1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17 #include <linux/time.h> 18 #include <linux/fs.h> 19 #include <linux/jbd2.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/timer.h> 23 #include <linux/mm.h> 24 #include <linux/highmem.h> 25 #include <linux/hrtimer.h> 26 #include <linux/backing-dev.h> 27 #include <linux/bug.h> 28 #include <linux/module.h> 29 #include <linux/sched/mm.h> 30 31 #include <trace/events/jbd2.h> 32 33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36 static struct kmem_cache *transaction_cache; 37 int __init jbd2_journal_init_transaction_cache(void) 38 { 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50 } 51 52 void jbd2_journal_destroy_transaction_cache(void) 53 { 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56 } 57 58 void jbd2_journal_free_transaction(transaction_t *transaction) 59 { 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63 } 64 65 /* 66 * jbd2_get_transaction: obtain a new transaction_t object. 67 * 68 * Simply initialise a new transaction. Initialize it in 69 * RUNNING state and add it to the current journal (which should not 70 * have an existing running transaction: we only make a new transaction 71 * once we have started to commit the old one). 72 * 73 * Preconditions: 74 * The journal MUST be locked. We don't perform atomic mallocs on the 75 * new transaction and we can't block without protecting against other 76 * processes trying to touch the journal while it is in transition. 77 * 78 */ 79 80 static void jbd2_get_transaction(journal_t *journal, 81 transaction_t *transaction) 82 { 83 transaction->t_journal = journal; 84 transaction->t_state = T_RUNNING; 85 transaction->t_start_time = ktime_get(); 86 transaction->t_tid = journal->j_transaction_sequence++; 87 transaction->t_expires = jiffies + journal->j_commit_interval; 88 atomic_set(&transaction->t_updates, 0); 89 atomic_set(&transaction->t_outstanding_credits, 90 journal->j_transaction_overhead_buffers + 91 atomic_read(&journal->j_reserved_credits)); 92 atomic_set(&transaction->t_outstanding_revokes, 0); 93 atomic_set(&transaction->t_handle_count, 0); 94 INIT_LIST_HEAD(&transaction->t_inode_list); 95 INIT_LIST_HEAD(&transaction->t_private_list); 96 97 /* Set up the commit timer for the new transaction. */ 98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 99 add_timer(&journal->j_commit_timer); 100 101 J_ASSERT(journal->j_running_transaction == NULL); 102 journal->j_running_transaction = transaction; 103 transaction->t_max_wait = 0; 104 transaction->t_start = jiffies; 105 transaction->t_requested = 0; 106 } 107 108 /* 109 * Handle management. 110 * 111 * A handle_t is an object which represents a single atomic update to a 112 * filesystem, and which tracks all of the modifications which form part 113 * of that one update. 114 */ 115 116 /* 117 * Update transaction's maximum wait time, if debugging is enabled. 118 * 119 * t_max_wait is carefully updated here with use of atomic compare exchange. 120 * Note that there could be multiplre threads trying to do this simultaneously 121 * hence using cmpxchg to avoid any use of locks in this case. 122 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug. 123 */ 124 static inline void update_t_max_wait(transaction_t *transaction, 125 unsigned long ts) 126 { 127 unsigned long oldts, newts; 128 129 if (time_after(transaction->t_start, ts)) { 130 newts = jbd2_time_diff(ts, transaction->t_start); 131 oldts = READ_ONCE(transaction->t_max_wait); 132 while (oldts < newts) 133 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts); 134 } 135 } 136 137 /* 138 * Wait until running transaction passes to T_FLUSH state and new transaction 139 * can thus be started. Also starts the commit if needed. The function expects 140 * running transaction to exist and releases j_state_lock. 141 */ 142 static void wait_transaction_locked(journal_t *journal) 143 __releases(journal->j_state_lock) 144 { 145 DEFINE_WAIT(wait); 146 int need_to_start; 147 tid_t tid = journal->j_running_transaction->t_tid; 148 149 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 150 TASK_UNINTERRUPTIBLE); 151 need_to_start = !tid_geq(journal->j_commit_request, tid); 152 read_unlock(&journal->j_state_lock); 153 if (need_to_start) 154 jbd2_log_start_commit(journal, tid); 155 jbd2_might_wait_for_commit(journal); 156 schedule(); 157 finish_wait(&journal->j_wait_transaction_locked, &wait); 158 } 159 160 /* 161 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 162 * state and new transaction can thus be started. The function releases 163 * j_state_lock. 164 */ 165 static void wait_transaction_switching(journal_t *journal) 166 __releases(journal->j_state_lock) 167 { 168 DEFINE_WAIT(wait); 169 170 if (WARN_ON(!journal->j_running_transaction || 171 journal->j_running_transaction->t_state != T_SWITCH)) { 172 read_unlock(&journal->j_state_lock); 173 return; 174 } 175 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 176 TASK_UNINTERRUPTIBLE); 177 read_unlock(&journal->j_state_lock); 178 /* 179 * We don't call jbd2_might_wait_for_commit() here as there's no 180 * waiting for outstanding handles happening anymore in T_SWITCH state 181 * and handling of reserved handles actually relies on that for 182 * correctness. 183 */ 184 schedule(); 185 finish_wait(&journal->j_wait_transaction_locked, &wait); 186 } 187 188 static void sub_reserved_credits(journal_t *journal, int blocks) 189 { 190 atomic_sub(blocks, &journal->j_reserved_credits); 191 wake_up(&journal->j_wait_reserved); 192 } 193 194 /* Maximum number of blocks for user transaction payload */ 195 static int jbd2_max_user_trans_buffers(journal_t *journal) 196 { 197 return journal->j_max_transaction_buffers - 198 journal->j_transaction_overhead_buffers; 199 } 200 201 /* 202 * Wait until we can add credits for handle to the running transaction. Called 203 * with j_state_lock held for reading. Returns 0 if handle joined the running 204 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 205 * caller must retry. 206 * 207 * Note: because j_state_lock may be dropped depending on the return 208 * value, we need to fake out sparse so ti doesn't complain about a 209 * locking imbalance. Callers of add_transaction_credits will need to 210 * make a similar accomodation. 211 */ 212 static int add_transaction_credits(journal_t *journal, int blocks, 213 int rsv_blocks) 214 __must_hold(&journal->j_state_lock) 215 { 216 transaction_t *t = journal->j_running_transaction; 217 int needed; 218 int total = blocks + rsv_blocks; 219 220 /* 221 * If the current transaction is locked down for commit, wait 222 * for the lock to be released. 223 */ 224 if (t->t_state != T_RUNNING) { 225 WARN_ON_ONCE(t->t_state >= T_FLUSH); 226 wait_transaction_locked(journal); 227 __acquire(&journal->j_state_lock); /* fake out sparse */ 228 return 1; 229 } 230 231 /* 232 * If there is not enough space left in the log to write all 233 * potential buffers requested by this operation, we need to 234 * stall pending a log checkpoint to free some more log space. 235 */ 236 needed = atomic_add_return(total, &t->t_outstanding_credits); 237 if (needed > journal->j_max_transaction_buffers) { 238 /* 239 * If the current transaction is already too large, 240 * then start to commit it: we can then go back and 241 * attach this handle to a new transaction. 242 */ 243 atomic_sub(total, &t->t_outstanding_credits); 244 245 /* 246 * Is the number of reserved credits in the current transaction too 247 * big to fit this handle? Wait until reserved credits are freed. 248 */ 249 if (atomic_read(&journal->j_reserved_credits) + total > 250 jbd2_max_user_trans_buffers(journal)) { 251 read_unlock(&journal->j_state_lock); 252 jbd2_might_wait_for_commit(journal); 253 wait_event(journal->j_wait_reserved, 254 atomic_read(&journal->j_reserved_credits) + total <= 255 jbd2_max_user_trans_buffers(journal)); 256 __acquire(&journal->j_state_lock); /* fake out sparse */ 257 return 1; 258 } 259 260 wait_transaction_locked(journal); 261 __acquire(&journal->j_state_lock); /* fake out sparse */ 262 return 1; 263 } 264 265 /* 266 * The commit code assumes that it can get enough log space 267 * without forcing a checkpoint. This is *critical* for 268 * correctness: a checkpoint of a buffer which is also 269 * associated with a committing transaction creates a deadlock, 270 * so commit simply cannot force through checkpoints. 271 * 272 * We must therefore ensure the necessary space in the journal 273 * *before* starting to dirty potentially checkpointed buffers 274 * in the new transaction. 275 */ 276 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 277 atomic_sub(total, &t->t_outstanding_credits); 278 read_unlock(&journal->j_state_lock); 279 jbd2_might_wait_for_commit(journal); 280 write_lock(&journal->j_state_lock); 281 if (jbd2_log_space_left(journal) < 282 journal->j_max_transaction_buffers) 283 __jbd2_log_wait_for_space(journal); 284 write_unlock(&journal->j_state_lock); 285 __acquire(&journal->j_state_lock); /* fake out sparse */ 286 return 1; 287 } 288 289 /* No reservation? We are done... */ 290 if (!rsv_blocks) 291 return 0; 292 293 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 294 /* We allow at most half of a transaction to be reserved */ 295 if (needed > jbd2_max_user_trans_buffers(journal) / 2) { 296 sub_reserved_credits(journal, rsv_blocks); 297 atomic_sub(total, &t->t_outstanding_credits); 298 read_unlock(&journal->j_state_lock); 299 jbd2_might_wait_for_commit(journal); 300 wait_event(journal->j_wait_reserved, 301 atomic_read(&journal->j_reserved_credits) + rsv_blocks 302 <= jbd2_max_user_trans_buffers(journal) / 2); 303 __acquire(&journal->j_state_lock); /* fake out sparse */ 304 return 1; 305 } 306 return 0; 307 } 308 309 /* 310 * start_this_handle: Given a handle, deal with any locking or stalling 311 * needed to make sure that there is enough journal space for the handle 312 * to begin. Attach the handle to a transaction and set up the 313 * transaction's buffer credits. 314 */ 315 316 static int start_this_handle(journal_t *journal, handle_t *handle, 317 gfp_t gfp_mask) 318 { 319 transaction_t *transaction, *new_transaction = NULL; 320 int blocks = handle->h_total_credits; 321 int rsv_blocks = 0; 322 unsigned long ts = jiffies; 323 324 if (handle->h_rsv_handle) 325 rsv_blocks = handle->h_rsv_handle->h_total_credits; 326 327 /* 328 * Limit the number of reserved credits to 1/2 of maximum transaction 329 * size and limit the number of total credits to not exceed maximum 330 * transaction size per operation. 331 */ 332 if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 || 333 rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) { 334 printk(KERN_ERR "JBD2: %s wants too many credits " 335 "credits:%d rsv_credits:%d max:%d\n", 336 current->comm, blocks, rsv_blocks, 337 jbd2_max_user_trans_buffers(journal)); 338 WARN_ON(1); 339 return -ENOSPC; 340 } 341 342 alloc_transaction: 343 /* 344 * This check is racy but it is just an optimization of allocating new 345 * transaction early if there are high chances we'll need it. If we 346 * guess wrong, we'll retry or free unused transaction. 347 */ 348 if (!data_race(journal->j_running_transaction)) { 349 /* 350 * If __GFP_FS is not present, then we may be being called from 351 * inside the fs writeback layer, so we MUST NOT fail. 352 */ 353 if ((gfp_mask & __GFP_FS) == 0) 354 gfp_mask |= __GFP_NOFAIL; 355 new_transaction = kmem_cache_zalloc(transaction_cache, 356 gfp_mask); 357 if (!new_transaction) 358 return -ENOMEM; 359 } 360 361 jbd2_debug(3, "New handle %p going live.