (is_journal_aborted(journal) || 120 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 121 spin_unlock(&journal->j_state_lock); 122 ret = -EROFS; 123 goto out; 124 } 125 126 /* Wait on the journal's transaction barrier if necessary */ 127 if (journal->j_barrier_count) { 128 spin_unlock(&journal->j_state_lock); 129 wait_event(journal->j_wait_transaction_locked, 130 journal->j_barrier_count == 0); 131 goto repeat; 132 } 133 134 if (!journal->j_running_transaction) { 135 if (!new_transaction) { 136 spin_unlock(&journal->j_state_lock); 137 goto alloc_transaction; 138 } 139 jbd2_get_transaction(journal, new_transaction); 140 new_transaction = NULL; 141 } 142 143 transaction = journal->j_running_transaction; 144 145 /* 146 * If the current transaction is locked down for commit, wait for the 147 * lock to be released. 148 */ 149 if (transaction->t_state == T_LOCKED) { 150 DEFINE_WAIT(wait); 151 152 prepare_to_wait(&journal->j_wait_transaction_locked, 153 &wait, TASK_UNINTERRUPTIBLE); 154 spin_unlock(&journal->j_state_lock); 155 schedule(); 156 finish_wait(&journal->j_wait_transaction_locked, &wait); 157 goto repeat; 158 } 159 160 /* 161 * If there is not enough space left in the log to write all potential 162 * buffers requested by this operation, we need to stall pending a log 163 * checkpoint to free some more log space. 164 */ 165 spin_lock(&transaction->t_handle_lock); 166 needed = transaction->t_outstanding_credits + nblocks; 167 168 if (needed > journal->j_max_transaction_buffers) { 169 /* 170 * If the current transaction is already too large, then start 171 * to commit it: we can then go back and attach this handle to 172 * a new transaction. 173 */ 174 DEFINE_WAIT(wait); 175 176 jbd_debug(2, "Handle %p starting new commit...\n", handle); 177 spin_unlock(&transaction->t_handle_lock); 178 prepare_to_wait(&journal->j_wait_transaction_locked, &wait, 179 TASK_UNINTERRUPTIBLE); 180 __jbd2_log_start_commit(journal, transaction->t_tid); 181 spin_unlock(&journal->j_state_lock); 182 schedule(); 183 finish_wait(&journal->j_wait_transaction_locked, &wait); 184 goto repeat; 185 } 186 187 /* 188 * The commit code assumes that it can get enough log space 189 * without forcing a checkpoint. This is *critical* for 190 * correctness: a checkpoint of a buffer which is also 191 * associated with a committing transaction creates a deadlock, 192 * so commit simply cannot force through checkpoints. 193 * 194 * We must therefore ensure the necessary space in the journal 195 * *before* starting to dirty potentially checkpointed buffers 196 * in the new transaction. 197 * 198 * The worst part is, any transaction currently committing can 199 * reduce the free space arbitrarily. Be careful to account for 200 * those buffers when checkpointing. 201 */ 202 203 /* 204 * @@@ AKPM: This seems rather over-defensive. We're giving commit 205 * a _lot_ of headroom: 1/4 of the journal plus the size of 206 * the committing transaction. Really, we only need to give it 207 * committing_transaction->t_outstanding_credits plus "enough" for 208 * the log control blocks. 209 * Also, this test is inconsitent with the matching one in 210 * jbd2_journal_extend(). 211 */ 212 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) { 213 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle); 214 spin_unlock(&transaction->t_handle_lock); 215 __jbd2_log_wait_for_space(journal); 216 goto repeat_locked; 217 } 218 219 /* OK, account for the buffers that this operation expects to 220 * use and add the handle to the running transaction. */ 221 222 handle->h_transaction = transaction; 223 transaction->t_outstanding_credits += nblocks; 224 transaction->t_updates++; 225 transaction->t_handle_count++; 226 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n", 227 handle, nblocks, transaction->t_outstanding_credits, 228 __jbd2_log_space_left(journal)); 229 spin_unlock(&transaction->t_handle_lock); 230 spin_unlock(&journal->j_state_lock); 231 out: 232 if (unlikely(new_transaction)) /* It's usually NULL */ 233 kfree(new_transaction); 234 return ret; 235 } 236 237 /* Allocate a new handle. This should probably be in a slab... */ 238 static handle_t *new_handle(int nblocks) 239 { 240 handle_t *handle = jbd_alloc_handle(GFP_NOFS); 241 if (!handle) 242 return NULL; 243 memset(handle, 0, sizeof(*handle)); 244 handle->h_buffer_credits = nblocks; 245 handle->h_ref = 1; 246 247 return handle; 248 } 249 250 /** 251 * handle_t *jbd2_journal_start() - Obtain a new handle. 252 * @journal: Journal to start transaction on. 253 * @nblocks: number of block buffer we might modify 254 * 255 * We make sure that the transaction can guarantee at least nblocks of 256 * modified buffers in the log. We block until the log can guarantee 257 * that much space. 258 * 259 * This function is visible to journal users (like ext3fs), so is not 260 * called with the journal already locked. 261 * 262 * Return a pointer to a newly allocated handle, or NULL on failure 263 */ 264 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 265 { 266 handle_t *handle = journal_current_handle(); 267 int err; 268 269 if (!journal) 270 return ERR_PTR(-EROFS); 271 272 if (handle) { 273 J_ASSERT(handle->h_transaction->t_journal == journal); 274 handle->h_ref++; 275 return handle; 276 } 277 278 handle = new_handle(nblocks); 279 if (!handle) 280 return ERR_PTR(-ENOMEM); 281 282 current->journal_info = handle; 283 284 err = start_this_handle(journal, handle); 285 if (err < 0) { 286 jbd_free_handle(handle); 287 current->journal_info = NULL; 288 handle = ERR_PTR(err); 289 } 290 return handle; 291 } 292 293 /** 294 * int jbd2_journal_extend() - extend buffer credits. 295 * @handle: handle to 'extend' 296 * @nblocks: nr blocks to try to extend by. 297 * 298 * Some transactions, such as large extends and truncates, can be done 299 * atomically all at once or in several stages. The operation requests 300 * a credit for a number of buffer modications in advance, but can 301 * extend its credit if it needs more. 302 * 303 * jbd2_journal_extend tries to give the running handle more buffer credits. 304 * It does not guarantee that allocation - this is a best-effort only. 305 * The calling process MUST be able to deal cleanly with a failure to 306 * extend here. 307 * 308 * Return 0 on success, non-zero on failure. 309 * 310 * return code < 0 implies an error 311 * return code > 0 implies normal transaction-full status. 312 */ 313 int jbd2_journal_extend(handle_t *handle, int nblocks) 314 { 315 transaction_t *transaction = handle->h_transaction; 316 journal_t *journal = transaction->t_journal; 317 int result; 318 int wanted; 319 320 result = -EIO; 321 if (is_handle_aborted(handle)) 322 goto out; 323 324 result = 1; 325 326 spin_lock(&journal->j_state_lock); 327 328 /* Don't extend a locked-down transaction! */ 329 if (handle->h_transaction->t_state != T_RUNNING) { 330 jbd_debug(3, "denied handle %p %d blocks: " 331 "transaction not running\n", handle, nblocks); 332 goto error_out; 333 } 334 335 spin_lock(&transaction->t_handle_lock); 336 wanted = transaction->t_outstanding_credits + nblocks; 337 338 if (wanted > journal->j_max_transaction_buffers) { 339 jbd_debug(3, "denied handle %p %d blocks: " 340 "transaction too large\n", handle, nblocks); 341 goto unlock; 342 } 343 344 if (wanted > __jbd2_log_space_left(journal)) { 345 jbd_debug(3, "denied handle %p %d blocks: " 346 "insufficient log space\n", handle, nblocks); 347 goto unlock; 348 } 349 350 handle->h_buffer_credits += nblocks; 351 transaction->t_outstanding_credits += nblocks; 352 result = 0; 353 354 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 355 unlock: 356 spin_unlock(&transaction->t_handle_lock); 357 error_out: 358 spin_unlock(&journal->j_state_lock); 359 out: 360 return result; 361 } 362 363 364 /** 365 * int jbd2_journal_restart() - restart a handle . 366 * @handle: handle to restart 367 * @nblocks: nr credits requested 368 * 369 * Restart a handle for a multi-transaction filesystem 370 * operation. 