\n", handle); 362 363 /* 364 * We need to hold j_state_lock until t_updates has been incremented, 365 * for proper journal barrier handling 366 */ 367 repeat: 368 read_lock(&journal->j_state_lock); 369 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 370 if (is_journal_aborted(journal) || 371 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 372 read_unlock(&journal->j_state_lock); 373 jbd2_journal_free_transaction(new_transaction); 374 return -EROFS; 375 } 376 377 /* 378 * Wait on the journal's transaction barrier if necessary. Specifically 379 * we allow reserved handles to proceed because otherwise commit could 380 * deadlock on page writeback not being able to complete. 381 */ 382 if (!handle->h_reserved && journal->j_barrier_count) { 383 read_unlock(&journal->j_state_lock); 384 wait_event(journal->j_wait_transaction_locked, 385 journal->j_barrier_count == 0); 386 goto repeat; 387 } 388 389 if (!journal->j_running_transaction) { 390 read_unlock(&journal->j_state_lock); 391 if (!new_transaction) 392 goto alloc_transaction; 393 write_lock(&journal->j_state_lock); 394 if (!journal->j_running_transaction && 395 (handle->h_reserved || !journal->j_barrier_count)) { 396 jbd2_get_transaction(journal, new_transaction); 397 new_transaction = NULL; 398 } 399 write_unlock(&journal->j_state_lock); 400 goto repeat; 401 } 402 403 transaction = journal->j_running_transaction; 404 405 if (!handle->h_reserved) { 406 /* We may have dropped j_state_lock - restart in that case */ 407 if (add_transaction_credits(journal, blocks, rsv_blocks)) { 408 /* 409 * add_transaction_credits releases 410 * j_state_lock on a non-zero return 411 */ 412 __release(&journal->j_state_lock); 413 goto repeat; 414 } 415 } else { 416 /* 417 * We have handle reserved so we are allowed to join T_LOCKED 418 * transaction and we don't have to check for transaction size 419 * and journal space. But we still have to wait while running 420 * transaction is being switched to a committing one as it 421 * won't wait for any handles anymore. 422 */ 423 if (transaction->t_state == T_SWITCH) { 424 wait_transaction_switching(journal); 425 goto repeat; 426 } 427 sub_reserved_credits(journal, blocks); 428 handle->h_reserved = 0; 429 } 430 431 /* OK, account for the buffers that this operation expects to 432 * use and add the handle to the running transaction. 433 */ 434 update_t_max_wait(transaction, ts); 435 handle->h_transaction = transaction; 436 handle->h_requested_credits = blocks; 437 handle->h_revoke_credits_requested = handle->h_revoke_credits; 438 handle->h_start_jiffies = jiffies; 439 atomic_inc(&transaction->t_updates); 440 atomic_inc(&transaction->t_handle_count); 441 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 442 handle, blocks, 443 atomic_read(&transaction->t_outstanding_credits), 444 jbd2_log_space_left(journal)); 445 read_unlock(&journal->j_state_lock); 446 current->journal_info = handle; 447 448 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 449 jbd2_journal_free_transaction(new_transaction); 450 /* 451 * Ensure that no allocations done while the transaction is open are 452 * going to recurse back to the fs layer. 453 */ 454 handle->saved_alloc_context = memalloc_nofs_save(); 455 return 0; 456 } 457 458 /* Allocate a new handle. This should probably be in a slab... */ 459 static handle_t *new_handle(int nblocks) 460 { 461 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 462 if (!handle) 463 return NULL; 464 handle->h_total_credits = nblocks; 465 handle->h_ref = 1; 466 467 return handle; 468 } 469 470 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 471 int revoke_records, gfp_t gfp_mask, 472 unsigned int type, unsigned int line_no) 473 { 474 handle_t *handle = journal_current_handle(); 475 int err; 476 477 if (!journal) 478 return ERR_PTR(-EROFS); 479 480 if (handle) { 481 J_ASSERT(handle->h_transaction->t_journal == journal); 482 handle->h_ref++; 483 return handle; 484 } 485 486 nblocks += DIV_ROUND_UP(revoke_records, 487 journal->j_revoke_records_per_block); 488 handle = new_handle(nblocks); 489 if (!handle) 490 return ERR_PTR(-ENOMEM); 491 if (rsv_blocks) { 492 handle_t *rsv_handle; 493 494 rsv_handle = new_handle(rsv_blocks); 495 if (!rsv_handle) { 496 jbd2_free_handle(handle); 497 return ERR_PTR(-ENOMEM); 498 } 499 rsv_handle->h_reserved = 1; 500 rsv_handle->h_journal = journal; 501 handle->h_rsv_handle = rsv_handle; 502 } 503 handle->h_revoke_credits = revoke_records; 504 505 err = start_this_handle(journal, handle, gfp_mask); 506 if (err < 0) { 507 if (handle->h_rsv_handle) 508 jbd2_free_handle(handle->h_rsv_handle); 509 jbd2_free_handle(handle); 510 return ERR_PTR(err); 511 } 512 handle->h_type = type; 513 handle->h_line_no = line_no; 514 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 515 handle->h_transaction->t_tid, type, 516 line_no, nblocks); 517 518 return handle; 519 } 520 EXPORT_SYMBOL(jbd2__journal_start); 521 522 523 /** 524 * jbd2_journal_start() - Obtain a new handle. 525 * @journal: Journal to start transaction on. 526 * @nblocks: number of block buffer we might modify 527 * 528 * We make sure that the transaction can guarantee at least nblocks of 529 * modified buffers in the log. We block until the log can guarantee 530 * that much space. Additionally, if rsv_blocks > 0, we also create another 531 * handle with rsv_blocks reserved blocks in the journal. This handle is 532 * stored in h_rsv_handle. It is not attached to any particular transaction 533 * and thus doesn't block transaction commit. If the caller uses this reserved 534 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 535 * on the parent handle will dispose the reserved one. Reserved handle has to 536 * be converted to a normal handle using jbd2_journal_start_reserved() before 537 * it can be used. 538 * 539 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 540 * on failure. 541 */ 542 handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 543 { 544 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 545 } 546 EXPORT_SYMBOL(jbd2_journal_start); 547 548 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 549 { 550 journal_t *journal = handle->h_journal; 551 552 WARN_ON(!handle->h_reserved); 553 sub_reserved_credits(journal, handle->h_total_credits); 554 if (t) 555 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 556 } 557 558 void jbd2_journal_free_reserved(handle_t *handle) 559 { 560 journal_t *journal = handle->h_journal; 561 562 /* Get j_state_lock to pin running transaction if it exists */ 563 read_lock(&journal->j_state_lock); 564 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 565 read_unlock(&journal->j_state_lock); 566 jbd2_free_handle(handle); 567 } 568 EXPORT_SYMBOL(jbd2_journal_free_reserved); 569 570 /** 571 * jbd2_journal_start_reserved() - start reserved handle 572 * @handle: handle to start 573 * @type: for handle statistics 574 * @line_no: for handle statistics 575 * 576 * Start handle that has been previously reserved with jbd2_journal_reserve(). 577 * This attaches @handle to the running transaction (or creates one if there's 578 * not transaction running). Unlike jbd2_journal_start() this function cannot 579 * block on journal commit, checkpointing, or similar stuff. It can block on 580 * memory allocation or frozen journal though. 581 * 582 * Return 0 on success, non-zero on error - handle is freed in that case. 583 */ 584 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 585 unsigned int line_no) 586 { 587 journal_t *journal = handle->h_journal; 588 int ret = -EIO; 589 590 if (WARN_ON(!handle->h_reserved)) { 591 /* Someone passed in normal handle? Just stop it. */ 592 jbd2_journal_stop(handle); 593 return ret; 594 } 595 /* 596 * Usefulness of mixing of reserved and unreserved handles is 597 * questionable. So far nobody seems to need it so just error out. 598 */ 599 if (WARN_ON(current->journal_info)) { 600 jbd2_journal_free_reserved(handle); 601 return ret; 602 } 603 604 handle->h_journal = NULL; 605 /* 606 * GFP_NOFS is here because callers are likely from writeback or 607 * similarly constrained call sites 608 */ 609 ret = start_this_handle(journal, handle, GFP_NOFS); 610 if (ret < 0) { 611 handle->h_journal = journal; 612 jbd2_journal_free_reserved(handle); 613 return ret; 614 } 615 handle->h_type = type; 616 handle->h_line_no = line_no; 617 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 618 handle->h_transaction->t_tid, type, 619 line_no, handle->h_total_credits); 620 return 0; 621 } 622 EXPORT_SYMBOL(jbd2_journal_start_reserved); 623 624 /** 625 * jbd2_journal_extend() - extend buffer credits. 626 * @handle: handle to 'extend' 627 * @nblocks: nr blocks to try to extend by. 628 * @revoke_records: number of revoke records to try to extend by. 629 * 630 * Some transactions, such as large extends and truncates, can be done 631 * atomically all at once or in several stages. The operation requests 632 * a credit for a number of buffer modifications in advance, but can 633 * extend its credit if it needs more. 634 * 635 * jbd2_journal_extend tries to give the running handle more buffer credits. 636 * It does not guarantee that allocation - this is a best-effort only. 637 * The calling process MUST be able to deal cleanly with a failure to 638 * extend here. 639 * 640 * Return 0 on success, non-zero on failure. 641 * 642 * return code < 0 implies an error 643 * return code > 0 implies normal transaction-full status. 644 */ 645 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 646 { 647 transaction_t *transaction = handle->h_transaction; 648 journal_t *journal; 649 int result; 650 int wanted; 651 652 if (is_handle_aborted(handle)) 653 return -EROFS; 654 journal = transaction->t_journal; 655 656 result = 1; 657 658 read_lock(&journal->j_state_lock); 659 660 /* Don't extend a locked-down transaction! */ 661 if (transaction->t_state != T_RUNNING) { 662 jbd2_debug(3, "denied handle %p %d blocks: " 663 "transaction not running\n", handle, nblocks); 664 goto error_out; 665 } 666 667 nblocks += DIV_ROUND_UP( 668 handle->h_revoke_credits_requested + revoke_records, 669 journal->j_revoke_records_per_block) - 670 DIV_ROUND_UP( 671 handle->h_revoke_credits_requested, 672 journal->j_revoke_records_per_block); 673 wanted = atomic_add_return(nblocks, 674 &transaction->t_outstanding_credits); 675 676 if (wanted > journal->j_max_transaction_buffers) { 677 jbd2_debug(3, "denied handle %p %d blocks: " 678 "transaction too large\n", handle, nblocks); 679 atomic_sub(nblocks, &transaction->t_outstanding_credits); 680 goto error_out; 681 } 682 683 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 684 transaction->t_tid, 685 handle->h_type, handle->h_line_no, 686 handle->h_total_credits, 687 nblocks); 688 689 handle->h_total_credits += nblocks; 690 handle->h_requested_credits += nblocks; 691 handle->h_revoke_credits += revoke_records; 692 handle->h_revoke_credits_requested += revoke_records; 693 result = 0; 694 695 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks); 696 error_out: 697 read_unlock(&journal->j_state_lock); 698 return result; 699 } 700 701 static void stop_this_handle(handle_t *handle) 702 { 703 transaction_t *transaction = handle->h_transaction; 704 journal_t *journal = transaction->t_journal; 705 int revokes; 706 707 J_ASSERT(journal_current_handle() == handle); 708 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 709 current->journal_info = NULL; 710 /* 711 * Subtract necessary revoke descriptor blocks from handle credits. We 712 * take care to account only for revoke descriptor blocks the 713 * transaction will really need as large sequences of transactions with 714 * small numbers of revokes are relatively common. 715 */ 716 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 717 if (revokes) { 718 int t_revokes, revoke_descriptors; 719 int rr_per_blk = journal->j_revoke_records_per_block; 720 721 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 722 > handle->h_total_credits); 723 t_revokes = atomic_add_return(revokes, 724 &transaction->t_outstanding_revokes); 725 revoke_descriptors = 726 DIV_ROUND_UP(t_revokes, rr_per_blk) - 727 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 728 handle->h_total_credits -= revoke_descriptors; 729 } 730 atomic_sub(handle->h_total_credits, 731 &transaction->t_outstanding_credits); 732 if (handle->h_rsv_handle) 733 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 734 transaction); 735 if (atomic_dec_and_test(&transaction->t_updates)) 736 wake_up(&journal->j_wait_updates); 737 738 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 739 /* 740 * Scope of the GFP_NOFS context is over here and so we can restore the 741 * original alloc context. 742 */ 743 memalloc_nofs_restore(handle->saved_alloc_context); 744 } 745 746 /** 747 * jbd2__journal_restart() - restart a handle . 748 * @handle: handle to restart 749 * @nblocks: nr credits requested 750 * @revoke_records: number of revoke record credits requested 751 * @gfp_mask: memory allocation flags (for start_this_handle) 752 * 753 * Restart a handle for a multi-transaction filesystem 754 * operation. 755 * 756 * If the jbd2_journal_extend() call above fails to grant new buffer credits 757 * to a running handle, a call to jbd2_journal_restart will commit the 758 * handle's transaction so far and reattach the handle to a new 759 * transaction capable of guaranteeing the requested number of 760 * credits. We preserve reserved handle if there's any attached to the 761 * passed in handle. 762 */ 763 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 764 gfp_t gfp_mask) 765 { 766 transaction_t *transaction = handle->h_transaction; 767 journal_t *journal; 768 tid_t tid; 769 int need_to_start; 770 int ret; 771 772 /* If we've had an abort of any type, don't even think about 773 * actually doing the restart! */ 774 if (is_handle_aborted(handle)) 775 return 0; 776 journal = transaction->t_journal; 777 tid = transaction->t_tid; 778 779 /* 780 * First unlink the handle from its current transaction, and start the 781 * commit on that. 782 */ 783 jbd2_debug(2, "restarting handle %p\n", handle); 784 stop_this_handle(handle); 785 handle->h_transaction = NULL; 786 787 /* 788 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 789 * get rid of pointless j_state_lock traffic like this. 790 */ 791 read_lock(&journal->j_state_lock); 792 need_to_start = !tid_geq(journal->j_commit_request, tid); 793 read_unlock(&journal->j_state_lock); 794 if (need_to_start) 795 jbd2_log_start_commit(journal, tid); 796 handle->h_total_credits = nblocks + 797 DIV_ROUND_UP(revoke_records, 798 journal->j_revoke_records_per_block); 799 handle->h_revoke_credits = revoke_records; 800 ret = start_this_handle(journal, handle, gfp_mask); 801 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 802 ret ? 0 : handle->h_transaction->t_tid, 803 handle->h_type, handle->h_line_no, 804 handle->h_total_credits); 805 return ret; 806 } 807 EXPORT_SYMBOL(jbd2__journal_restart); 808 809 810 int jbd2_journal_restart(handle_t *handle, int nblocks) 811 { 812 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 813 } 814 EXPORT_SYMBOL(jbd2_journal_restart); 815 816 /* 817 * Waits for any outstanding t_updates to finish. 818 * This is called with write j_state_lock held. 819 */ 820 void jbd2_journal_wait_updates(journal_t *journal) 821 { 822 DEFINE_WAIT(wait); 823 824 while (1) { 825 /* 826 * Note that the running transaction can get freed under us if 827 * this transaction is getting committed in 828 * jbd2_journal_commit_transaction() -> 829 * jbd2_journal_free_transaction(). This can only happen when we 830 * release j_state_lock -> schedule() -> acquire j_state_lock. 831 * Hence we should everytime retrieve new j_running_transaction 832 * value (after j_state_lock release acquire cycle), else it may 833 * lead to use-after-free of old freed transaction. 834 */ 835 transaction_t *transaction = journal->j_running_transaction; 836 837 if (!transaction) 838 break; 839 840 prepare_to_wait(&journal->j_wait_updates, &wait, 841 TASK_UNINTERRUPTIBLE); 842 if (!atomic_read(&transaction->t_updates)) { 843 finish_wait(&journal->j_wait_updates, &wait); 844 break; 845 } 846 write_unlock(&journal->j_state_lock); 847 schedule(); 848 finish_wait(&journal->j_wait_updates, &wait); 849 write_lock(&journal->j_state_lock); 850 } 851 } 852 853 /** 854 * jbd2_journal_lock_updates () - establish a transaction barrier. 855 * @journal: Journal to establish a barrier on. 856 * 857 * This locks out any further updates from being started, and blocks 858 * until all existing updates have completed, returning only once the 859 * journal is in a quiescent state with no updates running. 860 * 861 * The journal lock should not be held on entry. 862 */ 863 void jbd2_journal_lock_updates(journal_t *journal) 864 { 865 jbd2_might_wait_for_commit(journal); 866 867 write_lock(&journal->j_state_lock); 868 ++journal->j_barrier_count; 869 870 /* Wait until there are no reserved handles */ 871 if (atomic_read(&journal->j_reserved_credits)) { 872 write_unlock(&journal->j_state_lock); 873 wait_event(journal->j_wait_reserved, 874 atomic_read(&journal->j_reserved_credits) == 0); 875 write_lock(&journal->j_state_lock); 876 } 877 878 /* Wait until there are no running t_updates */ 879 jbd2_journal_wait_updates(journal); 880 881 write_unlock(&journal->j_state_lock); 882 883 /* 884 * We have now established a barrier against other normal updates, but 885 * we also need to barrier against other jbd2_journal_lock_updates() calls 886 * to make sure that we serialise special journal-locked operations 887 * too. 888 */ 889 mutex_lock(&journal->j_barrier); 890 } 891 892 /** 893 * jbd2_journal_unlock_updates () - release barrier 894 * @journal: Journal to release the barrier on. 895 * 896 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 897 * 898 * Should be called without the journal lock held. 899 */ 900 void jbd2_journal_unlock_updates (journal_t *journal) 901 { 902 J_ASSERT(journal->j_barrier_count != 0); 903 904 mutex_unlock(&journal->j_barrier); 905 write_lock(&journal->j_state_lock); 906 --journal->j_barrier_count; 907 write_unlock(&journal->j_state_lock); 908 wake_up_all(&journal->j_wait_transaction_locked); 909 } 910 911 static void warn_dirty_buffer(struct buffer_head *bh) 912 { 913 printk(KERN_WARNING 914 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 915 "There's a risk of filesystem corruption in case of system " 916 "crash.\n", 917 bh->b_bdev, (unsigned long long)bh->b_blocknr); 918 } 919 920 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 921 static void jbd2_freeze_jh_data(struct journal_head *jh) 922 { 923 char *source; 924 struct buffer_head *bh = jh2bh(jh); 925 926 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 927 source = kmap_local_folio(bh->b_folio, bh_offset(bh)); 928 /* Fire data frozen trigger just before we copy the data */ 929 jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers); 930 memcpy(jh->b_frozen_data, source, bh->b_size); 931 kunmap_local(source); 932 933 /* 934 * Now that the frozen data is saved off, we need to store any matching 935 * triggers. 936 */ 937 jh->b_frozen_triggers = jh->b_triggers; 938 } 939 940 /* 941 * If the buffer is already part of the current transaction, then there 942 * is nothing we need to do. If it is already part of a prior 943 * transaction which we are still committing to disk, then we need to 944 * make sure that we do not overwrite the old copy: we do copy-out to 945 * preserve the copy going to disk. We also account the buffer against 946 * the handle's metadata buffer credits (unless the buffer is already 947 * part of the transaction, that is). 948 * 949 */ 950 static int 951 do_get_write_access(handle_t *handle, struct journal_head *jh, 952 int force_copy) 953 { 954 struct buffer_head *bh; 955 transaction_t *transaction = handle->h_transaction; 956 journal_t *journal; 957 int error; 958 char *frozen_buffer = NULL; 959 unsigned long start_lock, time_lock; 960 961 journal = transaction->t_journal; 962 963 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 964 965 JBUFFER_TRACE(jh, "entry"); 966 repeat: 967 bh = jh2bh(jh); 968 969 /* @@@ Need to check for errors here at some point. */ 970 971 start_lock = jiffies; 972 lock_buffer(bh); 973 spin_lock(&jh->b_state_lock); 974 975 /* If it takes too long to lock the buffer, trace it */ 976 time_lock = jbd2_time_diff(start_lock, jiffies); 977 if (time_lock > HZ/10) 978 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 979 jiffies_to_msecs(time_lock)); 980 981 /* We now hold the buffer lock so it is safe to query the buffer 982 * state. Is the buffer dirty? 983 * 984 * If so, there are two possibilities. The buffer may be 985 * non-journaled, and undergoing a quite legitimate writeback. 986 * Otherwise, it is journaled, and we don't expect dirty buffers 987 * in that state (the buffers should be marked JBD_Dirty 988 * instead.) So either the IO is being done under our own 989 * control and this is a bug, or it's a third party IO such as 990 * dump(8) (which may leave the buffer scheduled for read --- 991 * ie. locked but not dirty) or tune2fs (which may actually have 992 * the buffer dirtied, ugh.) */ 993 994 if (buffer_dirty(bh) && jh->b_transaction) { 995 warn_dirty_buffer(bh); 996 /* 997 * We need to clean the dirty flag and we must do it under the 998 * buffer lock to be sure we don't race with running write-out. 999 */ 1000 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1001 clear_buffer_dirty(bh); 1002 /* 1003 * The buffer is going to be added to BJ_Reserved list now and 1004 * nothing guarantees jbd2_journal_dirty_metadata() will be 1005 * ever called for it. So we need to set jbddirty bit here to 1006 * make sure the buffer is dirtied and written out when the 1007 * journaling machinery is done with it. 1008 */ 1009 set_buffer_jbddirty(bh); 1010 } 1011 1012 error = -EROFS; 1013 if (is_handle_aborted(handle)) { 1014 spin_unlock(&jh->b_state_lock); 1015 unlock_buffer(bh); 1016 goto out; 1017 } 1018 error = 0; 1019 1020 /* 1021 * The buffer is already part of this transaction if b_transaction or 1022 * b_next_transaction points to it 1023 */ 1024 if (jh->b_transaction == transaction || 1025 jh->b_next_transaction == transaction) { 1026 unlock_buffer(bh); 1027 goto done; 1028 } 1029 1030 /* 1031 * this is the first time this transaction is touching this buffer, 1032 * reset the modified flag 1033 */ 1034 jh->b_modified = 0; 1035 1036 /* 1037 * If the buffer is not journaled right now, we need to make sure it 1038 * doesn't get written to disk before the caller actually commits the 1039 * new data 1040 */ 1041 if (!jh->b_transaction) { 1042 JBUFFER_TRACE(jh, "no transaction"); 1043 J_ASSERT_JH(jh, !jh->b_next_transaction); 1044 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1045 /* 1046 * Make sure all stores to jh (b_modified, b_frozen_data) are 1047 * visible before attaching it to the running transaction. 1048 * Paired with barrier in jbd2_write_access_granted() 1049 */ 1050 smp_wmb(); 1051 spin_lock(&journal->j_list_lock); 1052 if (test_clear_buffer_dirty(bh)) { 1053 /* 1054 * Execute buffer dirty clearing and jh->b_transaction 1055 * assignment under journal->j_list_lock locked to 1056 * prevent bh being removed from checkpoint list if 1057 * the buffer is in an intermediate state (not dirty 1058 * and jh->b_transaction is NULL). 