371 * 372 * If the jbd2_journal_extend() call above fails to grant new buffer credits 373 * to a running handle, a call to jbd2_journal_restart will commit the 374 * handle's transaction so far and reattach the handle to a new 375 * transaction capabable of guaranteeing the requested number of 376 * credits. 377 */ 378 379 int jbd2_journal_restart(handle_t *handle, int nblocks) 380 { 381 transaction_t *transaction = handle->h_transaction; 382 journal_t *journal = transaction->t_journal; 383 int ret; 384 385 /* If we've had an abort of any type, don't even think about 386 * actually doing the restart! */ 387 if (is_handle_aborted(handle)) 388 return 0; 389 390 /* 391 * First unlink the handle from its current transaction, and start the 392 * commit on that. 393 */ 394 J_ASSERT(transaction->t_updates > 0); 395 J_ASSERT(journal_current_handle() == handle); 396 397 spin_lock(&journal->j_state_lock); 398 spin_lock(&transaction->t_handle_lock); 399 transaction->t_outstanding_credits -= handle->h_buffer_credits; 400 transaction->t_updates--; 401 402 if (!transaction->t_updates) 403 wake_up(&journal->j_wait_updates); 404 spin_unlock(&transaction->t_handle_lock); 405 406 jbd_debug(2, "restarting handle %p\n", handle); 407 __jbd2_log_start_commit(journal, transaction->t_tid); 408 spin_unlock(&journal->j_state_lock); 409 410 handle->h_buffer_credits = nblocks; 411 ret = start_this_handle(journal, handle); 412 return ret; 413 } 414 415 416 /** 417 * void jbd2_journal_lock_updates () - establish a transaction barrier. 418 * @journal: Journal to establish a barrier on. 419 * 420 * This locks out any further updates from being started, and blocks 421 * until all existing updates have completed, returning only once the 422 * journal is in a quiescent state with no updates running. 423 * 424 * The journal lock should not be held on entry. 425 */ 426 void jbd2_journal_lock_updates(journal_t *journal) 427 { 428 DEFINE_WAIT(wait); 429 430 spin_lock(&journal->j_state_lock); 431 ++journal->j_barrier_count; 432 433 /* Wait until there are no running updates */ 434 while (1) { 435 transaction_t *transaction = journal->j_running_transaction; 436 437 if (!transaction) 438 break; 439 440 spin_lock(&transaction->t_handle_lock); 441 if (!transaction->t_updates) { 442 spin_unlock(&transaction->t_handle_lock); 443 break; 444 } 445 prepare_to_wait(&journal->j_wait_updates, &wait, 446 TASK_UNINTERRUPTIBLE); 447 spin_unlock(&transaction->t_handle_lock); 448 spin_unlock(&journal->j_state_lock); 449 schedule(); 450 finish_wait(&journal->j_wait_updates, &wait); 451 spin_lock(&journal->j_state_lock); 452 } 453 spin_unlock(&journal->j_state_lock); 454 455 /* 456 * We have now established a barrier against other normal updates, but 457 * we also need to barrier against other jbd2_journal_lock_updates() calls 458 * to make sure that we serialise special journal-locked operations 459 * too. 460 */ 461 mutex_lock(&journal->j_barrier); 462 } 463 464 /** 465 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier 466 * @journal: Journal to release the barrier on. 467 * 468 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 469 * 470 * Should be called without the journal lock held. 471 */ 472 void jbd2_journal_unlock_updates (journal_t *journal) 473 { 474 J_ASSERT(journal->j_barrier_count != 0); 475 476 mutex_unlock(&journal->j_barrier); 477 spin_lock(&journal->j_state_lock); 478 --journal->j_barrier_count; 479 spin_unlock(&journal->j_state_lock); 480 wake_up(&journal->j_wait_transaction_locked); 481 } 482 483 /* 484 * Report any unexpected dirty buffers which turn up. Normally those 485 * indicate an error, but they can occur if the user is running (say) 486 * tune2fs to modify the live filesystem, so we need the option of 487 * continuing as gracefully as possible. # 488 * 489 * The caller should already hold the journal lock and 490 * j_list_lock spinlock: most callers will need those anyway 491 * in order to probe the buffer's journaling state safely. 492 */ 493 static void jbd_unexpected_dirty_buffer(struct journal_head *jh) 494 { 495 int jlist; 496 497 /* If this buffer is one which might reasonably be dirty 498 * --- ie. data, or not part of this journal --- then 499 * we're OK to leave it alone, but otherwise we need to 500 * move the dirty bit to the journal's own internal 501 * JBDDirty bit. */ 502 jlist = jh->b_jlist; 503 504 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 505 jlist == BJ_Shadow || jlist == BJ_Forget) { 506 struct buffer_head *bh = jh2bh(jh); 507 508 if (test_clear_buffer_dirty(bh)) 509 set_buffer_jbddirty(bh); 510 } 511 } 512 513 /* 514 * If the buffer is already part of the current transaction, then there 515 * is nothing we need to do. If it is already part of a prior 516 * transaction which we are still committing to disk, then we need to 517 * make sure that we do not overwrite the old copy: we do copy-out to 518 * preserve the copy going to disk. We also account the buffer against 519 * the handle's metadata buffer credits (unless the buffer is already 520 * part of the transaction, that is). 521 * 522 */ 523 static int 524 do_get_write_access(handle_t *handle, struct journal_head *jh, 525 int force_copy) 526 { 527 struct buffer_head *bh; 528 transaction_t *transaction; 529 journal_t *journal; 530 int error; 531 char *frozen_buffer = NULL; 532 int need_copy = 0; 533 534 if (is_handle_aborted(handle)) 535 return -EROFS; 536 537 transaction = handle->h_transaction; 538 journal = transaction->t_journal; 539 540 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy); 541 542 JBUFFER_TRACE(jh, "entry"); 543 repeat: 544 bh = jh2bh(jh); 545 546 /* @@@ Need to check for errors here at some point. */ 547 548 lock_buffer(bh); 549 jbd_lock_bh_state(bh); 550 551 /* We now hold the buffer lock so it is safe to query the buffer 552 * state. Is the buffer dirty? 553 * 554 * If so, there are two possibilities. The buffer may be 555 * non-journaled, and undergoing a quite legitimate writeback. 556 * Otherwise, it is journaled, and we don't expect dirty buffers 557 * in that state (the buffers should be marked JBD_Dirty 558 * instead.) So either the IO is being done under our own 559 * control and this is a bug, or it's a third party IO such as 560 * dump(8) (which may leave the buffer scheduled for read --- 561 * ie. locked but not dirty) or tune2fs (which may actually have 562 * the buffer dirtied, ugh.) */ 563 564 if (buffer_dirty(bh)) { 565 /* 566 * First question: is this buffer already part of the current 567 * transaction or the existing committing transaction? 568 */ 569 if (jh->b_transaction) { 570 J_ASSERT_JH(jh, 571 jh->b_transaction == transaction || 572 jh->b_transaction == 573 journal->j_committing_transaction); 574 if (jh->b_next_transaction) 575 J_ASSERT_JH(jh, jh->b_next_transaction == 576 transaction); 577 } 578 /* 579 * In any case we need to clean the dirty flag and we must 580 * do it under the buffer lock to be sure we don't race 581 * with running write-out. 582 */ 583 JBUFFER_TRACE(jh, "Unexpected dirty buffer"); 584 jbd_unexpected_dirty_buffer(jh); 585 } 586 587 unlock_buffer(bh); 588 589 error = -EROFS; 590 if (is_handle_aborted(handle)) { 591 jbd_unlock_bh_state(bh); 592 goto out; 593 } 594 error = 0; 595 596 /* 597 * The buffer is already part of this transaction if b_transaction or 598 * b_next_transaction points to it 599 */ 600 if (jh->b_transaction == transaction || 601 jh->b_next_transaction == transaction) 602 goto done; 603 604 /* 605 * If there is already a copy-out version of this buffer, then we don't 606 * need to make another one 607 */ 608 if (jh->b_frozen_data) { 609 JBUFFER_TRACE(jh, "has frozen data"); 610 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 611 jh->b_next_transaction = transaction; 612 goto done; 613 } 614 615 /* Is there data here we need to preserve? */ 616 617 if (jh->b_transaction && jh->b_transaction != transaction) { 618 JBUFFER_TRACE(jh, "owned by older transaction"); 619 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 620 J_ASSERT_JH(jh, jh->b_transaction == 621 journal->j_committing_transaction); 622 623 /* There is one case we have to be very careful about. 624 * If the committing transaction is currently writing 625 * this buffer out to disk and has NOT made a copy-out, 626 * then we cannot modify the buffer contents at all 627 * right now. The essence of copy-out is that it is the 628 * extra copy, not the primary copy, which gets 629 * journaled. If the primary copy is already going to 630 * disk then we cannot do copy-out here. */ 631 632 if (jh->b_jlist == BJ_Shadow) { 633 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow); 634 wait_queue_head_t *wqh; 635 636 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow); 637 638 JBUFFER_TRACE(jh, "on shadow: sleep"); 639 jbd_unlock_bh_state(bh); 640 /* commit wakes up all shadow buffers after IO */ 641 for ( ; ; ) { 642 prepare_to_wait(wqh, &wait.wait, 643 TASK_UNINTERRUPTIBLE); 644 if (jh->b_jlist != BJ_Shadow) 645 break; 646 schedule(); 647 } 648 finish_wait(wqh, &wait.wait); 649 goto repeat; 650 } 651 652 /* Only do the copy if the currently-owning transaction 653 * still needs it. If it is on the Forget list, the 654 * committing transaction is past that stage. The 655 * buffer had better remain locked during the kmalloc, 656 * but that should be true --- we hold the journal lock 657 * still and the buffer is already on the BUF_JOURNAL 658 * list so won't be flushed. 659 * 660 * Subtle point, though: if this is a get_undo_access, 661 * then we will be relying on the frozen_data to contain 662 * the new value of the committed_data record after the 663 * transaction, so we HAVE to force the frozen_data copy 664 * in that case. */ 665 666 if (jh->b_jlist != BJ_Forget || force_copy) { 667 JBUFFER_TRACE(jh, "generate frozen data"); 668 if (!frozen_buffer) { 669 JBUFFER_TRACE(jh, "allocate memory for buffer"); 670 jbd_unlock_bh_state(bh); 671 frozen_buffer = 672 jbd2_slab_alloc(jh2bh(jh)->b_size, 673 GFP_NOFS); 674 if (!frozen_buffer) { 675 printk(KERN_EMERG 676 "%s: OOM for frozen_buffer\n", 677 __FUNCTION__); 678 JBUFFER_TRACE(jh, "oom!"); 679 error = -ENOMEM; 680 jbd_lock_bh_state(bh); 681 goto done; 682 } 683 goto repeat; 684 } 685 jh->b_frozen_data = frozen_buffer; 686 frozen_buffer = NULL; 687 need_copy = 1; 688 } 689 jh->b_next_transaction = transaction; 690 } 691 692 693 /* 694 * Finally, if the buffer is not journaled right now, we need to make 695 * sure it doesn't get written to disk before the caller actually 696 * commits the new data 697 */ 698 if (!jh->b_transaction) { 699 JBUFFER_TRACE(jh, "no transaction"); 700 J_ASSERT_JH(jh, !jh->b_next_transaction); 701 jh->b_transaction = transaction; 702 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 703 spin_lock(&journal->j_list_lock); 704 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 705 spin_unlock(&journal->j_list_lock); 706 } 707 708 done: 709 if (need_copy) { 710 struct page *page; 711 int offset; 712 char *source; 713 714 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)), 715 "Possible IO failure.\n"); 716 page = jh2bh(jh)->b_page; 717 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK; 718 source = kmap_atomic(page, KM_USER0); 719 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size); 720 kunmap_atomic(source, KM_USER0); 721 } 722 jbd_unlock_bh_state(bh); 723 724 /* 725 * If we are about to journal a buffer, then any revoke pending on it is 726 * no longer valid 727 */ 728 jbd2_journal_cancel_revoke(handle, jh); 729 730 out: 731 if (unlikely(frozen_buffer)) /* It's usually NULL */ 732 jbd2_slab_free(frozen_buffer, bh->b_size); 733 734 JBUFFER_TRACE(jh, "exit"); 735 return error; 736 } 737 738 /** 739 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update. 740 * @handle: transaction to add buffer modifications to 741 * @bh: bh to be used for metadata writes 742 * @credits: variable that will receive credits for the buffer 743 * 744 * Returns an error code or 0 on success. 745 * 746 * In full data journalling mode the buffer may be of type BJ_AsyncData, 747 * because we're write()ing a buffer which is also part of a shared mapping. 748 */ 749 750 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 751 { 752 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 753 int rc; 754 755 /* We do not want to get caught playing with fields which the 756 * log thread also manipulates. Make sure that the buffer 757 * completes any outstanding IO before proceeding. */ 758 rc = do_get_write_access(handle, jh, 0); 759 jbd2_journal_put_journal_head(jh); 760 return rc; 761 } 762 763 764 /* 765 * When the user wants to journal a newly created buffer_head 766 * (ie. getblk() returned a new buffer and we are going to populate it 767 * manually rather than reading off disk), then we need to keep the 768 * buffer_head locked until it has been completely filled with new 769 * data. In this case, we should be able to make the assertion that 770 * the bh is not already part of an existing transaction. 771 * 772 * The buffer should already be locked by the caller by this point. 773 * There is no lock ranking violation: it was a newly created, 774 * unlocked buffer beforehand. */ 775 776 /** 777 * int jbd2_journal_get_create_access () - notify intent to use newly created bh 778 * @handle: transaction to new buffer to 779 * @bh: new buffer. 780 * 781 * Call this if you create a new bh. 782 */ 783 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 784 { 785 transaction_t *transaction = handle->h_transaction; 786 journal_t *journal = transaction->t_journal; 787 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 788 int err; 789 790 jbd_debug(5, "journal_head %p\n", jh); 791 err = -EROFS; 792 if (is_handle_aborted(handle)) 793 goto out; 794 err = 0; 795 796 JBUFFER_TRACE(jh, "entry"); 797 /* 798 * The buffer may already belong to this transaction due to pre-zeroing 799 * in the filesystem's new_block code. It may also be on the previous, 800 * committing transaction's lists, but it HAS to be in Forget state in 801 * that case: the transaction must have deleted the buffer for it to be 802 * reused here. 803 */ 804 jbd_lock_bh_state(bh); 805 spin_lock(&journal->j_list_lock); 806 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 807 jh->b_transaction == NULL || 808 (jh->b_transaction == journal->j_committing_transaction && 809 jh->b_jlist == BJ_Forget))); 810 811 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 812 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 813 814 if (jh->b_transaction == NULL) { 815 jh->b_transaction = transaction; 816 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 817 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 818 } else if (jh->b_transaction == journal->j_committing_transaction) { 819 JBUFFER_TRACE(jh, "set next transaction"); 820 jh->b_next_transaction = transaction; 821 } 822 spin_unlock(&journal->j_list_lock); 823 jbd_unlock_bh_state(bh); 824 825 /* 826 * akpm: I added this. ext3_alloc_branch can pick up new indirect 827 * blocks which contain freed but then revoked metadata. We need 828 * to cancel the revoke in case we end up freeing it yet again 829 * and the reallocating as data - this would cause a second revoke, 830 * which hits an assertion error. 831 */ 832 JBUFFER_TRACE(jh, "cancelling revoke"); 833 jbd2_journal_cancel_revoke(handle, jh); 834 jbd2_journal_put_journal_head(jh); 835 out: 836 return err; 837 } 838 839 /** 840 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with 841 * non-rewindable consequences 842 * @handle: transaction 843 * @bh: buffer to undo 844 * @credits: store the number of taken credits here (if not NULL) 845 * 846 * Sometimes there is a need to distinguish between metadata which has 847 * been committed to disk and that which has not. The ext3fs code uses 848 * this for freeing and allocating space, we have to make sure that we 849 * do not reuse freed space until the deallocation has been committed, 850 * since if we overwrote that space we would make the delete 851 * un-rewindable in case of a crash. 852 * 853 * To deal with that, jbd2_journal_get_undo_access requests write access to a 854 * buffer for parts of non-rewindable operations such as delete 855 * operations on the bitmaps. The journaling code must keep a copy of 856 * the buffer's contents prior to the undo_access call until such time 857 * as we know that the buffer has definitely been committed to disk. 858 * 859 * We never need to know which transaction the committed data is part 860 * of, buffers touched here are guaranteed to be dirtied later and so 861 * will be committed to a new transaction in due course, at which point 862 * we can discard the old committed data pointer. 