1059 */ 1060 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1061 set_buffer_jbddirty(bh); 1062 } 1063 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1064 spin_unlock(&journal->j_list_lock); 1065 unlock_buffer(bh); 1066 goto done; 1067 } 1068 unlock_buffer(bh); 1069 1070 /* 1071 * If there is already a copy-out version of this buffer, then we don't 1072 * need to make another one 1073 */ 1074 if (jh->b_frozen_data) { 1075 JBUFFER_TRACE(jh, "has frozen data"); 1076 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1077 goto attach_next; 1078 } 1079 1080 JBUFFER_TRACE(jh, "owned by older transaction"); 1081 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1082 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1083 1084 /* 1085 * There is one case we have to be very careful about. If the 1086 * committing transaction is currently writing this buffer out to disk 1087 * and has NOT made a copy-out, then we cannot modify the buffer 1088 * contents at all right now. The essence of copy-out is that it is 1089 * the extra copy, not the primary copy, which gets journaled. If the 1090 * primary copy is already going to disk then we cannot do copy-out 1091 * here. 1092 */ 1093 if (buffer_shadow(bh)) { 1094 JBUFFER_TRACE(jh, "on shadow: sleep"); 1095 spin_unlock(&jh->b_state_lock); 1096 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1097 goto repeat; 1098 } 1099 1100 /* 1101 * Only do the copy if the currently-owning transaction still needs it. 1102 * If buffer isn't on BJ_Metadata list, the committing transaction is 1103 * past that stage (here we use the fact that BH_Shadow is set under 1104 * bh_state lock together with refiling to BJ_Shadow list and at this 1105 * point we know the buffer doesn't have BH_Shadow set). 1106 * 1107 * Subtle point, though: if this is a get_undo_access, then we will be 1108 * relying on the frozen_data to contain the new value of the 1109 * committed_data record after the transaction, so we HAVE to force the 1110 * frozen_data copy in that case. 1111 */ 1112 if (jh->b_jlist == BJ_Metadata || force_copy) { 1113 JBUFFER_TRACE(jh, "generate frozen data"); 1114 if (!frozen_buffer) { 1115 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1116 spin_unlock(&jh->b_state_lock); 1117 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1118 GFP_NOFS | __GFP_NOFAIL); 1119 goto repeat; 1120 } 1121 jh->b_frozen_data = frozen_buffer; 1122 frozen_buffer = NULL; 1123 jbd2_freeze_jh_data(jh); 1124 } 1125 attach_next: 1126 /* 1127 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1128 * before attaching it to the running transaction. Paired with barrier 1129 * in jbd2_write_access_granted() 1130 */ 1131 smp_wmb(); 1132 jh->b_next_transaction = transaction; 1133 1134 done: 1135 spin_unlock(&jh->b_state_lock); 1136 1137 /* 1138 * If we are about to journal a buffer, then any revoke pending on it is 1139 * no longer valid 1140 */ 1141 jbd2_journal_cancel_revoke(handle, jh); 1142 1143 out: 1144 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1145 jbd2_free(frozen_buffer, bh->b_size); 1146 1147 JBUFFER_TRACE(jh, "exit"); 1148 return error; 1149 } 1150 1151 /* Fast check whether buffer is already attached to the required transaction */ 1152 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1153 bool undo) 1154 { 1155 struct journal_head *jh; 1156 bool ret = false; 1157 1158 /* Dirty buffers require special handling... */ 1159 if (buffer_dirty(bh)) 1160 return false; 1161 1162 /* 1163 * RCU protects us from dereferencing freed pages. So the checks we do 1164 * are guaranteed not to oops. However the jh slab object can get freed 1165 * & reallocated while we work with it. So we have to be careful. When 1166 * we see jh attached to the running transaction, we know it must stay 1167 * so until the transaction is committed. Thus jh won't be freed and 1168 * will be attached to the same bh while we run. However it can 1169 * happen jh gets freed, reallocated, and attached to the transaction 1170 * just after we get pointer to it from bh. So we have to be careful 1171 * and recheck jh still belongs to our bh before we return success. 1172 */ 1173 rcu_read_lock(); 1174 if (!buffer_jbd(bh)) 1175 goto out; 1176 /* This should be bh2jh() but that doesn't work with inline functions */ 1177 jh = READ_ONCE(bh->b_private); 1178 if (!jh) 1179 goto out; 1180 /* For undo access buffer must have data copied */ 1181 if (undo && !jh->b_committed_data) 1182 goto out; 1183 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1184 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1185 goto out; 1186 /* 1187 * There are two reasons for the barrier here: 1188 * 1) Make sure to fetch b_bh after we did previous checks so that we 1189 * detect when jh went through free, realloc, attach to transaction 1190 * while we were checking. Paired with implicit barrier in that path. 1191 * 2) So that access to bh done after jbd2_write_access_granted() 1192 * doesn't get reordered and see inconsistent state of concurrent 1193 * do_get_write_access(). 1194 */ 1195 smp_mb(); 1196 if (unlikely(jh->b_bh != bh)) 1197 goto out; 1198 ret = true; 1199 out: 1200 rcu_read_unlock(); 1201 return ret; 1202 } 1203 1204 /** 1205 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1206 * for metadata (not data) update. 1207 * @handle: transaction to add buffer modifications to 1208 * @bh: bh to be used for metadata writes 1209 * 1210 * Returns: error code or 0 on success. 1211 * 1212 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1213 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1214 */ 1215 1216 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1217 { 1218 struct journal_head *jh; 1219 journal_t *journal; 1220 int rc; 1221 1222 if (is_handle_aborted(handle)) 1223 return -EROFS; 1224 1225 journal = handle->h_transaction->t_journal; 1226 if (jbd2_check_fs_dev_write_error(journal)) { 1227 /* 1228 * If the fs dev has writeback errors, it may have failed 1229 * to async write out metadata buffers in the background. 1230 * In this case, we could read old data from disk and write 1231 * it out again, which may lead to on-disk filesystem 1232 * inconsistency. Aborting journal can avoid it happen. 1233 */ 1234 jbd2_journal_abort(journal, -EIO); 1235 return -EIO; 1236 } 1237 1238 if (jbd2_write_access_granted(handle, bh, false)) 1239 return 0; 1240 1241 jh = jbd2_journal_add_journal_head(bh); 1242 /* We do not want to get caught playing with fields which the 1243 * log thread also manipulates. Make sure that the buffer 1244 * completes any outstanding IO before proceeding. */ 1245 rc = do_get_write_access(handle, jh, 0); 1246 jbd2_journal_put_journal_head(jh); 1247 return rc; 1248 } 1249 1250 1251 /* 1252 * When the user wants to journal a newly created buffer_head 1253 * (ie. getblk() returned a new buffer and we are going to populate it 1254 * manually rather than reading off disk), then we need to keep the 1255 * buffer_head locked until it has been completely filled with new 1256 * data. In this case, we should be able to make the assertion that 1257 * the bh is not already part of an existing transaction. 1258 * 1259 * The buffer should already be locked by the caller by this point. 1260 * There is no lock ranking violation: it was a newly created, 1261 * unlocked buffer beforehand. */ 1262 1263 /** 1264 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1265 * @handle: transaction to new buffer to 1266 * @bh: new buffer. 1267 * 1268 * Call this if you create a new bh. 1269 */ 1270 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1271 { 1272 transaction_t *transaction = handle->h_transaction; 1273 journal_t *journal; 1274 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1275 int err; 1276 1277 jbd2_debug(5, "journal_head %p\n", jh); 1278 err = -EROFS; 1279 if (is_handle_aborted(handle)) 1280 goto out; 1281 journal = transaction->t_journal; 1282 err = 0; 1283 1284 JBUFFER_TRACE(jh, "entry"); 1285 /* 1286 * The buffer may already belong to this transaction due to pre-zeroing 1287 * in the filesystem's new_block code. It may also be on the previous, 1288 * committing transaction's lists, but it HAS to be in Forget state in 1289 * that case: the transaction must have deleted the buffer for it to be 1290 * reused here. 1291 */ 1292 spin_lock(&jh->b_state_lock); 1293 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1294 jh->b_transaction == NULL || 1295 (jh->b_transaction == journal->j_committing_transaction && 1296 jh->b_jlist == BJ_Forget))); 1297 1298 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1299 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1300 1301 if (jh->b_transaction == NULL) { 1302 /* 1303 * Previous jbd2_journal_forget() could have left the buffer 1304 * with jbddirty bit set because it was being committed. When 1305 * the commit finished, we've filed the buffer for 1306 * checkpointing and marked it dirty. Now we are reallocating 1307 * the buffer so the transaction freeing it must have 1308 * committed and so it's safe to clear the dirty bit. 1309 */ 1310 clear_buffer_dirty(jh2bh(jh)); 1311 /* first access by this transaction */ 1312 jh->b_modified = 0; 1313 1314 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1315 spin_lock(&journal->j_list_lock); 1316 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1317 spin_unlock(&journal->j_list_lock); 1318 } else if (jh->b_transaction == journal->j_committing_transaction) { 1319 /* first access by this transaction */ 1320 jh->b_modified = 0; 1321 1322 JBUFFER_TRACE(jh, "set next transaction"); 1323 spin_lock(&journal->j_list_lock); 1324 jh->b_next_transaction = transaction; 1325 spin_unlock(&journal->j_list_lock); 1326 } 1327 spin_unlock(&jh->b_state_lock); 1328 1329 /* 1330 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1331 * blocks which contain freed but then revoked metadata. We need 1332 * to cancel the revoke in case we end up freeing it yet again 1333 * and the reallocating as data - this would cause a second revoke, 1334 * which hits an assertion error. 1335 */ 1336 JBUFFER_TRACE(jh, "cancelling revoke"); 1337 jbd2_journal_cancel_revoke(handle, jh); 1338 out: 1339 jbd2_journal_put_journal_head(jh); 1340 return err; 1341 } 1342 1343 /** 1344 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1345 * non-rewindable consequences 1346 * @handle: transaction 1347 * @bh: buffer to undo 1348 * 1349 * Sometimes there is a need to distinguish between metadata which has 1350 * been committed to disk and that which has not. The ext3fs code uses 1351 * this for freeing and allocating space, we have to make sure that we 1352 * do not reuse freed space until the deallocation has been committed, 1353 * since if we overwrote that space we would make the delete 1354 * un-rewindable in case of a crash. 1355 * 1356 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1357 * buffer for parts of non-rewindable operations such as delete 1358 * operations on the bitmaps. The journaling code must keep a copy of 1359 * the buffer's contents prior to the undo_access call until such time 1360 * as we know that the buffer has definitely been committed to disk. 1361 * 1362 * We never need to know which transaction the committed data is part 1363 * of, buffers touched here are guaranteed to be dirtied later and so 1364 * will be committed to a new transaction in due course, at which point 1365 * we can discard the old committed data pointer. 1366 * 1367 * Returns error number or 0 on success. 1368 */ 1369 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1370 { 1371 int err; 1372 struct journal_head *jh; 1373 char *committed_data = NULL; 1374 1375 if (is_handle_aborted(handle)) 1376 return -EROFS; 1377 1378 if (jbd2_write_access_granted(handle, bh, true)) 1379 return 0; 1380 1381 jh = jbd2_journal_add_journal_head(bh); 1382 JBUFFER_TRACE(jh, "entry"); 1383 1384 /* 1385 * Do this first --- it can drop the journal lock, so we want to 1386 * make sure that obtaining the committed_data is done 1387 * atomically wrt. completion of any outstanding commits. 