863 * 864 * Returns error number or 0 on success. 865 */ 866 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 867 { 868 int err; 869 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 870 char *committed_data = NULL; 871 872 JBUFFER_TRACE(jh, "entry"); 873 874 /* 875 * Do this first --- it can drop the journal lock, so we want to 876 * make sure that obtaining the committed_data is done 877 * atomically wrt. completion of any outstanding commits. 878 */ 879 err = do_get_write_access(handle, jh, 1); 880 if (err) 881 goto out; 882 883 repeat: 884 if (!jh->b_committed_data) { 885 committed_data = jbd2_slab_alloc(jh2bh(jh)->b_size, GFP_NOFS); 886 if (!committed_data) { 887 printk(KERN_EMERG "%s: No memory for committed data\n", 888 __FUNCTION__); 889 err = -ENOMEM; 890 goto out; 891 } 892 } 893 894 jbd_lock_bh_state(bh); 895 if (!jh->b_committed_data) { 896 /* Copy out the current buffer contents into the 897 * preserved, committed copy. */ 898 JBUFFER_TRACE(jh, "generate b_committed data"); 899 if (!committed_data) { 900 jbd_unlock_bh_state(bh); 901 goto repeat; 902 } 903 904 jh->b_committed_data = committed_data; 905 committed_data = NULL; 906 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 907 } 908 jbd_unlock_bh_state(bh); 909 out: 910 jbd2_journal_put_journal_head(jh); 911 if (unlikely(committed_data)) 912 jbd2_slab_free(committed_data, bh->b_size); 913 return err; 914 } 915 916 /** 917 * int jbd2_journal_dirty_data() - mark a buffer as containing dirty data which 918 * needs to be flushed before we can commit the 919 * current transaction. 920 * @handle: transaction 921 * @bh: bufferhead to mark 922 * 923 * The buffer is placed on the transaction's data list and is marked as 924 * belonging to the transaction. 925 * 926 * Returns error number or 0 on success. 927 * 928 * jbd2_journal_dirty_data() can be called via page_launder->ext3_writepage 929 * by kswapd. 930 */ 931 int jbd2_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 932 { 933 journal_t *journal = handle->h_transaction->t_journal; 934 int need_brelse = 0; 935 struct journal_head *jh; 936 937 if (is_handle_aborted(handle)) 938 return 0; 939 940 jh = jbd2_journal_add_journal_head(bh); 941 JBUFFER_TRACE(jh, "entry"); 942 943 /* 944 * The buffer could *already* be dirty. Writeout can start 945 * at any time. 946 */ 947 jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid); 948 949 /* 950 * What if the buffer is already part of a running transaction? 951 * 952 * There are two cases: 953 * 1) It is part of the current running transaction. Refile it, 954 * just in case we have allocated it as metadata, deallocated 955 * it, then reallocated it as data. 956 * 2) It is part of the previous, still-committing transaction. 957 * If all we want to do is to guarantee that the buffer will be 958 * written to disk before this new transaction commits, then 959 * being sure that the *previous* transaction has this same 960 * property is sufficient for us! Just leave it on its old 961 * transaction. 962 * 963 * In case (2), the buffer must not already exist as metadata 964 * --- that would violate write ordering (a transaction is free 965 * to write its data at any point, even before the previous 966 * committing transaction has committed). The caller must 967 * never, ever allow this to happen: there's nothing we can do 968 * about it in this layer. 969 */ 970 jbd_lock_bh_state(bh); 971 spin_lock(&journal->j_list_lock); 972 973 /* Now that we have bh_state locked, are we really still mapped? */ 974 if (!buffer_mapped(bh)) { 975 JBUFFER_TRACE(jh, "unmapped buffer, bailing out"); 976 goto no_journal; 977 } 978 979 if (jh->b_transaction) { 980 JBUFFER_TRACE(jh, "has transaction"); 981 if (jh->b_transaction != handle->h_transaction) { 982 JBUFFER_TRACE(jh, "belongs to older transaction"); 983 J_ASSERT_JH(jh, jh->b_transaction == 984 journal->j_committing_transaction); 985 986 /* @@@ IS THIS TRUE ? */ 987 /* 988 * Not any more. Scenario: someone does a write() 989 * in data=journal mode. The buffer's transaction has 990 * moved into commit. Then someone does another 991 * write() to the file. We do the frozen data copyout 992 * and set b_next_transaction to point to j_running_t. 993 * And while we're in that state, someone does a 994 * writepage() in an attempt to pageout the same area 995 * of the file via a shared mapping. At present that 996 * calls jbd2_journal_dirty_data(), and we get right here. 997 * It may be too late to journal the data. Simply 998 * falling through to the next test will suffice: the 999 * data will be dirty and wil be checkpointed. The 1000 * ordering comments in the next comment block still 1001 * apply. 1002 */ 1003 //J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1004 1005 /* 1006 * If we're journalling data, and this buffer was 1007 * subject to a write(), it could be metadata, forget 1008 * or shadow against the committing transaction. Now, 1009 * someone has dirtied the same darn page via a mapping 1010 * and it is being writepage()'d. 1011 * We *could* just steal the page from commit, with some 1012 * fancy locking there. Instead, we just skip it - 1013 * don't tie the page's buffers to the new transaction 1014 * at all. 1015 * Implication: if we crash before the writepage() data 1016 * is written into the filesystem, recovery will replay 1017 * the write() data. 1018 */ 1019 if (jh->b_jlist != BJ_None && 1020 jh->b_jlist != BJ_SyncData && 1021 jh->b_jlist != BJ_Locked) { 1022 JBUFFER_TRACE(jh, "Not stealing"); 1023 goto no_journal; 1024 } 1025 1026 /* 1027 * This buffer may be undergoing writeout in commit. We 1028 * can't return from here and let the caller dirty it 1029 * again because that can cause the write-out loop in 1030 * commit to never terminate. 1031 */ 1032 if (buffer_dirty(bh)) { 1033 get_bh(bh); 1034 spin_unlock(&journal->j_list_lock); 1035 jbd_unlock_bh_state(bh); 1036 need_brelse = 1; 1037 sync_dirty_buffer(bh); 1038 jbd_lock_bh_state(bh); 1039 spin_lock(&journal->j_list_lock); 1040 /* Since we dropped the lock... */ 1041 if (!buffer_mapped(bh)) { 1042 JBUFFER_TRACE(jh, "buffer got unmapped"); 1043 goto no_journal; 1044 } 1045 /* The buffer may become locked again at any 1046 time if it is redirtied */ 1047 } 1048 1049 /* journal_clean_data_list() may have got there first */ 1050 if (jh->b_transaction != NULL) { 1051 JBUFFER_TRACE(jh, "unfile from commit"); 1052 __jbd2_journal_temp_unlink_buffer(jh); 1053 /* It still points to the committing 1054 * transaction; move it to this one so 1055 * that the refile assert checks are 1056 * happy. */ 1057 jh->b_transaction = handle->h_transaction; 1058 } 1059 /* The buffer will be refiled below */ 1060 1061 } 1062 /* 1063 * Special case --- the buffer might actually have been 1064 * allocated and then immediately deallocated in the previous, 1065 * committing transaction, so might still be left on that 1066 * transaction's metadata lists. 1067 */ 1068 if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) { 1069 JBUFFER_TRACE(jh, "not on correct data list: unfile"); 1070 J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow); 1071 __jbd2_journal_temp_unlink_buffer(jh); 1072 jh->b_transaction = handle->h_transaction; 1073 JBUFFER_TRACE(jh, "file as data"); 1074 __jbd2_journal_file_buffer(jh, handle->h_transaction, 1075 BJ_SyncData); 1076 } 1077 } else { 1078 JBUFFER_TRACE(jh, "not on a transaction"); 1079 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_SyncData); 1080 } 1081 no_journal: 1082 spin_unlock(&journal->j_list_lock); 1083 jbd_unlock_bh_state(bh); 1084 if (need_brelse) { 1085 BUFFER_TRACE(bh, "brelse"); 1086 __brelse(bh); 1087 } 1088 JBUFFER_TRACE(jh, "exit"); 1089 jbd2_journal_put_journal_head(jh); 1090 return 0; 1091 } 1092 1093 /** 1094 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1095 * @handle: transaction to add buffer to. 1096 * @bh: buffer to mark 1097 * 1098 * mark dirty metadata which needs to be journaled as part of the current 1099 * transaction. 