1388 */ 1389 err = do_get_write_access(handle, jh, 1); 1390 if (err) 1391 goto out; 1392 1393 repeat: 1394 if (!jh->b_committed_data) 1395 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1396 GFP_NOFS|__GFP_NOFAIL); 1397 1398 spin_lock(&jh->b_state_lock); 1399 if (!jh->b_committed_data) { 1400 /* Copy out the current buffer contents into the 1401 * preserved, committed copy. */ 1402 JBUFFER_TRACE(jh, "generate b_committed data"); 1403 if (!committed_data) { 1404 spin_unlock(&jh->b_state_lock); 1405 goto repeat; 1406 } 1407 1408 jh->b_committed_data = committed_data; 1409 committed_data = NULL; 1410 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1411 } 1412 spin_unlock(&jh->b_state_lock); 1413 out: 1414 jbd2_journal_put_journal_head(jh); 1415 if (unlikely(committed_data)) 1416 jbd2_free(committed_data, bh->b_size); 1417 return err; 1418 } 1419 1420 /** 1421 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1422 * @bh: buffer to trigger on 1423 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1424 * 1425 * Set any triggers on this journal_head. This is always safe, because 1426 * triggers for a committing buffer will be saved off, and triggers for 1427 * a running transaction will match the buffer in that transaction. 1428 * 1429 * Call with NULL to clear the triggers. 1430 */ 1431 void jbd2_journal_set_triggers(struct buffer_head *bh, 1432 struct jbd2_buffer_trigger_type *type) 1433 { 1434 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1435 1436 if (WARN_ON_ONCE(!jh)) 1437 return; 1438 jh->b_triggers = type; 1439 jbd2_journal_put_journal_head(jh); 1440 } 1441 1442 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1443 struct jbd2_buffer_trigger_type *triggers) 1444 { 1445 struct buffer_head *bh = jh2bh(jh); 1446 1447 if (!triggers || !triggers->t_frozen) 1448 return; 1449 1450 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1451 } 1452 1453 void jbd2_buffer_abort_trigger(struct journal_head *jh, 1454 struct jbd2_buffer_trigger_type *triggers) 1455 { 1456 if (!triggers || !triggers->t_abort) 1457 return; 1458 1459 triggers->t_abort(triggers, jh2bh(jh)); 1460 } 1461 1462 /** 1463 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1464 * @handle: transaction to add buffer to. 1465 * @bh: buffer to mark 1466 * 1467 * mark dirty metadata which needs to be journaled as part of the current 1468 * transaction. 1469 * 1470 * The buffer must have previously had jbd2_journal_get_write_access() 1471 * called so that it has a valid journal_head attached to the buffer 1472 * head. 1473 * 1474 * The buffer is placed on the transaction's metadata list and is marked 1475 * as belonging to the transaction. 1476 * 1477 * Returns error number or 0 on success. 1478 * 1479 * Special care needs to be taken if the buffer already belongs to the 1480 * current committing transaction (in which case we should have frozen 1481 * data present for that commit). In that case, we don't relink the 1482 * buffer: that only gets done when the old transaction finally 1483 * completes its commit. 1484 */ 1485 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1486 { 1487 transaction_t *transaction = handle->h_transaction; 1488 journal_t *journal; 1489 struct journal_head *jh; 1490 int ret = 0; 1491 1492 if (!buffer_jbd(bh)) 1493 return -EUCLEAN; 1494 1495 /* 1496 * We don't grab jh reference here since the buffer must be part 1497 * of the running transaction. 1498 */ 1499 jh = bh2jh(bh); 1500 jbd2_debug(5, "journal_head %p\n", jh); 1501 JBUFFER_TRACE(jh, "entry"); 1502 1503 /* 1504 * This and the following assertions are unreliable since we may see jh 1505 * in inconsistent state unless we grab bh_state lock. But this is 1506 * crucial to catch bugs so let's do a reliable check until the 1507 * lockless handling is fully proven. 1508 */ 1509 if (data_race(jh->b_transaction != transaction && 1510 jh->b_next_transaction != transaction)) { 1511 spin_lock(&jh->b_state_lock); 1512 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1513 jh->b_next_transaction == transaction); 1514 spin_unlock(&jh->b_state_lock); 1515 } 1516 if (jh->b_modified == 1) { 1517 /* If it's in our transaction it must be in BJ_Metadata list. */ 1518 if (data_race(jh->b_transaction == transaction && 1519 jh->b_jlist != BJ_Metadata)) { 1520 spin_lock(&jh->b_state_lock); 1521 if (jh->b_transaction == transaction && 1522 jh->b_jlist != BJ_Metadata) 1523 pr_err("JBD2: assertion failure: h_type=%u " 1524 "h_line_no=%u block_no=%llu jlist=%u\n", 1525 handle->h_type, handle->h_line_no, 1526 (unsigned long long) bh->b_blocknr, 1527 jh->b_jlist); 1528 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1529 jh->b_jlist == BJ_Metadata); 1530 spin_unlock(&jh->b_state_lock); 1531 } 1532 goto out; 1533 } 1534 1535 journal = transaction->t_journal; 1536 spin_lock(&jh->b_state_lock); 1537 1538 if (is_handle_aborted(handle)) { 1539 /* 1540 * Check journal aborting with @jh->b_state_lock locked, 1541 * since 'jh->b_transaction' could be replaced with 1542 * 'jh->b_next_transaction' during old transaction 1543 * committing if journal aborted, which may fail 1544 * assertion on 'jh->b_frozen_data == NULL'. 1545 */ 1546 ret = -EROFS; 1547 goto out_unlock_bh; 1548 } 1549 1550 if (jh->b_modified == 0) { 1551 /* 1552 * This buffer's got modified and becoming part 1553 * of the transaction. This needs to be done 1554 * once a transaction -bzzz 1555 */ 1556 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1557 ret = -ENOSPC; 1558 goto out_unlock_bh; 1559 } 1560 jh->b_modified = 1; 1561 handle->h_total_credits--; 1562 } 1563 1564 /* 1565 * fastpath, to avoid expensive locking. If this buffer is already 1566 * on the running transaction's metadata list there is nothing to do. 1567 * Nobody can take it off again because there is a handle open. 1568 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1569 * result in this test being false, so we go in and take the locks. 1570 */ 1571 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1572 JBUFFER_TRACE(jh, "fastpath"); 1573 if (unlikely(jh->b_transaction != 1574 journal->j_running_transaction)) { 1575 printk(KERN_ERR "JBD2: %s: " 1576 "jh->b_transaction (%llu, %p, %u) != " 1577 "journal->j_running_transaction (%p, %u)\n", 1578 journal->j_devname, 1579 (unsigned long long) bh->b_blocknr, 1580 jh->b_transaction, 1581 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1582 journal->j_running_transaction, 1583 journal->j_running_transaction ? 1584 journal->j_running_transaction->t_tid : 0); 1585 ret = -EINVAL; 1586 } 1587 goto out_unlock_bh; 1588 } 1589 1590 set_buffer_jbddirty(bh); 1591 1592 /* 1593 * Metadata already on the current transaction list doesn't 1594 * need to be filed. Metadata on another transaction's list must 1595 * be committing, and will be refiled once the commit completes: 1596 * leave it alone for now. 1597 */ 1598 if (jh->b_transaction != transaction) { 1599 JBUFFER_TRACE(jh, "already on other transaction"); 1600 if (unlikely(((jh->b_transaction != 1601 journal->j_committing_transaction)) || 1602 (jh->b_next_transaction != transaction))) { 1603 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1604 "bad jh for block %llu: " 1605 "transaction (%p, %u), " 1606 "jh->b_transaction (%p, %u), " 1607 "jh->b_next_transaction (%p, %u), jlist %u\n", 1608 journal->j_devname, 1609 (unsigned long long) bh->b_blocknr, 1610 transaction, transaction->t_tid, 1611 jh->b_transaction, 1612 jh->b_transaction ? 1613 jh->b_transaction->t_tid : 0, 1614 jh->b_next_transaction, 1615 jh->b_next_transaction ? 1616 jh->b_next_transaction->t_tid : 0, 1617 jh->b_jlist); 1618 WARN_ON(1); 1619 ret = -EINVAL; 1620 } 1621 /* And this case is illegal: we can't reuse another 1622 * transaction's data buffer, ever. */ 1623 goto out_unlock_bh; 1624 } 1625 1626 /* That test should have eliminated the following case: */ 1627 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1628 1629 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1630 spin_lock(&journal->j_list_lock); 1631 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1632 spin_unlock(&journal->j_list_lock); 1633 out_unlock_bh: 1634 spin_unlock(&jh->b_state_lock); 1635 out: 1636 JBUFFER_TRACE(jh, "exit"); 1637 return ret; 1638 } 1639 1640 /** 1641 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1642 * @handle: transaction handle 1643 * @bh: bh to 'forget' 1644 * 1645 * We can only do the bforget if there are no commits pending against the 1646 * buffer. If the buffer is dirty in the current running transaction we 1647 * can safely unlink it. 1648 * 1649 * bh may not be a journalled buffer at all - it may be a non-JBD 1650 * buffer which came off the hashtable. Check for this. 1651 * 1652 * Decrements bh->b_count by one. 1653 * 1654 * Allow this call even if the handle has aborted --- it may be part of 1655 * the caller's cleanup after an abort. 1656 */ 1657 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1658 { 1659 transaction_t *transaction = handle->h_transaction; 1660 journal_t *journal; 1661 struct journal_head *jh; 1662 int drop_reserve = 0; 1663 int err = 0; 1664 int was_modified = 0; 1665 1666 if (is_handle_aborted(handle)) 1667 return -EROFS; 1668 journal = transaction->t_journal; 1669 1670 BUFFER_TRACE(bh, "entry"); 1671 1672 jh = jbd2_journal_grab_journal_head(bh); 1673 if (!jh) { 1674 __bforget(bh); 1675 return 0; 1676 } 1677 1678 spin_lock(&jh->b_state_lock); 1679 1680 /* Critical error: attempting to delete a bitmap buffer, maybe? 1681 * Don't do any jbd operations, and return an error. */ 1682 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1683 "inconsistent data on disk")) { 1684 err = -EIO; 1685 goto drop; 1686 } 1687 1688 /* keep track of whether or not this transaction modified us */ 1689 was_modified = jh->b_modified; 1690 1691 /* 1692 * The buffer's going from the transaction, we must drop 1693 * all references -bzzz 1694 */ 1695 jh->b_modified = 0; 1696 1697 if (jh->b_transaction == transaction) { 1698 J_ASSERT_JH(jh, !jh->b_frozen_data); 1699 1700 /* If we are forgetting a buffer which is already part 1701 * of this transaction, then we can just drop it from 1702 * the transaction immediately. */ 1703 clear_buffer_dirty(bh); 1704 clear_buffer_jbddirty(bh); 1705 1706 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1707 1708 /* 1709 * we only want to drop a reference if this transaction 1710 * modified the buffer 1711 */ 1712 if (was_modified) 1713 drop_reserve = 1; 1714 1715 /* 1716 * We are no longer going to journal this buffer. 1717 * However, the commit of this transaction is still 1718 * important to the buffer: the delete that we are now 1719 * processing might obsolete an old log entry, so by 1720 * committing, we can satisfy the buffer's checkpoint. 1721 * 1722 * So, if we have a checkpoint on the buffer, we should 1723 * now refile the buffer on our BJ_Forget list so that 1724 * we know to remove the checkpoint after we commit. 