1100 * 1101 * The buffer is placed on the transaction's metadata list and is marked 1102 * as belonging to the transaction. 1103 * 1104 * Returns error number or 0 on success. 1105 * 1106 * Special care needs to be taken if the buffer already belongs to the 1107 * current committing transaction (in which case we should have frozen 1108 * data present for that commit). In that case, we don't relink the 1109 * buffer: that only gets done when the old transaction finally 1110 * completes its commit. 1111 */ 1112 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1113 { 1114 transaction_t *transaction = handle->h_transaction; 1115 journal_t *journal = transaction->t_journal; 1116 struct journal_head *jh = bh2jh(bh); 1117 1118 jbd_debug(5, "journal_head %p\n", jh); 1119 JBUFFER_TRACE(jh, "entry"); 1120 if (is_handle_aborted(handle)) 1121 goto out; 1122 1123 jbd_lock_bh_state(bh); 1124 1125 if (jh->b_modified == 0) { 1126 /* 1127 * This buffer's got modified and becoming part 1128 * of the transaction. This needs to be done 1129 * once a transaction -bzzz 1130 */ 1131 jh->b_modified = 1; 1132 J_ASSERT_JH(jh, handle->h_buffer_credits > 0); 1133 handle->h_buffer_credits--; 1134 } 1135 1136 /* 1137 * fastpath, to avoid expensive locking. If this buffer is already 1138 * on the running transaction's metadata list there is nothing to do. 1139 * Nobody can take it off again because there is a handle open. 1140 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1141 * result in this test being false, so we go in and take the locks. 1142 */ 1143 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1144 JBUFFER_TRACE(jh, "fastpath"); 1145 J_ASSERT_JH(jh, jh->b_transaction == 1146 journal->j_running_transaction); 1147 goto out_unlock_bh; 1148 } 1149 1150 set_buffer_jbddirty(bh); 1151 1152 /* 1153 * Metadata already on the current transaction list doesn't 1154 * need to be filed. Metadata on another transaction's list must 1155 * be committing, and will be refiled once the commit completes: 1156 * leave it alone for now. 1157 */ 1158 if (jh->b_transaction != transaction) { 1159 JBUFFER_TRACE(jh, "already on other transaction"); 1160 J_ASSERT_JH(jh, jh->b_transaction == 1161 journal->j_committing_transaction); 1162 J_ASSERT_JH(jh, jh->b_next_transaction == transaction); 1163 /* And this case is illegal: we can't reuse another 1164 * transaction's data buffer, ever. */ 1165 goto out_unlock_bh; 1166 } 1167 1168 /* That test should have eliminated the following case: */ 1169 J_ASSERT_JH(jh, jh->b_frozen_data == 0); 1170 1171 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1172 spin_lock(&journal->j_list_lock); 1173 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata); 1174 spin_unlock(&journal->j_list_lock); 1175 out_unlock_bh: 1176 jbd_unlock_bh_state(bh); 1177 out: 1178 JBUFFER_TRACE(jh, "exit"); 1179 return 0; 1180 } 1181 1182 /* 1183 * jbd2_journal_release_buffer: undo a get_write_access without any buffer 1184 * updates, if the update decided in the end that it didn't need access. 1185 * 1186 */ 1187 void 1188 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh) 1189 { 1190 BUFFER_TRACE(bh, "entry"); 1191 } 1192 1193 /** 1194 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1195 * @handle: transaction handle 1196 * @bh: bh to 'forget' 1197 * 1198 * We can only do the bforget if there are no commits pending against the 1199 * buffer. If the buffer is dirty in the current running transaction we 1200 * can safely unlink it. 1201 * 1202 * bh may not be a journalled buffer at all - it may be a non-JBD 1203 * buffer which came off the hashtable. Check for this. 1204 * 1205 * Decrements bh->b_count by one. 1206 * 1207 * Allow this call even if the handle has aborted --- it may be part of 1208 * the caller's cleanup after an abort. 1209 */ 1210 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh) 1211 { 1212 transaction_t *transaction = handle->h_transaction; 1213 journal_t *journal = transaction->t_journal; 1214 struct journal_head *jh; 1215 int drop_reserve = 0; 1216 int err = 0; 1217 1218 BUFFER_TRACE(bh, "entry"); 1219 1220 jbd_lock_bh_state(bh); 1221 spin_lock(&journal->j_list_lock); 1222 1223 if (!buffer_jbd(bh)) 1224 goto not_jbd; 1225 jh = bh2jh(bh); 1226 1227 /* Critical error: attempting to delete a bitmap buffer, maybe? 1228 * Don't do any jbd operations, and return an error. */ 1229 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1230 "inconsistent data on disk")) { 1231 err = -EIO; 1232 goto not_jbd; 1233 } 1234 1235 /* 1236 * The buffer's going from the transaction, we must drop 1237 * all references -bzzz 1238 */ 1239 jh->b_modified = 0; 1240 1241 if (jh->b_transaction == handle->h_transaction) { 1242 J_ASSERT_JH(jh, !jh->b_frozen_data); 1243 1244 /* If we are forgetting a buffer which is already part 1245 * of this transaction, then we can just drop it from 1246 * the transaction immediately. */ 1247 clear_buffer_dirty(bh); 1248 clear_buffer_jbddirty(bh); 1249 1250 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1251 1252 drop_reserve = 1; 1253 1254 /* 1255 * We are no longer going to journal this buffer. 1256 * However, the commit of this transaction is still 1257 * important to the buffer: the delete that we are now 1258 * processing might obsolete an old log entry, so by 1259 * committing, we can satisfy the buffer's checkpoint. 1260 * 1261 * So, if we have a checkpoint on the buffer, we should 1262 * now refile the buffer on our BJ_Forget list so that 1263 * we know to remove the checkpoint after we commit. 1264 */ 1265 1266 if (jh->b_cp_transaction) { 1267 __jbd2_journal_temp_unlink_buffer(jh); 1268 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1269 } else { 1270 __jbd2_journal_unfile_buffer(jh); 1271 jbd2_journal_remove_journal_head(bh); 1272 __brelse(bh); 1273 if (!buffer_jbd(bh)) { 1274 spin_unlock(&journal->j_list_lock); 1275 jbd_unlock_bh_state(bh); 1276 __bforget(bh); 1277 goto drop; 1278 } 1279 } 1280 } else if (jh->b_transaction) { 1281 J_ASSERT_JH(jh, (jh->b_transaction == 1282 journal->j_committing_transaction)); 1283 /* However, if the buffer is still owned by a prior 1284 * (committing) transaction, we can't drop it yet... */ 1285 JBUFFER_TRACE(jh, "belongs to older transaction"); 1286 /* ... but we CAN drop it from the new transaction if we 1287 * have also modified it since the original commit. */ 1288 1289 if (jh->b_next_transaction) { 1290 J_ASSERT(jh->b_next_transaction == transaction); 1291 jh->b_next_transaction = NULL; 1292 drop_reserve = 1; 1293 } 1294 } 1295 1296 not_jbd: 1297 spin_unlock(&journal->j_list_lock); 1298 jbd_unlock_bh_state(bh); 1299 __brelse(bh); 1300 drop: 1301 if (drop_reserve) { 1302 /* no need to reserve log space for this block -bzzz */ 1303 handle->h_buffer_credits++; 1304 } 1305 return err; 1306 } 1307 1308 /** 1309 * int jbd2_journal_stop() - complete a transaction 1310 * @handle: tranaction to complete. 1311 * 1312 * All done for a particular handle. 1313 * 1314 * There is not much action needed here. We just return any remaining 1315 * buffer credits to the transaction and remove the handle. The only 1316 * complication is that we need to start a commit operation if the 1317 * filesystem is marked for synchronous update. 1318 * 1319 * jbd2_journal_stop itself will not usually return an error, but it may 1320 * do so in unusual circumstances. In particular, expect it to 1321 * return -EIO if a jbd2_journal_abort has been executed since the 1322 * transaction began. 1323 */ 1324 int jbd2_journal_stop(handle_t *handle) 1325 { 1326 transaction_t *transaction = handle->h_transaction; 1327 journal_t *journal = transaction->t_journal; 1328 int old_handle_count, err; 1329 pid_t pid; 1330 1331 J_ASSERT(journal_current_handle() == handle); 1332 1333 if (is_handle_aborted(handle)) 1334 err = -EIO; 1335 else { 1336 J_ASSERT(transaction->t_updates > 0); 1337 err = 0; 1338 } 1339 1340 if (--handle->h_ref > 0) { 1341 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1342 handle->h_ref); 1343 return err; 1344 } 1345 1346 jbd_debug(4, "Handle %p going down\n", handle); 1347 1348 /* 1349 * Implement synchronous transaction batching. If the handle 1350 * was synchronous, don't force a commit immediately. Let's 1351 * yield and let another thread piggyback onto this transaction. 1352 * Keep doing that while new threads continue to arrive. 1353 * It doesn't cost much - we're about to run a commit and sleep 1354 * on IO anyway. Speeds up many-threaded, many-dir operations 1355 * by 30x or more... 1356 * 1357 * But don't do this if this process was the most recent one to 1358 * perform a synchronous write. We do this to detect the case where a 1359 * single process is doing a stream of sync writes. No point in waiting 1360 * for joiners in that case. 1361 */ 1362 pid = current->pid; 1363 if (handle->h_sync && journal->j_last_sync_writer != pid) { 1364 journal->j_last_sync_writer = pid; 1365 do { 1366 old_handle_count = transaction->t_handle_count; 1367 schedule_timeout_uninterruptible(1); 1368 } while (old_handle_count != transaction->t_handle_count); 1369 } 1370 1371 current->journal_info = NULL; 1372 spin_lock(&journal->j_state_lock); 1373 spin_lock(&transaction->t_handle_lock); 1374 transaction->t_outstanding_credits -= handle->h_buffer_credits; 1375 transaction->t_updates--; 1376 if (!transaction->t_updates) { 1377 wake_up(&journal->j_wait_updates); 1378 if (journal->j_barrier_count) 1379 wake_up(&journal->j_wait_transaction_locked); 1380 } 1381 1382 /* 1383 * If the handle is marked SYNC, we need to set another commit 1384 * going! We also want to force a commit if the current 1385 * transaction is occupying too much of the log, or if the 1386 * transaction is too old now. 1387 */ 1388 if (handle->h_sync || 1389 transaction->t_outstanding_credits > 1390 journal->j_max_transaction_buffers || 1391 time_after_eq(jiffies, transaction->t_expires)) { 1392 /* Do this even for aborted journals: an abort still 1393 * completes the commit thread, it just doesn't write 1394 * anything to disk. */ 1395 tid_t tid = transaction->t_tid; 1396 1397 spin_unlock(&transaction->t_handle_lock); 1398 jbd_debug(2, "transaction too old, requesting commit for " 1399 "handle %p\n", handle); 1400 /* This is non-blocking */ 1401 __jbd2_log_start_commit(journal, transaction->t_tid); 1402 spin_unlock(&journal->j_state_lock); 1403 1404 /* 1405 * Special case: JBD2_SYNC synchronous updates require us 1406 * to wait for the commit to complete. 1407 */ 1408 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1409 err = jbd2_log_wait_commit(journal, tid); 1410 } else { 1411 spin_unlock(&transaction->t_handle_lock); 1412 spin_unlock(&journal->j_state_lock); 1413 } 1414 1415 jbd_free_handle(handle); 1416 return err; 1417 } 1418 1419 /**int jbd2_journal_force_commit() - force any uncommitted transactions 1420 * @journal: journal to force 1421 * 1422 * For synchronous operations: force any uncommitted transactions 1423 * to disk. May seem kludgy, but it reuses all the handle batching 1424 * code in a very simple manner. 1425 */ 1426 int jbd2_journal_force_commit(journal_t *journal) 1427 { 1428 handle_t *handle; 1429 int ret; 1430 1431 handle = jbd2_journal_start(journal, 1); 1432 if (IS_ERR(handle)) { 1433 ret = PTR_ERR(handle); 1434 } else { 1435 handle->h_sync = 1; 1436 ret = jbd2_journal_stop(handle); 1437 } 1438 return ret; 1439 } 1440 1441 /* 1442 * 1443 * List management code snippets: various functions for manipulating the 1444 * transaction buffer lists. 1445 * 1446 */ 1447 1448 /* 1449 * Append a buffer to a transaction list, given the transaction's list head 1450 * pointer. 1451 * 1452 * j_list_lock is held. 1453 * 1454 * jbd_lock_bh_state(jh2bh(jh)) is held. 1455 */ 1456 1457 static inline void 1458 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1459 { 1460 if (!*list) { 1461 jh->b_tnext = jh->b_tprev = jh; 1462 *list = jh; 1463 } else { 1464 /* Insert at the tail of the list to preserve order */ 1465 struct journal_head *first = *list, *last = first->b_tprev; 1466 jh->b_tprev = last; 1467 jh->b_tnext = first; 1468 last->b_tnext = first->b_tprev = jh; 1469 } 1470 } 1471 1472 /* 1473 * Remove a buffer from a transaction list, given the transaction's list 1474 * head pointer. 1475 * 1476 * Called with j_list_lock held, and the journal may not be locked. 1477 * 1478 * jbd_lock_bh_state(jh2bh(jh)) is held. 1479 */ 1480 1481 static inline void 1482 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1483 { 1484 if (*list == jh) { 1485 *list = jh->b_tnext; 1486 if (*list == jh) 1487 *list = NULL; 1488 } 1489 jh->b_tprev->b_tnext = jh->b_tnext; 1490 jh->b_tnext->b_tprev = jh->b_tprev; 1491 } 1492 1493 /* 1494 * Remove a buffer from the appropriate transaction list. 1495 * 1496 * Note that this function can *change* the value of 1497 * bh->b_transaction->t_sync_datalist, t_buffers, t_forget, 1498 * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list. If the caller 1499 * is holding onto a copy of one of thee pointers, it could go bad. 1500 * Generally the caller needs to re-read the pointer from the transaction_t. 1501 * 1502 * Called under j_list_lock. The journal may not be locked. 1503 */ 1504 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 1505 { 1506 struct journal_head **list = NULL; 1507 transaction_t *transaction; 1508 struct buffer_head *bh = jh2bh(jh); 1509 1510 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1511 transaction = jh->b_transaction; 1512 if (transaction) 1513 assert_spin_locked(&transaction->t_journal->j_list_lock); 1514 1515 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1516 if (jh->b_jlist != BJ_None) 1517 J_ASSERT_JH(jh, transaction != 0); 1518 1519 switch (jh->b_jlist) { 1520 case BJ_None: 1521 return; 1522 case BJ_SyncData: 1523 list = &transaction->t_sync_datalist; 1524 break; 1525 case BJ_Metadata: 1526 transaction->t_nr_buffers--; 1527 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 1528 list = &transaction->t_buffers; 1529 break; 1530 case BJ_Forget: 1531 list = &transaction->t_forget; 1532 break; 1533 case BJ_IO: 1534 list = &transaction->t_iobuf_list; 1535 break; 1536 case BJ_Shadow: 1537 list = &transaction->t_shadow_list; 1538 break; 1539 case BJ_LogCtl: 1540 list = &transaction->t_log_list; 1541 break; 1542 case BJ_Reserved: 1543 list = &transaction->t_reserved_list; 1544 break; 1545 case BJ_Locked: 1546 list = &transaction->t_locked_list; 1547 break; 1548 } 1549 1550 __blist_del_buffer(list, jh); 1551 jh->b_jlist = BJ_None; 1552 if (test_clear_buffer_jbddirty(bh)) 1553 mark_buffer_dirty(bh); /* Expose it to the VM */ 1554 } 1555 1556 void __jbd2_journal_unfile_buffer(struct journal_head *jh) 1557 { 1558 __jbd2_journal_temp_unlink_buffer(jh); 1559 jh->b_transaction = NULL; 1560 } 1561 1562 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 1563 { 1564 jbd_lock_bh_state(jh2bh(jh)); 1565 spin_lock(&journal->j_list_lock); 1566 __jbd2_journal_unfile_buffer(jh); 1567 spin_unlock(&journal->j_list_lock); 1568 jbd_unlock_bh_state(jh2bh(jh)); 1569 } 1570 1571 /* 1572 * Called from jbd2_journal_try_to_free_buffers(). 1573 * 1574 * Called under jbd_lock_bh_state(bh) 1575 */ 1576 static void 1577 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 1578 { 1579 struct journal_head *jh; 1580 1581 jh = bh2jh(bh); 1582 1583 if (buffer_locked(bh) || buffer_dirty(bh)) 1584 goto out; 1585 1586 if (jh->b_next_transaction != 0) 1587 goto out; 1588 1589 spin_lock(&journal->j_list_lock); 1590 if (jh->b_transaction != 0 && jh->b_cp_transaction == 0) { 1591 if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) { 1592 /* A written-back ordered data buffer */ 1593 JBUFFER_TRACE(jh, "release data"); 1594 __jbd2_journal_unfile_buffer(jh); 1595 jbd2_journal_remove_journal_head(bh); 1596 __brelse(bh); 1597 } 1598 } else if (jh->b_cp_transaction != 0 && jh->b_transaction == 0) { 1599 /* written-back checkpointed metadata buffer */ 1600 if (jh->b_jlist == BJ_None) { 1601 JBUFFER_TRACE(jh, "remove from checkpoint list"); 1602 __jbd2_journal_remove_checkpoint(jh); 1603 jbd2_journal_remove_journal_head(bh); 1604 __brelse(bh); 1605 } 1606 } 1607 spin_unlock(&journal->j_list_lock); 1608 out: 1609 return; 1610 } 1611 1612 1613 /** 1614 * int jbd2_journal_try_to_free_buffers() - try to free page buffers. 