1725 */ 1726 1727 spin_lock(&journal->j_list_lock); 1728 if (jh->b_cp_transaction) { 1729 __jbd2_journal_temp_unlink_buffer(jh); 1730 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1731 } else { 1732 __jbd2_journal_unfile_buffer(jh); 1733 jbd2_journal_put_journal_head(jh); 1734 } 1735 spin_unlock(&journal->j_list_lock); 1736 } else if (jh->b_transaction) { 1737 J_ASSERT_JH(jh, (jh->b_transaction == 1738 journal->j_committing_transaction)); 1739 /* However, if the buffer is still owned by a prior 1740 * (committing) transaction, we can't drop it yet... */ 1741 JBUFFER_TRACE(jh, "belongs to older transaction"); 1742 /* ... but we CAN drop it from the new transaction through 1743 * marking the buffer as freed and set j_next_transaction to 1744 * the new transaction, so that not only the commit code 1745 * knows it should clear dirty bits when it is done with the 1746 * buffer, but also the buffer can be checkpointed only 1747 * after the new transaction commits. */ 1748 1749 set_buffer_freed(bh); 1750 1751 if (!jh->b_next_transaction) { 1752 spin_lock(&journal->j_list_lock); 1753 jh->b_next_transaction = transaction; 1754 spin_unlock(&journal->j_list_lock); 1755 } else { 1756 J_ASSERT(jh->b_next_transaction == transaction); 1757 1758 /* 1759 * only drop a reference if this transaction modified 1760 * the buffer 1761 */ 1762 if (was_modified) 1763 drop_reserve = 1; 1764 } 1765 } else { 1766 /* 1767 * Finally, if the buffer is not belongs to any 1768 * transaction, we can just drop it now if it has no 1769 * checkpoint. 1770 */ 1771 spin_lock(&journal->j_list_lock); 1772 if (!jh->b_cp_transaction) { 1773 JBUFFER_TRACE(jh, "belongs to none transaction"); 1774 spin_unlock(&journal->j_list_lock); 1775 goto drop; 1776 } 1777 1778 /* 1779 * Otherwise, if the buffer has been written to disk, 1780 * it is safe to remove the checkpoint and drop it. 1781 */ 1782 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) { 1783 spin_unlock(&journal->j_list_lock); 1784 goto drop; 1785 } 1786 1787 /* 1788 * The buffer is still not written to disk, we should 1789 * attach this buffer to current transaction so that the 1790 * buffer can be checkpointed only after the current 1791 * transaction commits. 1792 */ 1793 clear_buffer_dirty(bh); 1794 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1795 spin_unlock(&journal->j_list_lock); 1796 } 1797 drop: 1798 __brelse(bh); 1799 spin_unlock(&jh->b_state_lock); 1800 jbd2_journal_put_journal_head(jh); 1801 if (drop_reserve) { 1802 /* no need to reserve log space for this block -bzzz */ 1803 handle->h_total_credits++; 1804 } 1805 return err; 1806 } 1807 1808 /** 1809 * jbd2_journal_stop() - complete a transaction 1810 * @handle: transaction to complete. 1811 * 1812 * All done for a particular handle. 1813 * 1814 * There is not much action needed here. We just return any remaining 1815 * buffer credits to the transaction and remove the handle. The only 1816 * complication is that we need to start a commit operation if the 1817 * filesystem is marked for synchronous update. 1818 * 1819 * jbd2_journal_stop itself will not usually return an error, but it may 1820 * do so in unusual circumstances. In particular, expect it to 1821 * return -EIO if a jbd2_journal_abort has been executed since the 1822 * transaction began. 1823 */ 1824 int jbd2_journal_stop(handle_t *handle) 1825 { 1826 transaction_t *transaction = handle->h_transaction; 1827 journal_t *journal; 1828 int err = 0, wait_for_commit = 0; 1829 tid_t tid; 1830 pid_t pid; 1831 1832 if (--handle->h_ref > 0) { 1833 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1834 handle->h_ref); 1835 if (is_handle_aborted(handle)) 1836 return -EIO; 1837 return 0; 1838 } 1839 if (!transaction) { 1840 /* 1841 * Handle is already detached from the transaction so there is 1842 * nothing to do other than free the handle. 1843 */ 1844 memalloc_nofs_restore(handle->saved_alloc_context); 1845 goto free_and_exit; 1846 } 1847 journal = transaction->t_journal; 1848 tid = transaction->t_tid; 1849 1850 if (is_handle_aborted(handle)) 1851 err = -EIO; 1852 1853 jbd2_debug(4, "Handle %p going down\n", handle); 1854 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1855 tid, handle->h_type, handle->h_line_no, 1856 jiffies - handle->h_start_jiffies, 1857 handle->h_sync, handle->h_requested_credits, 1858 (handle->h_requested_credits - 1859 handle->h_total_credits)); 1860 1861 /* 1862 * Implement synchronous transaction batching. If the handle 1863 * was synchronous, don't force a commit immediately. Let's 1864 * yield and let another thread piggyback onto this 1865 * transaction. Keep doing that while new threads continue to 1866 * arrive. It doesn't cost much - we're about to run a commit 1867 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1868 * operations by 30x or more... 1869 * 1870 * We try and optimize the sleep time against what the 1871 * underlying disk can do, instead of having a static sleep 1872 * time. This is useful for the case where our storage is so 1873 * fast that it is more optimal to go ahead and force a flush 1874 * and wait for the transaction to be committed than it is to 1875 * wait for an arbitrary amount of time for new writers to 1876 * join the transaction. We achieve this by measuring how 1877 * long it takes to commit a transaction, and compare it with 1878 * how long this transaction has been running, and if run time 1879 * < commit time then we sleep for the delta and commit. This 1880 * greatly helps super fast disks that would see slowdowns as 1881 * more threads started doing fsyncs. 1882 * 1883 * But don't do this if this process was the most recent one 1884 * to perform a synchronous write. We do this to detect the 1885 * case where a single process is doing a stream of sync 1886 * writes. No point in waiting for joiners in that case. 1887 * 1888 * Setting max_batch_time to 0 disables this completely. 1889 */ 1890 pid = current->pid; 1891 if (handle->h_sync && journal->j_last_sync_writer != pid && 1892 journal->j_max_batch_time) { 1893 u64 commit_time, trans_time; 1894 1895 journal->j_last_sync_writer = pid; 1896 1897 read_lock(&journal->j_state_lock); 1898 commit_time = journal->j_average_commit_time; 1899 read_unlock(&journal->j_state_lock); 1900 1901 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1902 transaction->t_start_time)); 1903 1904 commit_time = max_t(u64, commit_time, 1905 1000*journal->j_min_batch_time); 1906 commit_time = min_t(u64, commit_time, 1907 1000*journal->j_max_batch_time); 1908 1909 if (trans_time < commit_time) { 1910 ktime_t expires = ktime_add_ns(ktime_get(), 1911 commit_time); 1912 set_current_state(TASK_UNINTERRUPTIBLE); 1913 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1914 } 1915 } 1916 1917 if (handle->h_sync) 1918 transaction->t_synchronous_commit = 1; 1919 1920 /* 1921 * If the handle is marked SYNC, we need to set another commit 1922 * going! We also want to force a commit if the transaction is too 1923 * old now. 1924 */ 1925 if (handle->h_sync || 1926 time_after_eq(jiffies, transaction->t_expires)) { 1927 /* Do this even for aborted journals: an abort still 1928 * completes the commit thread, it just doesn't write 1929 * anything to disk. */ 1930 1931 jbd2_debug(2, "transaction too old, requesting commit for " 1932 "handle %p\n", handle); 1933 /* This is non-blocking */ 1934 jbd2_log_start_commit(journal, tid); 1935 1936 /* 1937 * Special case: JBD2_SYNC synchronous updates require us 1938 * to wait for the commit to complete. 1939 */ 1940 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1941 wait_for_commit = 1; 1942 } 1943 1944 /* 1945 * Once stop_this_handle() drops t_updates, the transaction could start 1946 * committing on us and eventually disappear. So we must not 1947 * dereference transaction pointer again after calling 1948 * stop_this_handle(). 1949 */ 1950 stop_this_handle(handle); 1951 1952 if (wait_for_commit) 1953 err = jbd2_log_wait_commit(journal, tid); 1954 1955 free_and_exit: 1956 if (handle->h_rsv_handle) 1957 jbd2_free_handle(handle->h_rsv_handle); 1958 jbd2_free_handle(handle); 1959 return err; 1960 } 1961 1962 /* 1963 * 1964 * List management code snippets: various functions for manipulating the 1965 * transaction buffer lists. 1966 * 1967 */ 1968 1969 /* 1970 * Append a buffer to a transaction list, given the transaction's list head 1971 * pointer. 1972 * 1973 * j_list_lock is held. 1974 * 1975 * jh->b_state_lock is held. 1976 */ 1977 1978 static inline void 1979 __blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1980 { 1981 if (!*list) { 1982 jh->b_tnext = jh->b_tprev = jh; 1983 *list = jh; 1984 } else { 1985 /* Insert at the tail of the list to preserve order */ 1986 struct journal_head *first = *list, *last = first->b_tprev; 1987 jh->b_tprev = last; 1988 jh->b_tnext = first; 1989 last->b_tnext = first->b_tprev = jh; 1990 } 1991 } 1992 1993 /* 1994 * Remove a buffer from a transaction list, given the transaction's list 1995 * head pointer. 1996 * 1997 * Called with j_list_lock held, and the journal may not be locked. 1998 * 1999 * jh->b_state_lock is held. 2000 */ 2001 2002 static inline void 2003 __blist_del_buffer(struct journal_head **list, struct journal_head *jh) 2004 { 2005 if (*list == jh) { 2006 *list = jh->b_tnext; 2007 if (*list == jh) 2008 *list = NULL; 2009 } 2010 jh->b_tprev->b_tnext = jh->b_tnext; 2011 jh->b_tnext->b_tprev = jh->b_tprev; 2012 } 2013 2014 /* 2015 * Remove a buffer from the appropriate transaction list. 2016 * 2017 * Note that this function can *change* the value of 2018 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 2019 * t_reserved_list. If the caller is holding onto a copy of one of these 2020 * pointers, it could go bad. Generally the caller needs to re-read the 2021 * pointer from the transaction_t. 2022 * 2023 * Called under j_list_lock. 2024 */ 2025 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2026 { 2027 struct journal_head **list = NULL; 2028 transaction_t *transaction; 2029 struct buffer_head *bh = jh2bh(jh); 2030 2031 lockdep_assert_held(&jh->b_state_lock); 2032 transaction = jh->b_transaction; 2033 if (transaction) 2034 assert_spin_locked(&transaction->t_journal->j_list_lock); 2035 2036 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2037 if (jh->b_jlist != BJ_None) 2038 J_ASSERT_JH(jh, transaction != NULL); 2039 2040 switch (jh->b_jlist) { 2041 case BJ_None: 2042 return; 2043 case BJ_Metadata: 2044 transaction->t_nr_buffers--; 2045 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2046 list = &transaction->t_buffers; 2047 break; 2048 case BJ_Forget: 2049 list = &transaction->t_forget; 2050 break; 2051 case BJ_Shadow: 2052 list = &transaction->t_shadow_list; 2053 break; 2054 case BJ_Reserved: 2055 list = &transaction->t_reserved_list; 2056 break; 2057 } 2058 2059 __blist_del_buffer(list, jh); 2060 jh->b_jlist = BJ_None; 2061 if (transaction && is_journal_aborted(transaction->t_journal)) 2062 clear_buffer_jbddirty(bh); 2063 else if (test_clear_buffer_jbddirty(bh)) 2064 mark_buffer_dirty(bh); /* Expose it to the VM */ 2065 } 2066 2067 /* 2068 * Remove buffer from all transactions. The caller is responsible for dropping 2069 * the jh reference that belonged to the transaction. 2070 * 2071 * Called with bh_state lock and j_list_lock 2072 */ 2073 static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2074 { 2075 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2076 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2077 2078 __jbd2_journal_temp_unlink_buffer(jh); 2079 jh->b_transaction = NULL; 2080 } 2081 2082 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2083 { 2084 struct buffer_head *bh = jh2bh(jh); 2085 2086 /* Get reference so that buffer cannot be freed before we unlock it */ 2087 get_bh(bh); 2088 spin_lock(&jh->b_state_lock); 2089 spin_lock(&journal->j_list_lock); 2090 __jbd2_journal_unfile_buffer(jh); 2091 spin_unlock(&journal->j_list_lock); 2092 spin_unlock(&jh->b_state_lock); 2093 jbd2_journal_put_journal_head(jh); 2094 __brelse(bh); 2095 } 2096 2097 /** 2098 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2099 * @journal: journal for operation 2100 * @folio: Folio to detach data from. 2101 * 2102 * For all the buffers on this page, 2103 * if they are fully written out ordered data, move them onto BUF_CLEAN 2104 * so try_to_free_buffers() can reap them. 2105 * 2106 * This function returns non-zero if we wish try_to_free_buffers() 2107 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2108 * We also do it if the page has locked or dirty buffers and the caller wants 2109 * us to perform sync or async writeout. 