1615 * @journal: journal for operation 1616 * @page: to try and free 1617 * @unused_gfp_mask: unused 1618 * 1619 * 1620 * For all the buffers on this page, 1621 * if they are fully written out ordered data, move them onto BUF_CLEAN 1622 * so try_to_free_buffers() can reap them. 1623 * 1624 * This function returns non-zero if we wish try_to_free_buffers() 1625 * to be called. We do this if the page is releasable by try_to_free_buffers(). 1626 * We also do it if the page has locked or dirty buffers and the caller wants 1627 * us to perform sync or async writeout. 1628 * 1629 * This complicates JBD locking somewhat. We aren't protected by the 1630 * BKL here. We wish to remove the buffer from its committing or 1631 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 1632 * 1633 * This may *change* the value of transaction_t->t_datalist, so anyone 1634 * who looks at t_datalist needs to lock against this function. 1635 * 1636 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 1637 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 1638 * will come out of the lock with the buffer dirty, which makes it 1639 * ineligible for release here. 1640 * 1641 * Who else is affected by this? hmm... Really the only contender 1642 * is do_get_write_access() - it could be looking at the buffer while 1643 * journal_try_to_free_buffer() is changing its state. But that 1644 * cannot happen because we never reallocate freed data as metadata 1645 * while the data is part of a transaction. Yes? 1646 */ 1647 int jbd2_journal_try_to_free_buffers(journal_t *journal, 1648 struct page *page, gfp_t unused_gfp_mask) 1649 { 1650 struct buffer_head *head; 1651 struct buffer_head *bh; 1652 int ret = 0; 1653 1654 J_ASSERT(PageLocked(page)); 1655 1656 head = page_buffers(page); 1657 bh = head; 1658 do { 1659 struct journal_head *jh; 1660 1661 /* 1662 * We take our own ref against the journal_head here to avoid 1663 * having to add tons of locking around each instance of 1664 * jbd2_journal_remove_journal_head() and jbd2_journal_put_journal_head(). 1665 */ 1666 jh = jbd2_journal_grab_journal_head(bh); 1667 if (!jh) 1668 continue; 1669 1670 jbd_lock_bh_state(bh); 1671 __journal_try_to_free_buffer(journal, bh); 1672 jbd2_journal_put_journal_head(jh); 1673 jbd_unlock_bh_state(bh); 1674 if (buffer_jbd(bh)) 1675 goto busy; 1676 } while ((bh = bh->b_this_page) != head); 1677 ret = try_to_free_buffers(page); 1678 busy: 1679 return ret; 1680 } 1681 1682 /* 1683 * This buffer is no longer needed. If it is on an older transaction's 1684 * checkpoint list we need to record it on this transaction's forget list 1685 * to pin this buffer (and hence its checkpointing transaction) down until 1686 * this transaction commits. If the buffer isn't on a checkpoint list, we 1687 * release it. 1688 * Returns non-zero if JBD no longer has an interest in the buffer. 1689 * 1690 * Called under j_list_lock. 1691 * 1692 * Called under jbd_lock_bh_state(bh). 1693 */ 1694 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 1695 { 1696 int may_free = 1; 1697 struct buffer_head *bh = jh2bh(jh); 1698 1699 __jbd2_journal_unfile_buffer(jh); 1700 1701 if (jh->b_cp_transaction) { 1702 JBUFFER_TRACE(jh, "on running+cp transaction"); 1703 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1704 clear_buffer_jbddirty(bh); 1705 may_free = 0; 1706 } else { 1707 JBUFFER_TRACE(jh, "on running transaction"); 1708 jbd2_journal_remove_journal_head(bh); 1709 __brelse(bh); 1710 } 1711 return may_free; 1712 } 1713 1714 /* 1715 * jbd2_journal_invalidatepage 1716 * 1717 * This code is tricky. It has a number of cases to deal with. 1718 * 1719 * There are two invariants which this code relies on: 1720 * 1721 * i_size must be updated on disk before we start calling invalidatepage on the 1722 * data. 1723 * 1724 * This is done in ext3 by defining an ext3_setattr method which 1725 * updates i_size before truncate gets going. By maintaining this 1726 * invariant, we can be sure that it is safe to throw away any buffers 1727 * attached to the current transaction: once the transaction commits, 1728 * we know that the data will not be needed. 1729 * 1730 * Note however that we can *not* throw away data belonging to the 1731 * previous, committing transaction! 1732 * 1733 * Any disk blocks which *are* part of the previous, committing 1734 * transaction (and which therefore cannot be discarded immediately) are 1735 * not going to be reused in the new running transaction 1736 * 1737 * The bitmap committed_data images guarantee this: any block which is 1738 * allocated in one transaction and removed in the next will be marked 1739 * as in-use in the committed_data bitmap, so cannot be reused until 1740 * the next transaction to delete the block commits. This means that 1741 * leaving committing buffers dirty is quite safe: the disk blocks 1742 * cannot be reallocated to a different file and so buffer aliasing is 1743 * not possible. 1744 * 1745 * 1746 * The above applies mainly to ordered data mode. In writeback mode we 1747 * don't make guarantees about the order in which data hits disk --- in 1748 * particular we don't guarantee that new dirty data is flushed before 1749 * transaction commit --- so it is always safe just to discard data 1750 * immediately in that mode. --sct 1751 */ 1752 1753 /* 1754 * The journal_unmap_buffer helper function returns zero if the buffer 1755 * concerned remains pinned as an anonymous buffer belonging to an older 1756 * transaction. 1757 * 1758 * We're outside-transaction here. Either or both of j_running_transaction 1759 * and j_committing_transaction may be NULL. 1760 */ 1761 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh) 1762 { 1763 transaction_t *transaction; 1764 struct journal_head *jh; 1765 int may_free = 1; 1766 int ret; 1767 1768 BUFFER_TRACE(bh, "entry"); 1769 1770 /* 1771 * It is safe to proceed here without the j_list_lock because the 1772 * buffers cannot be stolen by try_to_free_buffers as long as we are 1773 * holding the page lock. --sct 1774 */ 1775 1776 if (!buffer_jbd(bh)) 1777 goto zap_buffer_unlocked; 1778 1779 spin_lock(&journal->j_state_lock); 1780 jbd_lock_bh_state(bh); 1781 spin_lock(&journal->j_list_lock); 1782 1783 jh = jbd2_journal_grab_journal_head(bh); 1784 if (!jh) 1785 goto zap_buffer_no_jh; 1786 1787 transaction = jh->b_transaction; 1788 if (transaction == NULL) { 1789 /* First case: not on any transaction. If it 1790 * has no checkpoint link, then we can zap it: 1791 * it's a writeback-mode buffer so we don't care 1792 * if it hits disk safely. */ 1793 if (!jh->b_cp_transaction) { 1794 JBUFFER_TRACE(jh, "not on any transaction: zap"); 1795 goto zap_buffer; 1796 } 1797 1798 if (!buffer_dirty(bh)) { 1799 /* bdflush has written it. We can drop it now */ 1800 goto zap_buffer; 1801 } 1802 1803 /* OK, it must be in the journal but still not 1804 * written fully to disk: it's metadata or 1805 * journaled data... */ 1806 1807 if (journal->j_running_transaction) { 1808 /* ... and once the current transaction has 1809 * committed, the buffer won't be needed any 1810 * longer. */ 1811 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 1812 ret = __dispose_buffer(jh, 1813 journal->j_running_transaction); 1814 jbd2_journal_put_journal_head(jh); 1815 spin_unlock(&journal->j_list_lock); 1816 jbd_unlock_bh_state(bh); 1817 spin_unlock(&journal->j_state_lock); 1818 return ret; 1819 } else { 1820 /* There is no currently-running transaction. So the 1821 * orphan record which we wrote for this file must have 1822 * passed into commit. We must attach this buffer to 1823 * the committing transaction, if it exists. */ 1824 if (journal->j_committing_transaction) { 1825 JBUFFER_TRACE(jh, "give to committing trans"); 1826 ret = __dispose_buffer(jh, 1827 journal->j_committing_transaction); 1828 jbd2_journal_put_journal_head(jh); 1829 spin_unlock(&journal->j_list_lock); 1830 jbd_unlock_bh_state(bh); 1831 spin_unlock(&journal->j_state_lock); 1832 return ret; 1833 } else { 1834 /* The orphan record's transaction has 1835 * committed. We can cleanse this buffer */ 1836 clear_buffer_jbddirty(bh); 1837 goto zap_buffer; 1838 } 1839 } 1840 } else if (transaction == journal->j_committing_transaction) { 1841 JBUFFER_TRACE(jh, "on committing transaction"); 1842 if (jh->b_jlist == BJ_Locked) { 1843 /* 1844 * The buffer is on the committing transaction's locked 1845 * list. We have the buffer locked, so I/O has 1846 * completed. So we can nail the buffer now. 1847 */ 1848 may_free = __dispose_buffer(jh, transaction); 1849 goto zap_buffer; 1850 } 1851 /* 1852 * If it is committing, we simply cannot touch it. We 1853 * can remove it's next_transaction pointer from the 1854 * running transaction if that is set, but nothing 1855 * else. */ 1856 set_buffer_freed(bh); 1857 if (jh->b_next_transaction) { 1858 J_ASSERT(jh->b_next_transaction == 1859 journal->j_running_transaction); 1860 jh->b_next_transaction = NULL; 1861 } 1862 jbd2_journal_put_journal_head(jh); 1863 spin_unlock(&journal->j_list_lock); 1864 jbd_unlock_bh_state(bh); 1865 spin_unlock(&journal->j_state_lock); 1866 return 0; 1867 } else { 1868 /* Good, the buffer belongs to the running transaction. 