2110 * 2111 * This complicates JBD locking somewhat. We aren't protected by the 2112 * BKL here. We wish to remove the buffer from its committing or 2113 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2114 * 2115 * This may *change* the value of transaction_t->t_datalist, so anyone 2116 * who looks at t_datalist needs to lock against this function. 2117 * 2118 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2119 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2120 * will come out of the lock with the buffer dirty, which makes it 2121 * ineligible for release here. 2122 * 2123 * Who else is affected by this? hmm... Really the only contender 2124 * is do_get_write_access() - it could be looking at the buffer while 2125 * journal_try_to_free_buffer() is changing its state. But that 2126 * cannot happen because we never reallocate freed data as metadata 2127 * while the data is part of a transaction. Yes? 2128 * 2129 * Return false on failure, true on success 2130 */ 2131 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio) 2132 { 2133 struct buffer_head *head; 2134 struct buffer_head *bh; 2135 bool ret = false; 2136 2137 J_ASSERT(folio_test_locked(folio)); 2138 2139 head = folio_buffers(folio); 2140 bh = head; 2141 do { 2142 struct journal_head *jh; 2143 2144 /* 2145 * We take our own ref against the journal_head here to avoid 2146 * having to add tons of locking around each instance of 2147 * jbd2_journal_put_journal_head(). 2148 */ 2149 jh = jbd2_journal_grab_journal_head(bh); 2150 if (!jh) 2151 continue; 2152 2153 spin_lock(&jh->b_state_lock); 2154 if (!jh->b_transaction && !jh->b_next_transaction) { 2155 spin_lock(&journal->j_list_lock); 2156 /* Remove written-back checkpointed metadata buffer */ 2157 if (jh->b_cp_transaction != NULL) 2158 jbd2_journal_try_remove_checkpoint(jh); 2159 spin_unlock(&journal->j_list_lock); 2160 } 2161 spin_unlock(&jh->b_state_lock); 2162 jbd2_journal_put_journal_head(jh); 2163 if (buffer_jbd(bh)) 2164 goto busy; 2165 } while ((bh = bh->b_this_page) != head); 2166 2167 ret = try_to_free_buffers(folio); 2168 busy: 2169 return ret; 2170 } 2171 2172 /* 2173 * This buffer is no longer needed. If it is on an older transaction's 2174 * checkpoint list we need to record it on this transaction's forget list 2175 * to pin this buffer (and hence its checkpointing transaction) down until 2176 * this transaction commits. If the buffer isn't on a checkpoint list, we 2177 * release it. 2178 * Returns non-zero if JBD no longer has an interest in the buffer. 2179 * 2180 * Called under j_list_lock. 2181 * 2182 * Called under jh->b_state_lock. 2183 */ 2184 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2185 { 2186 int may_free = 1; 2187 struct buffer_head *bh = jh2bh(jh); 2188 2189 if (jh->b_cp_transaction) { 2190 JBUFFER_TRACE(jh, "on running+cp transaction"); 2191 __jbd2_journal_temp_unlink_buffer(jh); 2192 /* 2193 * We don't want to write the buffer anymore, clear the 2194 * bit so that we don't confuse checks in 2195 * __journal_file_buffer 2196 */ 2197 clear_buffer_dirty(bh); 2198 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2199 may_free = 0; 2200 } else { 2201 JBUFFER_TRACE(jh, "on running transaction"); 2202 __jbd2_journal_unfile_buffer(jh); 2203 jbd2_journal_put_journal_head(jh); 2204 } 2205 return may_free; 2206 } 2207 2208 /* 2209 * jbd2_journal_invalidate_folio 2210 * 2211 * This code is tricky. It has a number of cases to deal with. 2212 * 2213 * There are two invariants which this code relies on: 2214 * 2215 * i_size must be updated on disk before we start calling invalidate_folio 2216 * on the data. 2217 * 2218 * This is done in ext3 by defining an ext3_setattr method which 2219 * updates i_size before truncate gets going. By maintaining this 2220 * invariant, we can be sure that it is safe to throw away any buffers 2221 * attached to the current transaction: once the transaction commits, 2222 * we know that the data will not be needed. 2223 * 2224 * Note however that we can *not* throw away data belonging to the 2225 * previous, committing transaction! 2226 * 2227 * Any disk blocks which *are* part of the previous, committing 2228 * transaction (and which therefore cannot be discarded immediately) are 2229 * not going to be reused in the new running transaction 2230 * 2231 * The bitmap committed_data images guarantee this: any block which is 2232 * allocated in one transaction and removed in the next will be marked 2233 * as in-use in the committed_data bitmap, so cannot be reused until 2234 * the next transaction to delete the block commits. This means that 2235 * leaving committing buffers dirty is quite safe: the disk blocks 2236 * cannot be reallocated to a different file and so buffer aliasing is 2237 * not possible. 2238 * 2239 * 2240 * The above applies mainly to ordered data mode. In writeback mode we 2241 * don't make guarantees about the order in which data hits disk --- in 2242 * particular we don't guarantee that new dirty data is flushed before 2243 * transaction commit --- so it is always safe just to discard data 2244 * immediately in that mode. --sct 2245 */ 2246 2247 /* 2248 * The journal_unmap_buffer helper function returns zero if the buffer 2249 * concerned remains pinned as an anonymous buffer belonging to an older 2250 * transaction. 2251 * 2252 * We're outside-transaction here. Either or both of j_running_transaction 2253 * and j_committing_transaction may be NULL. 2254 */ 2255 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2256 int partial_page) 2257 { 2258 transaction_t *transaction; 2259 struct journal_head *jh; 2260 int may_free = 1; 2261 2262 BUFFER_TRACE(bh, "entry"); 2263 2264 /* 2265 * It is safe to proceed here without the j_list_lock because the 2266 * buffers cannot be stolen by try_to_free_buffers as long as we are 2267 * holding the page lock. --sct 2268 */ 2269 2270 jh = jbd2_journal_grab_journal_head(bh); 2271 if (!jh) 2272 goto zap_buffer_unlocked; 2273 2274 /* OK, we have data buffer in journaled mode */ 2275 write_lock(&journal->j_state_lock); 2276 spin_lock(&jh->b_state_lock); 2277 spin_lock(&journal->j_list_lock); 2278 2279 /* 2280 * We cannot remove the buffer from checkpoint lists until the 2281 * transaction adding inode to orphan list (let's call it T) 2282 * is committed. Otherwise if the transaction changing the 2283 * buffer would be cleaned from the journal before T is 2284 * committed, a crash will cause that the correct contents of 2285 * the buffer will be lost. On the other hand we have to 2286 * clear the buffer dirty bit at latest at the moment when the 2287 * transaction marking the buffer as freed in the filesystem 2288 * structures is committed because from that moment on the 2289 * block can be reallocated and used by a different page. 2290 * Since the block hasn't been freed yet but the inode has 2291 * already been added to orphan list, it is safe for us to add 2292 * the buffer to BJ_Forget list of the newest transaction. 2293 * 2294 * Also we have to clear buffer_mapped flag of a truncated buffer 2295 * because the buffer_head may be attached to the page straddling 2296 * i_size (can happen only when blocksize < pagesize) and thus the 2297 * buffer_head can be reused when the file is extended again. So we end 2298 * up keeping around invalidated buffers attached to transactions' 2299 * BJ_Forget list just to stop checkpointing code from cleaning up 2300 * the transaction this buffer was modified in. 2301 */ 2302 transaction = jh->b_transaction; 2303 if (transaction == NULL) { 2304 /* First case: not on any transaction. If it 2305 * has no checkpoint link, then we can zap it: 2306 * it's a writeback-mode buffer so we don't care 2307 * if it hits disk safely. */ 2308 if (!jh->b_cp_transaction) { 2309 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2310 goto zap_buffer; 2311 } 2312 2313 if (!buffer_dirty(bh)) { 2314 /* bdflush has written it. We can drop it now */ 2315 __jbd2_journal_remove_checkpoint(jh); 2316 goto zap_buffer; 2317 } 2318 2319 /* OK, it must be in the journal but still not 2320 * written fully to disk: it's metadata or 2321 * journaled data... */ 2322 2323 if (journal->j_running_transaction) { 2324 /* ... and once the current transaction has 2325 * committed, the buffer won't be needed any 2326 * longer. */ 2327 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2328 may_free = __dispose_buffer(jh, 2329 journal->j_running_transaction); 2330 goto zap_buffer; 2331 } else { 2332 /* There is no currently-running transaction. So the 2333 * orphan record which we wrote for this file must have 2334 * passed into commit. We must attach this buffer to 2335 * the committing transaction, if it exists. */ 2336 if (journal->j_committing_transaction) { 2337 JBUFFER_TRACE(jh, "give to committing trans"); 2338 may_free = __dispose_buffer(jh, 2339 journal->j_committing_transaction); 2340 goto zap_buffer; 2341 } else { 2342 /* The orphan record's transaction has 2343 * committed. We can cleanse this buffer */ 2344 clear_buffer_jbddirty(bh); 2345 __jbd2_journal_remove_checkpoint(jh); 2346 goto zap_buffer; 2347 } 2348 } 2349 } else if (transaction == journal->j_committing_transaction) { 2350 JBUFFER_TRACE(jh, "on committing transaction"); 2351 /* 2352 * The buffer is committing, we simply cannot touch 2353 * it. If the page is straddling i_size we have to wait 2354 * for commit and try again. 2355 */ 2356 if (partial_page) { 2357 spin_unlock(&journal->j_list_lock); 2358 spin_unlock(&jh->b_state_lock); 2359 write_unlock(&journal->j_state_lock); 2360 jbd2_journal_put_journal_head(jh); 2361 /* Already zapped buffer? Nothing to do... */ 2362 if (!bh->b_bdev) 2363 return 0; 2364 return -EBUSY; 2365 } 2366 /* 2367 * OK, buffer won't be reachable after truncate. We just clear 2368 * b_modified to not confuse transaction credit accounting, and 2369 * set j_next_transaction to the running transaction (if there 2370 * is one) and mark buffer as freed so that commit code knows 2371 * it should clear dirty bits when it is done with the buffer. 2372 */ 2373 set_buffer_freed(bh); 2374 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2375 jh->b_next_transaction = journal->j_running_transaction; 2376 jh->b_modified = 0; 2377 spin_unlock(&journal->j_list_lock); 2378 spin_unlock(&jh->b_state_lock); 2379 write_unlock(&journal->j_state_lock); 2380 jbd2_journal_put_journal_head(jh); 2381 return 0; 2382 } else { 2383 /* Good, the buffer belongs to the running transaction. 2384 * We are writing our own transaction's data, not any 2385 * previous one's, so it is safe to throw it away 2386 * (remember that we expect the filesystem to have set 2387 * i_size already for this truncate so recovery will not 2388 * expose the disk blocks we are discarding here.) */ 2389 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2390 JBUFFER_TRACE(jh, "on running transaction"); 2391 may_free = __dispose_buffer(jh, transaction); 2392 } 2393 2394 zap_buffer: 2395 /* 2396 * This is tricky. Although the buffer is truncated, it may be reused 2397 * if blocksize < pagesize and it is attached to the page straddling 2398 * EOF. Since the buffer might have been added to BJ_Forget list of the 2399 * running transaction, journal_get_write_access() won't clear 2400 * b_modified and credit accounting gets confused. So clear b_modified 2401 * here. 2402 */ 2403 jh->b_modified = 0; 2404 spin_unlock(&journal->j_list_lock); 2405 spin_unlock(&jh->b_state_lock); 2406 write_unlock(&journal->j_state_lock); 2407 jbd2_journal_put_journal_head(jh); 2408 zap_buffer_unlocked: 2409 clear_buffer_dirty(bh); 2410 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2411 clear_buffer_mapped(bh); 2412 clear_buffer_req(bh); 2413 clear_buffer_new(bh); 2414 clear_buffer_delay(bh); 2415 clear_buffer_unwritten(bh); 2416 bh->b_bdev = NULL; 2417 return may_free; 2418 } 2419 2420 /** 2421 * jbd2_journal_invalidate_folio() 2422 * @journal: journal to use for flush... 