1869 * We are writing our own transaction's data, not any 1870 * previous one's, so it is safe to throw it away 1871 * (remember that we expect the filesystem to have set 1872 * i_size already for this truncate so recovery will not 1873 * expose the disk blocks we are discarding here.) */ 1874 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 1875 JBUFFER_TRACE(jh, "on running transaction"); 1876 may_free = __dispose_buffer(jh, transaction); 1877 } 1878 1879 zap_buffer: 1880 jbd2_journal_put_journal_head(jh); 1881 zap_buffer_no_jh: 1882 spin_unlock(&journal->j_list_lock); 1883 jbd_unlock_bh_state(bh); 1884 spin_unlock(&journal->j_state_lock); 1885 zap_buffer_unlocked: 1886 clear_buffer_dirty(bh); 1887 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 1888 clear_buffer_mapped(bh); 1889 clear_buffer_req(bh); 1890 clear_buffer_new(bh); 1891 bh->b_bdev = NULL; 1892 return may_free; 1893 } 1894 1895 /** 1896 * void jbd2_journal_invalidatepage() 1897 * @journal: journal to use for flush... 1898 * @page: page to flush 1899 * @offset: length of page to invalidate. 1900 * 1901 * Reap page buffers containing data after offset in page. 1902 * 1903 */ 1904 void jbd2_journal_invalidatepage(journal_t *journal, 1905 struct page *page, 1906 unsigned long offset) 1907 { 1908 struct buffer_head *head, *bh, *next; 1909 unsigned int curr_off = 0; 1910 int may_free = 1; 1911 1912 if (!PageLocked(page)) 1913 BUG(); 1914 if (!page_has_buffers(page)) 1915 return; 1916 1917 /* We will potentially be playing with lists other than just the 1918 * data lists (especially for journaled data mode), so be 1919 * cautious in our locking. */ 1920 1921 head = bh = page_buffers(page); 1922 do { 1923 unsigned int next_off = curr_off + bh->b_size; 1924 next = bh->b_this_page; 1925 1926 if (offset <= curr_off) { 1927 /* This block is wholly outside the truncation point */ 1928 lock_buffer(bh); 1929 may_free &= journal_unmap_buffer(journal, bh); 1930 unlock_buffer(bh); 1931 } 1932 curr_off = next_off; 1933 bh = next; 1934 1935 } while (bh != head); 1936 1937 if (!offset) { 1938 if (may_free && try_to_free_buffers(page)) 1939 J_ASSERT(!page_has_buffers(page)); 1940 } 1941 } 1942 1943 /* 1944 * File a buffer on the given transaction list. 1945 */ 1946 void __jbd2_journal_file_buffer(struct journal_head *jh, 1947 transaction_t *transaction, int jlist) 1948 { 1949 struct journal_head **list = NULL; 1950 int was_dirty = 0; 1951 struct buffer_head *bh = jh2bh(jh); 1952 1953 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 1954 assert_spin_locked(&transaction->t_journal->j_list_lock); 1955 1956 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 1957 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1958 jh->b_transaction == 0); 1959 1960 if (jh->b_transaction && jh->b_jlist == jlist) 1961 return; 1962 1963 /* The following list of buffer states needs to be consistent 1964 * with __jbd_unexpected_dirty_buffer()'s handling of dirty 1965 * state. */ 1966 1967 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 1968 jlist == BJ_Shadow || jlist == BJ_Forget) { 1969 if (test_clear_buffer_dirty(bh) || 1970 test_clear_buffer_jbddirty(bh)) 1971 was_dirty = 1; 1972 } 1973 1974 if (jh->b_transaction) 1975 __jbd2_journal_temp_unlink_buffer(jh); 1976 jh->b_transaction = transaction; 1977 1978 switch (jlist) { 1979 case BJ_None: 1980 J_ASSERT_JH(jh, !jh->b_committed_data); 1981 J_ASSERT_JH(jh, !jh->b_frozen_data); 1982 return; 1983 case BJ_SyncData: 1984 list = &transaction->t_sync_datalist; 1985 break; 1986 case BJ_Metadata: 1987 transaction->t_nr_buffers++; 1988 list = &transaction->t_buffers; 1989 break; 1990 case BJ_Forget: 1991 list = &transaction->t_forget; 1992 break; 1993 case BJ_IO: 1994 list = &transaction->t_iobuf_list; 1995 break; 1996 case BJ_Shadow: 1997 list = &transaction->t_shadow_list; 1998 break; 1999 case BJ_LogCtl: 2000 list = &transaction->t_log_list; 2001 break; 2002 case BJ_Reserved: 2003 list = &transaction->t_reserved_list; 2004 break; 2005 case BJ_Locked: 2006 list = &transaction->t_locked_list; 2007 break; 2008 } 2009 2010 __blist_add_buffer(list, jh); 2011 jh->b_jlist = jlist; 2012 2013 if (was_dirty) 2014 set_buffer_jbddirty(bh); 2015 } 2016 2017 void jbd2_journal_file_buffer(struct journal_head *jh, 2018 transaction_t *transaction, int jlist) 2019 { 2020 jbd_lock_bh_state(jh2bh(jh)); 2021 spin_lock(&transaction->t_journal->j_list_lock); 2022 __jbd2_journal_file_buffer(jh, transaction, jlist); 2023 spin_unlock(&transaction->t_journal->j_list_lock); 2024 jbd_unlock_bh_state(jh2bh(jh)); 2025 } 2026 2027 /* 2028 * Remove a buffer from its current buffer list in preparation for 2029 * dropping it from its current transaction entirely. If the buffer has 2030 * already started to be used by a subsequent transaction, refile the 2031 * buffer on that transaction's metadata list. 2032 * 2033 * Called under journal->j_list_lock 2034 * 2035 * Called under jbd_lock_bh_state(jh2bh(jh)) 2036 */ 2037 void __jbd2_journal_refile_buffer(struct journal_head *jh) 2038 { 2039 int was_dirty; 2040 struct buffer_head *bh = jh2bh(jh); 2041 2042 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh)); 2043 if (jh->b_transaction) 2044 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2045 2046 /* If the buffer is now unused, just drop it. */ 2047 if (jh->b_next_transaction == NULL) { 2048 __jbd2_journal_unfile_buffer(jh); 2049 return; 2050 } 2051 2052 /* 2053 * It has been modified by a later transaction: add it to the new 2054 * transaction's metadata list. 2055 */ 2056 2057 was_dirty = test_clear_buffer_jbddirty(bh); 2058 __jbd2_journal_temp_unlink_buffer(jh); 2059 jh->b_transaction = jh->b_next_transaction; 2060 jh->b_next_transaction = NULL; 2061 __jbd2_journal_file_buffer(jh, jh->b_transaction, 2062 was_dirty ? BJ_Metadata : BJ_Reserved); 2063 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2064 2065 if (was_dirty) 2066 set_buffer_jbddirty(bh); 2067 } 2068 2069 /* 2070 * For the unlocked version of this call, also make sure that any 2071 * hanging journal_head is cleaned up if necessary. 2072 * 2073 * __jbd2_journal_refile_buffer is usually called as part of a single locked 2074 * operation on a buffer_head, in which the caller is probably going to 2075 * be hooking the journal_head onto other lists. In that case it is up 2076 * to the caller to remove the journal_head if necessary. For the 2077 * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be 2078 * doing anything else to the buffer so we need to do the cleanup 2079 * ourselves to avoid a jh leak. 2080 * 2081 * *** The journal_head may be freed by this call! *** 2082 */ 2083 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2084 { 2085 struct buffer_head *bh = jh2bh(jh); 2086 2087 jbd_lock_bh_state(bh); 2088 spin_lock(&journal->j_list_lock); 2089 2090 __jbd2_journal_refile_buffer(jh); 2091 jbd_unlock_bh_state(bh); 2092 jbd2_journal_remove_journal_head(bh); 2093 2094 spin_unlock(&journal->j_list_lock); 2095 __brelse(bh); 2096 } 2097