2423 * @folio: folio to flush 2424 * @offset: start of the range to invalidate 2425 * @length: length of the range to invalidate 2426 * 2427 * Reap page buffers containing data after in the specified range in page. 2428 * Can return -EBUSY if buffers are part of the committing transaction and 2429 * the page is straddling i_size. Caller then has to wait for current commit 2430 * and try again. 2431 */ 2432 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio, 2433 size_t offset, size_t length) 2434 { 2435 struct buffer_head *head, *bh, *next; 2436 unsigned int stop = offset + length; 2437 unsigned int curr_off = 0; 2438 int partial_page = (offset || length < folio_size(folio)); 2439 int may_free = 1; 2440 int ret = 0; 2441 2442 if (!folio_test_locked(folio)) 2443 BUG(); 2444 head = folio_buffers(folio); 2445 if (!head) 2446 return 0; 2447 2448 BUG_ON(stop > folio_size(folio) || stop < length); 2449 2450 /* We will potentially be playing with lists other than just the 2451 * data lists (especially for journaled data mode), so be 2452 * cautious in our locking. */ 2453 2454 bh = head; 2455 do { 2456 unsigned int next_off = curr_off + bh->b_size; 2457 next = bh->b_this_page; 2458 2459 if (next_off > stop) 2460 return 0; 2461 2462 if (offset <= curr_off) { 2463 /* This block is wholly outside the truncation point */ 2464 lock_buffer(bh); 2465 ret = journal_unmap_buffer(journal, bh, partial_page); 2466 unlock_buffer(bh); 2467 if (ret < 0) 2468 return ret; 2469 may_free &= ret; 2470 } 2471 curr_off = next_off; 2472 bh = next; 2473 2474 } while (bh != head); 2475 2476 if (!partial_page) { 2477 if (may_free && try_to_free_buffers(folio)) 2478 J_ASSERT(!folio_buffers(folio)); 2479 } 2480 return 0; 2481 } 2482 2483 /* 2484 * File a buffer on the given transaction list. 2485 */ 2486 void __jbd2_journal_file_buffer(struct journal_head *jh, 2487 transaction_t *transaction, int jlist) 2488 { 2489 struct journal_head **list = NULL; 2490 int was_dirty = 0; 2491 struct buffer_head *bh = jh2bh(jh); 2492 2493 lockdep_assert_held(&jh->b_state_lock); 2494 assert_spin_locked(&transaction->t_journal->j_list_lock); 2495 2496 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2497 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2498 jh->b_transaction == NULL); 2499 2500 if (jh->b_transaction && jh->b_jlist == jlist) 2501 return; 2502 2503 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2504 jlist == BJ_Shadow || jlist == BJ_Forget) { 2505 /* 2506 * For metadata buffers, we track dirty bit in buffer_jbddirty 2507 * instead of buffer_dirty. We should not see a dirty bit set 2508 * here because we clear it in do_get_write_access but e.g. 2509 * tune2fs can modify the sb and set the dirty bit at any time 2510 * so we try to gracefully handle that. 2511 */ 2512 if (buffer_dirty(bh)) 2513 warn_dirty_buffer(bh); 2514 if (test_clear_buffer_dirty(bh) || 2515 test_clear_buffer_jbddirty(bh)) 2516 was_dirty = 1; 2517 } 2518 2519 if (jh->b_transaction) 2520 __jbd2_journal_temp_unlink_buffer(jh); 2521 else 2522 jbd2_journal_grab_journal_head(bh); 2523 jh->b_transaction = transaction; 2524 2525 switch (jlist) { 2526 case BJ_None: 2527 J_ASSERT_JH(jh, !jh->b_committed_data); 2528 J_ASSERT_JH(jh, !jh->b_frozen_data); 2529 return; 2530 case BJ_Metadata: 2531 transaction->t_nr_buffers++; 2532 list = &transaction->t_buffers; 2533 break; 2534 case BJ_Forget: 2535 list = &transaction->t_forget; 2536 break; 2537 case BJ_Shadow: 2538 list = &transaction->t_shadow_list; 2539 break; 2540 case BJ_Reserved: 2541 list = &transaction->t_reserved_list; 2542 break; 2543 } 2544 2545 __blist_add_buffer(list, jh); 2546 jh->b_jlist = jlist; 2547 2548 if (was_dirty) 2549 set_buffer_jbddirty(bh); 2550 } 2551 2552 void jbd2_journal_file_buffer(struct journal_head *jh, 2553 transaction_t *transaction, int jlist) 2554 { 2555 spin_lock(&jh->b_state_lock); 2556 spin_lock(&transaction->t_journal->j_list_lock); 2557 __jbd2_journal_file_buffer(jh, transaction, jlist); 2558 spin_unlock(&transaction->t_journal->j_list_lock); 2559 spin_unlock(&jh->b_state_lock); 2560 } 2561 2562 /* 2563 * Remove a buffer from its current buffer list in preparation for 2564 * dropping it from its current transaction entirely. If the buffer has 2565 * already started to be used by a subsequent transaction, refile the 2566 * buffer on that transaction's metadata list. 2567 * 2568 * Called under j_list_lock 2569 * Called under jh->b_state_lock 2570 * 2571 * When this function returns true, there's no next transaction to refile to 2572 * and the caller has to drop jh reference through 2573 * jbd2_journal_put_journal_head(). 2574 */ 2575 bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2576 { 2577 int was_dirty, jlist; 2578 struct buffer_head *bh = jh2bh(jh); 2579 2580 lockdep_assert_held(&jh->b_state_lock); 2581 if (jh->b_transaction) 2582 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2583 2584 /* If the buffer is now unused, just drop it. */ 2585 if (jh->b_next_transaction == NULL) { 2586 __jbd2_journal_unfile_buffer(jh); 2587 return true; 2588 } 2589 2590 /* 2591 * It has been modified by a later transaction: add it to the new 2592 * transaction's metadata list. 2593 */ 2594 2595 was_dirty = test_clear_buffer_jbddirty(bh); 2596 __jbd2_journal_temp_unlink_buffer(jh); 2597 2598 /* 2599 * b_transaction must be set, otherwise the new b_transaction won't 2600 * be holding jh reference 2601 */ 2602 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2603 2604 /* 2605 * We set b_transaction here because b_next_transaction will inherit 2606 * our jh reference and thus __jbd2_journal_file_buffer() must not 2607 * take a new one. 2608 */ 2609 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2610 WRITE_ONCE(jh->b_next_transaction, NULL); 2611 if (buffer_freed(bh)) 2612 jlist = BJ_Forget; 2613 else if (jh->b_modified) 2614 jlist = BJ_Metadata; 2615 else 2616 jlist = BJ_Reserved; 2617 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2618 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2619 2620 if (was_dirty) 2621 set_buffer_jbddirty(bh); 2622 return false; 2623 } 2624 2625 /* 2626 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2627 * bh reference so that we can safely unlock bh. 2628 * 2629 * The jh and bh may be freed by this call. 2630 */ 2631 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2632 { 2633 bool drop; 2634 2635 spin_lock(&jh->b_state_lock); 2636 spin_lock(&journal->j_list_lock); 2637 drop = __jbd2_journal_refile_buffer(jh); 2638 spin_unlock(&jh->b_state_lock); 2639 spin_unlock(&journal->j_list_lock); 2640 if (drop) 2641 jbd2_journal_put_journal_head(jh); 2642 } 2643 2644 /* 2645 * File inode in the inode list of the handle's transaction 2646 */ 2647 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2648 unsigned long flags, loff_t start_byte, loff_t end_byte) 2649 { 2650 transaction_t *transaction = handle->h_transaction; 2651 journal_t *journal; 2652 2653 if (is_handle_aborted(handle)) 2654 return -EROFS; 2655 journal = transaction->t_journal; 2656 2657 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2658 transaction->t_tid); 2659 2660 spin_lock(&journal->j_list_lock); 2661 jinode->i_flags |= flags; 2662 2663 if (jinode->i_dirty_end) { 2664 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2665 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2666 } else { 2667 jinode->i_dirty_start = start_byte; 2668 jinode->i_dirty_end = end_byte; 2669 } 2670 2671 /* Is inode already attached where we need it? */ 2672 if (jinode->i_transaction == transaction || 2673 jinode->i_next_transaction == transaction) 2674 goto done; 2675 2676 /* 2677 * We only ever set this variable to 1 so the test is safe. Since 2678 * t_need_data_flush is likely to be set, we do the test to save some 2679 * cacheline bouncing 2680 */ 2681 if (!transaction->t_need_data_flush) 2682 transaction->t_need_data_flush = 1; 2683 /* On some different transaction's list - should be 2684 * the committing one */ 2685 if (jinode->i_transaction) { 2686 J_ASSERT(jinode->i_next_transaction == NULL); 2687 J_ASSERT(jinode->i_transaction == 2688 journal->j_committing_transaction); 2689 jinode->i_next_transaction = transaction; 2690 goto done; 2691 } 2692 /* Not on any transaction list... */ 2693 J_ASSERT(!jinode->i_next_transaction); 2694 jinode->i_transaction = transaction; 2695 list_add(&jinode->i_list, &transaction->t_inode_list); 2696 done: 2697 spin_unlock(&journal->j_list_lock); 2698 2699 return 0; 2700 } 2701 2702 int jbd2_journal_inode_ranged_write(handle_t *handle, 2703 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2704 { 2705 return jbd2_journal_file_inode(handle, jinode, 2706 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2707 start_byte + length - 1); 2708 } 2709 2710 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2711 loff_t start_byte, loff_t length) 2712 { 2713 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2714 start_byte, start_byte + length - 1); 2715 } 2716 2717 /* 2718 * File truncate and transaction commit interact with each other in a 2719 * non-trivial way. If a transaction writing data block A is 2720 * committing, we cannot discard the data by truncate until we have 2721 * written them. Otherwise if we crashed after the transaction with 2722 * write has committed but before the transaction with truncate has 2723 * committed, we could see stale data in block A. This function is a 2724 * helper to solve this problem. It starts writeout of the truncated 2725 * part in case it is in the committing transaction. 2726 * 2727 * Filesystem code must call this function when inode is journaled in 2728 * ordered mode before truncation happens and after the inode has been 2729 * placed on orphan list with the new inode size. The second condition 2730 * avoids the race that someone writes new data and we start 2731 * committing the transaction after this function has been called but 2732 * before a transaction for truncate is started (and furthermore it 2733 * allows us to optimize the case where the addition to orphan list 2734 * happens in the same transaction as write --- we don't have to write 2735 * any data in such case). 2736 */ 2737 int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2738 struct jbd2_inode *jinode, 2739 loff_t new_size) 2740 { 2741 transaction_t *inode_trans, *commit_trans; 2742 int ret = 0; 2743 2744 /* This is a quick check to avoid locking if not necessary */ 2745 if (!jinode->i_transaction) 2746 goto out; 2747 /* Locks are here just to force reading of recent values, it is 2748 * enough that the transaction was not committing before we started 2749 * a transaction adding the inode to orphan list */ 2750 read_lock(&journal->j_state_lock); 2751 commit_trans = journal->j_committing_transaction; 2752 read_unlock(&journal->j_state_lock); 2753 spin_lock(&journal->j_list_lock); 2754 inode_trans = jinode->i_transaction; 2755 spin_unlock(&journal->j_list_lock); 2756 if (inode_trans == commit_trans) { 2757 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2758 new_size, LLONG_MAX); 2759 if (ret) 2760 jbd2_journal_abort(journal, ret); 2761 } 2762 out: 2763 return ret; 2764 } 2765